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Aircraft design optimization and airline allocation problems are two separate and well-
researched disciplines, but very little literature exists that solved the design and allocation
problems simultaneously. Among the limited number of related efforts that combine them,
most follow a sequential decomposition strategy. This sequential strategy has been success-
ful in addressing the combined large-scale problem but the approach does not capture the
coupling that exists between the aircraft design and airline allocation disciplines. Solving
the aircraft design and airline allocation as a monolithic problem makes it a Mixed Integer
Non-Linear Programming problem which is very difficult to solve for large numbers of in-
teger variables. Because no existing generalized MINLP solver can address this problem,
this work proposes a new algorithm combining branch and bound, Efficient Global Opti-
mization, Kriging Partial Least Squares, and gradient-based optimization to solve MINLP
problems with 100’s of integer design variables, 1000’s of continuous design variables. The
algorithm was applied to an 8 route coupled aircraft design and allocation problem with
the 19 allocation variables and solving a 6000 variable aircraft design optimization problem
using an Euler CFD simulation. This test problem provides several key challenges for a
MINLP problem: a moderate integer design space, a large continuous design space, and
expensive analysis models.

Nomenclature

EI = Expected Improvement
EV = Expected Violation
f∗local = Optimal function value via local search
LBD = Global lower bound
M = Number of constraints that are functions of integer type variables
UBD = Global upper bound
xC = Vector of continuous type design variables
xI = Vector of integer type design variables
x0
I = Set of initial integer points

x∗
local = Optimal solution via local search

x()
lb, xub

() = Design variable bounds
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I. Introduction & Motivation

Aircraft design optimization is often posed as a nonlinear programming (NLP) problem, where the design
variables are all continuous rather than mixed-discrete or mixed-integer type. Depending on the choice
of fidelity in the various aircraft design disciplines (e.g., aerodynamics, structures, propulsion), the full
multidisciplinary NLP can become very expensive computationally. On the other hand a simplified airline
allocation problem, that assigns a fleet of aircraft to various routes in the network, can be formulated as a
mixed-integer linear programming (MILP) problem. The integer design variables consist of the number of
flights per day of a given type of aircraft on a given route. The continuous design variables consist of the
numbers of passengers on those candidate route-aircraft pairings. Although aircraft design and fleet allocation
problems can be solved separately, the two are inherently coupled; the design affects the performance of
aircraft on the routes and hence the allocation, but the allocation also determines the utilization of the
aircraft and in turn optimal design. Most studies that consider both the design and allocation problems
adopt a sequential decomposition strategy.1,2, 3 First the aircraft design design optimization is performed
and mission cost and performance data on each route for the new aircraft are obtained. Next a MIP problem is
solved to find a fleet-level allocation that maximizes profit. However, sequential decomposition only partially
captures the coupling that exists between the aircraft design and allocation, accounting for the affect of the
design on the allocation problem but not vice versa. Previous work by the authors solved a fully coupled
design-allocation problem with new monolithic formulation that solves both disciplines simultaneously by
posing it as a NLP problem.4,5 In this approach, the aircraft shape and sizing design variables are optimized
simultaneously with the airline allocation design variables, assuming the number of trips per aircraft type is
continuous. Relaxing the integrality constraint on the allocation variables enables the use of gradient-based
optimization with adjoint analytic derivatives and consequently also enables the aircraft design problem to
include high fidelity analyses and make use of high performance computing resources. The key finding of
this prior work was that profit could be increased by tailoring the design of the new aircraft to increase
utilization for shorter range missions. In other words, it allowed an aircraft design optimization to be posed
with an objective function of fleet-level profit. While the result clearly proves the value of considering the
coupled problem, relaxing the integrality constraints makes the result less realistic. Additionally the NLP
approach was shown to be sensitive to the initial starting guess for the relaxed allocation variable values. To
avoid this issue, a starting point for allocation variables was computed from the sequential decomposition
approach.

What is needed is an optimization algorithm that can handle the fully coupled design-allocation, respect
the integrality of the allocation variables, be able to overcome poor initial guesses, accommodate a large
continuous design space, and make efficient use of a parallel design space.

This led to the development of a new algorithm combining branch and bound, Efficient Global Optimiza-
tion, Kriging Partial Least Squares and gradient-based optimization to solve design-allocation and airline
allocation as an MINLP. A key feature of the new algorithm is its parallel scalability that enables it to work
efficiently on problems that include a large NLP component which requires HPC resources. We named the
new algorithm A Mixed Integer Efficient Global Optimization, AMIEGO. AMIEGO was implemented as an
optimization driver in NASA’s OpenMDAO framework, and can be run on an arbitrary MINLP. We first
present results from running the new algorithm on simple test problems of varying scale to demonstrate its
capability. Next we apply it to an 8 route design-allocation problem, run in parallel across 128 processors.

II. Literature Review

A. Low-fidelity aircraft design - allocation using Sequential decomposition approach

Among the early and existing studies that combine the aircraft design and allocation problems have done so
within the context of system of systems.1,2, 3, 6, 7, 8 One of the first steps, was the MDO-motivated decom-
position approach by Mane et al.,3 where they separated the MINLP problem into two smaller sub-space
problems: aircraft design and airline allocation. The aircraft design problem sizes the new, ’yet-to-be-
deployed’ aircraft for a specified design mission range and payload via an NLP problem. The newly designed
aircraft along with the existing set in the fleet are allocated to the route network via an MILP problem.
Mane et al.3 also compare the decomposition approach with solving the coupled problem as an MINLP
problem using algorithms like GA and Branch and Bound (BB). Although there were marginal differences
in the objective function value using the different approaches, the decomposition approach showed potential
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to obtain a quality solution with a reasonable cost.

B. High-fidelity aircraft design-allocation as large-scaled NLP problem

Coupling the design and allocation problems with a high level of detail necessitates mission analysis as
part of the process. Given an aircraft design and a model for its aerodynamic performance, a mission
analysis tool is needed to consider the full climb, cruise, and descent parts of the mission in computing its
fuel burn and to determine the optimal altitude and Mach number profiles. A previous effort presented a
modular mission analysis implementation9 within an adjoint based computational framework that facilitates
integration among disciplines and computation of multidisciplinary derivatives. Based on this modular
mission analysis tool, a study10 that solved the mission-allocation problem simultaneously led us in the
direction of the current approach. The result found there for the simplistic 3-route airline network problem
using the simultaneous approach provided a higher airline profit than the result from the decomposition
strategy. However, this study did not yet include the design problem; the mission analysis and allocation
problems were solved with a fixed aircraft design.

A follow-up effort5 extended the 3-route allocation-mission problem to consider a more realistic 128-route
network by utilizing parallel computing, but with the integrality constraints relaxed. Each processor was
assigned a single mission profile to analyze, and the mission profiles from each of the routes were optimized
simultaneously as before, leading to over 6000 design variables. The parallel computational framework was an
enabling method because it simplified the adjoint-based derivative computation across all of the routes, and
handled the data passing among processors. Figure 2 shows that the allocation-mission optimization utilizes
the long-range next-generation aircraft on the short-range routes more than the existing smaller aircraft.
The next study4 added aircraft design variables to this 128-route problem. A computational fluid dynamics
(CFD) solver was used simulate the aerodynamic performance of a next-generation aircraft design, and the
wing shape was optimized along with the mission and allocation design variables. The results showed an
increase in profit after AMD optimization, and the wing shape after AMD optimization was different from
that resulting from a conventional design optimization. As with the previous study, this work relaxed the
integrality constraint; the current study aims to address this simplification. Figure 1 shows a design structure
matrix of the allocation-mission-design (AMD) optimization problem.

Optimizer Twist, shape
Cruise Mach,

alt. profile
Pax/flight,
flights/day

Vol., thickness
constraints

Geometry &
mesh warping

Mesh

CFD solver Training data

Aerodynamic
surrogate

Lift, drag
coefficient

Thrust, slope
constraints

Angle of att.,
Mach number

Mission
analysis

Fuel burn &
block time

Profit, alloc.
constraints

Allocation
model

Figure 1: Design structure matrix for the allocation-mission-design optimization problem with the integer
design variables relaxed.4

C. Low-fidelity aircraft design-allocation as small-scaled MINLP problem

With the inclusion of the integer type design variables the problem becomes very difficult to solve. Roy and
Crossley11 proposed a new MINLP approach to address this kind of problem. Keeping in mind the expensive
nature of the high-fidelity aircraft design optimization, the approach uses an Efficient Global Optimization
(EGO)-like framework to handle the integer and continuous type design variables using different optimizer.
The framework leverage the global exploring capability of EGO to optimize the integer/discrete design
space and uses the capability of gradient-based methods to efficiently explore the large scale continuous
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design space. The paper demonstrates a small-scaled aircraft design- allocation problem posed as MINLP
and solved using the EGO-like approach. The study used a simplistic Raymer-based12 low-fidelity aircraft
sizing tool to optimize the aircraft and obtain the aircraft performance data. The result using the EGO-like
framework shows the simultaneous optimization yields slightly better aircraft design solution yielding better
fleet-level profit compared to the sequential decomposition approach for the three-route problem.

The current effort combines these two works and leverages the computational framework of NASA’s
OpenMDAO13,14 to solve a high-fidelity Allocation-Mission-Design (AMD) optimization with integer con-
straint imposed for a moderately larger network problem. A detail description of the EGO-like framework
together with newly added features to address large scale problem appears in the methodology section.

D. Surrogate Based Optimization

Engineering optimization problems are often limited by the number of the objective and constraint functions
and the cost of evaluating these functions. The analyses needed to evaluate the functions are typically very
expensive with long running time and, often, the routines providing these evaluations do not readily provide
gradient information. These fit the definition of "black-box" functions.

One way to conduct optimization with black-box functions is via surrogate modelling. In this approach,
actual evaluations of the black-box function at several discrete combinations of design variable values lead
to a curve fit or other representation of the actual function. The resulting surrogate model can provide visu-
alization, trade-off analysis and optimization. This lead to the development of surrogate based optimization
algorithms, also known as Bayesian analysis algorithms15 . One such surrogate based optimization algorithm
that gained immense popularity over the years is Efficient Global Optimization (EGO)16 . The algorithm
starts with building a surrogate of the expensive black box function from an initial number of data points.
The algorithm then uses the surrogate model to determine a location in the design space that provides the
maximum likelihood of improving the objective function. A new black-box function evaluation at this point
provides a new "infill" point. The surrogate model is then updated with this newly identified point and the
steps are repeated until convergence. Initial development of EGO was for unconstrained continuous NLP
problems. Later extensions of the algorithm can handle constraints17,18,19,20 . As the name suggest, the
algorithm is effective in obtaining near-global solution for constrained expensive black box functions within
a reasonable computational cost and has found its immense application in various fields. A very recent
development in the field of surrogate based optimization for mixed integer type problems is by Muller.21
The proposed framework uses a similar approach of identifying an infill point that satisfies the integrality
constraint, however our approach is more suited for applications with large number of design variables.

III. Methodology

To solve the aircraft design-allocation problem in a simultaneous approach posed as a MINLP problem,
the section describes in details, the EGO-like optimization algorithm AMIEGO - A Mixed Integer Efficient
Global Optimization. AMIEGO is the enhanced version of the EGO-like framework presented by Roy &
Crossley11 with added features to address large-scale MINLP or MDNLP problems. Although the algorithm
can address both integer and discrete type design variables, we will use integer type variables to represent
both integer/discrete type variables henceforth for the remaining of the paper. An overview of the AMIEGO
algorithm appears in Fig.2 and a detail description of each step follows below. The red blocks use the EGO
framework that explores the integer design space, while the blue block leverage the use of gradient-based
approach to explore the large scale continuous design space.

Step 0: The algorithm first separates the integer type design variables from the continuous type design
variables of the original MINLP problem.

Step 1: This step generates a set of initial integer points x0
I . Any Design of Experiments (DOE) method

can be used to generate the set of starting points. As traditional DOE methods do not generate integer
points, the continuous results are rounded to meet the integrality criteria required in this step of the algo-
rithm. This is not a hard requirement, but given the expensive nature of the objective function evaluation,
we do not want to waste out any computational runtime of starting an expensive continuous optimization
(step 2) starting from an continuous point.
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Figure 2: An overview of AMIEGO

Step 2: This step is different from the traditional EGO algorithm or any related work on Mixed Integer
Surrogate Optimization. Instead of evaluating the objective/ constraints, the step performs a complete
optimization with respect to the continuous design variables for each integer point using any gradient-based
optimizer. All the continuous type design variables of the original problem appear in this step. The integer
points from step 1 are supplied as parameters and stay constant during the optimization. The motivation to
perform an optimization with respect to the continuous type design variables, is that, we expect this design
space to be very large of the order of thousands of design variables4,5 and leverage the use of adjoint-based
methods and parallel computing framework to solve such large scale design optimization problem in the
continuous space. The subproblem formulation of this step appears below.

Given: xI, Minimize:
xC

f(xC,xI)

Subject to: g1(xC) ≤ 0

g2(xC,xI) ≤ 0

xC
lb ≤ xC ≤ xC

ub

(1)

It is important to state that this optimization is still local with respect to the continuous design variables
and is sensitive to the starting point as required by any gradient-based approach. For our allocation-design
problem, we start-off from an existing aircraft data that we envision to model as an future aircraft. As an
example, we may use an existing B737-800 aircraft as our starting point with the idea to obtain a better
futuristic version of B737-800 considering the fleet-level objective.

Step 3: Surrogate models are built using the result of the continuous optimization obtained in the
previous step. Any Gaussian based surrogate modelling technique may be used. We are using Kriging for
training the surrogates. These surrogate models, as a function of the integer type design variables xI include:

• A surrogate model trained using the integer points at which the objective function is minimized with
respect to the continuous design variables. This is the surrogate of the already minimized objective
function, but with respect to the continuous design space.

• A surrogate model for each constraints that are function of the integer type design variables.

As we separate out the integer design variables from the continuous one, the surrogate building step of the
algorithm sees only the integer type design variables of the original problem. However, as we seek to address
large-scale design optimization problem, the number of design variables (hyper-parameters) involved in the
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surrogate training process would be at least the same or more than the number of the decision variables.
This is an NLP problem and may become computationally expensive as the number of hyper-parameters
grow. The primary reason this optimization gets expensive is due to the presence of large covariance ma-
trix that needs to be inverted several times during the optimization iterations. The number of times this
matrix needs to be inverted is directly proportional to the number of hyper-parameters. Thereby, reducing
the number of hyper-parameters would be one the strategies to reduce the computational cost associated
with the covariance matrix inversion. To address this issue in AMIEGO, we combine Kriging with the
Partial Least Square (PLS) regression as suggested by Bohlel et al.22 The paper proposes that combining
Kriging with PLS regression, it is possible to significantly reduce the number of hyper-parameters i.e., the
design-variables in the surrogate training optimization step. The method constructs a new covariance kernel
function with reduced number of hyper-parameters based on the information provided by PLS technique.
The most important property used in the approach to combine Kriging and the PLS regression is that the
tensor product of covariance kernels is also a covariance kernel in the product space.22,23

Step 4: This step finds an integer solution to the problem of maximizing the constrained expected im-
provement function. This auxiliary optimization problem to maximize the expected improvement function is
also only with respect to the integer type design variables of the original problem. The expected improvement
function accounts for both the uncertainty associated with the surrogate model and the improvement one can
expect from the best known solution so far. As opposed to finding a continuous solution like in traditional
EGO algorithm, this step finds a solution that also satisfies the integrality constraints. This integer solution
in turn, is the solution to the integer design space and is the new infill point that appears as parameter to
the continuous optimization in step 2. This leverages the global exploring capability of EGO algorithm to
explore the integer design space in a computationally efficient manner. The problem formulation for this
step appears below:

Maximize
xI

EI(xI)

1 +
∑M

i=1EVi(xI)/M

Subject to xI
lb ≤ xI ≤ xI

ub

(2)

The above formulation maximizes the constrained expected improvement function. Original formulation
of EGO was for unconstrained problems. To handle the constraints, the approach uses the concept of
expected violation similar to what is suggested in Ref17,19 . The expected violation concept is similar to the
expected improvement approach, however the term EVi(xI) tends to zero when the ith constraint is satisfied,
otherwise it takes a positive value. Note, we calculate the expected violations of those constraints that are
function of the integer type design variables only. From Equ.1, this would be g2 and not g1 as it is a function
of xC.

Several optimization algorithms have difficulties maximizing the expected improvement function, due to
its highly non-convex and multi-modal nature. Fewer algorithms are effective in finding the near global
solution to this sub-problem. Most literatures uses evolutionary-based algorithms like Genetic Algorithm
(GA) to maximize the expected improvement function. Further as we seek to obtain an integer solution,
makes this sub-problem a Mixed Integer Non-Linear Programming (MINLP) problem. However, this auxil-
iary MINLP problem is computationally cheaper than the original MINLP of combined aircraft design and
allocation problem. Also, for the objective ’Expected Improvement’ function, after some rigorous mathemat-
ical simplifications, it is possible to obtain its gradient and the hessian information, which can be exploited
by a mathematical programming solver for a global solution.16 To solve this auxiliary MINLP problem, we
propose a new branch and bound (BB) approach that maximizes the constrained expected improvement
function using a gradient-based optimizer.

A New Branch and Bound Algorithm using Gradient-Based approach: With the recent advance-
ment in the field of mathematical programming and its efficacy to solve large-scale problems, the authors
propose a new Branch and Bound (BB) that uses only gradient-based optimizer to maximize the expected
improvement (EI) function. Like traditional branch and bound algorithm, this new approach also maintains
a valid lower bound and a global upper bound at each node. To obtain a valid lower bound at each node, we
follow the approach suggested by Jones et al.,16 that uses gradient-based approach to maximize the expected
improvement function. However, in our case we also seek solution that satisfies the integrality constraint.
To achieve this , we propose an approach that branches a node from the solution of the upper bound as
oppose to the solution of the lower bound, typically followed in the traditional BB for MIP problems. This
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is due to the strategy we use to obtain the lower bound of the EI function. Although we know what a valid
lower bound is for a node, we do not know what is the solution x∗ for that value of the lower bound. The
solution to the upper bound may be obtained via a sampling approach or via a gradient-based search or a
combination of both. An overview of the new BB algorithm appears below:

Initialize;
while ActiveSet 6= ∅ and (UBD − LBD) ≥ Tol do

Perform random sampling - Round the point to the closest integer point - Pick the point with the
best objective value - Set this as the best random sample;
Solve EI problem of the current node via local search starting from the above point - Obtain
x∗
local, f

∗
local rounded to the nearest integer;

if f∗local > best random sample then
Set f∗local,x

∗local as best random sample;
end
if f∗local ≤ UBD then

Set UBD as f∗local. This is the valid global upper bound;
end
Delete the parent node from the ActiveSet;
for i = 1, 2 do

Create a node with current lower bound and a new upper bound xub = floor(x∗
local + δ);

Create a node with current upper bound and a new lower bound xlb = ceil(x∗
local + δ);

For child node i, obtain a valid lower bound LBDi of the EI function;
Add child node i to the ActiveSet;

end
Delete any nodek from the ActiveSet with lower bound LBDk ≥ UBD;
Select current node as node with least lower bound value - Set it as global LBD;

end
Algorithm 1: Overview of the new Branch and Bound algorithm

Step 5: The last step terminates the algorithm when the expected improvement value falls below a
certain percentage of the best known feasible solution. The current implementation of the framework uses a
tolerance limit of 0.1% of the best found solution.

IV. Implementing AMIEGO in OpenMDAO

The AMIEGO algorithm was implemented in OpenMDAO using a hybrid driver approach. The outer
driver is the main AMIEGO driver which encapsulates the loop containing steps 2 through 5 in Figure2, and
explicitly performs steps 3 and 5. The driver takes as input a list of initial integer-design-variable sample
points, which are used to build the initial surrogate model. The driver also takes as input an optional list of
objectives and list of constraint values corresponding to each of the sample points. This way, all of the pre-
optimizations can be performed and saved before running AMIEGO. However, if only the design variables
are given, then the continuous optimization will be solved for all of them before starting step 2.

A major design requirement for AMIEGO was that it should facilitate swapping the algorithm used
in performing the continuous optimization (step 2) or in solving the MINLP (step 4) with other available
algorithms, including some that already existed as drivers in OpenMDAO. This was accomplished by creating
two slots in the AMIEGO driver: one called cont_opt which contains the continuous optimization, and one
called minlp which contains the MINLP optimization of expected improvement. The AMIEGO driver takes
care of feeding each of these sub-drivers the data it needs to correctly setup and solve the problem. The
AMIEGO driver is given all of the problem’s design variables and constraints, and it passes the continuous
design variables and all of the constraints to the gradient optimizer, and the integer design variables and
just the relevant constraints to the MINLP optimizer.

The default continuous optimizer is the SLSQP24 optimizer from scipy, though all of the results presented
here use SNOPT.25 Both of these are gradient optimizers. The default MINLP optimizer implements the
gradient-based Branch and Bound algorithm presented in Section III. While nearly any of OpenMDAO’s
optimizers can be used in the continuous optimization step, the MINLP optimizer needs to return a new
design along with an expected improvement, so in practice, swapping in a new algorithm requires custom
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design. The Branch and Bound driver implements the algorithm presented in Algorithm I. The expected
improvement and the LBD problems are both solved using the SNOPT optimizer.

A. Parallel Implementation

Of all the steps in the AMIEGO algorithm, the Branch and Bound (step 4) present the most potential for
performance gains from parallelization. Starting from a single initial candidate integer node, the algorithm
generates two child nodes each iteration. Provided neither of them have yielded a lower bound that exceed
the global UBD, we now have two nodes that can be evaluated independently. Algorithm 2 shows the parallel
modifications made to Algorithm 1.

Initialize;
while ActiveSet 6= ∅ and (UBD − LBD) ≥ Tol do

forall the N processors, take one of the current nodes if there are enough nodes in active set,
otherwise idle do

Perform random sampling - Round the point to the closest integer point - Pick the point with
the best objective value - Set this as the best random sample;
Solve EI problem of the current node via local search starting from the above point - Obtain
x∗
local, f

∗
local rounded to the nearest integer;

if f∗local > best random sample then
Set f∗local,x

∗local as best random sample;
end
if f∗local ≤ UBD then

Set UBD as f∗local. This is the valid global upper bound;
end
Delete the parent node from the ActiveSet;
for i = 1, 2 do

Create a node with current lower bound and a new upper bound xub = floor(x∗
local + δ);

Create a node with current upper bound and a new lower bound xlb = ceil(x∗
local + δ);

For child node i, obtain a valid lower bound LBDi of the EI function;
Add child node i to the ActiveSet;

end
end
Delete any nodek from the ActiveSet with lower bound LBDk ≥ UBD;
Select up to N current nodes as nodes with least lower bound values - Set the lowest as global
LBD;

end
Algorithm 2: Overview of the new Parallel Branch and Bound algorithm

With the independence of the nodes in the active set, most of the algorithm can be done in parallel.
Granted, this may cause some nodes to be executed in parallel that would have been pruned in serial, but
overall the algorithm converges in less global iterations of branch and bound. A further modification called
aggressive sampling can be made to the algorithm so that the active set is initially populated with a set of N
candidate nodes, where N is the number of processors, so that processor utilization is maximized right from
the first iteration. Figure 3 below demonstrates how aggressive splitting strategy allocates starting nodes
to the 128 available processors for the high fidelity aircraft allocation-mission-design optimization problem
(discussed in detail in Section VI).

V. Test Problems

A. 2D Test Problems

We tested AMIEGO on several test problems of varying scale and difficulty levels. We started with a
2-dimensional Branin26 and Griewank27 function. Griewank function is a challenging global optimization
problem given its multi-modal nature as appears in Fig.4b. Although these are not MINLP problems, we
posed them as MINLP problem by enforcing integrality constraint on one of the variables. The results
demonstrate the ability of AMIEGO to obtain the global solution for both these problems.
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Figure 3: Processor utilization of the parallel branch and bound algorithm.

(a) Branin function (b) Griewank function

Figure 4: 2D test functions.

B. Engineering Problem with Discrete Variables

Next, we solved a three bar truss problem with three continuous type variables and three discrete material
selection choices. The continuous design variables represent the cross-sectional area and the discrete variables
corresponds to the material selection on each bar. The performance of AMIEGO seems promising (Table
1); being able to locate the global optima for the three bar truss is as few as 15 continuous optimizations,
where complete enumeration would require 64 continuous optimization runs of each possible discrete material
selection choice on the bars. The presence of discrete type design variables shows AMIEGO’s ability to sort
through various possible material selection choice in a computationally efficient manner. This is one of the
most distinct abilities of AMIEGO over any state-of-the-art MINLP solvers.

Table 1: Comparison between complete enumeration and AMIEGO result for the three bar truss problem.

AMIEGO Complete enumeration
Area [cm2] [2.516, 2.038, 0.0] [2.516, 2.038, 0.0]
Material [3, 3, 4] [3, 3, 1]
Mass [kg] 5.28 5.28

Total Continuous Optimization 15 64
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Figure 5: Three bar truss problem

C. Large-Scale Griewank Function

To demonstrate the scalability of AMIEGO algorithm and assess its performance for a large scale-problem,
we also solved a 100-D Griewank function posed as MINLP problem with 50 integer type design variables
and 50 continuous type design variables. We have also increased the domain of the design variables x ∈ [-600,
600]. This makes the problem extra challenging given the vast possible enumeration of the integer design
space. The parallel Branch and Bound algorithm in OpenMDAO leverages the use of 16 processors. Figure
6 shows the convergence plot of the 100-D Griewank function. Although, the global optima is at f∗opt = 0.0,
the algorithm shows promises of returning a near-global solution in as few as 130 continuous optimization
runs, including the initial 100 sample runs.

(a) Griewank functions with different design variable domains (b) AMIEGO Convergence plot

Figure 6: AMIEGO solving 100-D Griewank function posed as MINLP problem.

D. AMIEGO-FLOPS

Before integrating AMIEGO with high fidelity allocation-mission-design problem, we further tested out the
performance of AMIEGO on an allocation-design problem using a medium fidelity, yet a credible sizing code
- The Flight Optimization System (FLOPS)28 developed by NASA. We picked a 11-route representative
airline network with hub at Boston.3 The airline has two existing aircraft types already in operation -
B757-200 and A320-200. The new ’yet-to-be-deployed’ is a B737-800 sized aircraft that we seek to optimize
for this airline network. As executing FLOPS to obtain a design solution is computationally cheap, we
integrated AMIEGO-FLOPS within MATLAB29 and use MATLAB’s mixed-integer Genetic Algorithm (GA)
to maximize the expected improvement function(step 4 of AMIEGO). Given the vast possible enumeration
of the integer design space of which majority of them are infeasible, we restrict ourselves to a maximum of
6 flights per aircraft type per day. We note that increasing this limit delays the convergence of AMIEGO.
This is expected, however, we believe a better scaling to the expected violation formulation might improve
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the convergence performance and will be considered as part of the future work. A summary of the aircraft
design variables appears in the Table 2.

Table 2: Summary of the aircraft design variables.

Aircraft design variables Lower bound Upper bound Initial value Optimal value
Aspect ratio 8.0 12.0 9.4 9.87
Taper ratio 0.1 0.5 0.159 0.275

Thickness to chord ratio 0.009 0.17 0.1338 0.099
Wing area [ft2] 1000 2000 1345.5 1465.9
Wing sweep [deg] 0 40 25 21.31

Thrust (per engine) [lbs] 20000 30000 24200 24819

There are a total of 33 integer type variables of the allocation problem (11 route times 3 aircraft types).
Figure 7 shows the AMIEGO-FLOPS results. We see there is definite change in the wing planform with an
increased profit value in the final AMIEGO solution. We also compared the AMIEGO-FLOPS results with
the sequential-decomposition approach of Mane et al.3 AMIEGO-FLOPS resulted in an $23,847 increase in
profit per day due to the monolithic approach of solving the design-allocation problem.

(a) Change in wing planform (b) AMIEGO convergence plot

Figure 7: AMIEGO-FLOPS results.

VI. Results: AMIEGO-AMD

A. Background

The allocation-mission-design (AMD) optimization problem we solve in this paper is a modified version
of the problem solved by Hwang and Martins,4 where we treat the allocation variables as integer instead
of continuous variables, and consider an 8-route network rather than a 128-route network. The earlier
paper used continuous relaxation, in essence treating all variables as continuous variables. However, the
premise of this paper is that continuous relaxation leads to significant errors as the number of flights per
day is O(1), meaning that rounding to the nearest integer represents relatively large changes to the design
variables. Moreover, the rounded integer point may be infeasible as the rounding may violate constraints in
the allocation problem.

The AMD problem combines the airline allocation problem, computational fluid dynamics (CFD), and
mission profile design. AMD seeks to find the optimal design of a next-generation aircraft, while simulta-
neously determining its optimal utilization in a hypothetical airline network along with its optimal mission
profiles. The perspective from design optimization is that optimization with CFD requires arbitrary selection
of operating conditions—e.g., Mach number and lift coefficient at which to optimize a performance metric
such as drag. New technologies such as hybrid electric aircraft concepts, continuous descent approach, and
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morphing wings motivate modeling the entire mission profile—i.e., optimizing at the Mach numbers and lift
coefficients seen during the entire mission profile. However, aircraft are flown on a wide variety of missions in
practice, often on mission ranges that differ significantly from the design mission, so this motivates modeling
the entire profile for not just one mission, but a set of candidate missions. Discretizing a set of mission
profiles results in a prohibitively large number of operating conditions at which to perform CFD simulations,
so the AMD approach is to use a surrogate model; however, since we also wish to vary the design of the
aircraft during optimization, the surrogate model is dynamically retrained during the optimization iteration.
Therefore, as illustrated in Fig. 1, each optimization iteration consists of four steps: the 16 parallel CFD
analyses, the training of the surrogate model, the 128 parallel mission analyses, and the allocation analysis
(computing profit and all relevant allocation constraints).

B. Model and optimization details

The use of the surrogate model instead of direct CFD evaluation makes the problem tractable, but the cost
is still significant, so the AMD problem solved by Hwang and Martins4 is run on 128 processors. The 128
processors are split across 16 CFD evaluation points, with 8 processors per point, and during the mission
analyses, each processor is assigned one mission because there are 128 missions in the airline network in
the earlier work. The problem we solve here is structured the same way for CFD, but we solve an 8-route
network as the starting step given the increase in difficulty presented by the integrality constraints. During
the mission analysis stage, the first 8 processors analyze the 8 missions while the remaining processors are
idling. Figure 8 shows the hypothetical 8-route airline network used in this study.

Figure 8: Hypothetical 8-route airline network (source: www.gcmap.com)

The objective function is profit, and the design variables include wing shape and twist variables (design),
altitude and Mach number profile variables (mission), and variables representing the number of flights and
passengers flown with a given aircraft type (allocation). We assume the airline has three types of aircraft:
the Boeing 737-800, the Boeing 747-400, and a next-generation aircraft that is Boeing 777-sized. In the
design part of the problem, there are 72 shape variables and 6 twist variables parametrizing the wing using
B-splines and free-form deformation. The wing drag is modeled using a 3-D Euler solver with corrections
for the viscous drag and the drag for the rest of the aircraft. In the mission part of the problem, there are
O(10) B-spline control points parametrizing the altitude profile for each mission, with the number being
dependent on the mission range. The equations of motion over the mission profile are discretized using a
collocation strategy. Cruise Mach number is also a design variable for each mission, with a constant IAS
climb assumed until the aircraft reaches the cruise Mach number. In the allocation part, the design variables
are the number of flights per day and the number of passengers per day for each aircraft type and for each
route. The numbers of flights per day are the integer variables.

Figure 9 shows the structure of the AMD optimization problem in relation to the AMIEGO solver.
The AMIEGO solver represents the top-level loop. It calls the continuous optimizer each iteration with a
specified flights per day array (step 2 of AMIEGO as appears in Fig. 2). The continuous optimizer, which
is a gradient-based optimizer called SNOPT,25 solves the AMD problem to maximize profit with flights per
day fixed at the given values, but all other design variables allowed to vary. This value of profit is returned
to the AMIEGO solver, which performs its necessary calculations (Fig. 2) and calls the continuous optimizer
again with a new flights per day array (infill point) in the next iteration. For additional details on the AMD
formulation, the reader is referred to Hwang and Martins.4
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AMIEGO flights/day

optimized
profit

Continuous
optimizer

twist, shape
cruise Mach,
alt. profile

pax/flight,
flights/day

vol., thickness
constraints

Geometry &
mesh warping

mesh

CFD solver training data

Aerodynamic
surrogate

lift, drag
coefficient

thrust, slope
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angle of att.,
Mach number

Mission
analysis

fuel burn &
block time

profit, alloc.
constraints

Allocation
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Figure 9: Design structure matrix showing the structure of the AMD problem. The AMD continuous
optimization problem is nested within the top-level AMIEGO loop. Note: the flights per day value is
constant during the continuous optimization, as the value is specified by the AMIEGO algorithm. The
details of the geometry, CFD, mission, and allocation blocks are explained by Hwang and Martins.4

C. The three approaches

We consider solving the AMD problem with three approaches: sequential optimization, relaxed optimization,
and AMIEGO. We describe each approach in this section.

A. Sequential optimization approach. This approach solves design, mission, and allocation optimiza-
tion problems as three separate, decoupled optimization problems, ignoring the feedback loops between them.
First, this approach solves the design optimization problem (design:opt), a multi-point drag minimization.

minimize weighted combination of drag coeffs.
at a set of operating conditions

with respect to shape design variables
twist design variables

subject to geometric constraints

(design:opt)

Using the optimized design, a surrogate model is generated. With the surrogate model in hand, the
second step is to solve decoupled mission optimizations (mission:opt) with fuel burn as the objective.

minimize fuel burn
with respect to mission profile design variables

cruise Mach design variable
subject to idle thrust constraint

maximum thrust constraint
maximum climb slope constraint
maximum descent slope constraint

(mission:opt)

The mission fuel burns and block times are used to solve the allocation optimization problem (allocation:opt)
in the third step. This allocation-only optimization problem is linear, so the mixed-integer linear program-
ming (MILP) problem can be solved inexpensively using commercial algorithms.
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maximize profit
with respect to flights per day design variables *(treated as integer)

passengers per flight design variables
subject to demand constraints

aircraft availability constraints

(allocation:opt)

B. Relaxed optimization approach The relaxed optimization approach treats all design variables as
continuous variables and solves the nonlinear programming (NLP) problem, (relaxed:opt).

maximize profit
with respect to flights per day design variables

passengers per flight design variables
mission profile design variables
cruise Mach design variable
shape design variables
twist design variables

subject to demand constraints
aircraft availability constraints
idle thrust constraint
maximum thrust constraint
maximum climb slope constraint
maximum descent slope constraint
geometric constraints

(relaxed:opt)

C. AMIEGO approach The AMIEGO approach solves the true, mixed-integer nonlinear programming
(MINLP) problem with allocation, mission, and design all coupled, and solves the mixed-integer nonlinear
programming (MINLP) problem, (amiego:opt). The only difference from (relaxed:opt) is that the flights per
day design variables are treated as integer variables, as they should be.

maximize profit
with respect to flights per day design variables *(treated as integer)

passengers per flight design variables
mission profile design variables
cruise Mach design variable
shape design variables
twist design variables

subject to demand constraints
aircraft availability constraints
idle thrust constraint
maximum thrust constraint
maximum climb slope constraint
maximum descent slope constraint
geometric constraints

(amiego:opt)

As part of the AMIEGO algorithm (step 2 of Fig.2), it formulates and solves NLP problems with the
integer variables supplied as parameters, given by (continuous:opt).
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given flights per day variables *(integer inputs)
maximize profit

with respect to passengers per flight design variables
mission profile design variables
cruise Mach design variable
shape design variables
twist design variables

subject to demand constraints
idle thrust constraint
maximum thrust constraint
maximum climb slope constraint
maximum descent slope constraint
geometric constraints

(continuous:opt)

D. Results

This section presents the optimization results from the three approaches described in the previous section.
We examine and compare the final profit value, accuracy, and the computational performance of each ap-
proach. To summarize, approach A is sequential optimization, where we perform multi-point aerodynamic
shape optimization (design optimization); approach B is relaxed optimization where we solve the full AMD
optimization ignoring the integrality constraints; and approach C is the AMIEGO algorithm, where we solve
the full AMD optimization problem respecting the integrality constraints.

We note that the allocation model in the AMD implementation used for approach C has a units error
that increases the optimized value of profit by about 10%. This error reduces the fuel burn for the two
existing aircraft by a factor of 5 from their true values. The error was discovered after the AMIEGO results
were generated, and we were not able to regenerate the results using the corrected fuel burn values because
of the O(day)-runtime, given the high fidelity nature of the AMD optimization. However, we generated the
data for all of approaches A and B with this units mistake artificially added to be consistent across the
approaches. The absolute values of the profits are impacted by this error, but we believe conclusions based
on their relative values are still valid.

Figure 10 plots the convergence of the AMIEGO algorithm on the AMD MINLP problem. The initial
data points are selected using Halton sampling, and the NLP problem, (continuous:opt), is solved at these
flights per day values. The best profit from the initial Halton-sampled points is just over $2 milllion per day.
Immediately, the AMIEGO algorithm is able to improve the profit to over $3 million per day, and eventually
to $3.350 million per day after 12 iterations. Here we have used a very simplistic ticket price model to
arrive at a qualitative assessment of the approaches, ignoring the revenue management system and other
sophisticated demand forecasting tools used by the airlines. These values of profit should not be viewed as an
exact prediction of profit of an airline. The AMIEGO algorithm, in general, shows an improving trend with
profit values getting better over the iterations. Computation times vary significantly for the (continuous:opt)
problem, but they are typically on the order of several hours on a high-performance computing cluster with
128 processors, due to the high-fidelity nature of the analysis. However there were some issues with the
algorithm as the continuous optimization failed to converge at some points. The convergence was hampered
by CFD mesh issues due to negative volumes that led to the failure of the continuous optimization for some
of the points chosen by AMIEGO as appears in Fig. 10 during iterations 8, 9, 10, and 12. We believe that
this is a correctible issue that is localized to the CFD shape optimization part of the model, and it will be
addressed in the future work.

Figure 11 shows the final profit values after optimization for approaches A, B, and C, normalized with
respect to the sequential optimization approach (A), treated as the baseline case. The profits computed
between the Sequential optimization (MILP) and AMIEGO algorithms are nearly identical. The relaxed
optimization yields the highest profit. This is expected as this relaxed optimization approach starts off from
the solution of the sequential optimization, and solves the combined problem by relaxing the integrality
constraints on the allocation variables. However, the flights per day values from the relaxed optimization
are not valid. Integer flights per day values are required since airlines operate on a daily schedule in part
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Figure 10: AMIEGO convergence plot for the AMD problem.

due to the fact that takeoffs and landings are not permitted during set hours at night. For example, if the
integer relaxed optimization yields 2.7 flights per day on a given route, the 0.7 of a flight cannot carry over
to the next day.

The fact that the AMIEGO approach yields a similar profit to the sequential optimization approach is
unexpected; however, this is due to the CFD mesh issues that were previously discussed. The mesh issues
prevent us from performing more iterations of the AMIEGO algorithm in Fig. 10 and cause premature
termination after iteration number 12. Moreover, starting with more initial points would also improve the
quality of the surrogate model, increasing the frequency with which points are found that increase profit.
We expect that once the mesh issue and the lack of initial points are both addressed, the profit obtained by
AMIEGO will be competitive with respect to the sequential optimization result.

Figure 11: Comparison of the optimal profit (normalized) computed via the MILP, NLP, and AMIEGO
algorithms.

A comparison of the allocation variables from the three methods appears in Figure 12. That data shows
that the MILP and AMIEGO methods do have similar, but not identical allocations. The similarity in the
profits between these allocations indicate that the final objective space is fairly flat.

VII. Conclusion & Future Work

With the intent to obtain near-global solution within limited computational budget, the framework
seems appropriate for the high-fidelity allocation-mission-design problem. The ability of the AMIEGO
to explore the integer type design space in a cost effective manner compliments with the efficiency of the
gradient-based optimization algorithm to solve large scale design problems in the continuous space, all within
NASA’s OpenMDAO leveraging its parallel computing and computational framework. We have successfully
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Figure 12: Comparison between the aircraft allocations computed using the MILP, NLP, and AMIEGO
algorithms.

integrated the Kriging Partial Least Square method to our surrogate training model that drastically reduces
the number of hyper-parameters needed to model the surrogates, thereby enabling us to address moderate
scale integer design space problems. The gradient-based parallel Branch and Bound algorithm seems effective
in obtaining a good integer infill point within reasonable computational time.

As a part of the future work, we would like to investigate in more details the CFD mesh issues leading
to negative volume at the time of solving the high fidelity allocation-mission-design optimization. Next, we
would like to solve a slightly larger airline network problem thereby increasing the number of integer type
design variables in AMIEGO. Although we have demonstrated AMIEGO’s ability to solve a 100D Griewank
function problem with 50 integer variables, a similar scale high-fidelity allocation-mission-design will be
something we would like to explore in the future. Further we can increase the complexity of the problem
by introducing additional complex systems to better mimic an airline operations. For instance, a Revenue
Management System (RMS) that predicts the optimal fare on a given route considering uncertain passenger
demand, will definitely add fidelity to the existing allocation model.

VIII. Expected Significance

The expected significance of this work is to deliver a novel engineering design process that accounts for
the fleet level objective at the time of designing the new ’yet-to-be-deployed’ aircraft in a mix of existing
fleet considering various disciplines in a tightly coupled manner. The conventional multi-point aircraft design
optimization does not capture the true operational characteristics as how the aircraft is being used by the
airline. The proposed framework optimizes the aircraft considering the operational behavior of the airline,
as how they will use the newly designed aircraft along with the existing aircraft that will maximize the fleet
level objective.
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