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While several innovative ideas for turbulence modeling have been proposed over the past three decades,
it can be argued that the improvement of modeling accuracy in complex flows has not been consistent or
significant. Our view is that experimental and high-fidelity data, combined with, and informed by knowledge
of the physical processes could be an essential link to improve turbulence closures. In this work, we report
on a data-driven paradigm for turbulence model augmentation, which we refer to as Field Inversion and
Machine Learning (FIML). This approach uses inverse modeling to extract the spatial distribution of model
discrepancies, and machine learning to transform the discrepancy information from a large number of inverse
problems into corrective model forms. This reconstructed discrepancy is embedded within a predictive solver.
To further elucidate the methodology, a tutorial is presented on the use of the framework in model development
with the goal of addressing two different types of model discrepancy - in time scales and Reynolds stress
anisotropy. In problems involving flow separation, the inference process is shown to assimilate sparse data
while improving the solution over the entire computational domain. When applied in a predictive setting
to turbulent flows over airfoils, the data-augmented model is shown to provide significant improvement in
predicting surface and integral quantities, including in airfoil shapes and flow conditions that were not part of
the training set.

I. Introduction

Turbulence models based on the Reynolds Averaged Navier–Stokes (RANS) equations remain the workhorse in
the computation of high Reynolds number wall-bounded flows. While these models have proven their utility in an
industrial setting, their deficiencies in modeling complex flows is well-documented. Even the most sophisticated
turbulence models invoke radically simplifying assumptions about the structure of the underlying turbulence. As a
result, even if a model is based on physically and mathematically appealing ideas, the model formulation typically
devolves into the calibration of a large number of free parameters or functions using a small set of canonical problems.

Over the past decade or so, however, our ability to perform detailed high-fidelity computations and resolved mea-
surements has improved dramatically. At the same time, data science is on the rise because of improvements in
computational power and the increased availability of large data sets. This has been accompanied by significant im-
provements in the effectiveness and scalability of data analytics and machine learning (ML) techniques. Given these
advances, we believe that data-driven modeling and machine learning will play a critical role in improving the under-
standing and modeling of turbulence.

With a view towards quantifying model errors, several researchers1–4 have used experimental data to infer model
parameters. Cheung et al.5, 6 employ Bayesian model averaging7 to calibrate model coefficients. Edeling et al.3 use
statistical inference on skin-friction and velocity data from a number of boundary layer experiments to quantify para-
metric model error. These methods provide insight into parametric uncertainties and address some of the deficiencies
of a priori processing of data.

Dow and Wang8, 9 made progress towards addressing non-parametric uncertainties by inferring the spatial structure
of the discrepancy in the eddy viscosity coefficient based on a library of direct numerical simulation (DNS) datasets.
The discrepancy between the inferred and modeled eddy viscosity was represented as a Gaussian random field and
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propagated to obtain uncertainty bounds on the mean flow velocities. The research group of Iaccarino10–12 introduced
adhoc, but realizable perturbations to the non-dimensional Reynolds stress anisotropy tensor ai j to quantify structural
errors in eddy viscosity models. Tracey et al.13 applied neural networks to large eddy simulation data to learn the
functional form of the discrepancy in the eigenvalues of ai j and injected these functional forms in a predictive sim-
ulation in an attempt to obtain improved predictions. Xiao and co-workers14 inferred the spatial distribution of the
perturbations in ai j and turbulent kinetic energy by assimilating DNS data. Weatheritt15 uses evolutionary algorithms
on DNS data to construct non-linear stress-strain relationships for RANS models.

Ling and Templeton16 used machine learning-based classifiers to ascertain regions of the flow in which commonly-
used assumptions break down. King et al.17 formulated a damped least squares problem at the test-filter scale to obtain
coefficients of a subgrid-scale model. In both of these works, results were demonstrated in an apriori setting.

Duraisamy and co-workers18–21 took the first steps towards improving predictive model forms by defining a data-
driven modeling paradigm based on field inversion and machine learning (FIML). The FIML approach consists of three
key steps : a) Inferring the spatial (non-parametric) distribution of the model discrepancy in a number of problems
using Bayesian inversion, b) Transforming the spatial distribution into a functional form (of model variables) using
machine learning, and c) Embedding the functional form in a predictive setting. Predictions were demonstrated in
turbulent and transitional flows with imposed pressure gradients. A key advance in this technique was the idea of
connecting inversion and machine learning towards the end of functional corrections. Note that steps a) and b) involve
off-line (training) computations, whereas step c) is on-line (prediction).

Ling et al.22 and Xiao and co-workers23 bypass the inference step and use machine learning directly on DNS data
to obtain a more comprehensive model (compared to Tracey et al.13) for the anisotropy tensor ai j. Ling et al.22 use
neural networks to reconstruct ai j and propagate the model to velocity field predictions. Xiao et al.23 use random
forests to inject the machine learned discrepancy as a one time post-processing step to a computed baseline solution.

The FIML paradigm was further extended in Ref. 24 to the prediction of turbulent separated flows around airfoils
and much improved predictions were demonstrated in geometries and flow conditions that were not part of the training
data. The resulting machine learned model was embedded in a commercial finite element solver (Accusolve) and
accuracy improvements were confirmed, thus demonstrating portability.

With the recent developments in data-driven turbulence modeling and the interest of the turbulence community in
these methods, the objective of this work is the following:

1. To describe the paradigm of combining inference and machine learning using a simple turbulence modeling
example,

2. To explain the role of inverse modeling as a critical step in data-driven turbulence modeling,

3. To explain how inverse modeling can be used to extract turbulence modeling information in data-sparse and
data-rich situations and how machine learning can convert this information into modeling knowledge,

4. To demonstrate how FIML can be used to augment existing turbulence models in a predictive setting

II. Data-driven Turbulence modeling: Key issues

Several observations are pertinent to successfully pursuing data-driven techniques for the development of turbu-
lence models:

1. Predictive models of turbulence are formulated as a set of equations with parameters and functional forms that
cannot be determined from theory alone. Additionally, it is not obvious as to how – or what aspects of – a model can
benefit from data.

2. Even if individual terms in the closure equations are modeled accurately, small discrepancies can lead to poor
results. For instance, Poroseva and Murman25 observed that even if some terms in a second moment closure are
extracted directly from DNS, the overall prediction was not satisfactory. It is thus the balance between every term in
the model equation that is important.

3. The information required by the models is not immediate in the DNS/LES/experimental data. This information
must be created from data. The required information is typically embedded in a number of quantities such as time
scales, length scales, etc. Since turbulence models are typically formulated to provide first and second moments, these
scale variables assume different values in closure models compared to their values in the real-world or in higher-fidelity
simulations.

4. The information being extracted can be defined only in terms of the turbulence closure. This restricts the use of
approaches such as direct data mining and pattern recognition applied in isolation to DNS data sets. As an example,
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the use of a constitutive relationship (or wall damping functions) directly from DNS data may become inconsistent in
a predictive modeling setting because intermediate variables such as the dissipation rate will be highly erroneous in a
RANS model (the point of application) whereas it would be accurate in the DNS data (the point of learning).

4. Information extracted from specific flow configurations has to be converted to more general modeling knowl-
edge. Machine learning can enable this transformation, but this issue will be further complicated by the fact that
turbulence is a strongly non-local phenomena and that the resulting models must be realizable, satisfy invariance
properties, etc.

5. The machine-learned corrections should be inactive when the predictive accuracy of the baseline model is
acceptable.

6. A range of uncertainties should be accounted for and propagated to the outputs. This includes uncertain-
ties/errors in the data, numerical errors, uncertainty in the problem setup (especially if the data comes from an ex-
periment), variability in the setup of the inverse problems, probabilistic nature of the machine learning algorithm,
etc.

7. When embedded in a predictive setting, the inversion/machine learning-augmented turbulence model should be
efficient and have good convergence properties.

III. Field Inversion and Machine Learning (FIML) for Turbulence Modeling

A schematic of the FIML methodology is shown in Figure 1. The following section will offer specific examples of
the various quantities used in this work.

Given an existing model, a model correction field a β(x) is introduced into the transport equation. Starting with
some high fidelity or experimental data Gd , an inverse problem will be formulated to minimize (an appropriately
regularized form of) ||Gd −Gβ||, where Gβ is the predicted output for a given correction field. Note that the intent
is not to infer a limited set of parameters that characterizes the correction, but rather to extract the correction field
itself. In other words, β is sought at every discrete location in the computational domain and inserted into the transport
equation. Thus we are directly addressing structural errors and uncertainties in the model.

The correction fields will be obtained for an ensemble of problems (on different data sets G1
d ,G

2
d .. as shown in

the figure) representative of the physical phenomena that is to be modeled. Unlike in parameter estimation, in which
the inferred parameters can be used directly in simulations, the β(x) field by itself is of limited use in quantitative
modeling. In other words, having inferred the optimal model correction function β, it remains to convert the inference
into modeling knowledge.

To be useful in predictive modeling, the spatial dependence of β(x) has to be transformed into feature space using
machine learning b. Machine learning effectively constructs a functional form β(ηηη), where ηηη(((U(((xxx)))))) are features
(derived from flow and turbulence variables U) that will be available during the solution. The elements of the feature
vector ηηη have to be preferably locally non-dimensional quantitiesc such that the functional corrections can be translated
across different problems.

It has to be recognized that the inversion and machine learning are pre-processing steps as shown in the red box.
During the predictive simulation, (at each time-step or solver iteration), the solver will pass feature vectors η̂ηη to the
ML evaluation routine and receive appropriate model correction quantities β̂ for injection into the data-augmented
turbulence model.

IV. Channel Flow: A tutorial on FIML

For purposes of demonstration, we will focus attention on planar turbulent channel flow in this section. This
canonical problem has been heavily utilized to calibrate model parameters throughout the history of turbulence mod-
eling, although most models do not account for the variability due to Reynolds number. The question of choosing the
right combination of length and time scales is still an outstanding one in modeling. Rich Direct Numerical Simulation
(DNS) datasets26–28 exist for such flows. Again, for illustrative purposes, we consider the Wilcox k−ω model.29

The Reynolds-averaged momentum equation for a fully developed, incompressible and steady channel flow is
aβ is a spatial field if the problem is steady and a spatio-temporal field if it is unsteady
bThe machine learning step may be avoided by clever trial and error model development
c|S|τ is an example of an acceptable feature, where |S| is the magnitude of the strain-rate tensor and τ is a turbulent time-scale.
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Figure 1: Schematic of field inversion and machine learning framework for data-augmented turbulence modeling

given by

∂

∂y

[
µ

∂u
∂y
−ρu′v′

]
− ∂p

∂x
= 0, (1)

where, u represents the mean streamwise velocity and the Reynolds stress −u′v′ is modeled as νt
∂u
∂y in eddy viscosity

models. In the Wilcox k−ω model, νt =
k
ω

, where k and ω satisfy the following transport equations:

νt

(
∂U
∂y

)2

−α
?kω+

∂

∂y

[(
ν+σ

? k
ω

)
∂k
∂y

]
= 0, (2)

γ

(
∂U
∂y

)2

−αω
2 +

∂

∂y

[(
ν+σ

k
ω

)
∂ω

∂y

]
= 0, (3)

νt = k/ω ; Rii =
2
3

k ; R12 = R21 =−νt
∂u
∂y

.

The model assumes standard constants.29 The system is solved on a geometrically graded mesh consisting of 201
points with the first grid point placed well into the viscous sublayer at y+ ≈ 0.05.

A. Introducing embedded discrepancy

We pursue two different approaches to introducing embedded discrepancy functions. The first of these focuses on the
scale-providing equation. The second approach investigates the perturbations to the predicted anisotropy tensor.
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1. Time-scale discrepancy

In this setting, a function β(y) is introduced30, 31 as a multiplier to the production term in the ω equation.

β(y)γ
(

∂U
∂y

)2

−αω
2 +

∂

∂y

[(
ν+σ

k
ω

)
∂ω

∂y

]
= 0. (4)

2. Discrepancy in anisotropy

In this setting, the eigenvalues of the anisotropy tensor are perturbed.23, 32 The anisotropy tensor is given as:

a =
R
2k
− 1

3
I = VΛΛΛVT

If {ΛΛΛ,,,VVV} represent the eigen system of a, then by perturbing the eigenvalues, the Reynolds stress tensor can be
modified as below:

Rpert = 2k
[

1
3

I+V(ΛΛΛ+βββ(y))VT
]

In this case, βββ(y) = {δx(y),δy(y)} will be inferred from data.

B. Field inversion - Formulation

The next step is to extract the spatial distribution of the embedded discrepancies from data. In addition to determining
an optimal discrepancy function, we are also interested in characterizing the impact of uncertainties in the data, model
inadequacies and existing knowledge, on the inferred outputs. The Bayesian approach33 provides a formalism to
quantify the posterior probability distribution q(β|d), given a prior distribution (p(β)), data vector, d, and a likelihood
function, h(d|β). The Bayes theorem states that,

q(β|d) = h(d|β)p(β)
c

, (5)

where c =
∫

h(d|β)p(β)dβ. In the current form, the solution to equation 5 is intractable using a sampling based
method because of the infinite dimensional nature of β. The problem is made finite-dimensional by re-defining it such
that value of β is inferred at every point in the computational domain of the RANS grid d.

In this work, the prior probability distribution p(β) is assumed to be Gaussian. Further, since the spatially varying
form of β is desired, the number of parameters to be estimated is equal to the number of grid points in the computational

domain e. To promote tractability of the computation of the posterior properties, p(β|d) ≡ e−(β−βprior)
TC−1

prior(β−βprior)

and h(d|β) ≡ e−FTC−1
obsF are approximated to be Gaussian. In these expressions, F is a vector with ith element and

fi = di,RANS−di,benchmark. di is the ith data point. Cobs and Cprior are the observational and the prior covariance matrices.
βprior is the prior mean of the parameters (and also corresponds to the base model). Under Gaussian assumptions, the
maximum a posteriori (MAP) estimate33 is taken to be the representative of the mean of distribution. The MAP can be
computed by maximizing the numerator in Eq. 5, or equivalently by solving the following deterministic minimization
problem:

βMAP = argmin
β

J(β) = argmin
β

1
2

[
FTC−1

obsF +(β−βprior)
TC−1

prior(β−βprior)
]
, (6)

The resulting optimization problem is still high-dimensional but efficiently solved using adjoint-driven techniques,
but the posterior distribution is not determined by sampling methods and instead, the covariance is approximated by
linearizing about the MAP point. This leads to a definition of the covariance in terms of the inverse of the Hessian of
the objective function, J(β),

Cposterior =

[
d2J(β)

dβdβ

]−1
∣∣∣∣∣
βMAP

. (7)

dNote that is still a very high-dimensional problem.
eThis dimensionality could be reduced to a degree by expressing β as a weighted sum of appropriately defined basis functions
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The error introduced by the Gaussian assumption is difficult to estimate without the use of sampling strategies, which
are considered in Ref. 31.

The posterior distribution β can be obtained by first performing a Cholesky decomposition of the formf

RT R =Cposterior, (8)

and generating realizations using

β = βMAP +RT s, (9)

where, s is a vector of the same size as β and contains normally distributed random numbers with zero mean and unit
standard deviation. The realizations of the posterior β are used to construct the posterior realizations of various flow
quantities by solving the RANS equations for each realization of β. The prior realizations are constructed in a similar
manner using Cprior.

To summarize, the above inversion procedure involves:

1. Solution of a deterministic optimization problem with the objective function J(β), typically using a gradient
based method, to obtain the MAP model.

2. Building an approximation of the posterior covariance by the inverse of the Hessian around the MAP point.

C. Field inversion - Results

1. Time-scale discrepancy

Figure 2 shows the prior, posterior and DNS values at Reτ = 550 for the inference involving time-scale discrepancy.
The posterior velocity profile is almost identical to the DNS profile with the standard deviation collapsing to a very
low value. The accuracy of the posterior can be further verified from the plot of y+du+/dy+. As turbulent production
is negligible for y+ < 1, the posterior solution is not affected by β(y) and hence β(y) remains same as the prior. Corre-
spondingly, there is also no reduction in uncertainty in the viscous sublayer for y+ < 2. Outside of the sublayer, β(y)
changes to match the specified benchmark velocity profile and a drastic reduction in the posterior standard deviation
is noticeable. Figure 3 shows the inferred function, β, for all Reynolds numbers. In every case, β in the overlap and
the log-layer scales with wall units. In the outer region, β scales with wall height. This is a physically reasonable
variation and represents the systematic nature of modeling deficiency. The large variation in β around y+ = 25 shows
the inability of the underlying model to provide the correct time scale near the interface of the overlap region and the
log–layer. It is particularly revealing that the nature of the required correction is almost universal (with second-order
viscous corrections) for y+ < 50, a fact that can be used to develop improved models.

2. Discrepancy in anisotropy

Figure 4a shows the prior and posterior velocity for the perturbation in Barycentric coordinates. The corresponding
perturbations are shown in Figure 4b. As expected, the baseline model aligns itself with the plane strain line. The
inferred perturbations, which guarantee that the velocity and Reynolds shear stress match the DNS, suggest a different
anisotropy compared to the DNS. Figure 5 shows that these perturbations may exhibit universal behavior.

D. Machine Learning-augmented prediction and uncertainty quantification

Having inferred the discrepancy for specific problems, the role of machine learning is to map the inferred discrepancy
from physical space to feature space. For purposes of brevity, only the anisotropy perturbations are shown here.
Gaussian process regression34 was used for this purpose. The fields were separated into two clusters y+ < 100 and
y+ > 100 and the following features were used in the machine learning:

δx =

FGP(y+,Sk/ε,y
√

k/ν,u2
yk/ω) y+ ≤ 100

FGP(y,Sk/ε,y
√

k/ν,u2
yk/ω) y+ > 100

(10)

δy = −1.7321δx (11)

fR is an upper triangular matrix
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(a) Non dimensionalized velocity, U+. Mean is shown with the
solid line; shaded region represents the 95% confidence interval.

(b) Correction function, β. Mean is shown with the solid line;
shaded region represents the 95% confidence interval.

(c) Non dimensionalized Reynolds stress. (d) y+ dU+

dy+

Figure 2: Time-scale discrepancy for Reτ = 550. The prior solution is represented in green, red represents the posterior
and blue represents the DNS solution.

10-1 100 101 102 103

y+

0.4

0.6

0.8

1.0

1.2

1.4

1.6

β

Reτ = 180
Reτ = 550
Reτ = 950
Reτ = 2000
Reτ = 4200

Figure 3: Time-scale discrepancy: The inferred correction function, for different Reynolds numbers.
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(a) Prior and posterior velocity profiles
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(b) Perturbation in Barycentric coordinates

Figure 4: Anisotropy discrepancy for Reτ = 550. The prior solution is represented in green, red represents the posterior
and blue represents the DNS solution.
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(a) Barycentric coordinates
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(b) Physical coordinates

Figure 5: Comparison of the barycentric perturbations for different Reynolds numbers.
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Once the GP has been constructed, it was embedded into a predictive model. To propagate the uncertainties in the
embedded discrepancy functions, realizations were generated as follows:

δx = N (δx,GP,σ
2
δx,GP

) (12)

δy = −1.7320δx. (13)

To assess the impact of variabilities in machine learning, an ensemble of realizations (from the posterior of the GP)
was used to obtain predictions and predictive bounds as shown in Figure 6.

(a) Barycentric perturbations

100 101 102

y+

0

1

2

3

4

5

6

7

y
+
d
U

+
/
d
y

+

DNS
Base
MAP
ML

(b) Streamwise velocity

Figure 6: Comparison of the machine learning prediction. Shaded region represents the 95% interval and few repre-
sentative samples are represented with solid lines.

V. Inference in complex problems

In this section, the inversion procedure will be assessed in a wide range of problems involving flow separation, with
the availability of different types of data. For purposes of demonstration, the model correction β(x) is introduced as a
multiplier of the production term P(ν̃,U) in the Spalart-Allmaras model. This equation set is notionally represented
by

Dν̃

Dt
= β(x)P(ν̃,U)−D(ν̃,U)+T (ν̃,U). (14)

As mentioned in Ref. 21, it must be recognized that the introduction of β(x) changes the entire balance of the
model, (and need not be interpreted as merely a modification of the production term). It is equivalent to adding a
source term δ(x) = (β(x)− 1)P(x). Inferring β, however, leads to a better conditioned inverse problem, as β is non-
dimensional and has a simple initial value of unity. In these problems, a compressible RANS solver35 is used along
with a discrete adjoint solver. Additional information on the inversion procedure can be found in Ref. 21.

A. Boundary layer flow over a curved surface

The benchmark data for boundary layer flow over a convex curve is obtained from a Large Eddy Simulation36, 37 with
an inlet boundary layer with Reθ = 2000. A comparison of the inferred solution (using the skin friction coefficient C f
from the LES) with the analytically-sensitized rotational correction (SARC) model of Spalart38 is presented.

Figure 7 shows the prior and the posterior C f with 95% confidence intervals alongside the LES and SARC
results for the convex channel. Figure 8 shows the inferred MAP correction term, δMAP, and the analytically-defined
correction term from the corresponding SARC model. Qualitatively, the correction term is similar for both models,
but the magnitudes are locally different. The trend in the correction is consistent with the expectation that the convex
curvature reduces the turbulence intensity. The quantitative nature of the results should provide valuable information
to the modeler. Figure 9 shows the variation of the streamwise velocity with respect to the distance from the wall at
various streamwise locations. The posterior velocity is seen to correlate well with the LES solution compared to the
prior and the SARC prediction. The results suggest that the SARC model requires improvements in the log layer.
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Figure 7: The prior, posterior, SARC and LES coefficient of friction (C f ) at the lower wall for the convex channel.
Shaded region represents the 95% confidence interval.
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(a) Inferred Correction Term(δMAP)
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Figure 8: Contour plot showing the inferred correction term (δMAP) and the SARC correction term for the convex
channel.

Figure 9: The prior, posterior, SARC and LES stream–wise velocity at various locations for the convex channel. s⊥
refers to the perpendicular distance from the lower wall. Refer Fig. 7 for the legend
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B. Boundary layer separation over a wall-mounted hump

To assess the generality of the inverse modeling and its impact on other field quantities, the inversion was applied to
a NASA benchmark test39 (Fig. 10), which involves separated flow over a smooth hump. In this problem, β(x,y) was
inferred with the objective of matching the wall pressure distribution in the region 0.5 ≤ x/c ≤ 1.5. Even though the
objective function was only taken to be the measured surface pressure, improvement is seen in the Reynolds stress
predictions (Fig. 10c). As a consequence of the overall improvement in the field solution, the predicted length of
the separation bubble was found be 15% more accurate compared to the baseline solution. Results can be improved
by considering more information from the experiment,21 but this exercise offers evidence that for separated flows,
pressure data can be valuable in inferring model discrepancy.

(a) Wall pressure coefficient

(b) Reynolds shear stress contours u′1u′2/U2
∞

Figure 10: Application of inverse modeling to separated flow over a smooth surface.
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C. Separated flows over airfoils

In this example, high angle of attack turbulent flow over the S809 airfoil40 is considered. and the flow domain over
airfoils is discretized using a C-grid with 291 points in the wraparound direction and 111 points in the wall-normal
direction.

To determine the impact of the type of data on the inference, two different inverse problems were solved with
respect to the following data sets:

a) Measured surface pressure coefficients (Cp)
b) Measured lift coefficient (Cl)
In both of the above inverse problems, the prior solution is assumed to be the baseline SA model and the ratio of the

observational covariance to the prior covariance was set to λ = 4×10−4. The two objective functions were confirmed
to lead to a similar solution to the inverse problem (Fig. 11). While there are discrepancies in the post-stall region,
the near-wall features in β(x) are almost identical, resulting in indistinguishable surface pressures. This can have
significant implications for modeling because many airfoil data sets only provide lift and drag measurements.
This implies a much higher level of confidence in the experimentally measured lift compared to the variability of β.
Further, the optimal solution was also confirmed to be relatively insensitive to order of magnitude variations in λ.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

X/C

0.2

0.1

0.0

0.1

0.2

Y
/C

0.18

0.00

0.18

0.36

0.54

0.72

0.90

1.08

1.26

1.44

(a) β(x) field using objective function based on Cl
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(b) β(x) field using objective function based on Cp
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(c) Cp

Figure 11: Inverse solutions using objective function based on lift (Cl) and surface pressure (Cp) coefficients. β(x) in
the near wall region is unaffected by the choice of objective function resulting in identical inverse Cp.
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VI. Machine learning and predictions in complex problems

The inverse approach presented in the previous section results in an optimal correction field for a given flow condi-
tion and geometry. To be useful in predictive modeling, a functional relationship must be developed by considering the
output of a number of inverse problems representative of the modeling deficiencies relevant to the predictive problem.
Further, as explained below, elements of the feature vector η are chosen to be locally non-dimensional quantities such
that the functional relationship β(η) is useful for different problems in which the η variables are realizable.

A. Feature selection

To build a set of features η upon which the functional relationship β(η) will be based, a logical place to start would
be to identify the independent variables in the baseline SA model. The source terms in the SA model are a function of
four local flow quantities, ν, ν̂, Ω, d, which represent the kinematic viscosity, the SA working variable, the vorticity
magnitude, and the distance from the wall, respectively. As discussed in Ref. 19, these quantities do not constitute
an appropriate choice for the input feature vector to the machine learning algorithm. They are dimensional quantities
which may have different numeric values even when two flows are dynamically similar. Thus, the inputs are re-scaled19

by relevant local quantities that are representative of the state of turbulence. An obvious locally non-dimensional
quantity in the baseline SA model is χ = ν̂/ν. We define local scales, ν + ν̂ and d, and introduce an additional
variable,

Ω̄ =
d2

ν̂+ν
Ω . (15)

It can be shown19, 24 that the locally non-dimensionalized source terms in the baseline SA model are dependent only
on Ω̄ and χ.

The set of features that were evaluated includes {Ω̄,χ,S/Ω,τ/τwall ,P/D}, where S,τ,τwall represent the strain-rate
magnitude, magnitude of the Reynolds stress, and the wall shear stress, respectively.

B. Learning

The lift-based inferred correction fields were obtained for the S814 airfoil at different combinations of angles of attack
and Re = 1×106 and 2×106. The inversion is followed by employing two different machine learning techniques to
reconstruct model corrections:

a) Neural networks (NN): The standard NN algorithm41 operates by constructing linear combinations of inputs
and transforming them through nonlinear activation functions. The process is repeated once for each hidden layer in
the network, until the output layer is reached. Tensorflow,42 which utilizes standard back-propagation algorithms41 is
used in this work.

b) Adaptive boosting (Adaboost): Adaboost is an ensemble learning model originally developed by Freund et al.43

In this work, we used the enhanced version by Drucker44 which is implemented in scikit-learn.45 The basic idea of
adaptive boosting is to iteratively use weak learners which iteratively focuses on the data that was predicted poorly in
the previous iteration.

Sample evaluations are presented in Figure 12 on a selection of data points which were randomly left out from
the training set. For this sample, the error metric (coefficients of determination - R2) was found to be 0.89 and 0.94,
respectively for the neural network and adaboost.

C. Prediction

As schematized in Fig. 1, the mapping β(η) built during the training process is queried for input features η̂ at every
iteration of the flow solver to obtain outputs β̂ which are embedded into the predictive model. This process is repeated
until convergence. Again, it is emphasized that the training data involved only the S814 lift data Re = 1×106,2×106.

The model performs equally well for airfoil shapes (S805 and S809) and Reynolds numbers (Re = 3× 106) not
used in the training set as seen from Figs. 13, 14. Clearly, significant improvement in stall prediction is evident in
the lift prediction. As a consequence, the drag rise is predicted to occur at lower angles of attack than in the baseline
model, a trend that is qualitatively correct. Further, there is no evidence of deterioration of accuracy in the low angle
of attack regions, where the original model is already accurate. The improvement in the quality of the predictions is
further emphasized in Figs. 15, 16. These results confirm that the data-augmented model offers considerable predictive
improvements in surface pressure distributions.
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(a) Neural Network (b) Adaptive Boosting

Figure 12: Results of Machine learning evaluations using two machine learning algorithms on S814 inversion data.
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Figure 13: NN-augmented SA prediction for S805 airfoil using data-set P. — Experiment, — base SA and — neural
network.

VII. Conclusions

The abundance of data from high-fidelity simulations and high resolution experiments provides unprecedented
opportunities to comprehensively inform closure models. A paradigm of data-driven model development comprising of
full-field inversion and machine learning (FIML) was described. The inference process generates function correction
information for specific problems. Once the inference is applied over a number of problems, machine learning is
used to reconstruct the inferred function in terms of variables that will be available during predictive simulations. The
reconstructed function is then embedded into a predictive solver, which queries the machine learned model at every
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Figure 14: NN-augmented SA prediction for S809 airfoil using data-set P. — Experiment, — base SA and — neural
network.

α= 16◦

α= 18◦

α= 20◦

Figure 15: Surface pressure coefficient for S809 airfoil at Re = 2×106 and α = {16◦,18◦,20◦}. Refer Fig. 11(c) for
legend.

iteration of the flow solver to obtain model corrections. The field inversion process directly provides comprehensive
information about model discrepancies, which is of great use to the modeler in the quest to formulate more accurate
closures. The machine learning step could be considered as one tool that can be used to reconstruct the discrepancy.

A tutorial was presented - in the context of 1D channel flow - on the use of FIML in model development with the
goal of addressing two different types of model discrepancy - in time scales and stress anisotropy.

In more complicated problems involving flow separation, the inference process was shown to assimilate sparse
data while improving the solution over the entire computational domain. This reinforces confidence that the procedure
does not overfit the model to the data and that predictive improvements can be realized for the right reasons.

In the case of turbulent flow separation over airfoils, the data-assisted model showed significant improvement
over the baseline model in predicting lift and drag coefficients and stall onset angles and the model predictions were
confirmed to be excellent in airfoil shapes and flow conditions that were not part of the training set.
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α= 12◦

α= 14◦

Figure 16: Surface pressure coefficient for S805 airfoil at Re = 1× 106 and α = {12◦,14◦}. Refer Fig. 11(c) for
legend. Experimental pressure is shown only for the upper surface.

The philosophy and formalisms employed in this work are of a general nature and are not restricted to the type of
model or the type of model discrepancy that is addressed. In such endeavors, it would be critical to ensure that the
model augmentations a) can be developed based on sparse experimental data as well as rich DNS/LES data b) do not
influence regions of the flow that are adequately represented by the baseline model (near-wall region in thin boundary
layers), and c) do not degrade the convergence properties of the solver. There is much to be gained by carefully
exploring a broader set of input features16, 23 and alternative machine learning methods and approaches.15, 34 Finally,
realizability limits10, 23 and invariance properties46 should be respected to constrain the model, especially when the
model is operating in an extrapolatory mode.

For the framework to be able to offer improved predictions in practical situations, inverse problems must be solved
over a wide class of problems (and over multiple objective functions of interest) that will be representative of the
deficient physics in the baseline model. Concurrently, the tendency of the learning process to over-fit data must also
be avoided. At every stage of process, the underlying physical insight is irreplaceable and thus it is left to the modeler
to make judicious choices about the data, prior information and introduction of one or more correction functions.
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