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This paper demonstrates stable level flight control given nonlinear dynamics in the presence of uncertainty
in pitot tube airspeed measurements. It is first shown that a commanded cruise altitude can be reached in
finite time by applying a recently-proposed finite-time reachability model. Then, the paper proposes a new
dynamic decision making unit (DMU) to govern level flight in the presence of uncertain pitot tube readings.
The DMU uses a Markov Decision Process to update the controls over a finite time-horizon, where MDP states
are obtained from discretization of the output and MDP cost is proportional to the deviation from the desired
output. A transition probability calculator learns MDP transition probabilities over time.

Nomenclature

α Angle of Attack
q̄ Dynamic Pressure
β Side Slipe Angle
δa Aileron Control Inputs
δe Elevator Control Inputs
δr Rudder Control Inputs
γ Discount factor
φ, θ, ψ Roll, Pitch, Yaw Angle
ρ Air Density
VW Wind Velocity with Respect to Ground Resolved in Body Frame
VAC Aircraft Velocity with Respect to Ground Resolved in Body Frame
b Wingspan
c Wing Chord Length
CDf Drag Coefficients
CDga Drag Coefficients
CDge Drag Coefficients
CDgr Drag Coefficients
CL f Lift Coefficients
Cl f Roll Moment Coefficients
CLga Lift Coefficients
Clga Roll Moment Coefficients
CLge Lift Coefficients
Clge Roll Moment Coefficients
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CLgr Lift Coefficients
Clgr Roll Moment Coefficients
Cmf Pitching Moments Coefficients
Cmga Pitching Moments Coefficients
Cmge Pitching Moments Coefficients
Cmgr Pitching Moments Coefficients
Cnf Yaw Moment Coefficients
Cnga Yaw Moment Coefficients
Cnge Yaw Moment Coefficients
Cngr Yaw Moment Coefficients
g Gravitational Acceleration
Ixx Moment of Inertia
Ixz Moment of Inertia
Iyy Moment of Inertia
Izz Moment of Inertia
m Aircraft Mass
na Cardinality of the set of MDP AC
p, q, r Aircraft Angular Velocity with Respect to Ground
R Matrix of MDP cost
S Wing Area
T Throttle
T P Transition probability tensor
T Pi Transition probability matrix associated with the MDP action i ∈ AC
U Control Input
u, v, w Aircraft Velocity with Respect to Ground
vwx x-component of VW

vwy y-component of VW

vwz z-component of VW

X Control State
Y Control Output
y, z Aircraft Position with Respect to Ground
zd Desired Altitude

I. Introduction

Although pitot tube systems provide a reliable method to measure airspeed, failures of the pitot system have also
led to a number of accidents for both transport and general aviation aircraft.1–3 Commercially-available autopilots typ-
ically recognize the pitot failures and disengage the autopilot in response, yet the combination of autopilot disconnect
and crew reaction has led to incidents such as Air France Flight 4474 and Aeroperu Flight 6035 in which the ground
crew covered the Pitot-static system with tape for cleaning but forgot to remove it before flight.

Future autopilot systems might override inappropriate automation/crew behaviors under such situations to increase
the chance of survival. As shown in6–8 one strategy is to rebuild sensor data based on the readings of some other
functioning sensors. However, this strategy requires substantial online calculation and accurate aircraft dynamics
models. For an uncertain system, a dual control method has been proposed.9–11 In12–17 the Markov decision process
(MDP) is also proposed for robust control. In12 the optimal control is generated by using the MDP as an information-
theoretic approach for estimating dynamics. Robustness of controls with respect to uncertainties in the transition
probability matrix is investigated by applying Temporal Logic Specifications in reference.18

The authors have recently proposed a finite-time reachability model (FTRM) used by multiple agents given linear
dynamics for particles of a continuum.19 This paper extends the proposed FTRM to general nonlinear systems to
assure reachability of a desired output in finite time. For the case study, we consider an airplane with a nonlinear
model that aims to maintain level flight. It is shown how the desired output, defining desired altitude of the level flight,
can be reached by the airplane in the absence of parameter uncertainty. We also propose a new dynamic decision-
making model specifically to maintain level flight in the presence of parameter uncertainties with an uncertain pitot
tube reading case study. The proposed dynamic decision making module (DDMM) augments a decision making unit
(DMU) using the MDP to update controls (actions) executed by the flight dynamics in finite time. The DMU is also
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linked to a transition probability calculator (TPC) which estimates the probability of transitioning over the MDP states.
Note that MDP states are determined by discretization of the output and MDP cost is proportional to the difference
between actual and desired outputs.

This paper is organized as follows. In Section II notations and the formulation of the MDP are given. The primary
problem of the paper is stated in Section III. Main elements of the DDMM and their functions are described in Section
V. Simulation results are presented in Section VI followed by concluding remarks in Section VII.

II. Markov Decision Process Background

A Markov Decision Process (MDP) is defined by the tuple

< S, AC,T P,R, γ >

where S is the set of MDP states with cadinality ns , AC is the set of MDP actions with cardinality na, T P ∈ Rns×ns×na

is the transition probability tensor, R ∈ Rns×na is the matrix of MDP cost/reward values, and γ is a discount factor.
.Tensor T P includes transition probability matrices T P1, T P2, . . . , T Pna , where the matrix T Pi defines probability of
transition over MDP states under the MDP action i ∈ AC. The optimal policy is obtained from the Bellman equation,
expressed as follows:20

π∗(s) = argmin
a
{Rs,a +γ

ns∑
j=1

T Pas, jVj }. (1)

Note that Rsa is the s,a entry of the cost matrix R (s ∈ S, a ∈ AC), T Pas, j which denotes the s, j entry of the matrix
T Pa (s, j ∈ S, a ∈ AC). Vj is the jth entry of the utility vector V ∈ Rns .

III. Problem Statement

Consider a system with dynamics

Ẋ = F (X,U,$)
Y = h(X )

(2)

with control state X ∈ Rnx , control input U ∈ Rnu , and control output Y ∈ Rny . $ denotes parameter uncertainty of
the system which is bounded but unknown. A goal of this work is for the system to learn uncertainty $ over time and
track the desired Yd ∈ Rny . For this purpose, a decision-making unit (DMU) augments the control system to update the
control inputs over time by using the MDP. The DMU consists of two main parts: (i) a transition probability calculator
(TPC), and (ii) a real-time decision maker. The TPC learns uncertainties by calculating the probability of transitions
over MDP states based on available history of current control outputs as well as inputs (MDP actions) over a sliding
time window. Given a transition probability matrix, the real-time decision maker specifies optimal control actions,
where MDP cost is proportional to the difference between actual and desired control outputs.

This paper models the aircraft with nonlinear dynamics given by

Ẋ = F (X,U) (3)

where X = [y z u v w φ θ ψ p q r]T ∈ R11 is the control state and U = [T δa δe δr ]T is the control input,

F =



f1(X,U)
...

f11(X,U)



,

The nonlinear expressions defining F are specified below.
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f1 = u cosθ sinψ+ v(sinφ sinθ sinψ+ cosφcosψ)+w(cosφ sinθ sinψ− sinφcosψ)
f2 = −u sinθ + v sinφcosθ +w cosφcosθ

f3 = vr −wq−g sinθ +
T
m
−

q̄S cos β cosα
m

(CDf +CDgaδa +CDgeδe +CDgr δr )

+
q̄S sinα

m
(CL f +CLgaδa +CLgeδe +CLgr δr )

f4 = −ur +wp+g sinφcosθ +
q̄S sin β

m
(CDf +CDgaδa +CDgeδe +CDgr δr )

f5 = uq− vp+g cosφcosθ +
q̄S cos β sinα

m
(CDf +CDgaδa +CDgeδe +CDgr δr )

−
q̄S cosα

m
(CL f +CLgaδa +CLgeδe +CLgr δr )

f6 =
pcosθ + q sinθ sinφ+ r sinθ cosφ

cosθ

f7 =
q cosθ cosφ− r cosθ sinφ

cosθ

f8 =
q sinφ+ r cosφ

cosθ

f9 =
q̄Sb[(IzzCl f + IxzCnf )+ (IzzClga + IxzCnga)δa + (IzzClge + IxzCnge)δe + (IzzClgr + IxzCngr )δr ]

Ixx Izz − I2
xz

−Ixz (Iyy − Ixx − Izz )pq− [Izz (Izz − Iyy )+ I2
xz]qr

Ixx Izz − I2
xz

f10 =
q̄Sc(Cmf +Cmgaδa +Cmgeδe +Cmgr δr )− (Ixx − Izz )pr − Ixz (p2− r2)

Iyy

f11 =
q̄Sb[(IxzCl f + IxxCnf )+ (IxzClga + IxxCnga)δa + (IxzClge + IxxCnge)δe + (IxzClgr + IxxCngr )δr ]

Ixx Izz − I2
xz

−[Ixx (Iyy − Ixx )− I2
xz]pq− Ixz (Ixx − Iyy + Izz )qr

Ixx Izz − I2
xz

. (4)

The expression

Y =

y

z


(5)

denotes the control output. For the below case studies the airplane is commanded to maintain a level flight at altitude
zd given uncertainty in pitot tube readings. Mathematically speaking, the goal is for the airplane to track the desired
output

Yd =


0
zd


. (6)

Note that in Eq. (3),

q̄ =
1
2
ρ(VAC −VW )2

sinα =
w− vwz√

(u− vwx )2+ (w− vwz )2

cosα =
u− vwx√

(u− vwx )2+ (w− vwz )2

sin β =
v− vwy√

(u− vwx )2+ (v− vwy )2+ (w− vwz )2
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cos β =
√

(u− vwx )2+ (w− vwz )2√
(u− vwx )2+ (v− vwy )2+ (w− vwz )2

IV. Finite-Time Reachability Model

IV.A. Linear System Preliminaries

Consider a system with the dynamics

XK+1 = AXK + BUK

YK = CXK

. K = 1, 2, . . .N . (7)

The dynamics (25) can be written in the following l-step-ahead form:

Xl = AlX +GlQl (8)

where
Gl =

[
Al−1B . . . AB B

]
(9)

Ql =



U1
...

Ul



. (10)

Let desired outputs Yd,1, Yd,2, . . ., Yd,N+1 be known apriori, where

Y1 = Yd,1.

The first objective is to find QN such that reachability of Yd,N+1 is assured:

ΩR = Yd,N+1−YN+1 = Yd,N+1−C(AN X1+GNQN ) = 0. (11)

It is also desirable to minimize the cost

cost =
N∑
j=1

(Yj −Yd, j )T s(Yj −Yd, j )+QN
T RQN (12)

where s ∈ Rny×ny and R ∈ R(Nnu×Nnu ) are positive definite weight matrices. These objectives are achieved, if QN is
chosen such that the augmented cost

COST =
N∑
j=1

(Yj −Yd, j )T s(Yj −Yd, j )+QN
T RQN + λ

T
ΩR =QN

T (R+P)QN + (M1+M2)QN +M3+ λ
T
ΩR (13)

is minimized, where λ ∈ Rny is the Lagrange multiplier vector,

M1 = −GN
TCT λ ∈ R1×N .nu (14)

M2 = 2
N∑
l=1

Gl
TCT s(C AlX1−Yl) ∈ R1×N .nu (15)

M3 =

N∑
l=1

{(C AlX1−Yl)T s(C AlX1−Yl)}+ λT (YN+1− AN X1) ∈ R. (16)
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Additionally, Pi j ∈ R
nu×nu is the i j block of the symmetric matrix P and obtained as follows:

Pi j =

N∑
l=max {i, j }

BT (AT )l−isAl−jB. (17)

The optimal control QN =QN
∗ minimizing the COST in Eq. (13) is obtained from

d COST
d QN

= 0. (18)

Therefore,

QN
∗ = −

1
2

(R+P)−1(M1+M2) = −
1
2

(R+P)−1(−GN
TCT λ∗+M2). (19)

Substituting QN
∗ in reachability condition (11) results in

1
2
Γλ∗ =

1
2

CGN (R+P)−1 M2+YN+1−C AN X1 (20)

or
λ∗ = Γ−1

(
CGN (R+P)−1 M2+2YN+1−2HN FN

)
(21)

where
Γ = CGN (R+P)−1GN

TCT (22)

is nonsingular. Therefore,

QN
∗ = −

1
2

(R+P)−1(−GN
TCT (Γ−1(CGN (R+P)−1 M2+2YN+1−2HN FN ))+M2). (23)

IV.B. Nonlinear Systems

The nonlinear flight dynamics model presented in Section III is locally linearized as follows:

X j+1 = AjX j + BjUj

Yj = CX j

(24)

where

Aj =
∂F (X j,Uj )

∂X j

Bj =
∂F (X j,Uj )

∂Uj

C =

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0


.

Let j = (K −1)N + l (l = 1, 2, . . ., N) be substituted in Eq. (24), where it is assumed that

A(K−1)N+1 = A(K−1)N+2 = · · · = AKN+1

B(K−1)N+1 = B(K−1)N+2 = · · · = BKN+1.

Then, the flight dynamics can be expressed by l-step-ahead form,

X(K−1)N+l = A(K−1)N+1
lX(K−1)N+1+GK,lQK,l

Y(K−1)N+l = CX(K−1)N+l
l = 1, 2, . . .,N, (25)

where
GK,l =

[
A(K−1)N+1

l−1B(K−1)N+1 . . . A(K−1)N+1B(K−1)N+1 B(K−1)N+1
]
∈ R11×(4l) (26)
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QK,l =



U(K−1)N+1
...

U(K−1)N+l



. ∈ R(4l)×1 (27)

Given desired output Yd,KN+1, the reachability condition becomes

ΩK,R = Yd,KN+1−YKN+1 = Yd,KN+1−C(A(K−1)N+1
lXKN +GK,NQK,N ) = 0. (28)

The goal is to find QK,N such that

COST =
N∑
l=1

(Y(K−1)N+l −Yd, (K−1)N+l)T s(Y(K−1)N+l −Yd, (K−1)N+1)+QK,N
T RQK,N + λ

T
ΩK,R =

QK,N
T (R+PK )QK,N + (MK,1+MK,2)QK,N +MK,3+ λ

T
ΩK,R

(29)

is minimized, where

MK,1 = −GT
K,NCT λ ∈ R4N

MK,2 = 2
N∑
l=1

GK,l
TCT s(C A(K−1)N+1

lX(K−1)N+l −Y(K−1)N+l)

MK,3 =

N∑
l=1

[(C A(K−1)N+1
lX(K−1)N+l−Y(K−1)N+l)T s(C A(K−1)N+1

lX(K−1)N+l−Y(K−1)N+l)+λT (YKN+1−A(K−1)N+1
N X1).

The i j block of the matrix PK is obtained from Eq. (17), where A and B are substituted by A(K−1)N+1 and
B(K−1)N+1, respectively.

Figure 1: Structure of the Dynamic Decision Making Model (DDMM)
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V. Dynamic Decision Making Model

This section proposes a dynamic decision making model (DDMM) for achieving robust performance in the pres-
ence of uncertainty with unknown bounds. The structure of the DDMM is shown in Fig. 1. Components of the DDMM
as well as their functions are described below.

V.A. Main Components of DDMM

As shown in Fig. 1, the decision-making unit (DMU), finite-time reachability model (FTRM), transition probability
calculator (TPC), Y → s converter, Q → U converter and flight dynamics are the main components of the DDMM.
Each is described below.

Y → s Converter: Let

Y =



Y1
...

Yny


be the control output, where Yi ∈ [Yi,min,Yi,max] (i = 1,2, . . .,ny). Using

γi =

⌈
5

Yi −Yi,min

Yi,max −Yi,min

⌉
(30)

output Y is uniquely mapped to (γ1, γ2, . . ., γny ) (γi ∈ {1,2, . . .,5}). Note that (γ1, γ2, . . ., γny ) represents a hyper cuboid
in Rny . with the center located at

CY =



Y1,min

...

Yny,min



+



(
1
2
+
γ1−1

5

) (
Y1,max −Y1,min

)
...(

1
2
+
γny −1

5

) (
Yny,max −Yny,min

)


.

Given (γ1, γ2, . . ., γny ),

s =
ny−1∑
i=1

5ny−i (γi −1)+γny ∈ S (31)

represents an MDP state, thus ns = |S | = 5ny is the cardinality of the set of MDP states. Note that (γg,1, . . ., γg,ny ) =
(3, . . .,3) is the hypercuboid representing the desired output providing the level flight condition. Therefore,

sg = 2+
ny−1∑
i=1

5ny−i (32)

is the desired MDP state. As an example, consider the output of the flight dynamics,

YN (K−1)+1 =


yN (K−1)+1

zN (K−1)+1


,

where ny = 2, ymin ≤ y ≤ ymax and zmin ≤ z ≤ zmax . Given ymin, ymax , zmin, and zmax ,

γ1 =

⌈
5
yN (K−1)+1− ymin

ymax − ymin

⌉

γ2 =

⌈
5

zN (K−1)+1− zmin

zmax − zmin

⌉
.

As shown in Fig. 2, the output domain is partitioned into 9 tiles where each tile represents an MDP state.
DMU: The decision making unit specifies optimal actions by using MDP. MDP states are obtained by discretization

of the control output (see Eq.(32).) and are defined by the set

S = {1, 2, . . .,5ny }. (33)
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Figure 2: Schematic of output discritization of flight dynamics

By executing an MDP action a j , the goal of output YN (K−1)+1 identified by (γ1, . . ., γny ) is to reach Yd,NK+1 at the
center of the hyper cuboid that is identified by (γ1 + j1, . . ., γny + jny ). Note jk ∈ {−1,0,1} (k = 1,2, . . .,ny), so there
exist na = 3ny possible actions.

The transition probability matrix associated with an action a j ∈ AC is determined based on empirical data as
described in the sequel.

MDP cost is a metric to measure deviation from the goal state specified by (γg,1, . . ., γg,ny ) = (3, . . .,3). Given Y ,
(γ1, γ2, . . ., γny ) is obtained from Eq. (30), and MDP cost is defined by the matrix

C = 11×na ⊗ c ∈ Rns×ns , (34)

where the entry s =
∑ny−1

i=1 5ny−i ((γi −1)+γny of c ∈ R5ny is given by

cs = ωc

ny∑
i=1

(γi −2)2 (35)

and ωc ∈ R+ is a scaling factor.
FTRM: Given YN (K−1)+1, the output at the time N (K −1)+1, (γ1, γ2, . . ., γny ) is determined by using the Eq. (30).

Knowing YN (K−1)+1 and MDP action issued by the DMU at the time N (K − 1)+ 1, the desired output Yd,KN+1 at the
center of the target hyper cuboid is determined. By knowing AN (K−1)+1, BN (K−1)+1, YN (K−1)+1 and Yd,KN+1, QK,N is
obtained from the Eq. (23).

TPC: It is assumed that the output history is sufficiently informative so the transition probability tensor associated
with all MDP actions can be reasonably estimated based on the available history of output evolution. Let

τ⋃
j=1

(Y(K+1−j)N+1,Y(K−j)N+1, π
∗
K−j ) (36)

denote the available history of the current and historical outputs as well as policies issued by the DMU during the time
interval [(K − τ)N +1,K N +1]. By knowing Y(K−j)N+1 the corresponding MDP states s(K+1−j)N+1 and s(K−j)N+1 are
calculated by using Eq. (31). Therefore, the row s(K+1−j)N+1 of the transition probability matrix T Pπ∗ is updated at
time (K +1− j)N +1.

Q→U Converter: In the Q→U converter unit, QK,N is a converted sequence of control inputs,

UN (K−1)+1, UN (K−1)+2, . . .,UNK

executed by the flight system during the time interval [N (K −1)+1,K N].
Remark: If the DMU issues the action ”stay”, the target hyper cuboid at the time K N +1 is the same as the current

hyper cuboid that is determined by using Eq. (30). However, QN , 0 if YN (K−1)+1 , Yd,KN+1. In other words, the
control input QK,N is actively executed when YN (K−1)+1 , Yd,KN+1.

Remark: QKN is inevitably a nonzero vector if the DMU does not issue the action ”stay”.
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VI. Results

In this simulation, an aircraft aims to maintain a level flight condition at the altitude of 2000m in presence of
uncertain wind speed. We consider nonlinear continuous-time aircraft model as given in Eqs. (3) and (4). Simulation
parameters of the airplane are listed in Table 1.

Table 1: Aircraft Simulation Parameters - T-2 Aircraft21

Parameter Value

S 0.5483m2

b 2.0876m
c 0.2789m
m 22.5kg
Ixx 1.7992kg ·m2

Iyy 5.7677kg ·m2

Izz 7.3946kg ·m2

Ixz 0.1627kg ·m2

By using the linearization model described in Section IV.B, the flight dynamics can be converted into the discrete
form given in Eq. (8). It is assumed that wind velocity is uncertain but bounded. Also, ymin < y < ymax , zmin < z <
zmax , where ymin = −2.5m, ymax = 2.5m, zmin = 1987.5m and zmax = 2012.5m. Given control output

Y =

y

z


,

γ1 and γ2 are obtained from Eq. (30),

γ1 =

⌈
5(y+2.5)

5

⌉

γ2 =

⌈
5(z−1987.5)

25

⌉
.

where γ1, γ2 ∈ {1,2,3,4,5}. Note that
s = 5(γ1−1)+γ2 ∈ S

represents a tile with the center located at

CY =


ymin + (γ1−0.5)∆y
zmin + (γ1−0.5)∆z


,

where

∆y =
ymax − ymin

5
= 1m

∆z =
zmax − zmin

5
= 5m.

In the absence of parameter uncertainty, the desired output Yd,KN+1 can be reached from YN (K−1)+1 by applying the
finite-time reachability control described in Section IV. However, Yd,KN+1 is not necessarily reached from YN (K−1)+1
if there exists uncertainty associated with flight parameters. Under this circumstance, YKN+1 is not necessarily equal
to YKN+1 and the DMU finds the best possible action by using the MDP to reduce deviation from the desired output.

An MDP action is defined as a transition in the output (y − z) plane from a point inside the current tile into the
center of one of the adjacent tiles including diagonal motions. Therefore, na = 32 = 9 is the cardinality of the set
of MDP actions AC. Let the transformation from tile (γ1, γ2) into the center of the adjacent tile (γ1 + j1, γ2 + j2) be
considered as the action a j ∈ AC, where j1, j1 can be either −1, 0, or 1. Then, the MDP action is characterized by

a j = 3( j1+1)+ j2+1.
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A Monte Carlo simulation with 200 iterations was performed to obtain the transition probability tensor T P ∈
R25×25×9 associated with stochasticity of the uncertain wind. After calculating the transition probability tensor, we use
traditional value iteration to find an optimal policy at time N (K −1)+1.

In the simulation, wind is considered to be stochastic with the components shown in the Fig.3. In Fig.4 components
of actual and desired outputs are shown versus time. Notice that black dots show the values of Yd, (k−1)N+1 (k = 1,2, . . . )
issued by the DMU. Also, red dots are the values of the intermediate desired outputs, Yd, (k−1)N+2, Yd, (k−1)N+3, . . . ,
Yd,KN (k = 1,2, . . . ) (k = 1,2, . . . ). Moreover, blue curves illustrate components of actual output versus time. Observe
that the difference between actual and desired outputs ultimately vanishes.

YG =


0
2000


.
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Figure 3: History of Wind Speed

The history of MDP actions and control inputs T , δa, δe, and δr are shown in Figs. 5 and 6, respectively. Notice
that all simulation results above are based on a case where the mean value of vwx is 5m/s.
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Figure 4: Simulated History of All Control States

0 20 40 60 80 100 120 140 160 180 200 220

Time (sec)

0

1

2

3

4

5

6

7

8

A
c
ti
o

n
 i
n

d
e

x

Figure 5: History of MDP Action Index
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Figure 6: History of Control Inputs
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VII. Conclusion

In this paper, finite time reachability of the desired output is demonstrated. A dynamic decision-making model
is proposed for real time control of a nonlinear system in the presence of parameter uncertainties. A case study was
examined in which an aircraft maintains level flight at a desired altitude given uncertainty associated with pitot tube
readings. We showed how the DMU augmenting the control system can apply the MDP to update controls (actions)
executed by the airplane such that MDP cost, defined proportional to the difference between desired and actual outputs
of the flight dynamics, is minimized. The transition probability calculator linked to the DMU estimates probability of
transition over MDP states, where MDP states are determined by discretization of the control outputs.
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