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Electron backscatter diffraction (EBSD) scans are an important experimental input for
microstructure generation and homogenization. Multiple EBSD scans can be used to sam-
ple the uncertainty in orientation distribution function (ODF), both point–to–point within
a specimen as well as across multiple specimens that originate from the same manufacturing
process. However, microstructure analysis methods typically employ only the mean val-
ues of the ODF to predict properties and the stochastic information is lost. In this work,
we develop analytical methods to account for the uncertainty in the EBSD data during
property analysis. To this end, we develop a linear smoothing scheme in the Rodrigues
fundamental region to compute the ODF from the EBSD data. The joint multivariate
probability distributions of the ODF are then modeled using a Gaussian assumption. We
also compute the uncertainty in engineering properties that are obtained by homogeniza-
tion. We show that uncertainty in non-linear properties can be analytically obtained using
direct transformation of random variables in the homogenization approach.

I. Introduction

One of the pillars of Integrated Computational Materials Engineering (ICME) (Allison et al.1) is un-
certainty quantification (UQ) and involves development of mathematical tools to quantify the effect of
stochasticity of microstructure on the predicted engineering properties. Microstructural uncertainties arise
from imperfections in the manufacturing processes, such as variations in the stress or temperature gradients
during forming processes used to make aircraft components such as turbine disks. These imperfections lead
to stochasticity both point–to–point within a specimen as well as across multiple specimens that originate
from the same manufacturing process. In the UQ parlance, these uncertainties are classified as ‘aleatoric’.
Electron backscatter diffraction (EBSD) is an important experimental method to quantify such microstruc-
tural variations. We employ multiple EBSD scans on alloy specimens made from the same manufacturing
process to sample the various microstructures. The goal of this paper is to model the propagation of these
uncertainties on engineering properties using an analytical approach.

Current state of the art to model the uncertainties in materials involve the use of expensive numeri-
cal simulations such as Monte Carlo simulation (MCS), collocation and spectral decomposition methods.
Creuziger et. al2 examined the uncertainties in the ODF values of a microstructure due to the variations in
the pole figure values by using MCS. Juan et. al3 used MCS to study effects of sampling strategy on the
determination of various characteristic microstructure parameters such as grain size distribution and grain
topology distribution. Hiriyur et. al4 studied an extended finite element method (XFEM) coupled with an
MCS approach to quantify the uncertainties in the homogenized effective elastic properties of multiphase
materials. Kouchmeshky and Zabaras5 presented propagation of initial texture and deformation process
uncertainties on the final product properties using a stochastic collocation approach. Madrid et. al6 ex-
amined the variability and sensitivity of in-plane Young’s modulus of thin nickel polycrystalline films due
to uncertainties in microstructure geometry, crystallographic texture, and numerical values of single crystal
elastic constants by using a numerical spectral technique. Niezgoda et. al7 computed the variances of the
microstructure properties by defining a stochastic process to represent the microstructure. Some authors
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have also focused on the computational techniques to study the uncertainties on microstructural homoge-
nization approaches. Huyse and Maes8 studied the effect of microstructural uncertainties on homogenized
parameters by using random windows from the real microstructure, and performed MCS to identify the
stochasticity in elastic parameters such as Young’s modulus and Poisson’s ratio. Sakata et. al9 also showed
the variations in Young’s modulus and Poisson’s ratio due to microscopic uncertainties. They validated the
results of their perturbation-based homogenization method with MCS. In another paper, Sakata et. al10

implemented a Kriging approach to calculate the probability density functions of the material properties,
and used MCS to study the uncertainties in geometry and material properties of a microstructure through
the same perturbation-based homogenization method. A computational stochastic modeling approach for
random microstructure geometry was presented by Clement et. al.11,12 The authors presented a high di-
mensional problem due to the high number of stochastic variables to represent the microstructure geometry.
This high dimensionality was reduced with implementation of Polynomial Chaos Expansion (PCE).

These computational methods presented in literature involve using a numerical algorithm for uncertainty
quantification and propagation. They represent the joint probability distributions of uncertain variables
either using interpolation functions or sampling for random points. These techniques are not computationally
efficient as the problem complexity or the number of variables increases since the number of interpolation
terms or sampling points will also increase. This is especially true for ODFs that are discretized using finite
element nodes or spectral basis, and contain large number of free parameters whose joint distribution needs
to be sampled. Another drawback is the difficulty of satisfying design constraints (such as volume fraction
normalization) when using numerical approaches. All these disadvantages imply the necessity of developing
analytical solutions as a first step in UQ. Recently, we employed the use of Gaussian characteristic functions
to stochastically model pole figure inversion.13 The approach is fully analytical and significantly faster than
numerical approaches. However, pole figure inversion is non-unique and leads to ‘epistemic’ uncertainty due
to lack of an exact solution. In this paper, we focus on EBSD to ODF conversion, which is a one–to–one
map only constrained by the level of discretization of the ODF, and thus, aleatoric uncertainties can be
better quantified. We employ the Gaussian model and analytically propagate the uncertainties in ODF to
linear and non-linear properties derived from the ODF. The organization of this paper is as follows. Section
II discusses the problem statement. In Section III, the mathematical methods are described. Results and
conclusions are addressed in Sections IV and V respectively.

II. Mathematical background

The complete orientation space of a polycrystal can be reduced to a smaller subset, called the fundamental
region (Fig. 1), as a consequence of crystal symmetries. Within the fundamental region, each crystal
orientation is represented uniquely by a coordinate, r, the parametrization for the rotation (e.g. Euler
angles, Rodrigues vector etc.). The ODF, represented by A(r), describes the volume density of crystals of
orientation r. The fundamental region is discretized into N independent nodes with Nelem finite elements
(and Nint integration points per element) as shown in Fig. 1.

The ODF is normalized to unity over the fundamental region as:∫
R
Adv =

Nelem∑
n=1

Nint∑
m=1

A(rm)wm|Jn|
1

(1 + rm · rm)2
= 1 (1)

where A(rm) is the value of the ODF at the mth integration point with global coordinate rm of the nth

element, |Jn| is the Jacobian determinant of the nth element and wm is the integration weight associated

with the mth integration point. This is equivalent to the linear constraint: qint
T
Aint = 1, where qinti =

wi|Ji| 1
(1+ri·ri)2 and Ainti = A(ri), where i = 1, . . . , Nint ×Nelem.

If the orientation-dependent property for single crystals, χ(r), is known, any polycrystal property can be
expressed as an expected value, or average, over the ODF as follows:

< χ >=

∫
χ(r)A(r)dv , (2)

This equation can be expressed in a linear form as follows:

< χ >=

∫
R
χ(r)A(r)dv =

nel∑
n=1

nint∑
m=1

χ(rm)A(rm)wm|Jn|
1

(1 + rm · rm)2
(3)
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Figure 1. Representation of the ODF calculation from the orientations obtained with the EBSD data

This is again equivalent to an equation linear in the ODF:< χ >= pint
T
Aint, where pinti = χ(ri)wi|Ji| 1

(1+ri·ri)2

and Ainti = A(ri), i = 1, . . . , Nint ×Nelem.
Using reduced integration with one integration point per element at local coordinate of (0.25, 0.25, 0.25)

and an integration weight of w = 1
6 , the simplified property matrix pint corresponding to polycrystal average

properties [< χ >] is given as:

pint =


1
6
χ1(r1)|J1| 1

(1+r1·r1)2

1
6
χ1(r2)|J2| 1

(1+r2·r2)2

. . .
1
6
χ1(rNel)|JNel | 1

(1+rNel
·rNel

)2


Crystallographic symmetry is enforced by considering the set of independent nodal points instead of

the integration points. Independent nodal points are the reduced set of nodes obtained by accounting for
symmetry conditions at the boundaries of the ODF (see Fig. 2). Let matrix H be such that it converts
the independent nodal values to the integration point values Aint = HAnode. The H matrix can be defined
from the equation Ainte = 0.25

∑4
i=1A

i
e where Ainte is the integration point ODF value at element e and

Aie, i = 1, . . . , 4 refers to the ODF values at the four nodes of the tetrahedral element e. The p matrix is
formed as p = HT pint so that any property d can be represented as the scalar product pTAnode.

The orientations from the EBSD data are binned pixel–by–pixel to the element containing the orientation,
specifically to the integration point in the element. After binning is complete, the ODF value (Ainti ) at the
integration point in an element i contains the total number of pixels in the EBSD image that have orientations

lying within the element. The data is then normalized by qint
T

Aint. Let matrix T convert the integration
point values Aint to the independent nodal values Anode, ie., Anode = TAint. Using one integration point,
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this matrix is defined as Tij = δij/f where δij is one if node i (or its symmetric equivalent) is a vertex of
element j and zero otherwise. The factor f is the number of elements with node i (or symmetric equivalent)
as one of its vertices. This matrix is always positive and thus, Anode ≥ 0. Vector containing the values of
the ODF at k − 1 independent nodal points is hereafter referred to as A.

In order to account for the normalization constraint, the property vector p is adjusted such that pi =
pi − pkqi

qk
for i = 1, .., k − 1 and the property rewritten as < χ >=

∑k−1
i=1 piAi + pk

qk
= pTA + r. Other

properties may be derived from < χ >. For example, the elastic modulus can be written as E = 1
<S11>

where < S11 > is a component of the compliance matrix (S) computed from the lower bound relation
< S >=

∫
R
S(r)A(r)dv.

Figure 2. ODF representation in the Rodrigues fundamental region for hexagonal crystal symmetry showing
the location of the k=50 independent nodes of the ODF in red color.

Given the uncertainty in the EBSD data, the primary goals of this article are to: (a) Develop analytical
forms for the probability distribution function of the ODF. and (b) Compute the uncertainty in properties
derived from the homogenization equation (Eq. 2) given the uncertainty in the ODF. The probabilistic
methods employed are explained next.

III. Methods

In this work, the experimental EBSD scans for a Titanium alloy were considered to determine the ODF
values. The variabilities in the ODFs were computed from 150 different samples drawn from the specimen.
Some of the example EBSD samples are shown in Fig. 3. The ODFs were calculated from the EBSD data
by binning the values at integration points. The ODF values at the independent nodal points were then
obtained using the linear relation between nodal point and integration point ODFs. The histograms of the
experimental variations were plotted and we found the variability in the ODFs can be modeled with a bell–
shaped distribution - eg. of the Gaussian type as shown in Fig. 4 for some of the integration point ODFs.
The Gaussian approximation allows for development of analytical expressions while considering correlations
between the various ODF values. The solution includes two basic steps: The first step is to find the statistical
features of linear material properties, and the second step is to find the probability distributions of non-linear
material properties using transformation of random variables.

A. Computation of the property uncertainty using Gaussian distributed correlated variables

The Gaussian approach, which can model all k correlated ODF nodal variables, is used to represent the
uncertainties in EBSD data.
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Figure 3. Some example EBSD samples.

Assume a d-dimensional multivariate Gaussian distribution: X ∼ Nd(µ,Σ). Now we define a new random
variable:

Z = AX =

d∑
i=1

d∑
j=1

aijXj (4)

where A is a constant matrix. Here, Z is Gaussian distributed. The mean and covariance of Z are given
by:

µZ = AµX (5)

ΣZ = AΣXA
T (6)

The Gaussian approach presented here can be modified accordingly to represent the variations in the
ODFs and linear material properties. The formulation to compute mean and variance of the ODFs at k− 1
independent nodal points using the ODFs at the integration points is given below:

µA = T ∗µAint (7)

ΣA = T ∗ΣAintT ∗T (8)

where µA and ΣA are the mean and covariance of the ODF at k − 1 independent nodal points, T ∗ is
matrix T with the first k−1 rows included. µAint and ΣAint are the mean and covariance of the ODFs at the
integration points. Although not required for further analysis, the mean and variance of the kth independent
node may be computed from the mean and covariance of the k− 1 nodes using the normalization constraint
as shown in Appendix.

The same approach can be followed to compute the uncertainties in the linear material properties. The
linear variables chosen for this study are the compliance parameters, S11 and S66. The mean and variance
equations for S11 can be shown as below using the Gaussian approach. The same computation also applies
to the statistical parameters of S66.
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Figure 4. The ODFs at the integration points agree with the Gaussian distribution.

E(S11) = pTµA + r (9)

σ2(S11) = pΣAp
T (10)

where p represents the property matrix for S11.

B. Uncertainties in the non–linear material properties

When the probability distribution of a property is not linear in the ODF, the probability density function
(PDF) can still be computed using Transformation of Random Variables. Given the input parameter, x,
and the output parameter, y, we assume that the relation between x and y can be identified using y = h(x),
and can be inverted as x = u(y). This method computes a Jacobian value, J , based on this explicit relation
(where J = du/dy), and finds the PDF of the output variable as a product of input PDF and the Jacobian.
Eq. 11 shows the computation of output PDF:

fy(y) = fx[u(y)]× |J | (11)

where fx and fy are the PDFs of input and output variables respectively. Since the input PDF, fx, and
inverted function, u(y) are already known, the output PDF, fy, can be computed using this method. Then,
the expected value, E[y], and variance, σ2

y, of the output parameter can be calculated using Eq. 12 and 13
respectively:14

E[y] =

∫ ymax

ymin

yfy(y)dy (12)

σ2
y = E[(y − E[y])2] (13)
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where ymin and ymax are the minimum and maximum values of the output variable, y, can take. These
values can be computed using the relation y = h(x) for the minimum and maximum values of the input
variable, xmin and xmax, respectively. The approach is first demonstrated in the next section for computing
the PDF of the homogenized elastic modulus E1 = 1/S11 and shear modulus G12 = 1/S66. The same method
is then used to compute the PDFs of the first torsion and bending natural frequencies of a cantilever beam.
The cantilever beam problem is the same as the problem in an earlier work of the authors’.15 However, this
time the beam material is Ti-7Al alloy. The corresponding equations for the torsion and bending natural

frequencies are: ω1t = π
2L

√
G12J
ρIp

and ω1b = (αL)2
√

E1I1
mL4 respectively. In these equations, J is torsion

constant, ρ is density, Ip is polar inertia moment, m is unit mass, L is length of the beam, I1 is moment
of inertia along axis-1.15 To compute the probability distributions of ω1t and ω1b, the geometrical beam
properties given in the previous work15 are considered.

IV. Results and discussion

This section discusses quantification of uncertainties introduced to the ODFs due to the variations in
the experimental samples. Three different samples of Ti-7Al alloy were taken from different regions of a
beta forged ingot. The original samples were taken from different regions of the ingot, creating variability
in the resulting microstructure due to the inhomogeneity of the forging process. These samples were subject
to the same thermomechanical process. All three samples were compressed to 20% height reduction at
room temperature, and annealed for 72 hours at 1073K. The compression direction is also the longitudinal
direction of the forging. Scans were taken from different regions of the processed samples. A total of 150
small scans were generated from these scans to represent the statistical features of the ODFs sufficiently.
Representative samples indicate a weakly basal texture. The HCP fundamental region discretized with 50
independent nodes is used to model the ODF. Using the experimental EBSD scans the ODFs are obtained by
binning to the elements. Using multiple scan data, we obtain a histogram of ODF values at the integration
points. The histograms were consistent with a bell shaped distribution. The mean and covariance of the
ODFs at the 49 independent nodes are then computed applying the Gaussian approach. We computed the
probability distribution of the last ODF, ODF50, by using the volume fraction normalization constraint.
The histograms for some of the ODFs, including the last ODF (ODF50) are shown in Fig. 5. ODF50, in
particular, has a lower standard deviation due to the normalization constraint. The statistical properties
of the ODF distributions (mean values, standard deviations and coefficient of variations of the ODFs) are
plotted on the mesh in Fig. 6. We find that some of the ODF values with high mean values also have higher
standard deviations but still there are some other ODFs with high standard deviations and relatively lower
mean values because of the larger experimental variations for those nodes. Thus, the coefficient of variation
(ratio of standard deviation to mean) of the ODFs is not entirely uniform since the higher density areas
indicate the ODFs with relatively higher standard deviations compared to their mean values.

The uncertainties in the ODFs and material properties are quantified using MCS and a Gaussian distribu-
tion model to compare the results of the analytical model. In the MCS approach, we used the aforementioned
150 experimental samples and directly computed the ODFs from each set. Then, 150 sets of material proper-
ties (S11, E1 etc.) were computed from these ODFs using the homogenization relation (Eq. 2). Histograms
of these ODFs and properties are directly compared to the Gaussian analytical solution. The analytical
solution is much faster, the solution times are around 7 seconds for analytical models and 20 minutes for
MCS on the same computational platform. However, MCS provides exact solutions since no Gaussian PDF
approximation was made. The Gaussian analytical solution assumed that all the ODF values are correlated.
Thus, we used a full covariance matrix to model the ODFs with the Gaussian approach. The MCS results
for the probability distributions of S11, S66, E1, G12, ω1t and ω1b are shown together with the analytical
model results in Fig. 7.

Knowing the uncertainty in the ODF, the uncertainties in the homogenized properties were quantified
using the analysis in Section III with Gaussian distribution. The compliance elements, S11 and S66, are
computed using the lower bound approximation. The elastic constants of the single crystals are considered
for 750 oC,16 and the values are taken as: C11 = 125.3 GPa, C12 = 99.4 GPa, C13 = 68.8 GPa, C33 = 154.5
GPa and C55 = 31.6 GPa. The linear features of the Gaussian distribution are implemented to compute the
expected value and covariance. The probability distributions of S11 and S66 are shown in Fig 7. The full
covariance matrix is again computed to identify the distributions of S11 and S66.

The next step considers the PDFs of the Young’s Modulus along sample x– direction, E1, and shear mod-
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Figure 5. Probability histograms of the ODFs

ulus, G12. Even though the probability distributions of S11 and S66 are modeled with Gaussian distributions,
the probability distributions of E1 and G12 are not Gaussian due to their inverse relations (E1 = 1/S11 and
G12 = 1/S66). The PDFs of E1 and G12 are determined using Transformation of Random Variables (Eq. 11)
in Section B. To compute these PDFs, the transformation function can be identified as u(y) = 1/y accord-
ing to the relations between E1 and S11, and G12 and S66. Then the expected values and the variances are
calculated using Eq. 12 and 13. Similarly, the PDF of the first torsion and bending natural frequencies are
computed using a transformation function u(y) = a

√
y, where a is a constant, due to the relations between

G12 and ω1t, and E1 and ω1b. The probability distributions of E1, G12, ω1t and ω1b are also shown in Fig.
7.

The overall analysis is fully analytical when using the Gaussian distribution. However, a drawback of the
Gaussian distribution is that it allows for negative variables. All the variables considered here, i.e. ODFs,
linear and non-linear properties are all positive. There are several available distribution models satisfying this
non-negativity condition such as Log–normal, Exponential, Weibull and Rayleigh distributions. However,
the exact analytical treatment of linear system of equations of correlated random variables is not available for
positive PDFs in literature. Thus, going beyond Gaussian distributions, one needs to also pursue numerical
methods such as MCS and collocation techniques for exact UQ. From our MCS analysis, we see that the
mean values of the probability distributions computed with MCS are in very good agreement with the
distributions of the analytical model for the ODFs and material properties in Fig. 7. The variances of
the material properties modeled with the analytical model are also compatible with the MCS data. It is
also much faster which is important when stochastic ODFs are employed in multiscale formulations17 of
thermomechanical processes.

V. Conclusions

We address analytical techniques for quantification of experimental uncertainties on material properties
of microstructures as obtained from volume averaged homogenization relationships. The uncertainties in
experimental EBSD scans were identified using Titanium alloy specimens that were obtained identically
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(a) Difference of mean values and standard devia-
tions of the ODFs

(b) Mean values of the ODFs

(c) Standard deviations of the ODFs (d) Coefficient of variations of the ODFs

Figure 6. Statistical features of the ODF probability distributions

through the same process. The uncertainties in the ODF values were quantified using 150 equally sized
diffraction samples, and were fitted to a Gaussian distribution. The probability distribution of the last ODF
parameter was computed using volume fraction normalization constraint. The probability distributions of
the linear properties, including the last ODF and the compliance parameters, were calculated using the
linear homogenization equations. The mathematical model for the probability distributions of non-linear
properties was identified using Transformation of Random Variables. Using this approach, we calculated the
uncertainty bounds for the Young’s modulus, shear modulus, the first torsion and bending natural frequencies
of the Titanium alloy specimen, that will be useful for engineering analysis. These derivations are important
for development of an ICME toolbox for computing the uncertainty in multiscale homogenization models due
to input uncertainties. Analytical approach has the drawback of having an infinite support space compared
to the finite support of the discretized ODFs and properties. However, these methods provide a considerable
reduction in computational times compared to available numerical techniques. Thus, it is recommended that
the Gaussian approach presented here be used as a first step to verify more advanced UQ models.
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Figure 7. Probability histograms of S11, S66, E1, G12, ω1t and ω1b

of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award no.
DE-SC0008637 that funds the PRedictive Integrated Structural Materials Science (PRISMS) Center at the
University of Michigan.

Appendix

In order to satisfy the normalization constraint, the equations to compute the statistical properties of
the kth independent node are modified. The mean and variance of the kth ODF value can be obtained as
E[Ak] = cTµA + 1

qk
and σ2[Ak] = cT ΣAc, where ci = − qi

qk
, and µA and ΣA are mean and covariance

of k− 1 independent nodes as computed in Eq. 7 and 8. After the modification for the kth variable, the full
ODF covariance matrix can be written as:

Σ∗A =

[
ΣA S

ST σk
2

]
(14)

where S is a column vector whose values are given by:

Si = −
1

qk

k−1∑
j=1

qj(ΣA)ij (15)
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