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Extremum-seeking guidance endeavors to drive the output of a system to the extremum of an unknown objective

function. This paper proposes an extremum-seeking guidance algorithm on SO�3� for cases with and without

inclusion and exclusion zones. The gradient of the unknown objective function is estimated via aKalman filter so that

the extremumof the objective function can be approximated. To satisfy inclusion and exclusion zone constraints, two

different constrained Kalman filters are proposed. The first Kalman filter is a gain-projected Kalman filter, and the

second is a novel linearmatrix inequality basedKalman filter that is able to accommodate a larger class of constraints.

The proposed extremum-seeking guidance algorithm is demonstrated using a performance objective that relates a

spacecraft’s attitude to received power of an unknown radiation source using a patch antenna.

I. Introduction

C ONTROL algorithms are typically designed to minimize the

error between a measured output and a desired output. The

desired output of the system can be determined in a variety of

different ways, such as by a human pilot, by a lookup table scheduled

as a function of time, or by a guidance algorithm. Often guidance

algorithms are optimal in some sense, where guidance commands are

given by the solution of an optimization problem that takes a

performance objective into account. The exact relation between a

system’s output and the performance objective may be unknown. In

such a situation, an extremum-seeking guidance algorithm can be

used to provide commands, such as a desired trajectory, to a system to

maximize or minimize the unknown performance function.

Examples of extremum seeking spans several industries, such as

the automotive sector [1–3], the energy sector [4,5], biomedical

engineering [6], and aviation [7,8].

Consider extremum-seeking algorithms that attempt to maximize

an objective function J: D → R, where J � J�z�, and where z ∈ D
is the performance variable of the plant. There are three main

approaches to extremize the objective function J on the restricted

domain D ⊂ Rn×m, n, m ∈ N, depending on the nature of the

constraints. These methods include a Lagrangian approach [9], a

barrier function approach [10–12], and an optimization onmanifolds

approach [13,14]. Each method has its own strengths depending on

the nature of the given constraints. In this paper, extremumseeking on

the manifold SO�3� and on a constrained subset of SO�3� is

discussed. In particular, extremum seeking on SO�3� is enabled by

merging a Lagrangian-based approach and a manifold-based
gradient optimization algorithm.
Gradient-based extremum-seeking guidance methods require

estimation of the gradient, a process that usually falls in two
categories: a parameter estimation approach [3,15,16], and a Kalman
filter approach [8]. A Kalman filter is advantageous because it is able
to filter measurement noisewhile providing the gradient estimate and
is therefore the approach used in this paper. For constrained subsets of
SO�3�, a constrained gradient optimization method is used, which
can be enabled by a constrained filtering method. In this paper, we
show how to write attitude inclusion and exclusion zones as linear
inequality constraints, which are written as a function of the gradient
of the performance function. The linear attitude constraints are
constructed at each time step, and a constraint to ensure that the
linearization remains valid can then be used. The idea of sequential
linearization and then ensuring small step sizes are small is similar to
that of [17]. A constrained gradient is then estimated using a gain-
projected Kalman filter [18], which requires linear constraints. This
filter projects the posteriori gradient estimate onto a constrained set so
that the desired trajectory does not violate the inclusion or exclusion
zones. Further discussion of filtering with equality an inequality state
constraints can be found in [19].
In general, a Kalman filter determines the best state estimate in a

minimum mean-square error sense. This is an optimization problem
that can be formulated as a semidefinite programming (SDP) problem
using linear matrix inequalities (LMIs), which can be solved
efficiently using interior-point methods ([20] p. 1). Using an LMI
approach to Kalman filtering, state constraints, or set membership
can easily be introduced. An LMI-based approach is used for set
membership filtering for equality, inequality, and linearized
nonlinear constraints in [21,22]. Unlike the gain-projected Kalman
filter, the LMI-based filter modifies the Kalman gain so that the state
estimate is constrained during the correction step, and thus no extra
constraining step is needed to ensure that the state estimates satisfy
the constraints. Using [21,22] as inspiration, a novel LMI-based
Kalman filter is introduced to estimate the constrained gradient for
the extremum-seeking guidance problem. The filter has a different
structure, different assumptions on the system’s characteristics, and a
different derivation from that in [21], and it can handle both the linear
inequality and norm constraints placed on the gradient estimates.
These attributes make the LMI-based filter well suited for estimating
the constrained gradient in extremum-seeking applications.
There are several contributions in this paper that together realize

extremum seeking on SO�3� and on a constrained subset of SO�3�.
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First, we elucidate the relationship between the gradient of a function

on SO�3� and a Taylor series expansion of the same function. The

extremum-seeking algorithm hinges on this relationship. Second, we
demonstrate how to reformulate inclusion and exclusion zones on

SO�3� as linear inequality constraints that are easily embedded into a

constrained optimization problem. To be clear, it is the manner that

we reformulate these constraints into a form suitable for constrained
optimization that is the contribution, not the fashion that the

constraints are initially posed. The initial statement of the attitude

constraints is identical to other work, such as in [23,24]. Third, we

demonstrate how to estimate the gradient of an unknown constrained
performance function using a gain-projected Kalman filter and a

novel LMI-based Kalman filter. The estimated gradient is used in a

gradient ascent optimization algorithm. Fourth, we demonstrate the
proposed extremum-seeking technique on a spacecraft attitude

guidance problem. Specifically, the proposed extremum-seeking

guidance law is used to determine a desired attitude that maximizes

an objective function, and a feedback control lawminimizes the error
between the actual attitude and the desired attitude of the spacecraft.

For purposes of this paper, the spacecraft’s attitude is assumed to be

known exactly, but similar control techniques can be applied if

the attitude were estimated from sun sensors, star trackers,
magnetometers, etc.
The first contribution is developed in Sec. II once pertinent

notation and concepts from differential geometry are reviewed.
Section III gives an overview of gradient and projected gradient
ascent optimization on SO�3�. Unconstrained and constrained
extremum-seeking on SO�3� using gradient and projected gradient
ascent are shown in Secs. IV and V, respectively. Application of the
developed extremum-seeking guidance algorithms to a spacecraft
equippedwith a patch antenna and three reactionwheels is in Sec. VI,
and closing remarks are in Sec. VII.

II. Mathematical Preliminaries

This section briefly introduces necessary notation and then
reviews important concepts from differential geometry. The tangent
space of SO�3� and the gradient of a function f: SO�3� → R are
explained as well as the relationship between a first-order Taylor
series expansion of f and the gradient of f that lies in the tangent
space of SO�3�. The explanation of the gradient is necessary because
a gradient ascent optimization method is used for the extremum-
seeking guidance algorithm.

A. Notation

A frame of reference Fa is defined by a set of three orthonormal
dextral basis vectors a1, a2, and a3 ([25] p. 523). The matrix
Cba ∈ SO�3� is a direction cosine matrix (DCM) relating the
orientation of Fb relative to F a, where

SO�3� �
n
C ∈ R3×3jCTC � 1; detC � �1

o

where 1 is the identity matrix. The ith column of the identity matrix is
denoted as 1i. A principalDCMabout the ith basis vector ofF b orF a

by an angle α is denoted byCba � Ci�α�. The vector ra is resolved in
Fa and can be resolved in F b using the relation rb � Cbara. The
angular velocity ofF a relative toF b resolved inF c is given byωab

c .
The symmetric projection operator Ps: R

n×n → Sn projects
the matrix U ∈ Rn×n to the set of symmetric matrices,
Sn � fU ∈ Rn×njU � UTg, where Ps�U� � �1∕2��U � UT�. The
antisymmetric projection operator Pa: R

n×n → so�n� projects a
matrix U ∈ Rn×n to the set of antisymmetric matrices,
so�n� � fU ∈ Rn×njU � −UTg, where Pa�U� � �1∕2��U − UT�.
The operator �·�× maps R3 → so�3�. For example, for
v � � v1 v2 v3 �T , v× is given by

v× �
2
4 0 −v3 v2

v3 0 −v1
−v2 v1 0

3
5

The operator �·�∨ maps so�3� → R3, such that �v×�∨ � v. For
example,

2
4 0 −v3 v2

v3 0 −v1
−v2 v1 0

3
5

∨

�
2
4 v1
v2
v3

3
5 � v

The DCM Cba can be parameterized by the rotation vector ϕba.
Specifically, Cba � e−ϕ

ba×

, where e−ϕ
ba×

is the matrix exponential
given by

e−ϕ
ba× � cos�ϕba�1� �1 − cos�ϕba��

�
ϕba

ϕba

��
ϕba

ϕba

�
T

− sin�ϕba�
�
ϕba

ϕba

�×
(1)

where ϕba � �ϕbaTϕba�1∕2 [26]. Computation of ϕba is given by
ϕba � −�ln �Cba��∨. For a small rotation, that is when ϕba ≪ 1,
Cba can be approximated as

Cba ≈ 1 − ϕba× (2)

which can be derived by using small-angle approximations in
Eq. (1). The derivative of etA, A ∈ Rn×n, with respect to t,
is detA∕dt � AetA � etAA.

B. Useful Identities

Proposition 1: Let M ∈ Rn×n, and Ω ∈ so�n�, then

tr�MΩ� � tr�Pa�M�Ω� (3)

Proof: Expand the right side using the definition of Pa�M� to
obtain the left side.
Proposition 2: Let u, v ∈ R3, then

tr�−u×v×� � 2uTv (4)

Proof: Use the identity defined by Eq. (2.56b) in [26] in Eq. (4).
Proposition 3 (chain rule):Given a function f�X�: Rn×n → R and

a functionX�y�: R → Rn×n, the derivative of f�X�y��with respect to
y is given by

df

dy
� tr

��
df�X�
dX

��
dX�y�
dy

��
(5)

Proof: See the Appendix.
Theorem 1 (Weierstrass): If a function f�x�: D → R is continuous

and all x ∈ D, where D is compact, then an extremum exists on
D [27].
In Sec. III, continuous functions of the form f: SO�3� → R are

considered. The manifold SO�3� is compact, and as such, the
function f admits an extremum.

C. Manifolds and Tangent Spaces

The manifold SO�3� is an embedded submanifold of R3×3 [28].
The embedding space of SO�3�, denoted as SO�3�, is the manifold
R3×3. The tangent space to SO�3� at C ∈ SO�3� is [28]

TCSO�3� � fΩC: Ω ∈ so�3�g (6)

A manifold whose tangent spaces are equipped with a smoothly
varying inner product is called a Riemannianmanifold. Themanifold
R3×3 has the inner product given by

hA;Bi � tr�ATB� (7)

where A, B ∈ R3×3. The submanifolds and tangent manifolds of
R3×3 inherit this inner product. Thus, SO�3� becomes a
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Riemmannian manifold when TCSO�3� is equipped with the inner

product defined by Eq. (7). The inner product is important because it

is used to define the gradient of a function.
The orthogonal complement of TCSO�3� is denoted as

�TCSO�3��⊥. An element of Y ∈ �TCSO�3��⊥ is defined such that,

for all X ∈ TCSO�3�, hX;Yi � 0. The space �TCSO�3��⊥ is given

by [28]

�TCSO�3��⊥ � fSC: S ∈ S3g (8)

Proposition 4: Let TCSO�3� be the tangent space of SO�3� at C.
An element Z ∈ TCSO�3� can be decomposed into the sum of an

element in TCSO�3� and in �TCSO�3��⊥ by

Z � PC�Z� �P⊥
C�Z� (9)

where PC and P⊥
C are projection operators that define the mapping

PC: TCSO�3� → TCSO�3� and P⊥
C: TCSO�3� → �TCSO�3��⊥.

These projections are given by [28]

PC�Z� � Pa�ZCT�C (10)

P⊥
C�Z� � Ps�ZCT�C (11)

Proof:Comparing Eqs. (10) and (11) to Eqs. (6) and (8) shows that

PC�Z� ∈ TCSO�3� and P⊥
C�Z� ∈ �TCSO�3��⊥. Evaluating Eq. (9)

using Eqs. (10) and (11) completes the proof.

D. Gradients on SO�3� from Definition

Let f: SO�3� → R be a continuous function, where SO�3� is a
Riemmanian manifold equipped with the inner product given by

Eq. (7). The gradient of f at C, denoted by ∇f�C�, is defined as the

unique element of TCSO�3� that, for all Ξ ∈ TCSO�3�, satisfies

h∇f�C�;Ξi � d�f�Γ�ϵ���
dϵ

����
ϵ�0

(12)

whereΓ�ϵ�∈ SO�3�,Γ�0��C, andwhereΓ 0�0� � �dΓ�ϵ�∕dϵ�ϵ�0 �
Ξ [28]. An example of a function Γ�ϵ� that satisfies this criteria is

Γ�ϵ� � e−ϵg
×
C (13)

Γ 0�0� � −g×C (14)

where g is any element of R3.
Example 1: Consider the function f�C� � tr�BTC�, which maps

SO�3� toR, whereB ∈ R3×3. EvaluatingEq. (12) usingEqs. (13) and

(14) yields

h∇f�C�;−g×Ci � d

dϵ
tr�BTe−ϵg

×
C�

����
ϵ�0

tr
h
−�∇f�C��Tg×C

i
� tr�−BTg×C�

Using identity (3) yields

tr�−C�∇f�C��Tg×� � tr�−g×Pa�CBT��

Because ∇f�C� � ΩC for some Ω ∈ so�3�, C�∇f�C��T �
−CCTΩ � −Ω is antisymmetric. Thus, using identity (4) yields

2gT �C�∇f�C��T �∨ � 2gTPa�CBT�∨
gT �C�∇f�C��T −Pa�CBT��∨ � 0 (15)

Because Eq. (15) must hold for all g, the gradient is given by

∇f�C� � −Pa�CBT�C (16)

E. Gradients on SO�3� Using Projection
A different method to derive a gradient on SO�3� can be found

using the projections discussed in Sec. II.C. Let �f be defined on

R3×3 → R, and let f be the restriction of �f defined on SO�3� → R.
The gradient of f atC is denoted as∇f�C�, and the gradient of �f atC
is denoted as ∇ �f�C�. The gradient ∇ �f�C� is given by [29]

∇ �f�C� �
�
d �f

dC

�T

(17)

The gradient ∇f�C� can be expressed in terms of ∇ �f�C� using
Eq. (10), by projecting ∇ �f�C� onto TCSO�3�, that is [28]

∇f�C� � PC�∇ �f�C�� (18)

Example 2: Let f�C� � tr�BTC�, B, C ∈ R3×3, and let f be the
restriction of f such that C ∈ SO�3�. The gradient ∇f�C� is given
by [30]

∇ �f�C� �
�

d

dC
tr�BTC�

�
T

� B

Using Eqs. (10) and (18), the gradient ∇f�C� is given by

∇f�C� � Pa�BCT�C � −Pa�CBT�C (19)

which is the same result as in Eq. (16).

F. Gradient from Taylor Series

Although the previous two sections have provided an analytic
method to determine the gradient of a function on SO�3�, a numerical
method is needed in this paper for implementation purposes. In this
section, we show the relationship between a Taylor series expansion
of f�C�: SO�3� → R and the gradient ∇f�C�. This relationship is
critical for the extremum-seeking guidance algorithm presented
in Sec. IV.
Let C � e−ϕ

×
Ĉ be a parameterization of C, where Ĉ ∈ SO�3� is

constant, andwhereϕ � �ϕ1 ϕ2 ϕ3 �T ∈ R3 represents a rotation
from the nominal Ĉ. The first-order Taylor series expansion of a
function f�C�ϕ�� at Ĉ, that is around the point ϕ � 0� δϕ, is
given by

f�C�ϕ�� ≈ f�C�0�� � bTδϕ (20)

where b � � b1 b2 b3 �T is the gradient of Eq. (20), and where

bT � d

dϕ
f�C�ϕ��

����
ϕ�0

(21)

Because b ∈ R3 is the gradient of f�C�ϕ��: R3 → R at ϕ � 0,
and∇f�Ĉ� ∈ TĈSO�3� is the gradient of f�C�: SO�3� → R at Ĉ, the
matrices b and ∇f�Ĉ� are different. However, for brevity, we refer to
both b and ∇f�Ĉ� as the gradient. We feel that this practice is
acceptable in this paper because b can uniquely identify ∇f�Ĉ� and
vice versa, via the relation given in Proposition 5.
Proposition 5: The gradient b and the gradient ∇f�Ĉ� are

related via

∇f�Ĉ� � −
1

2
b×Ĉ (22)

Proof: Because the parameterization of C � e−ϕ
×Ĉ results in

C ∈ SO�3� for allϕ ∈ R3, we are able to relaxf to f. UsingEqs. (17)
and (21), and the chain rule given by Eq. (5), each element of b is
given by
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bi �
d

dϕi

f�C�ϕ��
����
ϕ�0

� tr

��
d �f�C�
dC

��
dC

dϕi

��
ϕ�0

� tr

�
�∇ �f�C��T

�
d

dϕi

exp

�
−
X3
j�1

ϕj1
×
j

�
Ĉ

��
ϕ�0

� tr

�
�∇ �f�C��T

�
−1×i exp

�
−
X3
j�1

ϕj1
×
j

�
Ĉ

��
ϕ�0

� tr�−�∇ �f�Ĉ��T1×i Ĉ�;
� tr�−Ĉ�∇ �f�Ĉ��T1×i � (23)

where∇ �f�Ĉ� is the gradient of �f at Ĉ. Using Eqs. (3) and (4), Eq. (23)
simplifies to

bi � 2�Pa�Ĉ�∇ �f�Ĉ��T�∨�T1i
and thus

b � 2Pa�Ĉ�∇ �f�Ĉ��T�∨

−
1

2
b× � Pa�∇ �f�Ĉ�ĈT� (24)

Right multiplying Eq. (24) by Ĉ and substituting in Eq. (18)
yields Eq. (22).

III. Maximization of a Function J: SO�3� → R
In this section, we review the gradient ascent and constrained

gradient ascent methods to solve the problem

max
Cba∈SO�3�

J � J�Cba� (25)

s:t: xi
T

b Cbay
i
a ≥ cos�αi�; i � 1; : : : ; nc (26)

where J: SO�3� → R is continuous, αi ∈ R, and nc is the number of
constraints. Because the manifold SO�3� is compact [28], and
because J is continuous, J has an extremum in SO�3� by Theorem 1.
Equation (26) can be used to define both inclusion zones and
exclusion zones, where xib andCbay

i
a must have a separation angle no

larger than αi. To conserve the “≥” sign, the exclusion zone between
xib and Cbay

i
a with angle αi is written as

xi
T

b Cba�−yia� ≥ cos�π − αi� (27)

In Sec. III.A, the algorithm to solve the unconstrained problem
[Eq. (25)] is considered. In Sec. III.B, the algorithm to solve the
constrained problem defined by Eqs. (25) and (26) is shown.

A. Gradient Ascent

A retraction on a manifold is a mapping from the tangent space to
the manifold, that is TCSO�3� → SO�3�. The retraction of ∇f�C� �
ΩC is given by a Riemannian exponential mapping on SO�3� and is
defined as RC�ΩC� � eΩC [28].
Example 3: Consider the gradient from examples 1 and 2. The

retraction of ∇f�C� � −Pa�CBT�C is given by

RC�∇f�C�� � exp�−Pa�CBT��C (28)

and Eq. (1) can be used to evaluate the exponential in Eq. (28),
with ϕ � Pa�CBT�∨. ■

Let the optimizer of J � J�Cba� beCb⋆a. The frameF bk is a frame
that is defined at the kth step of the gradient ascent algorithm. The
gradient ascent algorithm determines successive Cbk�1a using the
gradient of J at Cbka, given by ∇J�Cbka�. The matrix Cbk�1a is
given by

Cbk�1a � RCbka
�2κk∇J�Cbka�� (29)

where 2κk > 0 is the step size [28]. When the gradient ∇J�Cbka� is
determined from a Taylor series such as in Eq. (20), the update law is
given by

Cbk�1a � e−d
×
kCbka (30)

where dk � κkbk. Equation (30) is obtained by substituting Eq. (22)
into Eq. (29), which is the critical step that enables the extremum-
seeking algorithm. This gradient ascent algorithm is shown in Fig. 1.
The step in the tangent space TCbka

SO�3� is −κkb×kCbka, depicted by
the dark arrow (or blue arrow online). The retraction from
TCbka

SO�3� to SO�3� is represented by the light arrow (red arrow
online). The shading represents values of J, with the maximum value
at the star (red shading online), and the minimum values at the
shading of the edges of the sphere (blue shading online).
If the objective function is known and can be evaluated, κk can be

chosen via an exact line search to ensure that there is a sufficient
decay in J. However, the exact line search can be computationally
expensive, and thus the line search can be approximated via Armijo’s
rule to provide a maximum step size [31]. Wolfe’s conditions also
provide a provision for sufficient decrease by providing a lower
bound on the step size [31]. In extremum seeking, the objective
function cannot be evaluated, and neither of these conditions can be
used. Instead, the step size κk can be chosen to satisfy

dmin ≤ κkkbkk2 ≤ dmax (31)

where dmin is a minimum step size, and dmax is a maximum step size.
These conditions do not directly ensure a sufficient decrease but
allow for quicker convergence of J when the curvature of J
becomes small.

B. Constrained-Gradient Ascent

Consider the optimization problem given by Eqs. (25) and (26).
This problem is solved by incorporating constraints to the gradient
ascentmethod presented in Sec. III.A. The updatedDCMCbk�1a must
satisfy Eq. (26), and thus Eq. (26) is rewritten as

xi
T

bk�1
Cbk�1ay

i
a ≥ cos�αi� (32)

The constraint defined by Eq. (32) can be transformed to a linear
inequality constraint if the step dk is small. One method to obtain a
small dk is by considering the norm constraint

dT
kdk ≤ d2max (33)

With a small step dk, the small-angle approximation [Eq. (2)] can
be used, and Eq. (30) becomes

Cbk�1a � �1 − d×
k �Cbka (34)

Fig. 1 Gradient ascent for J � J�Cba�, with maximum Cb⋆a. The
sphere is a visualization of SO�3�, and the plane is a visualization of the
tangent space TCbka

SO�3�.
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Substituting Eq. (34) into Eq. (32) yields

xi
T

bk�1
�1 − d×

k �Cbkay
i
a ≥ cos�αi� (35)

Simplifying and rearranging Eq. (35) yields

Acon;kdk ≥ ξcon;k (36)

where

Acon;k �

2
664

x1
T

bk�1
�Cbkay

1
a�×

..

.

xn
T
c

bk�1
�Cbkay

nc
a �×

3
775; ξcon;k �

2
4

β1
..
.

βnc

3
5

and where βi � cos�αi� − xi
T

bk�1
Cbkay

i
a. The linearization of the

constraint is the second contribution. The linearization is possible
because we are looking forCbk�1a in the neighborhood ofCbka rather
than looking for any Cbk�1a that satisfies Eq. (32). Other methods to
determine attitude based on inclusion and exclusion zones can be
found in [23], but this method uses quaternions and quadratic
constraints. In [24], admissible sets are used, and this method does
not fit within this framework. Equation (36) is a linear constraint,
which works well given the nature of the application, which is a
projected gradient optimization.
The DCM Cbk�1a is still given by Eq. (30), but dk is chosen as the

minimizer of

min
1

2
�dk − κkbk�T�dk − κkbk� (37)

such that Eqs. (33) and (36) are satisfied. Ignoring Eq. (33) and
choosing a small κk, the solution to Eq. (37) subject to Eq. (36) is
given by constructing the matrices of active constraints Aactive

con;k and
ξactivecon;k to yield

Aactive
con;k dk � ξactivecon;k (38)

where the minimizing dk is given by

dk � κkbk −AactiveT

con;k �Aactive
con;kA

activeT

con;k �−1�Aactive
con;k κkbk − ξactivecon;k � (39)

Equation (39) projects dk onto the constrained set [Eq. (36)].
With a small step size κk, ignoring Eq. (33) is acceptable if it is

either assumed or known that κkbk is always small. When estimating
the constrained gradient in Sec. V, the gain-projected Kalman filter of
Sec. V.A requires linear constraints, and norm constraints must be
reformulated or ignored. However, the Kalman filter in Sec. V.B that
uses LMIs to determine the filter gain is capable of using Eq. (33)
directly in the filter formulation.

IV. Unconstrained Guidance on SO�3� with an
Unknown Objective Function

Consider the system shown in Fig. 2. The attitude ofF b relative to
Fa is parameterized by Cba. The function J: SO�3� → R is a
performance function. The outputs of the plant are Cba and the
measurement of J � J�Cba�, described in Sec. IV.A. The extremum-
seeking guidance law determines a desired frame F d and the DCM
Cda. The attitude error Cbd � CbaC

T
da is used for feedback in the

controller to drive Cba to Cda. Ideally, the desired attitude Cda

converges to Cb⋆a, where Cb⋆a is an unknown extremum of J�Cba�.
Therefore, because Cba converges to Cda through feedback control,
Cba converges to Cb⋆a. When the mapping of SO�3� → R of J is
unknown, the gradient must be estimated to use the gradient ascent
algorithm from Sec. III.A.
Using the gradient ascent optimization method and Eq. (30), the

desired attitude is given by

Cdk�1a � e−d
×
kCbka (40)

where dk is the step. The purpose of this section is to explain how to
determine dk for unconstrained extremum seeking on SO�3�.
Because dk is determined from the gradient, the gradient must be
estimated. The gradient is estimated using measurements described
in Sec. IV.A, and the filter described in Sec. IV.B.

A. Performance Measurements

The estimation of the gradient of J is enabled by taking a first-order
Taylor series expansion of J, using Eq. (20), at Cba�tk� � Cbka. The
parameterization Cba � exp�−ϕbb×

k �Cbka in the Taylor series
expansion yields

J�Cba� ≈ J�Cbka� � bTkϕ
bbk (41)

where bk is the gradient of J at Cbka. The units of bk is typically the
unit of J per radian.When using a first-order Taylor series expansion,
it is implied that the Taylor series is a valid approximation of J in the
neighborhood of Cbka. Therefore, if we knew the exact value of bk,
J�Cbk−1a� could be approximated by evaluating Eq. (41) at Cba �
Cbk−1a to obtain

J�Cbk−1a� ≈ J�Cbka� � bTkϕ
bk−1bk

However, in extremum seeking, bk is unknown, and the
measurement of the performance function J�Cbk−1a� and J�Cbka� is
known. Thus, instead of using the Taylor series to approximate J in
the neighborhood ofCbka, the Taylor series is used to approximate bk
in the neighborhood of Cbka, using measurements of J at attitudes
Cbk−la, for l � 0; : : : ; N. The linear case is detailed in [8], but for
clarity, an example for a function J: R → R is shown in Fig. 3. On the
left of Fig. 3, the Taylor series at xk can be used to approximate
J�xk−1�. On the right, multiple measurements of x and J can be used
to approximate the Taylor series at xk. The exact first-order Taylor
series cannot be obtained due to the sampling, but if measurements
are made close enough together, the difference between the
approximated Taylor series and the actual Taylor series is negligible.
Returning to J: SO�3� → R, Eq. (41) evaluated at Cba � Cbk−l a,
l � 1; : : : ; N, and rearranged results in

2
64

ΔJk
..
.

ΔJk−N�1

3
75 �

2
64
ϕbkb

T
k−1

..

.

ϕbkb
T
k−l

3
75bk (42)

where

ΔJk−l�1 � J�Cbka� − J�Cbk−la�; ϕbkbk−l � −�ln �CbkaC
T
bk−la

��∨

Equation (42) is written more compactly as

yk � Hkbk (43)

C

C CC u

Fig. 2 Extremum-seeking guidance block diagram. The attitude error is given by Cbd � CbaC
T
da.
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where

yk �
2
4

ΔJk
..
.

ΔJk−N�1

3
5; Hk �

2
4ϕbkb

T
k−1

..

.

ϕbkb
T
k−l

3
5 (44)

Both yk and Hk can be determined from the current and previous

attitude estimates of the plant.
Determining bk using Eq. (43) is a parameter estimation approach

to extremumseeking,wherebk contains the parameters, andHk is the

regressor. As such, persistence of excitation is required for

observability ofbk [8,32]. In this paper, aKalman filter formulation is

used to estimate bk. When augmented with measurement noise,

Eq. (43) forms the basis of the measurement model for the Kalman

filter approach, as explained in Sec. IV.B. TheKalman filter approach

also requires persistence of excitation [8].

B. Kalman Filter Formulation

A linear time-varying Kalman filter is used to estimate bk, by
specifying a process model and by modifying Eq. (43) to be the

measurement model, where both are given by

bk � bk−1 �wk−1 (45)

yk � Hkbk � vk (46)

where wk−1 ∼N �0;Qk�, Qk ≥ 0, vk ∼N �0;Rk�, Rk > 0, and

where yk andHk are defined in Eq. (44). The notationw ∼N � �w;Q�,
w, �w ∈ Rn,Q ∈ Rn×n, indicates thatw is Gaussianwith amean of �w
and covariance Q.
The Kalman filter estimates bk using a prediction step

b̂
−
k � b̂k−1; ŷ−k � Hkb̂

−
k ; P−

k � Pk−1 �Qk−1

and a correction step

b̂k � b̂
−
k � Kk�yk − ŷ−k � (47)

Pk � �1 −KkHk�P−
k �1 −KkHk�T � KkRkK

T
k (48)

where b̂k and b̂
−
k are the predicted and estimated gradient, andP−

k and

Pk are the predicted and estimated error covariance. Equation (48) is

known as the “Joseph form” and ismore numerically stable than other

forms, while still being valid for any gain Kk [26]. This is useful

because, in Sec. V.B, Eq. (48) can be used to correct P−
k to obtain Pk.

In Sec. V.B, the derived Kk is different from the traditional Kalman
gain, which is found byminimizing tr�Pk� [26]. The Kalman gainKk

is given by

Kk � P−
kH

T
k �HkP

−
kH

T
k � Rk�−1 (49)

The step is determined using the estimated gradient,

dk � κkb̂k �wpe
k (50)

wherewpe
k is persistent excitation required to ensure observability of

the performance function [8]. The desired attitude is given by
substituting Eq. (50) into Eq. (40).

V. Constrained Guidance on SO�3� with an Unknown
Objective Function

Constrained extremum-seeking guidance is similar to the
unconstrained version in that the step dk from Eq. (40) must be
determined. Two different constrained extremum-seeking guidance
problems are considered in this section. First, the gain-projected
Kalman filter solves an extremum-seeking problem to maximize
Eq. (25), subject to the inclusion and exclusion zones [Eq. (26)]. The
gain-projected Kalman filter estimates the constrained gradient that
can be used with the constrained gradient ascent method from
Sec. III.B. As the name implies, the gain-projected Kalman filter
estimates the gradient and then projects it to a constrained set.
Second, the LMI-based Kalman filter solves almost the same
problem as the gain-projected Kalman filter. Unlike the gain-
projected Kalman filter, which only handles linear equality and
inequality constraints, the LMI-based Kalman filter can handle any
type of LMI-based constraints. The disadvantage is that an SDPmust
be solved at each guidance step, but norm constraints can be
efficiently handled with this formulation. Therefore, the norm
constraint given by Eq. (33) is considered in addition to the inclusion
and exclusion zones [Eq. (26)].

A. Gain-Projected Kalman Filter

The projected gradient method can be incorporated in the Kalman
filter by using the gain-projectedKalman filter [18], which is a simple
modification to the filter in Sec. IV.B. The gradient is first estimated
as in the unconstrained case to obtain b̂k. The constrained gradient
estimate ~bk is then obtained by solving

min
1

2
� ~bk − b̂k�T� ~bk − b̂k�

subject to

Fig. 3 Sampling of the performance function J�x�, where J: R → R, to approximate either J�xk−1� or bk.
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κkAcon;k
~bk ≥ ξcon;k (51)

where Eq. (51) is obtained by substituting dk � κk ~bk in Eq. (36). The
solution to this minimization problem is given by

~bk � b̂k − κk
−1AactiveT

con;k �Aactive
con;kA

activeT

con;k �−1�Aactive
con;k κkb̂k − ξactivecon;k �

(52)

At the next iteration, where k has been incremented by 1, the new

prediction step is given by

b̂−k � ~bk−1

There is no change to the predicted covariance matrixPk, given by

Eq. (48). The gain-projected method does not bias the Kalman filter

and is simple to implement, which makes this method effective for

scenarios with limited computational resources [18]. The desired

attitude Cdk�1a is given by substituting

dk � κk ~bk �wpe
k

into Eq. (40).

B. Kalman Filter with Linear Matrix Inequality Constraints

The LMI-based Kalman filter does not require a step to

constrain b̂k to ~bk. Rather, the gain Kk is determined so that the

constraints are imposed directly on the estimate b̂k. The constraints
are given by

κkAcon;kb̂k ≥ ξcon;k − ζk (53)

κ2kb̂
T
k b̂k ≤ d2max (54)

where Eq. (54) is obtained from Eq. (33) by substituting

dk � κkb̂k. The matrix ζk ≥ 0 is a slack variable, which transforms
Eq. (53) to a soft constraint. This slack variable is critical because,

if Cbka is not feasible, a large b̂k might be necessary to satisfy

Eq. (53), which could violate Eq. (54). In this situation, without ζk,
it would be impossible to simultaneously satisfy both sets of

constraints. Any optimization problem posed with these

constraints would be infeasible.
The gain matrix Kk is chosen to minimize the objective function

J k�Kk; ζk� �
1

2
��yk −Hkb̂k�TR−1

k �yk −Hkb̂k�

� �b̂k − b̂
−
k �T�P−

k �−1�b̂k − b̂
−
k �� � sTk ζk (55)

which is inspired by the recursive least-squares [33] and

maximum-likelihood approach to deriving the Kalman filter [34].
This objective function weighs the term yk −Hkb̂k with respect

to the measurement covariance Rk and weighs the residual

between the prior and posterior estimates with respect to the prior

covariance P−
k . The matrix sk ≥ 0 is a weighting column matrix

that penalizes a nonzero slack variable ζk. The matrix sk is chosen
to be sufficiently large to render Cbka feasible by driving ζk to

zero. When the constraints are infeasible, the term sTk ζk is the

dominant term of J k, and thus the primary objective is to satisfy
Eq. (53) with a zero slack variable. Once this occurs, the first

term of J k is the dominant term, and normal Kalman filtering

behavior ensues.
Using the correction of the state estimate b̂k � b̂

−
k � Kkrk from

Eq. (47), where rk � yk −Hkb̂
−
k is the innovation term, the objective

function can be rewritten as

J k�Kk;ζk� �
1

2
��yk −Hk�b̂−k �Kkrk��TR−1

k �yk −Hk�b̂−k �Kkrk��

� ��b̂−k �Kkrk�− b̂
−
k �T�P−

k �−1��b̂−k �Kkrk�− b̂
−
k ��� sTk ζk

� 1

2
��rk −HkKkrk�TR−1

k �rk −HkKkrk�
� �Kkrk�T�P−

k �−1�Kkrk��� sTk ζk

� 1

2
rTk ��1−HkKk�TR−1

k �1−HkKk��KT
k �P−

k �−1Kk�rk
� sTk ζk (56)

Note that, without the norm constraint, ζk is ignored, and the
Kalman gain given by Eq. (49) can be recovered by differentiating
Eq. (55) with respect to Kk and solving for Kk.
A new matrix variable Zk is introduced to transform Eq. (56) to a

linear convex objective function given by [29]

Ĵ k�Kk;Zk; ζk� �
1

2
rTkZkrk � sTk ζk (57)

where Zk is subject to the constraint

Zk ≥ �1 −HkKk�TR−1
k �1 −HkKk� � KT

k �P−
k �−1KT

k ;

Zk − �1 −HkKk�TR−1
k �1 −HkKk� − KT

k �P−
k �−1KT

k ≥ 0 (58)

Using the Schur complement ([20] pp. 7–8), Eq. (58) can be
converted to an LMI in terms of Zk and Kk:

2
4 Zk �1 −HkKk�T KT

k

�1 −HkKk� Rk 0
Kk 0 P−

k

3
5 ≥ 0 (59)

In addition, b̂k � b̂−k � Kkrk is substituted into Eqs. (51) and (54)
to obtain

�
d2max κk�b̂−k � Kkrk�T

κk�b̂−k � Kkrk� 1

�
≥ 0 (60)

κkAcon;k�b̂−k � Kkrk� ≥ ξcon;k − ζk (61)

The gain Kk is found by minimizing Eq. (57) subject to
Eqs. (59–61). The correction for P−

k is still given by Eq. (48). Using
b̂k from this section, dk is determined using Eq. (50), and the desired
attitude Cdk�1a is once again found using Eq. (40).

VI. Numerical Example

Three different extremum-seeking guidance algorithms are used
for guidance of a spacecraft with a patch antenna. The guidance
algorithms attempt to align the antenna with an unknown source,
which could be from another spacecraft or from a ground station, to
maximize received power, while satisfying inclusion and exclusion
zones. For simplicity, in this numerical example, the position of the
radiation source relative to the spacecraft does not change over time.
The three Kalman-filter-based guidance algorithms are 1) the
unconstrained Kalman filter, 2) the gain-projected Kalman filter with
inclusion and exclusion zones, and 3) the LMI-based Kalman filter
with norm and attitude constraints.

A. Simulation Parameters

1. Spacecraft with Three Reaction Wheels

Consider a spacecraft with moment of inertia JBc
b , equipped with

three orthonormal reaction wheels that have a combined moment of
inertia JW

b and rotation speed _γ. The control input to the wheels is
given by η, a wheel acceleration. FrameF a is inertial,F b is the body
frame of the spacecraft, and Fd is the desired body frame
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representing the desired spacecraft attitude. The DCM Cba

parameterizes the attitude of the spacecraft relative to F a and is

assumed to be known deterministically. In practice, Cba can be

estimated using a suite of sensors such as a magnetometer, a sun

sensor, a horizon sensor, and others. The spacecraft’s dynamics are

given by [35,36]

JBc
b _ωba

b � _ωba×

b �JBc
b _ωba

b � JW
b _γ� � JW

b �γ � 0 (62)

�γ � −η (63)

_Cba � −ωba×

b Cba (64)

In particular, the spacecraft’s moment of inertia is

JBc
b � diag�4; 4; 1� kg ⋅m2, and the reaction wheel array’s moment

of inertia is JW
b � 0.041 kg ⋅m2. The initial conditions of the

spacecraft areCba�0� � C2(60 deg)C3�20 deg�,ωba
b �0� � 0 rad∕s,

and _γ�0� � 0 rad∕s.

2. Patch Antenna and Performance Function

The received power of an antenna, denoted by C, is given by [37]

C � PEIRPLsLaGr (65)

wherePEIRP is effective isotropic radiated power,Ls is the space loss,

and La is the transmission path loss. For simplicity, let

PEIRPLsLa � 1 W, and thus C � Gr ⋅ 1 W. Let the patch antenna

be mounted on the spacecraft such that b3 associated with the body

frame is normal to the patch antenna. The radiation pattern of the

patch antenna is given by the functionGr�θ;ϕ�, where θ andϕ can be

found from

cos�θ� � b3
T

a a3
a; cos�ϕ� � b1

T

a a1
a

where a1
a � 11, a

3
a � 13, and CT

ba � � b1a b2a b3a �. The radiation
pattern is shown in Fig. 4 [38]. The objective at hand is to maximize

J�Cba� � C�Cba� � Gr�Cba� ⋅ 1 W, where J is all that is available

to the guidance algorithm. To be clear, the guidance algorithm uses

measurements of received power but does not know the explicit

relationship between received power and attitude. The attitude that

maximizes the antenna gain is given by Cb⋆a�θ⋆;ϕ⋆�. This

attitude corresponds to when b3 is aligned with a3 and, as such,

θ⋆ � 0 deg and ϕ⋆ ∈ R. Because the guidance algorithm has no

knowledge of where the radiation source is, the guidance algorithm

has no knowledge of Cb⋆a. The maximum performance is

J�Cb⋆a� � 4.61 W. The actual gradient of J�Cba� is determined

numerically in simulation to determine the gradient estimate error.

Received power is measured at 10 Hz, and white noise with standard

deviation of 0.05Wis added to eachmeasurement of received power.

3. Attitude Constraints

Inclusion zones and exclusion zones often arise constraints on

sensors or scientific payloads onboard the spacecraft. For example, a

star tracker cannot point toward the sun, an Earth surveillance sensor

must always point toward the Earth, and solar cells should point

toward the sun. The exclusion and inclusion zones are given by

x1b �

2
664
1

0

0

3
775; y1a � −

2
664
0.3

1

−.5

3
775 ⋅

��������

2
664
0.3

1

−.5

3
775

��������

−1

;

α1 � 180 deg−20 deg (66)

x2b �

2
664
0

1

0

3
775; y2a �

2
664
−1

0

0

3
775; α2 � 20 deg (67)

The constraint associated with x1b, y
1
a, and α1 is the exclusion zone.
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a) Objective function, constraints, and step size. In
middle plot, constraints are satisfied when they are
above the black dashed line (i.e., above 0)

b) Gradient estimate error with ±3    boundsσ

Fig. 5 Extremum-seeking enabled by the unconstrained Kalman filter, with no attitude constraints.
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Fig. 4 Radiation pattern of a patch antenna for the m � 1 and n � 0
mode [38]. Gain below 3 dBi not pictured for clarity.
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4. Guidance Algorithms

The guidance algorithms run at 2 Hz have N � 5 measurements,
with one measurement taken at a frequency of 5 Hz. These values are
chosen so that the spacecraft has time to react to a change in desired
attitude and so that enough newmeasurements of J can bemade. The
weight sk is chosen as sk� 105�1 1 1�T , and the LMIs are solved
using the MOSEK solver [39] with the YALMIP interface [40]
in Matlab. The persistent excitation wpe

k is set to wpe
k � 0.001

sin�0.05πk��1 1 1�T rad. As in [8], to ensure smooth commands to the
attitude controller, the gradient estimate is filtered with a first-order
low-pass filter with a cutoff frequency of 0.08 Hz.
The Kalman filter is used in a similar manner to filters used for

parameter estimation. As such, the matrix Rk can be characterized
using the noise of the received power measurements. A single
element of yk is the difference between two measurements of the
objective function. Because the noise added to a measurement of the
objective function has a standard deviation of 0.05 W, the standard
deviation of noise of the difference of two measurements is
0.05

���
2

p
W. Using this information and the update rate of theKalman

filter,Rk is set toRk � 0.0011 W. It is more difficult to characterize
the Qk−1 matrix. Various methods exist to tune Qk−1, such as a
retrospective optimization [41], but trial and error is used in this
paper, where Qk−1 � 0.0021 W∕rad. The initial error covariance
estimate is P0 � 1 W∕rad, and the initial gradient estimate
is b̂0 � 0 W∕rad.
The Kalman filters use a κk of 0.15, and the LMI-based Kalman

filter uses the norm constraint [Eq. (54)] with dmax � 0.25 W∕rad.
Considering the interpretation that the norm of dk represents an angle
of rotation in radians, dmax � 0.25 W∕rad corresponds to a
maximum rotation of 14 deg for each iteration of the guidance
algorithm, ensuring the small-angle approximation used for the
attitude constraints is always valid.

5. Control Algorithm

The desired attitude Cdka is fed to the discrete-time attitude
controller, given by

ηk � −JW−1

b �kdωbka
bk

− kpPa�Cbkdk�∨� (68)

where Cbkdk � CbkaC
T
dka

is the attitude error [35]. The attitude
controller runs at 10Hz, and thusT � 0.1 s. The gains of Eq. (68) are
kd � 1.21 N ⋅m and kp � 0.961 �N ⋅m�∕s. The controller is
simulated in discrete time, and the dynamics of the spacecraft are
simulated in continuous time.

B. Simulation Results

1. Unconstrained Kalman Filter

The simulation results with the unconstrained Kalman filter
are shown in Fig. 5. Figure 5a shows that J converges to 4.61 W,
which corresponds to the maximum possible performance. Near
J � 4.61 W, the magnitude of the gradient becomes quite small,
and without dmin, the convergence time would be much longer.
The middle plot in Fig. 5a shows the values of the constraints.
For the constraints to be satisfied, both lines must be greater than
zero. A dotted black line is shown to emphasize the zero line on
the plot. Figure 5b shows that the gradient estimate error
converges to zero and that the errors mostly remain within the
�3σ bounds.
Figure 6 shows a three-dimensional plot of the results from the

unconstrained and the gain-projected Kalman filters. The left cone
(red cone online) is the exclusion zone, and the right cone (green cone
online) is the inclusion zone. The darker trace (red trace online) is the
locus of points created by the tip of x1 from Eq. (66), and the lighter
trace (green trace online) is the locus of points created by x2 from
Eq. (67). In the unconstrained formulation shown in Fig. 6a, the
lighter line remains clear of the inclusion zone. As it happens, the
darker line does not venture in the exclusion zone, but there is no
guarantee that this will happen given different initial conditions or
noise characteristics. The black vectors form the basis forFa, and the

grey (dark-green/blue online) vectors are the bases for F d and Fb

respectively. However, because the controller drives the error Cbd to

1, F d and F b are virtually indistinguishable in this plot.

2. Gain-Projected Kalman Filter with Attitude Constraints

The gain-projected Kalman filter considers the inclusion and

exclusion zones from Eqs. (66) and (67), and the results of this

simulation are shown in Fig. 7. Figure 7a shows that J converges to

J�Cb⋆a� � 4.61 W, the theoretical maximum of the constrained

problem. In addition, the initial reaction of the extremum-seeking

guidance algorithm is to ensure that the inclusion zone constraint is

satisfied. As a result, ~b and dk become large, and estimation of ~b is

poor, as shown by ~b escaping the �3σ bounds in Fig. 7b. Once the

attitude constraints are satisfied, the gradient estimates improve, and

the �3σ bounds are satisfied. Note that the gradient estimate errors

are the difference between the constrained gradient estimate ~bk and
the constrained gradient bck. The constrained gradient is obtained by

Fig. 6 Three-dimensional representation of extremum-seeking algo-
rithms. The exclusion zone is the left cone (red cone online), and the
inclusion zone is the right cone (green cone online).
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constraining bk using the same equation that is used for b̂k, that
is Eq. (52).
The three-dimensional plot of the gain-projected Kalman filter is

shown in Fig. 6b. The light grey line (green line online) begins

outside the inclusion zone cone (green cone online) and initially
follows a trajectory perpendicular to the inclusion zone. This part of
the trajectory is when the guidance algorithm seeks to satisfy the
attitude pointing constraints. The second part of the light grey line is
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Fig. 7 Extremum-seeking enabled by the gain-projected Kalman filter, with attitude inclusion and exclusion zones.
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Fig. 8 Spacecraft state errors and control for gain-projected Kalman filter extremum-seeking simulation.
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when the guidance algorithm seeks to maximize J�Cba�. In this plot,
b3 is not exactly alignedwitha3, but this is expected because received
power is not sensitive near the extremum, which is to say the gradient
near the optimum is quite shallow.
Figure 8 shows the performance of the attitude control lawwith the

gain-projected Kalman filter simulation. Specifically, Fig. 8a shows
that the angular velocity and attitude errors trend to zero, which
indicates thatCbd does in fact trend to 1. Figure 8b shows the reaction
wheel rates and control torques, which also go to zero because there
are no external torques acting on the spacecraft.

3. Linear-Matrix-Inequality-Based Kalman Filter with Norm and Attitude

Constraints

The third simulation uses the LMI-based Kalman filter, which
considers both the attitude constraints [Eqs. (66) and (67)] and the
norm constraint [Eq. (54)]. The results of this simulation are shown in
Fig. 9. The objective function converges to its constrained extremum
in a slightly longer time than the gain-projected Kalman filter. In
addition, the attitude constraints are not satisfied as quickly in this
example because dk is constrained. This is not a shortcoming of the
LMI-based Kalman filter but rather an advantage. The effect of
constraining dk is shown by comparing Figs. 8 and 10. Constraining
dk results in a smoother commanded attitude, gradient estimates that
remain within the �3σ bounds, and smoother and smaller control
effort than with the projected-gain Kalman filter.

VII. Conclusions

This paper presents several useful results for unconstrained and
constrained extremum-seeking guidance on SO�3�. First, the
relationship between the gradient of a function on SO�3� and the
gradient of its Taylor series expansion is given. Second, it is shown
how to transform inclusion and exclusion zone attitude constraints to
a linear inequality constraint. Third, three different Kalman-filter-
based extremum-seeking guidance algorithms are presented to
estimate the gradient of an unknown function on SO�3� to find an
extremizing attitude. Each filter has its unique advantages and can be
chosen based on the level of complexity of the application.Numerical
simulations are presented to demonstrate the effectiveness of the
extremum-seeking guidance algorithms.
Several avenues exist to improve the proposed extremum-seeking

algorithm. In the present paper, the guidance law may cause the
attitude controller to command unrealistic torques. To prevent this,
the torques can either be saturated, or the guidance algorithm can be
augmented with a model of the spacecraft dynamics. Using the
spacecraft dynamics, torque limits can be written as a function of
desired attitude using an LMI, which can be incorporated in the LMI-
based Kalman filter. The resulting guidance algorithm will generate
an attitude trajectory that will nominally keep control torques within
acceptable limits. In addition, other optimization algorithms, such as
conjugate-gradient methods, can improve the performance of the

extremum-seeking algorithm. Finally, the transformation of
inclusion and exclusion zone constraints to linear inequality
constraints may prove to be a useful transformation for other areas of
research, such as optimal control or path planning.

Appendix: Proof of Proposition 3

The derivatives of a function f�X�: Rn×n → R and a function
X�y�: R → Rn×n are given by

A � df

dX
; B � dX

dy
(A1)

where the elements of A and B are given by

aij �
df�X�
dxji

; bji �
dxji�y�
dy

(A2)

where xji are elements of X (notice the order of the indices). In
addition, the chain rule for the function f�X�y�� is defined as

df

dy
�

Xn
i�1

Xn
j�1

df�X�
dxji

dxji�y�
dy

(A3)

Because the trace of two matrices A and B is

tr�AB� �
Xn
i�1

Xn
j�1

aijbji

using Eqs. (A1–A3) yields

df

dy
�

Xn
i�1

Xn
j�1

df�X�
dxji

dxji�y�
dy

�
Xn
i�1

Xn
j�1

aijbji

� tr�AB�

� tr

��
df�X�
dX

��
dX�y�
dy

��
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