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Novel Discontinuous Galerkin formulations for parabolic partial differential equations,
such as the unsteady diffusion equation, are introduced. Fourier analysis of the various
schemes is presented to determine order of accuracy and spectral radius. Additionally,
computational examples for the 1D scalar diffusion equation are presented. The method’s
performance for 2D problems is also demonstrated. Some members of the family exhibit
favorable performance in comparison to commonly used methods with regard to accuracy
and computational efficiency. Additionally, the method can be adapted to fit within the
Flux Reconstruction description of Huynh for diffusion problems; we explore the corre-
sponding 1D formulation.

I. Introduction

The Discontinuous Galerkin (DG) Finite Element method and its application to flow physics problems
have been the focus of much research in recent years, due to the method’s excellent performance in

the discretization of hyperbolic partial differential equations (PDEs).1 The method exbihits high parallel
efficiency and can naturally be extended to arbitrarily high orders of accuracy. Several variants are available
for maintaining numerical stability even in the presence of physical discontinuities, such as the shock waves
which commonly arise in solutions to the Euler equations for inviscid compressible flow. In the case of smooth
solutions, there is no need for artificial stabilization techniques. However, the method in its raw form is poorly
suited to parabolic/elliptic PDEs, and this deficiency has been a barrier to its widespread application for
general advection-diffusion systems, such as the compressible Navier-Stokes equations. Many modifications
to the conventional DG method have been proposed to remedy this deficiency, but these methods typically
exhibit certain undesirable features, such as severe stability constraints, sub-optimal convergence in the
global error norm, and ambiguously bounded stabilization parameters.

A unique scheme is the Recovery DG method of Van Leer & Nomura.2 Compared to other DG approaches
for handling parabolic/elliptic PDEs, Recovery DG is characterized by high order of accuracy, small spectral
radius, and no ambiguously bounded stabilization parameters. The general concept of recovery has assisted
in the development of similar schemes, for example the reconstruction-based DG method of Luo et al,3 the
enhanced stability recovery scheme of Ferrero et al.,4 and the modified recovery scheme (MRDG-1x) of French
et al.5 Additionally, Recovery DG has demonstrated competence when applied to the viscous fluxes of the
compressible Navier-Stokes equations in Direct Numerical Simulation of compressible turbulence by Johnsen
et al.6,7 For a given interface in the computational domain, the recovery process builds a smooth polynomial
function (the “recovered” solution) across the union of the neighboring elements, maximizing the use of the
solution data associated with each element and providing an unambiguous and accurate approximation for
both the solution and its gradient along the interface. The effect of the recovery procedure is demonstrated
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Figure 1: The Recovery process in 2D for a p2 discretization.

in Figure 1 for a p2 discretization, taken from our presentation at AIAA Aviation 2016.8 The recovered
solution corresponding to the interface IAB between two neighboring elements ΩA and ΩB , denoted fAB ,
recovers a very good approximation for a smooth exact solution by applying the recovery procedure to the
discontinuous solution representation of UhA and UhB over ΩA ∪ ΩB .

The Recovery DG method, extended to multidimensional problems by Lo & Van Leer,9 shows great
promise for purely parabolic PDEs in multiple dimensions, including initial boundary value problems (IBVPs)
with time-dependent Dirichlet conditions.8 However, for combined advection-diffusion problems, where the
Recovery DG scheme is employed to handle the diffusive fluxes, it is difficult to design a complete advection-
diffusion DG scheme that captures the advective fluxes with the same accuracy that Recovery DG achieves
for the diffusive terms. While the accuracy of the combined method is constrained by the standard DG
method’s order of accuracy in capturing the advective fluxes, the cost and complication of the method is
dominated by the Recovery DG scheme for the diffusive fluxes. This pair of performance bottlenecks is
undesirable.

With these issues in mind, the aim of our recent studies has been to design new DG schemes for diffusion
problems that benefit from the high-order reconstruction provided by the recovery concept while avoiding
the complications of Lo & Van Leer’s9 Recovery DG formulation. Our umbrella term for this new family
of schemes is “Interface Gradient Recovery,” abbreviated IGR. Most of the schemes in this family maintain
smaller spectral radii than presently popular DG schemes for diffusion. Simplicity is maintained by starting
from the “mixed form” approach for parabolic PDEs, which is familiar to many DG practitioners. Within
the mixed form, the IGR family is distinguished by the use of recovery for handling interface terms.

The focus of this work is the analysis and performance of the scheme for time-dependent diffusion prob-
lems. In section II, the scheme will be described for the multidimensional and 1D cases. Then, we show
results from Fourier analysis, providing comparisons in terms of spectral radius and order of accuracy. Next,
computational demonstrations are shown, focusing on the convergence rates in multiple error norms. Then,
we detour from the DG framework to show how the IGR family can be applied to the Flux Reconstruction
(FR) method before making concluding remarks.

II. The Interface Gradient Recovery Family

Before introducing the members of the Interface Gradient Recovery (IGR) family, we review the mixed
form approach for parabolic/elliptic PDEs, focusing on the simple 1D case. Let the physical domain Ω = {x ∈
[0, L]} be partitioned into M non-overlapping finite elements, such that Ω = ∪M−1

e=0 Ωe, where Ωe = [xe, xe+1],
x0 = 0 , xM = L, and xj−1 < xj ∀j. To eliminate confusion, the exponential function of an input y in this
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work will always be referred to as exp(y), and the lowercase e is reserved to refer to element addresses.
The global DG solution Uh is represented as a polynomial of degree p over each element Ωe with no

continuity restriction: Uh(x) =
∑p
k=0 V

k
e (x) Ûke for all x in element Ωe. In the expansion, Ûke is the kth

DG degree of freedom (DOF) in element Ωe. The shape function V ke is the kth basis function with support
on Ωe; each element supports its own set of p+ 1 shape functions, and each shape function is nonzero only
on its supporting element. In this work, it is assumed that each element uses the same polynomial degree
p. For each interface location xj , the DG solution Uh is in general multi-valued, as both of the neighboring
elements that share the interface contribute some value for Uh (often called the trace) along the interface.

It is convenient to introduce a reference element Ωref = {ξ ∈ [0, 1]}. Let φ = {φ0(ξ), φ1(ξ), ...φp(ξ)} be
a degree p polynomial basis defined over the unit domain, and for a given element, take ξ(x) = 1

∆xe
(x−xe),

where ∆xe = xe+1 − xe. For each element, the shape functions are V ke (x) = φk(ξ(x)). Now, for a given
element Ωe, the DG solution can be rewritten Uhe (x) =

∑p
k=0 φ

k(ξ) Ûke . Instead of the polynomial degree p,
we can also desribe the solution by the DOF count per element, denoted K; in the 1D case, K = p+1. When
a shape function φk appears in an integral over an element Ωe or along its boundary ∂Ωe, it is assumed to
be supported over the element.

Given an unsteady PDE system with a diffusive flux function G,

∂

∂t
U = ∇ · G(U,∇U), (1)

to be satisfied in the weak sense (2a) over each element Ωe, the DG weak form for both the general case (2b)
and the simple 1D case (2c) is presented below; we require it to be satisfied for all Ωe in the domain Ω.

General :

∫
Ωe

φk
∂

∂t
Uhdx =

∫
Ωe

φk∇ · G(Uh,∇Uh)dx ∀k ∈ {0, 1, ...,K − 1} (2a)

General :

∫
Ωe

φk
∂

∂t
Uhdx =

∫
∂Ωe

φk(G(Ũ , σ̃) · n−)ds

−
∫

Ωe

(∇φk) · (G(Uh, σ))dx ∀k ∈ {0, 1, ...,K − 1}
(2b)

1D :

∫
Ωe

φk
∂

∂t
Uhdx = [φk G(Ũ , σ̃)]RL −

∫
Ωe

(∇φk) · (G(Uh, σ))dx ∀k ∈ {0, 1, ..., p} (2c)

The term n− is the outward normal along the boundary of an element, and the integration coordinate s
traverses the perimeter of the element. In the 1D case, the surface integral around the element simplifies to
the difference between a right-edge term and a left-edge term for each basis function within the element. All
integrals are evaluated using Gauss-Legendre quadrature; this task requires that the flux at each quadrature
point be populated using appropriately accurate approximations for U and ∇U .

In this work, the mixed form approach (well described in Arnold et al.10) is taken, where the auxiliary
variable σ is introduced to track the gradient of the DG solution Uh. Specifically, for each element Ωe
in the domain Ω, ∇Uhe ≈ σe(x) =

∑p
k=0 φ

k(ξ) σ̂ke . The auxiliary variable is an approximation for the
gradient, which has one component for each spatial dimension, so while φ is a scalar, each coefficient σ̂ke has
one component per spatial dimension. Over element interiors, the auxiliary variable is used to define the
gradient for the diffusive flux function G(U,∇U); it is a finite-dimensional projection of ∇Uh, constrained to
be indistinguishable from the gradient of the global DG solution Uh in the weak sense (3a). The enforcement
of this condition (3b) takes advantage of the same integration-by-parts step used to form the usual DG weak
form (2b). As with the description of the DG weak form, our description of the weak form for the auxiliary
variable includes the general form, applicable to multidimensional problems (3b), and the simple 1D case (3c):
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General :

∫
Ωe

φk σedx =

∫
Ωe

φk ∇Uhdx ∀k ∈ {0, 1, ...,K − 1} (3a)

General :

∫
Ωe

φk σedx =

∫
∂Ωe

φk(Ũ · n−)ds

−
∫

Ωe

Uhe ∇φkdx ∀k ∈ {0, 1, ...,K − 1}
(3b)

1D :

∫
Ωe

φk σedx = [φk Ũ ]RL −
∫

Ωe

Uhe ∇φkdx ∀k ∈ {0, 1, ..., p} (3c)

The DG method for the diffusive conservation law is completely described once the interface scalar flux Ũ
and interface gradient σ̃ are defined. In this work, the interface scalar flux and interface gradient will also be
referred to as the “common value” and “common gradient” of an interface, respectively. For a list of common
value and common gradient choices corresponding to various DG schemes for diffusion, see Arnold et al.10

The auxiliary variable in each element is constrained partially by the DG solution in the local element (3c);
it is also influenced by the contributions of the common values Ũ on the interfaces of Ωe, allowing for some
exchange of information between elements.

A few special operators are used to define the interface scalar flux and gradient; these operators include
the Recovery operator R, the Generalized Binary Recovery operator B, and the Localized Gradient Recovery
operator Lχ. All operators recover a unique approximation for either Ũ or σ̃ on an interface using information
from the two neighboring elements. Table 1 lists the members of the IGR family and distinguishes them
according to the strategies employed for calculating Ũ and σ̃. Along an interface of an element Ωe, y

+

indicates that the interface value for y is set from the neighbor element, while y− indicates that the interface
value for y is set from Ωe. For a given interface, yA and yB denote the interface traces of the discontinuous
polynomial approximations for the quantity y from the left and right elements, respectively. Following
previous convention in DG methods, {{y}} = 1

2 (yA + yB) indicates the average of the traces from the
neighboring elements. The Local DG (LDG) method of Cockburn & Shu11 (with one-sided fluxes, denoted
LDG-OS) is also shown for comparison. The first seven IGR schemes, labelled GR-I through GR-VII, have
non-compact stencils; only the special Compact Gradient Recovery (CGR-I) scheme features a compact
stencil.

It remains to define the Recovery (R), Generalized Binary Recovery (B), and Localized Gradient Recovery
(Lχ) operators. The Recovery operator is actually a special case of the Generalized Binary Recovery operator,
so it suffices here to describe B and Lχ. Table 2 summarizes the operators. The Localized Gradient Recovery
operator Lχ is unique in that it takes the DOF Û of the two neighboring elements as an input and returns
the interface gradient σ̃ instead of returning the interface’s common value Ũ .

Our definition of the Generalized Binary Recovery (GBR) operator is inspired by the interface-centered
reconstruction schemes of Khieu & Johnsen,12 specifically the icbp[0] schemes. Consider two elements ΩA

Table 1: Configurations of DG schemes for diffusion.

Method Ũ σ̃

GR-I {{U}} R(σA, σB)

GR-II R(UA, UB) R(σA, σB)

GR-III R(UA, UB) {{σ}}
GR-IV UA R(σA, σB)

GR-V U+ R(σA, σB)

GR-VI B1K(UA, UB) BK1 (σA, σB)

GR-VII UA B1K(σA, σB)

CGR-I R(UA, UB) Lχ(UA, UB)

LDG-OS UA σB
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and ΩB sharing an interface. Additionally, for the special 1D case, let ΩA be the left element and ΩB the
right element. Define a reference coordinate r for the interface, such that r = 0 at the interface; the recovery
basis Ψ is defined over ΩA ∪ ΩB using this interface coordinate. Let f denote the recovered solution across
the entire union of the two elements; our specific interest is f(0), the value at the interface. Assuming now
that the two elements are of uniform width ∆x, it is convenient to scale r such that r = −1 at the left edge
of ΩA and r = 1 at the right edge of ΩB ; excellent matrix conditioning is achieved by taking the shifted
(unit domain) Legendre polynomials for the DG basis φ and the bi-unit domain Legendre polynomials for
the Recovery basis Ψ. Since the GBR operation is the same for either Ũ or σ̃, the only difference being the
input information, the procedure is described only in the context of recovering Ũ :

f(r) =

CA+CB−1∑
n=0

ψn(r) f̂n (4a)∫
ΩA

ψk fdx =

∫
ΩA

ψk UhAdx ∀k ∈ {0, 1, ..., CA − 1} (4b)∫
ΩB

ψk fdx =

∫
ΩB

ψk UhBdx ∀k ∈ {0, 1, ..., CB − 1} (4c)

The recovered solution f is required to be weakly equivalent to UhA over ΩA with respect to CA test
functions and weakly equivalent to UhB over ΩB with respect to CB test functions. The recovery basis Ψ
for an interface must be a degree CA +CB − 1 polynomial basis. Our implementation in the DG framework
uses a hierarchical basis for Ψ, and the lowest possible modes (ψ = 1, ψ = r, ψ = r2, etc.) are taken for
the {0, 1, ..., C} testing functions over each element. It is possible to use instead a nodal basis for Ψ, and we
choose this configuration to implement recovery in the Flux Reconstruction13 (FR) framework. The recovery
constraints (4) are reorganized into matrix-vector form, such that for a given interface, the set of recovery
coefficients f̂ can be calculated from the DOF vectors ÛA and ÛB using a pre-computed (CA + CB)× 2K

matrix. Then, the coefficients f̂ are used to form f(0) =
∑CA+CB−1
n=0 ψn(0) f̂n, yielding a unique and

unambiguous approximation for Ũ on the interface.
The description of the GBR operator is now concluded. The Recovery operator, originally designed by

Van Leer & Nomura,2 is the special case of B where K constraints are taken over each of the two elements:
R(σA, σB) = BKK (σA, σB). Additionally, for the full Recovery operator, instead of using the recovery basis
ψ, it is better to use the DG basis functions φ of the two neighboring elements as the test functions in the
constraint equations (4).

The χ-dependent Localized Gradient Recovery operator, abbreviated LGR and denoted Lχ, has been
designed to maintain the advantage of a compact stencil. Other versions of IGR, because of how the recovery
operators are applied, use a non-compact stencil. The non-compact stencil arises from the calculation of σ̃
on each interface. Specifically, if σ̃ is calculated using σe and σe+1 from two neighboring elements, then σ̃
involves information from four different elements. The fix for this issue is clear: in order to calculate the
interface gradient σ̃ between two elements Ωe and Ωe+1, special gradient approximations must be formed in
each element using only information from Ωe and Ωe+1. Then, these approximations can be combined to
yield the interface gradient σ̃.

To achieve a compact stencil, let gRe (ξ) =
∑p
n=0 φ

n(ξ) ĝR,ne be a special gradient reconstruction in
element Ωe, known as the right-connected gradient. In forming this approximation, information from Ωe+1

Table 2: Interface operators.

Operator Input Output Constraints, ΩA Constraints, ΩB

R(UA, UB) ÛA, ÛB Ũ K K

BCB
CA

(UA, UB) ÛA, ÛB Ũ CA CB

Lχ(UA, UB) ÛA, ÛB σ̃ K K
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is imported through the recovery process on the right edge of Ωe, located at xe+1, but the trace from Ωe
is used instead of Ũ on the left edge (5a). A similar operation is performed for Ωe+1, except that the left-
connected gradient gLe+1 uses recovery for its left edge and the interior trace for the right edge. The factor
χ is necessary for robustness in 2D applications. So far, it appears that for 2D cases, setting χ = 1 is best
for Cartesian grids with purely Laplacian diffusion while χ = 2 is best for general cases.

∫
Ωe

φk gRe dx = χ [φk(R(Uhe , U
h
e+1)− Uhe (1))]xe+1

+∫
∂Ωe

(φk Uhe ) · n−ds−
∫

Ωe

Uhe ∇φkdx ∀k ∈ {0, 1, ..., p}
(5a)

∫
Ωe+1

φk gLe+1dx = − χ [φk(R(Uhe , U
h
e+1)− Uhe+1(0))]xe+1+∫

∂Ωe+1

(φk Uhe+1) · n−ds−
∫

Ωe+1

Uhe+1 ∇φkdx ∀k ∈ {0, 1, ..., p}
(5b)

The 2K constraints of the interface’s surrounding semi-connected gradients (5) must be organized in
matrix-vector form to calculate the coefficient vectors ĝRe and ĝLe+1 given Ûe and Ûe+1. Then, the Recovery

operator is applied to yield σ̃: specifically, σ̃ = R(gRA , g
L
B). Both gRA and gLB are influenced only by ÛA and

ÛB , so the interface gradient σ̃ can be calculated directly from ÛA and ÛB . Specifically, σ̃ = Lχ(UhA, U
h
B) =

R(gRA , g
L
B). As indicated in Table 1, the CGR-I method applies the LGR operator to calculate interface

gradients σ̃, facilitating a compact stencil.

III. Fourier Analysis

For Fourier analysis of the IGR family, we maintain the assumption of a p-uniform grid with constant
mesh spacing ∆x. The governing conservation law is the heat equation with diffusivity of unity:

∂U

∂t
=
∂2U

∂x2
(6)

Periodic boundary conditions (BC) are also assumed. The initial condition consists of a sine wave of
wavenumber ω: U(x, 0) = U0(x) = sin(ωx). With periodic BC, the exact solution corresponding to this
initial condition is U(x, t) = exp(−ω2t)U0(x). We define a new parameter β = ω∆x; this value represents
the wavenumber per element. High β corresponds to large solution variation within each element, while small
β corresponds to small solution variation. This parameter will be useful in simplifying the update scheme.
Based on the initial condition, the DG solution is assumed to vary (7a) according to the shift operator,
exp(iωx), and the DG update scheme can be rewritten (7b) in terms of a K ×K amplification matrix A,
which is itself a function of β:

Ûe+J = exp(iβJ) · Ûe (7a)

∂

∂t
Ûe =

1

∆x2
· A(β)Ûe (7b)

The procedure is explained in more detail by Huynh14 for the FR method, but the approach is easily
applicable to the DG method as well.

In the case of the heat equation, A should have an eigenvalue (one among its spectrum of K eigenvalues)
that approximates λex = −β2 as β approaches zero. This numerical eigenvalue is labeled the consistent
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eigenvalue, λc. The accuracy of the numerical scheme is described by the order of accuracy with which λc

approximates λex. The difference |λex − λc| converges to zero as β approaches zero, and this convergence
rate, calculated using Huynh’s approach,14 is labelled as the scheme’s order of accuracy.

The eigenvalues of A govern the maximum allowable timestep when explicit time integration is employed.
The spectral radius, Rs = max|Re(λ)|, is inversely proportional to the maximum allowable timestep. In

particular, for the 1D case using the forward Euler method, the stability constraint is ∆t ≤ 2(∆x)2

Rs
. Figure 2

shows two example eigenvalue plots; these particular cases are the GR-II and CGR-I(χ = 1) schemes with
p = 2. The real components of each of the K = 3 eigenvalues are plotted versus β. Each eigenvalue is a
function of β, but our approach is unable to determine the analytical forms of the eigenvalues. Consequently,
on both plots, all three eigenvalues are plotted in the same color for each discrete value of β. The maximum
magnitude of any of the eigenvalues of A is approximately Rs = 26.5 for both methods. Fourier analysis has
been performed for all members of the IGR family, and the spectral radii and orders of accuracy are shown
in Tables 3 and 4 for p ∈ {1, 2, 3, 4, 5}. The properties of the LDG11 and BR215 schemes are also shown for
comparison. Our implementation of BR2 follows the description of Arnold et al.,10 taking the stabilization
parameter χ to be 2.

Table 3: Order of accuracy from Fourier analysis. X indicates an unstable scheme.

Scheme p = 1 p = 2 p = 3 p = 4 p = 5

GR-I 2 6 6 10 10

GR-II 4 8 10 14 16

GR-III 2 6 6 10 10

GR-IV 3 5 7 9 11

GR-V 0 2 2 4 X

GR-VI 4 6 8 10 12

GR-VII 3 5 7 9 11

LDG-OS 4 6 8 10 12

CGR-I(χ = 1) 4 4 8 8 12

CGR-I(χ = 2) 4 4 8 8 12

BR2(χ = 2) 2 4 6 8 10

Out of all the schemes analyzed, the p1 case of GR-V is the only inconsistent scheme; the GR-V approach
also produces an unstable scheme in the p5 case. The GR-IV and GR-VII methods show order 2p+1 accuracy;
for both schemes, the consistent eigenvalue has a nonzero imaginary component that converges to zero at
rate 2p + 1, so while the real component of λc is order 2p + 2 accurate, the imaginary component reduces
the schemes to order 2p+ 1 accuracy. The CGR-I scheme exhibits unusual behavior; the order of accuracy
is 2p for even p and 2p+ 2 for odd p, regardless of the value chosen for the parameter χ. The spectral radius
of this scheme increases with χ. This behavior is unsurprising, as it has also been mentioned for the BR2

Table 4: |Re(λ)|max, rounded up to the nearest integer. X indicates an unstable scheme.

Scheme p = 1 p = 2 p = 3 p = 4 p = 5

GR-I 13 60 171 381 739

GR-II 9 27 54 90 135

GR-III 7 60 171 381 739

GR-IV 7 60 171 381 739

GR-V 19 60 171 381 X

GR-VI 7 98 336 859 1832

GR-VII 24 114 377 940 1974

LDG-OS 36 149 439 1046 2143

CGR-I(χ = 1) 9 27 50 86 132

CGR-I(χ = 2) 24 77 180 347 585

BR2(χ = 2) 36 147 420 976 1965
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scheme in the work of Peraire & Persson.16

From the Fourier analysis, it appears that GR-II is the best scheme in terms of both spectral radius and
order of accuracy. However, the scheme is not robust on non-Cartesian elements in 2D, and we suspect that
the cause could be the scheme’s excessive dependence on non-neighbor elements when forming the update
equation for each element. The GR-IV, GR-V, GR-VI, and GR-VII schemes are attempts to lower the
scheme’s reliance on non-neighbor elements. For example, the GR-VI scheme makes use of biased recovery
on interfaces, using the relationships of CA and CB in the BGR operator to regulate the flow of information.
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Figure 2: Eigenvalues of the amplification matrix A for the a) GR-II and b) CGR-I(χ = 1) schemes in the
p = 2 case. The dotted gray line is the exact eigenvalue for heat equation, λex = −β2.

IV. Numerical Test: 1D Heat Equation

The family of IGR schemes and the popular methods analyzed in Table 3 are now compared by simulating
the time-dependent heat equation with unity diffusivity coefficient and periodic boudary conditions, as
described in the previous section. For this particular test, ω = 1 and Ω = [0, 2π]. A uniform grid is used in
all cases, such that ∆x = 2π

M , where M is the number of elements. Each method is applied to simulate the
system from t = 0 to t = 2 using the explicit 8th order Runge-Kutta scheme of Prince and Dormand.17 Two
error metrics are used for the investigation: the L2 error in cell averages, denoted ECA, and the global L2

error norm, denoted EGLO:

ECA =

√√√√ 1

M

M−1∑
e=0

(U
h

e − Ue)2 EGLO =

√√√√M−1∑
e=0

∫
Ωe

(Uhe − U)2dx (8)

The cell averages of the DG and exact solutions are denoted Uhe and Ue, respectively, in each element Ωe.
All error measurements are obtained by comparing the DG solution at the final time, Uh(x, 2), to the exact
solution at the final time, U(x, 2) = exp(−2) sin(x). Every scheme is run on a set of successively refined
meshes for p ∈ {1, 2, 3}, and the error’s order of convergence is measured in both norms.

Through the numerical testing process, it has become clear that some of the methods are sub-optimal
in the global error norm, meaning that the order of convergence in EGLO is less than p+ 1 for at least one
choice of p ∈ {1, 2, 3}. These schemes are GR-I, GR-III, and GR-V; in fact, the sub-optimal behavior of
the simpler GR-I and GR-III schemes was the inspiration for the design of the GR-II scheme. All of the
remaining schemes from Table 3 are optimal in the global error norm, meaning that order p+ 1 convergence
is achieved. No more reporting with respect to this error norm is necessary.
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The convergence behavior in ECA is now explored. Tables 5 lists the number of elements M , the cell-
average error ECA, and the order of convergence in ECA for the grid refinement study of the GR-II scheme;
the order of convergence is measured between each successive pair of meshes for each discretization order p.
From the tabular data, it is evident that GR-II converges at rates four, eight, and ten for p = 1, p = 2, and
p = 3, respectively. The convergence rates of all of the optimal schemes have been determined in the same
manner and are listed in Table 6. For many schemes (GR-II included) the convergence rates in ECA match
the orders of accuracy given by Fourier analysis; in other cases, the two values are mismatched. For example,
in the case of the GR-VII scheme, ECA converges with order 2p+ 1 for p ∈ {1, 2}, but order 2p+ 2 for p = 3;
alternatively, LDG-OS is order 2p+ 2 accurate from Fourier analysis, but sometimes only converges at rate
2p+ 1 in ECA.

Table 5: GR-II Performance, 1D heat equation.

p M ECA Order p M ECA Order p M ECA Order

1 10 4.58E − 05 − 2 10 3.05E − 09 − 3 3 6.46E − 08 −
1 20 2.87E − 06 3.99 2 20 1.16E − 11 8.04 3 4 3.38E − 09 10.26

1 30 5.68E − 07 4.00 2 30 4.50E − 13 8.01 3 6 5.92E − 11 9.97

1 40 1.80E − 07 4.00 2 40 5.00E − 14 7.64 3 8 3.35E − 12 9.98

1 50 7.37E − 08 4.00 2 50 1.00E − 14 7.21 3 10 3.60E − 13 10.00

Table 6: Convergence rates in ECA for 1D heat equation test.

Method p Order Method p Order Method p Order

GR-II 1 4 GR-II 2 8 GR-II 3 10

GR-IV 1 3 GR-IV 2 5 GR-IV 3 8

GR-VI 1 4 GR-VI 2 6 GR-VI 3 8

GR-VII 1 3 GR-VII 2 5 GR-VII 3 8

LDG-OS 1 3 LDG-OS 2 6 LDG-OS 3 7

CGR-I(χ = 1) 1 4 CGR-I(χ = 1) 2 4 CGR-I(χ = 1) 3 8

CGR-I(χ = 2) 1 4 CGR-I(χ = 2) 2 4 CGR-I(χ = 2) 3 8

BR2(χ = 2) 1 2 BR2(χ = 2) 2 4 BR2(χ = 2) 3 6

V. Extension to Two Dimensions

The method is now described in the context of 2D problems with periodic boundary conditions. Take the
reference element Ωref to be the unit square with reference coordinates (ξ, η) ∈ [0, 1]2; we restrict ourselves
to quadrilateral elements. Take the solution basis φ to be a tensor product basis of degree p in each direction,
with a total of K = (p+ 1)2 members.

In the 2D case, the integration of the volume integrals in the DG weak form (2b) and the auxiliary
weak form (3b) is performed with GQv = K quadrature points over the interior of each element, with the
quadrature nodes ξg = (ξg, ηg), g ∈ {1, 2, ..., GQv} being laid out in tensor product fashion on the unit
square. The quadrature nodes and weights are taken to be the usual Gauss-Legendre nodes and weights,
transformed from the bi-unit to the unit domain.

Along interfaces, all integrals in the DG weak form (2b), the auxiliary weak form (3b), and the weak
form for the semi-connected gradients of an interface (9) are evaluated using a GQs = p+1 point quadrature
rule, again using the 1D Gauss-Legendre nodes and weights. The same quadrature resolution is applied for
mass matrix formation, populating the DG residual, and all integrals arising from solving the mixed form
for the auxiliary variable and the semi-connected gradients. Note that in 2D, the auxiliary variable and
semi-connected gradients have two directional components per element in order to account for derivatives in
both the x and y directions.

The semi-connected gradient solve (9) in the multidimensional case merits additional explanation. In the
2D quadrilateral case, since each element has four edges, there are four semi-connected gradient approxima-
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tions associated with each element, but the scheme can be implemented in such a manner that the coefficients
for the semi-connected gradients are not explicitly stored. Setting IAB to be the interface connecting two
elements ΩA and ΩB , the semi-connected gradient of ΩA associated with IAB uses information from only
ΩA and ΩB :

∫
ΩA

φk gIAdx = χ

∫
IAB

φk(Ũ − UhA) · n−ds+∫
∂ΩA

φk(UhA · n−)ds−
∫

ΩA

UhA ∇φkdx ∀k ∈ {0, 1, ...,K − 1}
(9)

The semi-connected gradient in ΩB is formed similarly. As with the 1D case, σ̃IAB
= R(gIA, g

I
B). The

recovery basis ψ in 2D is constructed as a tensor product basis; let U = ΩA ∪ ΩB be the union of two
elements, over which a recovery coordinate r = (r, s) is defined. Following Lo’s implementation,18 the origin
of the recovery coordinate is the midpoint of the interface linking the two elements; r is the face-normal
coordinate and s is orthogonal to r. For straight-edged interfaces, s is normalized so that it reaches a
maximum magnitude of unity on the interface, and r is normalized to reach a maximum magnitude of unity
at any of the vertices of U . Then, ψ(r) is built as a tensor-product basis of order 2p − 1 in the r direction
and order p in the s direction. In practice, we use a Gram-Schmidt orthonormalized19 basis for φ on each
element and a tensor product basis of Legendre polynomials for ψ. The details of the biased recovery setup
in the 2D case can be found in Khieu et al.,20 where it is applied to form the accurate and stable icbp[0] DG
scheme for advection phenomena. When applying the GBR operator BCB

CA
for the GR-VI scheme, we restrict

ourselves to the following two configurations: either (CA, CB) = (K, p+ 1) or (CA, CB) = (p+ 1,K).
For advection-diffusion scenarios, the governing equation includes an advective flux F which depends

only on the field variables U and not the solution gradient:

∂

∂t
U = ∇ · G(U,∇U)−∇ · F(U) (10)

The advective flux is discretized with the standard DG procedure, well-described by Cockburn & Shu.1 The
only detail that must be filled in here is the approximate Riemann solver used to populate the flux along
element interfaces: we make use of the Rusanov flux.21

VI. Numerical Tests: 2D Navier-Stokes Equations

The performance of some of the IGR schemes (GR-II, GR-VI, and CGR-I) is now demonstrated with
three 2D test problems under periodic boundary conditions. As with the 1D case, the numerical solution
is initialized to the finite-dimensional projection of an exact initial condition U(x, 0). Then, the 5th order
explicit Runge-Kutta scheme of Cash & Karp22 is paired with the DG discretization to integrate the solution
forward in time. The timestep size ∆t is chosen to be as large as possible while maintaining numerical
stability, so it is inversely proportional to a given scheme’s spectral radius. For all three tests, only the p3
configurations of the IGR schemes are applied; the established LDG and BR2 methods are also implemented
for comparison. For the LDG method, we take the one-sided flux approach recommended by both Guo et
al.23 and Landmann et al.24 The CGR-I and BR2 methods are both applied with χ = 2. At the end of
each simulation, the error is measured in two norms. The first norm is the global L2 norm, denoted EG
and populated by integrating the square of the error over the entire domain. Second, the error in a target
functional is measured, following the approach of Hartmann & Houston.25 Let J(Y ) =

∫
Ω
κ(x) Y (x)dx,

where κ is some user-specified kernel function and Y is some function populated over Ω. The error in the
target functional, denoted EJ , is the magnitude of the difference between the target functionals of the exact
and DG solutions.

EG =

√√√√M−1∑
m=0

∫
Ωm

(Uhm − U)2dx, EJ =

∣∣∣∣M−1∑
m=0

∫
Ωm

κ Udx −
M−1∑
m=0

∫
Ωm

κ Uhmdx

∣∣∣∣ (11)
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The first two tests involve the non-advective Navier-Stokes (NANS) equations. This set (12a) is the
compressible Navier-Stokes (CNS) equations (12b) in 2D with advection terms (F) removed:

NANS :
∂U

∂t
=
∂Gx

∂x
+
∂Gy

∂y
(12a)

CNS :
∂U

∂t
=
∂(Gx −Fx)

∂x
+
∂(Gy −Fy)

∂y
(12b)

U =


ρ

ρu

ρv

Eg

 Eg =
P

γ − 1
+
ρ

2
(u2 + v2) (12c)

Fx =


ρu

ρu2 + P

ρuv

u(Eg + p)

 Gx =


0

2µ
3 (2∂u∂x −

∂v
∂y )

µ(∂u∂y + ∂v
∂x )

u( 2µ
3 (2∂u∂x −

∂v
∂y )) + v(µ(∂u∂y + ∂v

∂x )) +Kdµ( ∂
∂x (T ))

 (12d)

Fy =


ρv

ρuv

ρv2 + P

v(Eg + p)

 Gy =


0

µ(∂u∂y + ∂v
∂x )

2µ
3 (2∂v∂y −

∂u
∂x )

v( 2µ
3 (2∂v∂y −

∂u
∂x ) + u(µ(∂u∂y + ∂v

∂x )) +Kdµ( ∂∂y (T ))

 (12e)

where ρ, ρu, ρv, and Eg represent the fluid density, momentum in the x direction, momentum in the
y direction, and energy, respectively. The fluid pressure, viscosity, and thermal diffusivity coefficient are
denoted P , µ, and Kd, respectively. The thermal diffusivity coefficient is dependent on the Prandtl number:
Kd = γ

Pr·(γ−1) , with Pr = 4γ
9γ−5 . The temperature (T ) appearing in the energy flux is calculated using the

ideal gas law, p = ρRgT . In this work, we always take the gas constant Rg to be unity, therefore P = ρ T .
For the first test, the DG method is applied to solve the NANS equations on a square domain with

uniform square elements. The domain is Ω = [0, π]2, partitioned into M square elements, such that each
element is a square with side length h = π√

M
. We force an unsteady exact solution:

U(x, t) =


ρ

ρu

ρv

Eg

 = (exp(−t) + 1− exp(−1))


4 + sin(2x+ 2y)

1
5 sin(2x+ 2y)
1
5 sin(2x+ 2y)

(4 + sin(2x+ 2y))2

 (13)

using the method of manufactured solutions, which requires a time-dependent source term to be added to
the governing equations (12a). The fluid parameters are as follows: the ratio of specific heats is γ = 1.4 and
the viscosity is constant at µ = 1. Even with constant viscosity, the flux law remains nonlinear because the
velocity is present in the energy flux component. This test problem is a modified version of the steady-state
problem employed by Hartmann & Houston25 to test a version of the interior penalty DG method. Once
initialized, the DG solution is integrated forward in time to t = 1. We imitate Hartmann & Houston25 by
taking J = sin(πx) sin(πy) to measure the functional error.

The global and functional errors are measured in the energy field, Eg. The exact target functional to
13 digits is J(Eg) = 3.227287522641. The convergence behavior for test 1 is shown in Figure 3; the error is
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plotted against the characteristic mesh width, h̃ = nDOF−0.5, where nDOF is the total count of degrees of
freedom per field variable in a given simulation.
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=
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(b) Functional error

Figure 3: Results from test 1 (uniform Cartesian elements). Gray lines illustrate the convergence rates,
denoted by m, with respect to the characteristic mesh width h̃. (a): Convergence in the global error norm.
All schemes show 4th order convergence. (b): Convergence in the functional error norm. The BR2, LDG,
and IGR schemes show 6th, 7th, and 8th order convergence, respectively.

0 1 2 3
0

0.5

1

1.5

2

2.5

3

Figure 4: Sample M = 8× 8 mesh for test 2

In the global error norm, all five schemes converge at the optimal rate, specifically p + 1 = 4, giving
similar error on all meshes. The GR-II scheme is by far the fastest computation because its relatively small
spectral radius allows for larger timesteps than the other methods. Per timestep, the compact methods
(CGR-I and BR2) are faster, but the GR-II scheme’s spectral radius advantage (requiring fewer timesteps
to reach t = 1) makes it much faster overall. Specifically, on the finest mesh used for this test (M = 256
elements), CGR-I took 1.93 times as long as the GR-II calculation, and BR2(χ = 2) took 4.59 times as long.
Typically, BR2 is applied with a larger χ value than 2, and the scheme’s spectral radius increases16 with χ.
While the errors of all schemes are relatively close, the IGR methods appear marginally more accurate in
the global error norm than LDG and BR2 on the finer meshes.

In the functional error norm, different convergence rates are observed for the different schemes. The
three members of the IGR family all show 8th order convergence in this norm. LDG-OS is reduced to 7th
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Figure 5: Results from test 2 (nonuniform quadrilateral elements). Gray lines illustrate the convergence
rates, denoted by m, with respect to the characteristic mesh width h̃. (a): Convergence in the global error
norm. Most schemes show 4th order convergence. (b): Convergence in the functional error norm.

order convergence, and BR2 achieves only 6th order convergence. With the exception of the LDG-OS and
GR-II approaches, the orders of convergence in this norm match the order of accuracy results from the 1D
Fourier analysis. We remind the reader that the smaller spectral radius of the GR-II scheme allows for a
faster computation, and it is the best scheme in terms of both accuracy and computational time. Initially,
the authors suspected that the reduced convergence rate of the GR-II scheme (8th order here, as opposed
to the 10th order convergence observed in the 1D heat equation test) was due to difficulties in handling the
nonlinearity of the flux function. However, extensive testing in 2D with linear flux functions has shown that
when a shear stress term is present (as in the Navier-Stokes viscous flux), the scheme’s convergence is reduced
to order 2p + 2. Consequently, the scheme loses some of its appeal in multidimensional implementations,
but it still gives superior performance compared to other DG methods. Between the two compact schemes
shown (CGR-I and BR2), CGR-I is superior in terms of both accuracy and computational time, owing to a
higher convergence rate and smaller spectral radius than BR2.

For the second test in the 2D environment, we simulate the same solution as in test 1, but instead
of using uniform Cartesian meshes, the elements are now perturbed quadrilaterals. For a given element
count M , beginning with the uniform Cartesian mesh, each element vertex is perturbed by up to 15 percent
of the average element width in both the x and y directions, for a maximum perturbation distance of
approximately 21 percent of the average element width. Additionally, the quadrature resolution is increased
to GQv = (p + 2)2 in order to improve the calculation of the volume integrals, since the Jacobian matrix
involved in the quadrature process is non-constant over each element. A sample perturbed mesh, for the
M = 8× 8 case, is shown in Figure 4.

The results of test 2 are shown in Figure 5. Again, the convergence in both the global and functional error
norms with respect to the characteristic mesh width h̃ is presented. The BR2 method is again implemented
with χ = 2; it was also tested with χ = 4, following the conventional approach of taking χ to be the number
of sides per element, but for this test, the method performs better with χ = 2. The GR-II scheme, which was
the best in test 1, shows erratic behavior in test 2; specifically, the solution actually becomes less accurate
as the mesh is refined over the mid-resolution cases. This behavior is undesirable. With the exception of the
GR-II scheme, all schemes remain optimal in the global error norm. With respect to the functional error
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norm, the CGR-I method is only slightly better than BR2 in terms of accuracy, but remains computationally
less expensive than the LDG and BR2 methods because of its smaller spectral radius. The GR-VI scheme
maintains 8th order convergence in the functional error across all meshes, making it the superior scheme in
this test.

For the final test, the DG method is applied to solve the 2D compressible Navier-Stokes equations (12b)
with periodic boundary conditions. The standard DG approach is used to handle the advective fluxes,
denoted F , and the IGR family, alongside the LDG and BR2 approaches, is applied to discretize the diffusive
fluxes, denoted G. The initial condition (14) is a mostly quiescent, uniform field, with a severe density
perturbation prescribed around the epicenter (x, y) = (0.5, 0.5). The fluid has ratio of specific heats γ = 1.4,
freestream density ρ∞ = 2, freestream pressure P∞ = 100, and viscosity µ = 0.1.

The domain is a rectangle, Ω = [−2, 3] × [−1, 2]. The mesh is a set of M = 5R × 3R elements, where
R is some specified resolution and all elements in each mesh are uniform squares, each with side length of
h = 1

R . Once the DG solution has been initialized to the prescribed initial condition, it is integrated forward
in time to t = 0.1.

(a) (b)

(c) (d)

Figure 6: The flow behavior from test 4; the result shown is from the reference simulation, but only cell
averages are plotted. (a): Initial temperature distribution; the temperature peaks at T = 100. (b): Tem-
perature distribution at t = 0.1. (c): Pressure distribution at t = 0.1. (d): Mach number distribution at
t = 0.1.

The behavior of the flow is illustrated in Figure 6; specifically, we show the temperature distribution
at initialization (Figure 6a) in addition to the temperature (Figure 6b), pressure (Figure 6c), and Mach
number (Figure 6d) distributions at t = 0.1. The initial density perturbation yields a temperature spike
with maximum temperature T = 100. The thermal diffusion process results in an acoustic wave that radiates
outward from the temperature spike, which is rapidly diffused. The peak in the Mach number distribution is
focused around the temperature spike; the flow in this neighborhood is converging towards (x, y) = (0.5, 0.5).
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U(x, 0) =


ρ

ρu

ρv

Eg

 =



[
ρ∞ for x /∈ [0, 1]2

ρ∞(1− 1
2 sin3(πx) sin3(πy)) for x ∈ [0, 1]2

]

0

0
P∞
γ−1


(14)

The error at the end of each simulation is measured exclusively in the functional error norm. In the
absence of an analytical solution to the prescribed problem (14), the reference value for the functional is
set from a reference solution, specifically a p4 simulation using the CGR-I method with M = 3840 elements
(R = 16). Taking the kerkel κ to be an abbreviated sum of sine waves:

κ(x, y) =

4∑
j=2

(
sin(

j

4
πx)− sin(

j

4
πy)

)
, (15)

the reference functional for the energy, to ten digits, is
∫
Ω
κ Egdx = 150.9473163. The error of a given

simulation is taken to be the difference between that simulation’s target functional and the reference target
functional, EJ = |J − Jref | = |J − 150.9473163|.

The convergence of all schemes with respect to the characteristic mesh width h̃ is shown in Figure 7.
The standard DG method for the advective fluxes has order of accuracy 2p + 1; the highest asymptotic
convergence rate of any advection-diffusion DG scheme presented in this work is consequently limited to
order 2p + 1. Figure 7 shows that on the coarser half of the meshes, the five methods presented do not
vary appreciably in accuracy. On the finer half of meshes, the GR-VI and CGR-I schemes achieve better
agreement with the 2p+ 1 order of convergence that would be expected for a purely advective problem. On
all meshes, the CGR-I and GR-II methods require less computational time than the other methods because
the spectral radius of the diffusion scheme influences the maximum safe timestep. Specifically, on the finest
mesh, the CGR-I and BR2 simulations took 1.13 and 1.91 times as long as the GR-II simulation, respectively.

10
-2

10
-1

10
-5

10
0

GR-II

LDG

CGR-I

BR2

GR-VI

m
=

6

m
=

7

Figure 7: Functional error from test 4 (uniform Cartesian elements). Gray lines illustrate approximate
convergence rates, denoted by m, with respect to the characteristic mesh width h̃. On the coarser meshes,
all methods work equally well. On the finer meshes, the CGR-I and GR-VI methods are more accurate.
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VII. Extension to the Flux Reconstruction Method

We detour from the DG framework and move to the more general Flux Reconstruction (FR) method of
Huynh.13 The FR method solves the differential form of a governing differential equation (as opposed to
the weak form solved by the DG method). The method was extended from hyperbolic PDE problems to
parabolic/elliptic problems by Huynh14 in 2009. In this section, we show how the CGR-I method can be
paired with the FR framework for solving the 1D heat equation. The FR method is well-described in the
work of Huynh,14 and we give only a summary here.

To begin, the domain Ω = [x0, xM ] is partitioned into M finite elements, with Ωe ∈ [xe, xe+1] for
e ∈ {0, 1, ...,M − 1}. Let the numerical solution Uh(x) be a piecewise continuous polynomial described by
p+ 1 = K degrees of freedom in each element Ωe. Specifically, taking φ to be a Lagrange basis of degree p
(defined on the reference element Ωref ) and Ûe to be the nodal values of Uh at the K solution points within
each Ωe, we form a polynomial expansion:

Uh(x ∈ Ωe) = Uhe (ξ(x)) =

p∑
k=0

φk(ξ) Ûke , (16)

where x is the physical coordinate and ξ ∈ [0, 1] is the reference coordinate, defined by ξ(x) = x−xe

xe+1−xe
over

each element. We take the solution points to be the K Gauss-Legendre points on the reference element.
Given an arbitrary diffusive flux law

∂U

∂t
=
∂G
∂x

, (17)

with G depending on U and ∇U , we seek to approximate the divergence of the flux at each solution point
xSe,k within each element (xSe,k is the kth solution point in element Ωe). For the simple case of the heat

equation with unity diffusivity, G = ∇U . Since φ is a nodal basis, the temporal derivative of each DOF Ûke
is the divergence of the flux at the corresponding solution point xSe,k.

The method requires some mechanism to allow elements to exchange information. Towards this end, on
the reference element, we define two degree p + 1 correction functions, one corresponding to each endpoint
of Ωref . Specifically, CL(ξ) is equal to unity at ξ = 0 and equal to 0 at ξ = 1. Similarly, CR(ξ) is equal
to unity at ξ = 1 and equal to zero at ξ = 0. In the work of Huynh,14 these functions, known as the left
and right correction functions, are denoted g, but we have denoted them C in this work to avoid confusion
with the semi-connected gradient approximation of the CGR-I method. The correction functions have a
symmetry relation: CR(ξ) = CL(1 − ξ), so one is known once the other has been defined. Within each
element, a connected solution (18a), denoted UC , is formed by combining the discontinuous solution Uh

with a correction based on interface jump terms:

UC(x ∈ Ωe) = UCe (ξ(x)) = Uhe (ξ) + (ŨL − Uhe (0)) CL(ξ) + (ŨR − Uhe (1)) CR(ξ) (18a)

∂UCe
∂x

(ξ) =

p∑
k=0

Ûke
∂φk

∂x
(ξ) + (ŨL − Uhe (0))

∂CL

∂x
(ξ) + (ŨR − Uhe (1))

∂CR

∂x
(ξ) (18b)

The calculated values ŨL and ŨR are the common values on the left and right interfaces of Ωe, respectively.
For the CGR-I method, given an interface IAB shared by ΩA and ΩB , we take Ũ = R(UhA, U

h
B) on the

interface. Thanks to the use of the correction functions, UC is globally continuous, unlike the numerical
solution Uh. For every element Ωe, the connected solution is differentiated (18b) to populate the solution
derivative at the K solution points {xSe,0, xSe,1, ..., xSe,p} of the element. Then, the derivative is used to calculate
the viscous flux G at each of the solution points.

The next step is to calculate the flux along element interfaces. Now, focusing on a specific interface Ie,e+1

between Ωe and Ωe+1, take USC,Le+1 be the left-connected solution in Ωe+1 and USC,Re to be the right-connected
solution in Ωe:

USC,Re (ξ) = Uhe (ξ) + χ (Ũ − Uhe (1)) CR(ξ) (19a)

USC,Le+1 (ξ) = Uhe+1(ξ) + χ (Ũ − Uhe+1(0)) CL(ξ) (19b)
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These solutions add corrections to the numerical solution Uh, but each only includes information from the
two elements sharing the interface. Again, the common value Ũ on the interface is taken to be the recovered
solution. We emphasize that the right-connected and left-connected solutions of the elements Ωe and Ωe+1

are particular to the shared interface; for the interface on the left side of Ωe, namely Ie−1,e, we would be
interested in the left-connected solution of Ωe and the right-connected solution of Ωe−1.

As with the DG case, let gRe and gLe+1 be the semi-connected gradients over the two neighboring elements.
These are formed as polynomial expansions (20) using the basis functions φ over each element:

gRe (ξ) =

p∑
k=0

φk(ξ) ∇USC,Re (ξk) (20a)

gLe+1(ξ) =

p∑
k=0

φk(ξ) ∇USC,Le+1 (ξk) (20b)

The coefficients in the semi-connected gradient approximation correspond to nodal values of the solution
gradient. The gradients of the semi-connected solutions (19) are simple to calculate because the gradients
of the correction functions are known analytically, and the gradient of the discontinuous solution Uh can be
calculated by differentiating the basis functions φ. Once the semi-connected gradient approximations (20)
native to a given interface have been populated, the recovery procedure is performed to calculate the interface
gradient: σ̃ = R(gRe , g

L
e+1). Then, the interface gradient is applied to calculate the viscous flux on the

interface: G̃ = G(Ũ , σ̃).
With the flux G populated for all interfaces and element solution points, the next step is to differentiate

the flux distribution. For a given element Ωe, take G̃L to be the calculated flux on the left-side interface
(using the interface’s common gradient), take G̃R to be the calculated flux on the right-side interface, and
take Ĝke to be the calculated flux at an element’s solution point xSe,k. The nodal flux values Ĝe allow a

flux polynomial (21a) to be formed within the element, denoted Ghe (ξ). Additionally, two more terms are
necessary before we proceed. Take GeL and GeR to be viscous fluxes calculated along the element’s left and right

edges using the fully connected solution. Specifically, GLe = G(UCe (0),
∂UC

e

∂x (0)) and GRe = G(UCe (1),
∂UC

e

∂x (1)).
The globally continuous flux polynomial (21b) is formed by combining a pair of correction functions CL

and CR with the flux differences at the left and right boundaries of the element. With GC(x) being a
continuous function (21b) approximating the flux across the entire domain, ∇ · GC provides the divergence
calculation (21c) at each solution point:

Ghe (ξ) =

p∑
k=0

φk(ξ) Ĝke (21a)

GC(x ∈ Ωe) = GCe (ξ(x)) = Ghe (ξ) + (G̃L − GeL) CL(ξ) + (G̃R − GeR) CR(ξ) (21b)

∂GCe
∂x

(ξ) =

p∑
k=0

Ĝke
∂φk

∂x
(ξ) + (G̃L − GeL)

∂CL

∂x
(ξ) + (G̃R − GeR)

∂CR

∂x
(ξ) (21c)

In accordance with the governing PDE (17), the divergence (21c) of the continuous flux polyomial provides
the temporal derivative for the nodal degree of freedom Ûke associated with each solution point xSe,k. Then,
the temporal derivative calculation can be paired with an arbitrary explicit time integration scheme to march
the solution forward in time.

The CGR-I method for the FR framework described here is fully defined once three properties are chosen:
the value of the χ parameter, the correction functions CL and CR applied to calculate the connected (18)
and semi-connected (19) solutions, and the correction functions CL and CR used to calculate the globally
continuous flux polynomial (21b).

As with the DG case, Fourier analysis has been performed to investigate the properties of the newly pro-
posed CGR-I scheme within the FR framework. A thorough exploration of the various CGR-I configurations
in the p5 case has indicated that while the correction function chosen for the connected and semi-connected
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solutions governs the spectral radius, it is the correction function chosen for the flux polynomial that governs
the order of accuracy. Additionally, the χ parameter has an influence on stability; taking χ = 1 produces
many unstable schemes (the choice shown in Table 7 is an exception), so we favor the value χ = 1.2 to
maintain stability for various choices of correction functions. Three sample CGR-I configurations, all using
a p5 discretization (K = 6 DOF per element), are listed in Table 7. For each scheme, we give the correction
function for populating UC and USC , the correction function for populating the globally continuous flux
Gh, the method’s order of accuracy, and the method’s spectral radius. The correction function gDG is the
degree K Radau polynomial, well-described by Huynh.13 The correction function gLump,Lo is an invention
of Huynh;13 its derivative is zero at K − 1 of the Lobatto points on the reference element.

The first scheme in Table 7 has been analyzed for K ∈ {2, 3, 4, 5, 6}, and the results are given in Table 8.
The orders of accuracy for the CGR-I approach in the FR framework are identical to the orders of accuracy
observed within the DG framework. Huynh’s manuscript on applying the FR framework to diffusion prob-
lems14 lists the spectral radius and order of accuracy for many FR schemes with K ∈ {2, 3, 4}. Specifically,
for the K = 2 case, three fourth-order accurate schemes (specifically schemes 11, 14, and 15) are listed; our
CGR-I scheme has a smaller spectral radius than all three of those schemes. For the K = 3 and K = 4 cases,
our CGR-I method is outperformed by scheme 14 of Huynh,14 which is a close cousin of Lo & Van Leer’s9

RDG-1x+ method. The commonly applied BR2 approach, described as scheme 2 in Hunyh’s work,14 shows
larger spectral radius and equal or worse order of accuracy than our CGR-I scheme for K ∈ {2, 3, 4}. Specif-
ically, that scheme has spectral radii of 13, 60, and 170 for K = 2, 3, and 4, respectively, while achieving
order of accuracy 2(K − 1).

Table 7: CGR-I scheme configurations in FR framework, K = 6.

χ C for solution C for flux order of accuracy spectral radius

1.2 gDG gDG 12 273

1.2 gLump,Lo gDG 12 225

1.0 gDG gDG 12 196

Table 8: Fourier analysis of CGR-I scheme in FR framework. χ = 1.2, C = gDG for solution and flux.

K spectral radius order of accuracy

2 11 4

3 30 4

4 74 8

5 150 8

6 273 12

VIII. Conclusions

The Interface Gradient Recovery (IGR) Discontinuous Galerkin family for discretizing diffusion problems
has been shown to contain multiple attractive numerical schemes; in particular, the GR-II scheme stands out
as having small spectral radii and high orders of accuracy relative to the established BR2 and LDG schemes.
The GR-II, GR-VI, and CGR-I methods of the family have been shown to generalize to 2D problems and
perform well on Cartesian elements, at least in the p3 case. However, the GR-II method may be unsuitable
for non-Cartesian elements.

The GR-II scheme is the most attractive for 1D problems, but requires the update scheme in each
element to rely heavily on information from non-neighbor elements. Modified versions of GR-II may provide
improved robustness in multidimensional problems on unstructured grids, as they have been designed to
reduce the influence of an element’s non-neighbors during the population of the DG residual. The results
presented here indicate that the GR-VI method is more robust on non-Cartesian grids, at least in the p3
case. Most of the members of the IGR family are free of ambiguously bounded numerical parameters. In the
case of the χ parameter of the CGR-I scheme, testing in the 2D case has suggested that χ = 2 is the best
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choice in general, but additional analysis could uncover a better choice in the future. The IGR approach for
discretizing diffusive fluxes has been effectively combined with the standard DG approach in order to fully
discretize advection-diffusion problems. The use of the CGR-I scheme for capturing diffusive fluxes allows
the full DG scheme to achieve order 2p+ 1 convergence, at least in the p3 case.

The CGR-I method is favored by the authors on account of many properties: it has smaller spectral
radii than established DG schemes across all values of p analyzed, it is order 2p + 2 accurate for odd p,
and it appears robust on non-Cartesian elements. Perhaps most importantly, it maintains the compact
computational stencil of the conventional DG method for advective problems. Future work will involve
pairing this scheme with an improved DG advection scheme in order to achieve order 2p+ 2 convergence for
advection-diffusion problems. From Fourier analysis, the CGR-I method also appears effective within the
Flux Reconstruction (FR) framework. Compared to most FR schemes for diffusion, it yields relatively small
spectral radii while either matching or exceeding their orders of accuracy.
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