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In this paper, gradient-based aerodynamic shape optimization with output constraints
is implemented using adaptive meshes updated via adjoint-based error estimates. All the
constraints, including geometry and trim conditions, are handled simultaneously in the
optimization. The trim constraints may involve outputs that are not directly targeted for
optimization, and hence also not for error estimation and mesh adaptation. However, nu-
merical errors in these outputs often indirectly affect the calculation of the objective. The
method adopted in this work takes this effect into account, so that the mesh is adapted to
predict both objective outputs and constraint outputs with appropriate accuracy. In other
words, the entire optimization problem is targeted for adaptation. Instead of optimizing
with a single fixed mesh resolution, the objective function is first evaluated on a relatively
coarse mesh, which is subsequently adapted as the shape optimization proceeds. As the
shape approaches the optimal design, the mesh becomes finer, in necessary regions, leading
to a multi-fidelity optimization process. The multi-fidelity framework saves computational
resources by reducing the mesh size at early stages of optimization, when the design is far
from optimal and most of the shape changes happen. The optimization at each fidelity ter-
minates once the change of the objective is smaller than the tolerance (estimated error) at
the current fidelity mesh, reducing unnecessary effort in optimizing on low-fidelity meshes.
The use of output-based error estimates prevents over-optimizing on a coarse mesh, or
over-refining on an undesired shape. The proposed framework is demonstrated on several
optimization problems, starting with a NACA 0012 airfoil. In each case, the shape is op-
timized to minimize the drag given a target lift and a minimum airfoil area. The accuracy
and efficiency of the proposed method are investigated through comparisons with existing
optimization techniques. We expect the framework to be even more important for more
complex configurations, dramatic shape changes, or high-accuracy requirements.

I. Introduction

With the increasing power of modern computers, Computational Fluid Dynamics (CFD) has become
common in aerospace design. CFD simulations reduce the need for expensive wind tunnel tests and offer al-
most arbitrary test conditions and configurations. They are an attractive tool in aerospace design, especially
for optimization problems involving a large number of design parameters. Successful use of CFD in practi-
cal design problems requires both accurate simulations for a given configuration and efficient optimization
methods to improve design configurations.

The design process combines CFD analysis with numerical optimization methods, minimizing the objective
function based on the CFD output, e.g. drag, lift, or moment. For the optimization algorithms, both
gradient-based and gradient-free methods can be used. Gradient-free methods like genetic algorithms1–3 and
neural networks4,5 may be made robust for non-smooth or non-convex problems,6 but they are generally not
as efficient as gradient-based methods, especially for problems with a large number of design parameters.
Specifically, gradient-based algorithms converge to the optimum with fewer evaluations of the objective
function.7

Aerodynamic shape optimization problems are often parameterized with a large number of design vari-
ables and, with the desire for high accuracy, heavily depend on expensive high-fidelity CFD analysis,7 so
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that gradient-based methods are extensively used in aerospace design. Gradients with respect to each design
parameter are needed at every optimization iteration, which requires an accurate and efficient method for
estimating the sensitivities. Methods such as finite differencing, complex-step derivative approximation,8 and
algorithmic differentiation9 depend on the number of design parameters, while the adjoint method7,10–13 is
largely independent of the number of design parameters.

Even when using gradient-based algorithms with efficient sensitivity analysis, high-fidelity aerodynamic
shape optimization still remains computationally taxing because each evaluation of the objective function re-
quires an expensive high-fidelity CFD simulation. Although high-fidelity CFD simulations are now routinely
carried out in aerodynamic analysis, the computational resources needed for high-fidelity design preclude its
wide-spread use. This is the problem that we tackle in the present work. In order to reduce the optimiza-
tion cost, adjoint-based output error estimation and mesh adaptation are introduced into the optimization
process. The idea to combine output error estimation and gradient-based optimization is natural, as both
methods require output adjoint solutions. Even though output-based error estimation and mesh adapta-
tion methods have been demonstrated in a wide range of aerospace computational simulations,14–20 their
application to aerodynamic shape optimization problems has not received much attention. Nemec and
Aftosmis21 incorporated gradient-based optimization with output-based error estimates and mesh refine-
ment, and Dalle and Fidkowski22 proposed a multi-fidelity optimization framework built on this idea. Both
of these approaches used progressive optimization with mesh adaptation solely based on the error of the
objective output, without considering the effects of constraint errors on the objective. Li and Hartmann23

introduced a multi-target adaptation algorithm in which mesh adaptation targets the objective output and
the constraint outputs equally on a fixed fidelity.

The present work proposes a new variable-fidelity implementation and modified mesh adaptation strategy.
The error estimation not only includes the objective output, but also accounts for the errors in the constraint
outputs, which may indirectly affect the objective function.24 The variable-fidelity framework reduces the
computational cost when the shape is far from the optimum, thus avoiding over-refining on an undesired
configuration. On the other hand, the error estimation prevents optimization directions from being polluted
by discretization errors, and over-optimization on a coarse mesh.

The remainder of this paper proceeds as follows. We describe the general aerodynamic optimization
problem in Section II and the discontinuous Galerkin discretization in Section III. Details of the error
estimation and mesh adaptation are given in Section IV. Section V presents the coupling of gradient-based
optimization with error estimation. The primary results are shown in Section VI, and Section VII concludes
the present work and discusses potential future work.

II. Optimization Problem

II.A. Problem Formulation

In general, the aerodynamic shape optimization problem can be stated as a search for the design variables
x that minimize a given objective function J :

min
x

J(U,x)

s.t. Re(U,x) = 0

Rie(U,x) ≥ 0

(1)

where J represents a scalar objective function, always defined by the output, for example lift or drag or a
combination of these for multi-objective optimization.25 U denotes the flow variables, and Re and Rie are
the equality and inequality constraints, respectively. The flow variables U are solved within a feasible design
space Ω to satisfy the flow equations, often the Euler or Navier-Stokes equations. In discretized form, these
consist of a set of nonlinear equations,

R(U,x) = 0, ∀ x ∈ Ω (2)

which implicitly defines U as a function of x.
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II.B. Adjoint and Design Equations

Inactive inequality constraints Rie
ia(U,x), do not affect the optimization explicitly, while the active ones

Rie
a = 0 behave as equality constraints. In general, the inequality constraints can also be transformed

into equality constraints with non-negative slack variables.26 For easier illustration, we only consider the
active inequality constraints and equality constraints, put together into one vector of trim constraints,
Rtrim = [Re Rie

a ]T ,
Rtrim(U,x) = Jtrim(U,x)− J̄trim = 0 (3)

where J̄trim is a set of target trim outputs, for example, the target lift in a lift-constrained problem. In order
to distinguish the trim outputs from the objective output, we denote the latter by Jadapt, as the objective
output is the target of adaptation.

The adjoint-based optimization is equivalent to searching for the stationary point of the Lagrangian
function, which augments the flow equations with additional constraints,

L(U,x,λ,µ) = Jadapt(U,x) + λTR(U,x) + µTRtrim(U,x) (4)

where λ,µ are the Lagrange multipliers associated with the flow equations and the trim constraints, respec-
tively. The first-order optimality conditions are given by setting the derivatives of L to zero,

∂L
∂x

=
∂Jadapt

∂x
+ λT ∂R

∂x
+ µT ∂Rtrim

∂x
= 0 (5)

∂L
∂U

=
∂Jadapt

∂U
+ λT ∂R

∂U
+ µT ∂Rtrim

∂U
= 0 (6)

∂L
∂λ

= R(U,x) = 0 (7)

∂L
∂µ

= Rtrim(U,x) = 0 (8)

As we solve the flow equations for a given design x each time, Eqn. 7 is always satisfied during the optimiza-
tion. We can choose λ such that Eqn. 6 is enforced after each flow solve,

λT = −
(
∂Jadapt

∂U
+ µT ∂Rtrim

∂U

)
∂R

∂U

−1
= (Ψadapt + Ψtrimµ)T (9)

Eqn. 9 gives a coupled adjoint variable λ incorporating the adjoints of both the objective and the trim
outputs, Ψadapt and Ψtrim, which satisfy

∂R

∂U

T

Ψadapt +
∂Jadapt

∂U

T

= 0,
∂R

∂U

T

Ψtrim +
∂Jtrim

∂U

T

= 0 (10)

With this specific choice of λ, we can evaluate the gradient of the Lagrangian function with respect to the
design variables, starting with Eqn. 5,

∂L
∂x

=
∂Jadapt

∂x
+ λT ∂R

∂x
+ µT ∂Rtrim

∂x

=
∂Jadapt

∂x
+ (Ψadapt)T

∂R

∂x
+ µT

[
∂Rtrim

∂x
+ (Ψtrim)T

∂R

∂x

]
=
dJadapt

dx
+ µT dJ

trim

dx

(11)

Now the optimization problem has been reduced to finding an optimal design x and the corresponding
Lagrange multipliers µ satisfying,

∂L
∂x

=
dJadapt

dx
+ µT dJ

trim

dx
= 0

∂L
∂µ

= Rtrim = 0

(12)

However, since in a practical calculation, on a finite-dimensional space, the discretization error appears in
both the flow equations and the adjoint equations, optimality cannot be guaranteed even when Eqn. 12 is
satisfied. The present work focuses on controlling the error in the optimization problem via error estimation
and mesh adaptation.
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III. Discretization

Evaluation of the objective function at each optimization step relies on a flow simulation over the airfoil.
The governing equations for the fluid flow are compressible Navier-Stokes,

∂u

∂t
+∇ · ~F(u,∇u) + S(u,∇u) = 0 (13)

where u is the flow state vector at a particular spatial location, ~F is the total inviscid and viscous flux vector,
and S is a source term required when modeling turbulence. When running Reynolds-averaged turbulent
cases, we use the Spalart-Allmaras one-equation model, with a negative turbulent-viscosity modification.
We discretize Eqn. 13 with the discontinuous Galerkin (DG) finite-element method, which is suitable for
high-order accuracy and hp-refinement.27–29 However, the framework proposed in this work can be applied
to other discretizations supporting output-based error estimation and mesh adaptation.

The DG spatial discretization of Eqn. 13 yields a system of discrete algebraic equations in the form of
Eqn. 2,

RH(UH ,x) = 0 (14)

where RH is the residual vector, a nonlinear function of the discrete state vector UH and the design variables
x. The subscript H refers to fidelity of the approximation/test space with respect to the approximation order
and mesh refinement.

IV. Error Estimation and Mesh adaptation

IV.A. Adjoint-based Error Estimation

In practice it is not possible to obtain the true numerical error for an output, whereas the difference between
a coarse space and fine space solution serves as an acceptable surrogate,

output error: δJ ≡ JH(UH)− Jh(Uh) (15)

In this expression, J represents the output of interest, and the subscripts h and H denote the fine and coarse
spaces, respectively. In the present work, the fine space is achieved by increasing the elements’ approximation
order p, to p+ 1. We do not solve the nonlinear fine-space flow problem for the error prediction, and instead
we use the linear fine-space adjoint solution, Ψh, defined as the sensitivity of the output to the residuals.
The adjoint weights the residual perturbation to produce an output perturbation,

δJ ≈ JH(UH)− Jh(Uh) = Jh(UH
h )− Jh(Uh)

= −ΨT
h [Rh(UH

h )−Rh(Uh)] = −ΨT
hRh(UH

h )
(16)

where Uh is the (hypothetical) exact solution on the fine space, UH
h is the state injected into the fine space

from the coarse one, which generally will not give a zero fine space residual, Rh(UH
h ) 6= Rh(Uh) = 0. The

derivation of Eqn. 16 originates from the small perturbation assumption, and is valid for outputs whose
definition does not change between the coarse and fine spaces, JH(UH) = Jh(UH

h ).

IV.B. Output Error Estimation for Optimization Problems

Normally, the error estimation is applied only to the output in which we are most interested, i.e. the objective.
However, our optimization problem requires the simultaneous solution of flow equations and trim constraints.
The numerical error of the trim outputs may indirectly affect the calculation of the objective. To take this
effect into account, the coupled adjoint should be used for the error estimates.

Consider a given design x, and suppose that the error of the objective only comes from the inexact
solution UH

h . We can estimate the error in the objective with the linearization given by Eqn. 6,

δJadapt = −λT
h δRh − µT

h δR
trim
h = −λT

hRh(UH
h )− µT

h δR
trim
h

= −(Ψadapt
h + Ψtrim

h µh)TRh(UH
h )− µT

h (Jtrim
h (UH

h )− Jtrim
h (Uh))

= δJadapt − µT
h (Ψtrim

h )TRh(UH
h )− µT

h δJ
trim

= δJadapt

(17)
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This is consistent with the previous analysis without the trim conditions, since we keep the same design
between the coarse and fine spaces, and because we assume that the error only comes from the inexact
solution UH

h . In general, however, we need to deal with both the objective error and the constraints error.
The problem becomes worse if we have high accuracy in the objective while little confidence in the constraint
outputs, or vice versa. If we run simulations in the fine space and the coarse space, with the same constraint
outputs, we will get different designs. This error may come from the deviation of both the design parameters
and the flow states, and separate error estimation and mesh adaptation for the objective and trim outputs
may be inefficient.

If we consider the optimal design on the coarse space (UH ,xH) and the fine space (Uh,xh), since the
optimality conditions Eqn. 5 and Eqn. 6 both hold now, the error comes from the inexact solution UH

h as
well as the deficient design xH ,

δJadapt
opt = −λT

h δRh − µT
h δR

trim
h = −λT

hRh(UH
h ,xH)− µT

hRtrim
h (UH

h ,xH)

= −(Ψadapt
h + Ψtrim

h µh)TRh(UH
h ,xH)− µT

h (Jtrim
h (UH

h ,xH)− J̄trim)

= δJadapt(xH) + µT
h δJ

trim(xH)− µT
h (Jtrim

h (UH
h ,xH)− J̄trim)

(18)

Since the definition of the outputs is often the same on the coarse and fine spaces, we have that

Jtrim
h (UH

h ,xH) = Jtrim
H (UH ,xH) = J̄trim = Jtrim

h (Uh,xh) (19)

Hence, the last term in Eqn. 18 is often negligible for the optimal design, resulting a simpler form for the
error of the optimality condition,

δJadapt
opt = −(Ψadapt

h + Ψtrim
h µh)TRh(UH

h ,xH) = δJadapt(xH) + µT
h δJ

trim(xH) (20)

The error without the subscript opt is the output error without the trim constraints. Eqn. 20 gives a
prediction of optimality error on the coarse space due to the spatial discretization. With the advantages
of adjoint-based error estimation, we avoid the expensive solves of both the the optimal design xh and
flow states Uh, i.e. the whole optimization process on the fine space. However, the estimation requires the
fine-space adjoints Ψh as well as the fine-space Lagrange multipliers µh. In our implementation, the fine-
space adjoints Ψh are approximated by reconstructing the coarse-space adjoints ΨH ,19 while the Lagrange
multipliers are extracted from the optimizer on the coarse space.

Eqn. 20 provides the error estimate of the optimality condition, which does not always hold during the
optimization process. Thus, it is neither the error of the objective nor the error of the constraints when
the design is away from the optimality condition. However, it couples the objective error and constraints
error, giving a better error level of the whole optimization problem, so it is expected to serve as a better
adaptation indicator for the optimization or constraint problems. Moreover, in the multi-fidelity optimization
framework, when most of the mesh adaptation happens after a successful optimization on the current fidelity,
Eqn. 20 works better than the objective error without constraints.

IV.C. Mesh Adaptation

The error estimate is localized to each element and serves as the indicator for mesh adaptation. A common
approach for obtaining an error indicator is to take the absolute value of the elemental error contribution,
the residual vector inside each element dotted with the discrete adjoint vector. When the trim outputs are
involved, we have another decision to make: whether we would allow cancellation between the objective and
trim output error estimates. In this work we do not let such cancellation happen when calculating the error
indicator, so that the final error indicator on element k is given by

ηk = ηadaptk + |µT |ηtrim
k (21)

where ηadaptk is the objective output error indicator, and ηtrim
k is a vector of trim output error indicators.

More details about the mesh adaptation strategy in the multi-fidelity optimization are given in the next
section.
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V. Optimization Approach

V.A. Optimization Algorithm

To be consistent with the analysis in the adjoint and design equations in Section II.B, the optimization
algorithm should use the Lagrange multipliers. Sequential Least Squares Programming (SLSQP)30 with
Broyden-Fletcher-Goldfarb-Shanno (BFGS)31 type Hessian approximation is used in this work. Both the
equality and inequality constraints are handled by the optimizer. The weak Wolfe condition is used to
terminate the line search, ensuring a sufficient decrease at each optimization step. The Lagrange multipliers
associated with the trim constraints are extracted after each optimization step as a surrogate for the fine-
space multipliers. The gradients of the objective function are calculated by the adjoint method, per Eqn. 12,
and the objective is evaluated with the numerical solution of Eqn. 13 based on the discretization given in
Section III.

V.B. Objective and Constraints

For demonstration, two-dimensional airfoil shape optimization problems are considered in this work. In
particular, the problem considered here is to search for an optimal design (including the airfoil shape and
the angle of attack) to minimize the drag subject to a fixed lift coefficient and a minimum airfoil area. The
objective is the drag coefficient of the airfoil, and the corresponding constraints are

Re(U,x) = c`(U,x)− c∗` = 0 (22)

Rie(U,x) = A(x)−Amin ≥ 0 (23)

where A and Amin represent the current and minimum areas of the airfoil, and c` and c∗` denote the current
and target lift coefficients.

Since we allow the infeasible region of the trim constraints, the angle of attack α is also included in the
design variables. Sometimes the angle of attack can serve solely as a trim variable to enforce the fixed lift
coefficient, then the trim conditions are satisfied all the time, and the error estimation in Eqn. 20 is valid
for each optimization step.

V.C. Airfoil Parameterization

The airfoil shape is parameterized using the deformation method proposed by Hicks and Henne,32 taking a
baseline airfoil and creating a new airfoil shape by adding a linear combination of “bump” functions to its
upper and lower surfaces,

z = zbase +

n∑
i=0

aiφi(x) (24)

where the scalar x denotes in this case the position along the airfoil chord rather than the design parameter
vector, and z is the vertical coordinate of the upper or lower airfoil surface. The summation term in Eqn. 24
is a linear combination of the bump basis function φi(x) with different coefficients ai, which constitute the
design parameters for the optimization problem along with the angle of attack: x = [α, a1 a2 ... an]T . One
widely used basis set is the sine functions:33

φi(x) = sinti(πxmi)

mi = ln(0.5)/ ln(xMi)
(25)

where xMi
is the preselected location of the maxima for each basis function and ti controls the width of the

bump function. We adopt the optimized xMi
values suggested by Wu et al.34 for fixed ti = 4,

xMi
=

1

2

[
1− cos

(
iπ

n+ 1

)]
, i = 1, ..., n (26)

V.D. Mesh Movement

At each iteration in the optimization, the objective function needs to be re-evaluated, which requires a flow
solution on the updated geometry, and hence a new mesh must be obtained every time. Regeneration of a
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mesh, especially for a complex geometry or with high resolution, could be time-consuming and non-trivial.
Thus, an efficient way to update the computational mesh is needed, and in this work, we use radial basis
function (RBF) interpolation to deform the mesh.

A radial basis function is a real-valued function that depends only on the distance from the origin, or
some specified point ~c, such that φ(~x) = φ(‖~x‖) or φ(~x,~c) = φ(‖~x − ~c‖). Assume that we are given the

displacements d(x) = [~d1, ~d2, ..., ~dN ]T of the airfoil boundary nodes x = [~x1, ~x2, ..., ~xN ]T , which are called
“centers” in RBF interpolation. Then we can use the sum of the RBFs and a polynomial ~p(~x) to interpolate
the original displacement function,

~d(~x) ≈ d̃(~x) =

Nb∑
i=1

~riφ(‖~x− ~xi‖) + ~p(~x) (27)

where ~ri is the coefficient for the ith RBF, and Nb is the number of boundary nodes. With the interpolation,
we can construct the mesh movement just with the information of the boundary nodes. The requirement
for solving ~ri is a linear system whose size is O(Nb), which is small compared to the number of nodes in the
entire mesh. Moreover, the connectivity of the mesh is not required for the interpolation. More details can
be found in the previous work of Jakobsson and Amoignon35 and Boer et al.36

V.E. Mesh Adaptation in a Multi-Fidelity Setting

The output error estimated with Eqn. 20 is localized to each element using Eqn. 21: the contribution of
each element to the total error is taken as the error indicator for mesh adaptation. Instead of optimizing on
a mesh with fixed resolution, which would always require the highest fidelity for accurate calculations, the
mesh is progressively refined as the optimization proceeds, resulting in a multi-fidelity optimization. Rather
than performing optimization and mesh adaptation sequentially, one after another, an interactive framework
is introduced. The objective function is first evaluated on a relatively coarse mesh. Then the optimization
on that mesh is driven by the mesh adaptation tolerance (maximum allowed estimated error). Once the
objective change or the gradient norm is below the current resolution, the optimization terminates on the
current mesh and the fidelity increases through mesh adaptation. As the shape approaches the optimal
design, the mesh is adapted more and more frequently, since the shape changes become smaller and smaller.
A comparison of the traditional and proposed optimization strategies is shown in Fig. 1.

Highest fidelity 

Optimize at highest 
fidelity 

Yes

Mesh 
adaptation

No

Yes

No

Optimize at current 
fidelity 

Yes

Mesh 
adaptation

No

No

Yes

Yes

Result from a lower 
fidelity

No

Optimize at current 
fidelity 

No

Yes

Yes

Result from a lower 
fidelity

No

Highest fidelity 

Optimize at highest 
fidelity 

Yes

No

Figure 1. Flow-charts of different optimization strategies: fixed fidelity without error estimation (left); multi-fidelity
without error estimation (middle left); fixed fidelity with error estimation (middle right) and multi-fidelity with error
estimation (right).

Compared with the fixed-fidelity optimization, unnecessarily fine meshes at the early stages of shape
optimization are avoided in the proposed multi-fidelity framework. Moreover, the elements that introduce
most of the error may differ a lot for different shape configurations during the optimization. This approach

7 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

5,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

7-
31

02
 



reduces the chance of over-refining elements that are not relatively important for the next optimization step,
which is important if the adaptation mechanics do not allow for coarsening. Compared with the multi-
fidelity optimization without error estimation, the error tolerance serves as an optimization tolerance at each
fidelity, actively controlling the optimization at each step and avoiding the waste of low-fidelity convergence.
Finally, the new framework can effectively prevent over-optimizing on a coarse mesh, or over-refining on an
unintended shape.

VI. Results

As simple tests for the proposed optimization framework, we consider a laminar flow case, an inviscid
transonic case, and a low-speed turbulent case for a starting NACA 0012 airfoil geometry, seeking an optimal
shape and incidence angle to minimize the drag coefficient subject to the fixed lift trim condition and the
minimum volume constraint. The airfoil is parametrized with 10 Hicks-Henne basis functions, and cubic
curved mesh elements are used to represent the boundary.

VI.A. Laminar, Subsonic Airfoil

A subsonic laminar flow case is first studied. The initial angle of attack is zero with a free-stream Mach num-
ber M∞ = 0.5 and Reynolds number Re = 5000. To investigate the effectiveness of the proposed framework,
two different methods are also carried out in the optimization problem: fixed (highest) fidelity optimization
without error estimation, and multi-fidelity optimization with error estimation and mesh adaptation only on
the objective (cd).

All of the optimization runs start from the same initial mesh consisting of 533 triangular elements. For
the fixed-fidelity optimization, the mesh is first adapted to meet the objective tolerance, and then no more
mesh adaptation occurs during the optimization. In contrast, in the other two methods, the mesh is adapted
during the optimization. The initial symmetric airfoil should produce zero lift at zero incidence, and thus
the initial condition is further from feasible if a higher target lift is specified, which means higher error of
the outputs may appear during the optimization. Therefore, a very low lift constraint (nearly feasible) and
a relatively high target lift (infeasible) are both tested for this case.

VI.A.1. c∗l = 0.02

The target lift is set to be c∗l = 0.02 for this case, and the optimization tolerance is 5 × 10−5 in the drag
coefficient. We should expect the final meshes to be comparable in size for all of the methods because
of the same ultimate tolerance for the optimization. The meshes during the optimization, however, may
be quite different. The fixed fidelity mesh and the meshes at the same intermediate optimization fidelity
for the multi-fidelity methods are shown in Figure 2. These meshes show that multi-fidelity optimization
significantly reduces the mesh size and computational resources during the early optimization iterations. The
drag adjoints and lift adjoints are also shown with the meshes for two multi-fidelity optimizations. Though
the shape is not the same, the flow features are similar. Most of the mesh adaptation happens at the leading
edge since the drag adjoints are the largest (and least resolved) near the airfoil nose, while the proposed
framework, Figure 2(d), adapts more on the trailing edge, which is also important for accurate lift prediction.

The objective convergence history and mesh size evolution are shown in Figure 3. From the convergence
plot, we see that the discretization error of the objective increases as the shape changes for the fixed-fidelity
optimization without mesh adaptation. The objective error may be above the optimization tolerance during
the optimization even though we start with a fairly fine mesh, while discretization error is always controlled to
be below the optimization tolerance via mesh adaptation in the other two methods. Furthermore, the fixed-
fidelity optimization requires the most iterations on the highest fidelity (the number of objective evaluations
would be even more because of the line search between each major iteration). The proposed method gives
us the fewest iterations on the finest mesh since both the objective and the constraints are more accurate at
the lower fidelity compared to the optimization that only adapts on the objective.

The final designs obtained by all of these three methods are shown in Figure 4. The final designs are
almost the same, as the target lift is not far away from the original value. The objective error of fixed fidelity
optimization is only slightly higher than the tolerance, and hence we can still achieve an acceptable optimal
design.
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(a) Initial mesh (b) Fixed fidelity

(c) Adapt only on drag (Drag adjoints, 894 elements) (d) Adapt on both (Lift adjoints, 869 elements)

Figure 2. Initial mesh and intermediate meshes for different optimization strategies (low lift, laminar)
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(b) Mesh Size Evolution

Figure 3. Convergence history and mesh size evolution for different methods (low lift, laminar)

VI.A.2. c∗l = 0.1

For this case we specify a higher lift coefficient, c∗l = 0.1, which is further from the original design. Again, the
meshes of different methods during the optimizations are shown in Figure 5. This time the two adaptation
strategies differ more: although Figure 5(c) has more global elements, it does not adapt much on the upper
surface near the trailing edge since it’s not important for the drag calculation. This area does get adapted
in the proposed method, as shown in Figure 5(d).

The objective convergence and mesh evolution are given in Figure 6. The fixed-fidelity optimization
without mesh adaptation exhibits a higher error this time, and it converges to a different design compared to
the results of the other two methods with error control. Therefore, if the original shape is far from optimal
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(a) Initial NACA 0012 airfoil (α = 0◦) (b) Optimized airfoil (fixed-fidelity, α = 0.27◦)

(c) Optimized airfoil (adapt on drag, α = 0.30◦) (d) Optimized airfoil (adapt on both, α = 0.24◦)
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(e) Initial and final airfoil shapes

Figure 4. Local Mach number (0 ∼ 0.6) for the initial and final designs for different methods (low lift, laminar)
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(a) Initial mesh (b) Fixed fidelity

(c) Adapt only on drag (Drag adjoints, 1439 elements) (d) Adapt on both (Lift adjoints, 886 elements)

Figure 5. Initial mesh and intermediate meshes for different optimization strategies (high lift, laminar)

in the optimization, it’s necessary to do the error estimation and mesh adaptation even though the starting
mesh is fairly fine. Again, the proposed framework needs the fewest iterations on the highest fidelity, though
the mesh is largest since a higher accuracy on the constraints is also achieved. If we require even higher
fidelity, we would expect the proposed framework to converge even faster on the finest mesh, where most of
the computational resources are spent.
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(b) Mesh Size Evolution

Figure 6. Convergence history and mesh size evolution for different methods (high lift, laminar)

The final designs achieved by all these three methods are given in Figure 7. We can clearly see in
Figure 7(e) that the final shape provided by the fixed-fidelity optimization without mesh adaptation deviates
from the results of the optimization with error controlled by mesh adaptation.
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(a) Initial NACA 0012 airfoil (α = 0◦) (b) Optimized airfoil (fixed fidelity, α = 2.53◦)

(c) Optimized airfoil (adapt on drag, α = 2.46◦) (d) Optimized airfoil (adapt on both, α = 2.40◦)
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(e) Initial and final airfoil shapes

Figure 7. Local Mach Number (0 ∼ 0.6) for the initial and final designs for different methods (high lift, laminar)

VI.B. Inviscid, Transonic Airfoil

We apply the new method to an optimization problem based on an inviscid transonic flow at M∞ = 0.8
around the NACA 0012 airfoil. The initial angle of attack is α = 1.25◦, and the goal is to minimize the drag
with a target lift of c∗l = 0.4. Although the transonic flow around the original NACA 0012 airfoil features
a strong shock on the upper surface near the trailing edge, we expect that the shape would be modified
during the optimization such that the shock strength is weakened or the shock completely removed. The
flow features and the outputs of interest are highly related to the location and strength of the shock, which
may change a lot during the optimization. Thus, error estimation and mesh adaptation become more crucial
in this case. We start with the same initial mesh used in the laminar case. The optimization history is shown
in Figure 8.

As shown in the convergence plot, most of the drag reduction happens at the lowest fidelity, where the
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(b) Mesh Size Evolution

Figure 8. Convergence history and mesh size evolution for the proposed method (inviscid, transonic)

flow solve is very cheap, though quite inaccurate. Although the starting point of the high-fidelity is close to
the optimal, we still need more iterations compared to the laminar case mainly because the outputs (both
the objective and constraints) are very sensitive to the shape change in the transonic regime. The ultimate
optimization tolerance is 1×10−4, and we obtain a final drag coefficient of cd,opt/2 = 6.170×10−4 compared
with the initial value, cd,0/2 = 1.167×10−2 (this number is obtained by a refined mesh on the original NACA
0012 airfoil with the same tolerance as the optimization, not the first point in the convergence plot). The
total drag is therefore reduced by 95%. The modified and original shapes are compared in Figure 9. The
final design approaches a flattened upper surface and a higher aft camber, resembling a super-critical airfoil.
The initial strong shock is significantly weakened on the optimized airfoil. We can still see a discontinuity
in the flow field, though the drag could be further reduced if more basis functions were used to parametrize
the airfoil shape and even higher fidelity flow calculations were performed.

(a) NACA 0012 airfoil (α = 1.25◦) (b) Final design (α = 1.33◦)
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(c) Initial and final airfoil shapes

Figure 9. Local Mach Number (0 ∼ 1.6) for the initial and final designs (inviscid, transonic)

VI.C. Turbulent, Low-speed Airfoil

The final problem considered in this paper is a turbulent, low-speed flow around the NACA 0012 airfoil. The
initial angle of attack is 6◦ with a freestream Mach number of M∞ = 0.15 and Reynolds number Re = 106,
the target lift is set to be c∗l = 0.6. The starting mesh for the turbulent case consists of 1448 elements, which
is finer than the initial mesh used for the laminar and transonic runs.

The mesh size and objective are collected at each optimization step as shown in Figure 10. For the
turbulent case, most of the adaptation focuses on resolving the boundary layer. Therefore, many adaptation
iterations may happen at low fidelity. Once the boundary layer is properly resolved, the error drops down
very quickly, and less adaptation is required. In this case, we can see that a lot of adaptation happens at
low fidelity, and we can also see some coarsening on the final fidelity. Since the flow is always attached
and less error is produced during the shape changes, we can redistribute the mesh or even coarsen it while
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still meeting the tolerance. However, for higher-speed or higher-incidence cases, the boundary layer changes
more as the shape changes, more complicated flow features like shocks or separation may happen during the
optimization, and more mesh adaptation would be required at higher fidelity.
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Figure 10. Convergence history and mesh size evolution for the proposed method (low-speed, turbulent)

The meshes used in the optimization and the optimized design are summarized in Figure 11. The
optimization flattens the lower surface while curving the upper surface, which differs from the transonic
case. From the contour plots, we see that the modified design has a larger and smoother acceleration region
on the upper surface, which is favorable for higher lift generation. Thus, a lower angle of attack is achieved
with the same lift constraints. The flow near the tailing edge also exhibits less separation in the final design,
and, therefore, the drag drops for the optimized shape.

(a) Initial mesh (b) Mesh at the first step (c) Mesh for the final shape

(d) Initial airfoil (α = 6◦) (e) Final design (α = 4.7◦)
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(f) Initial and final airfoil shapes

Figure 11. Meshes and Local Mach Number (0 ∼ 0.3) for the initial and final designs (low-speed, turbulent)

VII. Conclusion

Most aerodynamic shape optimization methods work with the discretized governing flow equations. Thus,
numerical error should be carefully controlled to ensure convergence to the “true” optimal design at a
prescribed fidelity. Without properly controlling this error, the optimizer may arrive at a sub-optimal design
with inaccurate information provided by the flow and the gradient solver as shown in the test cases.

In this work, we presented a framework that integrates output-based error estimation and mesh adap-
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tation with a traditional gradient-based algorithm for airfoil shape optimization with trim constraints. The
multi-fidelity optimization approach consists of progressive refinement of the computational mesh and is ca-
pable of preventing over-optimizing and over-refining. The mesh adaptation (fidelity increase) is determined
by the absolute change or the projected gradient norm of the objective function. A coupled adjoint is also
introduced, offering a way to include the trimming error into the objective error estimation. Compared
to fixed-fidelity optimization without mesh adaptation and to multi-fidelity optimization that only adapts
on the objective, the proposed method provides improved efficiency and better convergence at the highest
fidelity, as demonstrated by the test cases. This benefit becomes more significant when higher fidelity is
required.

With more judicious considerations of the objective functions and constraints, and additional parameters,
the new method can provide realistic configurations in practical design scenarios. The fidelity increase is
presently driven by an adaptation tolerance that decreases by a fixed factor each time or that is specified
by the user. However, for more practical problems, without a priori knowledge of the objective convergence,
an improved and automated fidelity increase strategy should be developed to fulfill the potential of the
present optimization framework to increase the accuracy and efficiency for aerodynamic shape optimization
problems.
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