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This work reports preliminary results on the application of projection-based reduced-
order models (ROMs) to the study of combustion dynamics in liquid-fueled rocket engines.
Specifically, quasi-one-dimensional and axisymmetric (two-dimensional) models of a single
element rocket combustor are explored. In the one-dimensional case, a POD-Galerkin-
based ROM is shown to accurately reproduce the evolution of pressure perturbations over
a wide region in parameter space. Next, the viability of sampling/interpolation techniques
in accelerating ROM solutions is explored. Three techniques - the discrete empirical in-
terpolation method (DEIM), a QR decomposition-based DEIM (QDEIM) and an adaptive
technique (ADEIM) are used to reconstruct the solution in the entire domain based on
sparse samples. All three techniques are shown to yield a low reconstruction error based
on a very small fraction of sampling points (< 1% for the axisymmetric case). The ADEIM,
by virtue of dynamically adapting the basis functions and sampling points, is seen to reduce
the reconstruction error considerably in comparison to the DEIM/QDEIM, suggesting its
viability in predictive ROMs of realistic rocket combustors.

I. Introduction

The design of liquid rocket engines (LREs) is complicated by the presence of combustion instabilities.
These instabilities are characterized by the coupling between high-amplitude pressure waves, heat release,
and hydrodynamics. Combustion instabilities (CI) have long been recognized as critical to rocket design and
have led to several catastrophic failures in the development of rocket engines including the B-1 engine in Atlas
D rocket1 and the Saturn F-1 engine.2 Even though the underlying phenomena have been understood from a
phenomenological perspective, CI continues to be a hurdle in the development of modern rocket engines. The
phenomena is intrinsically self-excited due to the acoustic properties within the combustion chamber as well
as the additional coupling between hydrodynamics, flame dynamics and heat release.3 Thus, the problem
is sensitive to the engine geometry and reactant properties, requiring evaluations of the performance on
numerous combinations of parameters in the research and development process.

Theoretical analysis of LRE combustion instabilities have been proposed since 1940s.4–7 While analytic
approaches provide the necessary insight, the complexity of the problem renders the accuracy of simplified
models to be limited to the confines of the model calibration. High-fidelity numerical simulation methods
including Direct numerical simulations (DNS) large eddy simulations (LES) and hybrid Reynolds-averaged
Navier–Stokes/LES (RANS/LES) have been proven their viability in predicting generic combustion pro-
cess.8–10 Even hybrid RANS/LES will be prohibitively expensive for application in full-scale rocket engines
in the decades to come. The demand for practical predictive methods or design purposes, thus encourages
the recent explorations in low-complexity models.

Commonly adopted simplifications in reduced-fidelity models include reduced chemical reaction mecha-
nisms11–13 and low-dimension approximation.12,14 Although failing to predict finer details of the flow, these
methods can often be tuned for specific problems and provide satisfying accuracy in critical properties such
as pressure, velocity and heat release for LRE modeling. However, the tuning process is typically empirical
and iterative, involving calibration based on experiment or high-fidelity simulation data. In recent years,
modal decomposition techniques have been applied to high-resolution experimental data to extract low-order
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representations of the combustion dynamics.15,16 Their successes illustrate the potential of applying reduced
order methods to efficiently account for the underlying dynamics.

With a vision of developing predictive reduced order models of LREs, this work reports preliminary results
on the application of projection-based reduced-order models (ROM) to a single element model rocket com-
bustor. Specifically, quasi-one-dimensional and axisymmetric (two-dimensional) versions of the continuous
variable resonance combustor (CVRC)17,18 are considered.

In Sec. II, the quasi-1D CVRC setup is introduced. The full-order model and results are described in
Sec. III. The projection-based reduced-order model and results are presented and in Sec. IV. With a view
towards ROM development for realistic configurations, the possibility of achieving acceleration with sparse
sampling is discussed in Sec. V. The results from sparse sampling-based reconstruction are presented and
analyzed in Sec. VI. Concluding remarks are given in Sec. VII

II. Quasi-1D CVRC setup

Initial studies are performed on a quasi one-dimensional version of the CVRC. The idealized computa-
tional domain is sketched in Fig. 1, with geometry parameters given in Table 1. The CVRC is a singe
element model rocket combustor characterized by a continuously variable oxidizer injector tube serving as
a wave resonator, designed for the study of longitudinal combustion instabilities.17,18 The fuel is injected
through an annular ring around the oxidizer injector, located at the back-step shown in Fig. 1. Both the
injector and the nozzle are operated at choked condition during the experiment. To avoid invalidating the
quasi-one-dimensional equations, the step and the converging part of the nozzle are sinusoidally contoured
in this study (in contrast to a discontinuous cross-sectional area change in the real setup).

Figure 1: Computational domain

Section Injector Back-step Chamber Converging Section Nozzle

Length (cm) 13.97 1.27 63.5 1.27 7.62

Radius (cm) 1.12 1.12 2.25 2.25 2.25 1.08 1.08 1.33

Table 1: Geometry parameters

Propellants are methane and hydrogen peroxide (more precisely 90% H2O2 and 10% H2O), with the
operating conditions given in Table 2.

III. Full-order system

A. Governing equations

The governing equations are given in Eq. (1), and are based on previous studies19,20 with some modifi-
cations.

∂q

∂t
+
∂f

∂x
= s + sf + sq, (1)
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Parameter Value

Fuel Mass Flow Rate, kg/s 0.027

Fuel Temperature, K 300

Oxidizer Mass Flow Rate, kg/s 0.32

Oxidizer Temperature, K 1030

Mass Fraction H2O, % 57.6

Mass Fraction O2, % 42.4

Equivalence Ratio 0.8

Table 2: CVRC Operating conditions

where

q =


ρ

ρu

E0

ρYox

 ; f =


ρu

ρu2 + p

E0 + p

ρuYox

 ; s =


0

p
A

dA
dx

0

0

 ; sf =


ω̇f

ω̇fu

ω̇f∆h0

−ω̇ox

 ; sq =


0

0

q′

0

 , (2)

and Yox is the oxidizer mass fraction.
The first source term, s, is due to area variations while the other two terms are related to combustion.

An important assumption made here is that fuel reacts instantaneously to form products with the main
consequence of neglecting intermediate species and finite reaction rates. To avoid discontinuities and to
reproduce a combustion region of finite length, fuel is injected through a region after the back-step, between
ls = −0.0063 m and lf = 0.0699 m with a sinusoidal shape, yielding

ω̇f =
ṁf

A
∫

(1 + sin ξ)dx
(1 + sin ξ) , (3)

ω̇ox = ω̇f/Cf/o, (4)

with

ξ = −π
2

+ 2π
x− ls
lf − ls

,with ls < x < lf . (5)

The last contribution, sq, refers to the unsteady heat release term. It represents the response function,
through which the model takes into account coupling between acoustics and combustion. Expressing the
unsteady part of the heat release as a function of pressure with an amplification parameter α and a time lag
τ ,

q′ = ω̇f∆h0α
p (x, t− τ)− p̄ (x)

p̄ (x)
. (6)

An upwind finite volume discretization is employed with explicit time stepping using the fourth-order
Runge Kutta (RK4) scheme. 1200 control volumes were required to assure grid convergence. The full-order
result is briefly presented in the following section to verify the solver.

B. Steady state solutions

The steady state solution is first obtained by turning off the unsteady source term, Sq. Pressure and
temperature are plotted in Fig. 2, which are identical to the result from Ref. 20.

C. Unsteady results

In unsteady simulations, the choice of parameters is α = 3.6, τ = T,∆t = 1.64 × 10−7 s, where T is
the time period associated with the analytical first longitudinal resonant frequency (1400 Hz).19 To excite
pressure oscillations, a small amplitude disturbance is applied to the mass flow rate until a limit cycle is
established. The unsteadiness is evaluated using pressure signals obtained at 36.8 cm behind the oxidizer
injector. The choice of this point is related to the availability of a pressure probe at this location in the
experimental test.19
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Figure 2: Steady state pressure and temperature

The history of the pressure oscillation and its power spectral density (PSD) is presented in Fig. 3,
which shows consistency with experimental results.3 A comparison between the computed and experimental
longitudinal frequencies is given in Table 3 where the error is below 2%. It should be noted that the choice
of τ only determines the growth of instability together with α, but does not directly affect the computed
frequency.

(a) Pressure oscillation history (b) Single-sided amplitude spectrum

Figure 3: Full-order unsteady state result

Mode 1L 2L 3L

fexp (Hz) 1330 2660 3990

fcomp (Hz) 1350 2692 4034

Table 3: Comparison between computed and experimental longitudinal frequencies

IV. Projection-based reduced-order modeling

In the context of configurations of interest to this paper, different approaches have been taken towards
reduced complexity models in prior studies. Most of these works are based on empirical relations21 or
local linearity assumptions,22,23 which limit these methods within the proximity of the training data. We
will pursue projection-based model reduction techniques24,25 as these techniques have shown promise in
describing nonlinear dynamics with moving shocks.26–28 An introduction to POD/Galerkin method to fluid
flows can be found in Ref. 24.

A. ROM implementation

The first step in POD projection-based reduced-order modeling is to develop a reduced basis. This can
be achieved using the singular value decomposition (SVD),29 the left singular vectors of which minimize
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the Frobenius norm of the projection error. Taking A as a data matrix consisting of solution “snapshots”
aligned in columns, the SVD is given by

A = UΣV∗. (7)

Each column of U can be used as part of an orthonormal basis set. Σ is a diagonal matrix whose diagonal
elements are singular values of A, arranged in descending order. The singular values can be used to judge
the norm of the projection error for a given set of basis functions.

To derive the ROM equations, we first rewrite Eq. (1) as

dq

dt
= r (q (x, t)) , (8)

where the residual vector

r = − ∂f

∂x
+ s + sf + sq. (9)

At each time-step in FOM, the solution of q ∈ Rn at all grid points is stored in a single column. These
stored solutions form a snapshot matrix Qsnap ∈ Rn×nt . From the SVD, we have Qsnap = UΣV∗. Assuming
mL is the dimension of the resolved modes, the approximated solution is

q ≈ q̃ = Φqr (t) , (10)

where Φ = U1:mL
is the spatial basis matrix of Qsnap, and qr is the mL-dimensional reduced-order variable.

Then the truncated Galerkin-ROM equation of Eq. (8) is

dq̃

dt
= ΦT r (Φqr) . (11)

B. ROM results

In this study, the snapshots are obtained every 100 time steps over the first 0.1 second of the FOM
evolution. Table 4 shows the number of modes required to represent the fraction of energy for each of the
four variables (ρ, ρu,E0, ρYox), calculated from (12) for each mode.

ηi =
σi
n∑
j=1

σj

, (12)

where σi is the corresponding singular values of the i-th mode. The 100 leading modes are presented in Fig.
4. Due to the relatively slow decay in the singular value spectrum, 151 out of 1200 modes in the ROM for
each variable are retained for the computation.

Property 90% 95% 99%

ρ 16 35 92

ρu 33 56 114

E0 13 30 87

ρYox 14 31 82

Table 4: Energy content as a function of number of modes retained.

To evaluate the performance of the ROM over a wide range of states, the ROM is initialized from the
steady state result (Sec. III.C). This requires the ROM to capture the growth of the perturbations and
transition from stable to unstable states. With less than 13% modes retained, the ROM demonstrates an
ability to retain accuracy and stability with time steps corresponding to CFL numbers up to 5, which is an
indication of better conditioning of the ROM compared to the FOM.

A comparison of the time history of the pressure for different CFL numbers is given in Fig. 5(a)-5(c). In
comparison, Fig. 5(d) shows the result when the ROM is appended to the FOM after limit cycle oscillations
are established. The transition point displayed in the zoomed-in view (the two cycles before t = 0.1 s are
FOM). The error in the solution is listed in Table 5, which is measured from Eq. (13). It is interesting to note
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Figure 4: Leading singular values for different variables

that a lower CFL number does not necessarily lead to a lower error, potentially suggesting the complicated
nature of the truncated terms.

e =
‖SF − SR‖2
‖SF ‖2

, (13)

where SF and SR is the full-order with CFL = 1 and reduced-order solution history at the monitored point.

restarted appended

CFL 1 3 5 1

error (%) 2.16 1.60 1.88 1.19

Table 5: Error in ROM solution

Fig. 6 shows the evolution of the pressure perturbations. In the context of combustor instabilities, an
important property to be evaluated is the growth rate of the pressure oscillation (defined in Fig. 7) after the
perturbation in inlet is imposed. A positive growth rate implies a growing instability.

A comparison of the growth rate from the FOM and ROM computations is given in Fig. 8, where the
injector/chamber length (Li/Lc) and the amplification parameter, α are used as variables. The ROM is seen
to accurately reconstruct the correct growth rate in all cases.

V. Prospects for acceleration using sparse sampling

Eq. (11) represents a non-intrusive formulation, in which the internal details of the residual operator are
not required to compute the ROM solution. However, even though q̃ ∈ RmL , the evaluation of the residual
r ∈ Rn still requires O(n) evaluations. Thus, the efficiency gains of non-intrusive POD-based ROMs at each
time-step may be limited and the acceleration may be achieved courtesy of the decreased stiffness of the
ROM compared to the FOM. Sparse sampling30 or hyper-reduction25 techniques - on the other hand - allow
for the processing of the ROM based on the evaluation of the residual at a few critical points.

A. Sparse sampling with discrete empirical interpolation method30

Assuming snapshots M of the residual r can be obtained, a POD basis Ψ ∈∈ Rn×mL can be built and
an approximation of the residual can be developed r ≈ r̃ = Ψc, where c ∈ RmL are basis coefficients.
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(a) CFL = 1 (b) CFL = 3

(c) CFL = 5 (d) FOM (0 ∼ 0.1s)-ROM (0.1 ∼ 0.12s), CFL = 1

Figure 5: Reduced-order result for pressure oscillation with zoomed-in views

(a) Spatial pressure profile for t = 0 ∼ 0.1s (b) Zoomed-in view for 4 cycles

Figure 6: Pressure oscillation growth profile
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Figure 7: Definition of Growth Rate

(a) Variate Li with Lc = 0.38m (b) Variate Lc with Li = 0.14m

Figure 8: Growth rate comparison

Introducing a sample selection matrix P ∈ Rn×mL that selects mL locations x̂i:

Pij =

{
1 x̂i = xj

0 elsewhere
.

It is easy to see that Pr̃ = PΨc. Hence,

r̃ = Ψ (PΨ)
−1

Pr. (14)

Thus r̃ is an approximation to r based on samples Pr.
The critical points, x̂, can be chosen using a number of techniques. The discrete empirical interpolation

method (DEIM)30 is perhaps the most widely adopted. DEIM utilizes the dominant features extracted from
POD to determine the optimized sampling points for the dynamic modes of interest. Given a basis Ψ,
the idea then is to find a sensor selection matrix P∗ that minimizes the difference between the real and
reconstructed signal. In other words,

P∗ = min
P

∥∥∥M−Ψ[PΨ]
+

M̂
∥∥∥
2
, (15)

where M̂ = PM denotes the measured residual at the sensors selected by P. In popular approaches, the
number of sensors is set to mL and P∗ is chosen as

P∗ = min
P

∥∥∥M−Ψ[PΨ]
−1

M̂
∥∥∥
2
. (16)

It is easily shown (Ref. 31, for instance) that∥∥∥M−Ψ[PΨ]
−1

PM
∥∥∥
2
≤
∥∥∥[PΨ]

−1
∥∥∥
2

∥∥[I−ΨΨT
]
M
∥∥
2
. (17)
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The second term in the RHS of Eqn. (17) is projection error, and hence the first term can be considered
sampling error. Thus DEIM-based approaches simplify the sensor selection problem to

P∗ = min
P

∥∥∥[PΨ]
−1
∥∥∥
2
. (18)

The determination of the sensor locations is given in Algorithm 1, where x̂ denotes the sampling points
selected by P∗.

Algorithm 1 Discrete empirical interpolation method

Input: Ψn×nL
= [ψ1, . . . , ψmL

]
Output: x̂ = [x̂1, . . . x̂mL

]
[ρ, x̂1] = max (|ψ1|)
x̂ = [x̂]
for i = 2 to mL do
φ← ψi
Solve Ψx̂c = φx̂ for c
ε = φ−Ψc
[ρ, x̂i] = max (|ε|)
x̂ = [x̂, xi]

end for

B. QR decomposition-based DEIM (QDEIM)

An elegant way of approaching the sensor selection problem is the QDEIM32,33 method which relies on
rank revealing QR decomposition (RRQR)34–36 with column pivoting. The RRQR pivoting for ΨT can be
expressed as

ΨTΠ = QR, (19)

where Π is the column permutation matrix. It should be noted that any sample selection matrix P1 for Ψ
can be constructed from rows of ΠT . Thus Eq. (19) can be converted and separated into[

P1

P2

]
Ψ =

[
RT

1

RT
2

]
QT , (20)

where P2 denotes the rest of ΠT after removing P1. Because Q is an orthogonal matrix, we have∥∥PT
1 Ψ
∥∥
2

=
∥∥RT

1 QT
∥∥
2

= ‖R1‖2 = σmax (R1) , (21)

and ∥∥∥(PT
1 Ψ
)−1∥∥∥

2
=

1

σmin (R1)
. (22)

Thus the minimization problem in Eq. (18) can be solved by keeping σmin (R1) as large as possible,
which is accomplished by RRQR.35,36 Therefore as suggested in Ref. 33, we can set P1 to the leading rows
of ΠT . In other words, a solution to Eq. (18) is

P∗ = ΠT
:,1:mL

. (23)

C. Adaptive DEIM

The sampling points as well as the basis functions used in the DEIM/QDEIM are fixed for the entire
simulation. This may not necessarily be optimal in applications such as the rocket combustor, in which the
flow can undergo rapid topological changes. Further, difficulties in accounting for propagating waves using
fixed basis functions has been well-recognized.37 This has lead to the development of methods such as the
adaptive DEIM (ADEIM).38

At each time step (subscript k), the ADEIM technique randomly picks mS additional sampling points
and generates an intermediate measurement matrix, Sk, corresponding to the (m+mS) sampling points.
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Instead of solving for the optimal choice of measurement matrix as in Eqn. (18), ADEIM seeks an optimal
update to the basis using the following minimization problem

arg min
αk∈Rn,βk∈Rm

∥∥STkEk + STk αβ
T ck

∥∥2
F
, (24)

where is ck is the coefficient matrix for the basis Ψk−1, Ek = Ψk−1ck−Mk is the residual matrix, and αβT

represents an update to the basis
Ψk = Ψk−1 + αkβ

T
k . (25)

In Ref. 38 it is shown that if
∥∥STkEkc

T
k

∥∥
F

= 0, an optimal update αkβ
T
k with respect to Eqn. (24) is

αk = 0n ∈ Rn and βk = 0w ∈ Rw, where 0n and 0w are the n- and w-dimensional null vectors respectively;
and that when

∥∥STkEkc
T
k

∥∥
F
> 0, an optimal update is given by setting

αk = Skα
′

k,

βk = Qkβ
′

k,
(26)

where Qk is from a rank-revealing QR decomposition ck = QkZk, β
′

k ∈ Rm is an eigenvector corresponding

to the largest eigenvalue λ ∈ R of the generalized eigenvalue problem ck
(
STkEk

)T (
STkEk

)
cTk β

′

k = λckc
T
k β

′

k,

and α
′

k = −1/
∥∥∥cTk β′

k

∥∥∥2
2
STkEkc

T
k β

′

k.

After the basis is updated using Eqn. (25), sampling points are then re-evaluated based on the updated
basis.38

VI. Results from sparse sampling-based reconstruction

To make an initial assessment of the viability of sparse sampling methods, the pressure field from one-
and two-dimensional versions of the CVRC is reconstructed using the DEIM/QDEIM/ADEIM.

A. 1D results

The singular value spectrum for the first 100 modes of the training data from the previous section is
presented in Fig. 9, where a similar trend is observed as in Fig. 4, and the total reconstruction error
(relative L2-norm evaluated at all spatial and temporal points) is shown as a function of the number of
sampling points in Fig. 10. It is seen that the QDEIM constantly results in more accurate reconstructions
than the DEIM and the ADEIM generally performs better a than the two static methods.

Following the choice in previous section, detailed analysis is conducted on mL = 151 (12.5% of the total
number of modes) and the results for mL = 31 (2.6% of the total) are also presented. Two cycles of the
signal monitored at the same location as in the previous sections are shown in Fig. 11 along with the L2 error
history. In this 1D application, all methods captured the pressure signal to within a few % accuracy, with
the QDEIM achieving slightly less error than the DEIM and the ADEIM reconstruction appearing visually
superior.

The pressure profile when the error reaches a maximum is also presented in Fig. 12. The ADEIM is seen
to locate more sampling points closer to the large gradient in the signal (e.g. at x = −0.045m), and results
in a more faithfully reproduced profile.

B. Axisymmetric (2D) results

Similar tests are then performed on high-fidelity (full-order) 2D snapshots of pressure from a simulation of
the CVRC.39 The simulation was performed on a 110,826-node mesh with the GRI 1.2 hydrocarbon reaction
mechanism set consisting of 32 chemical species and 177 reactions. Snapshots of the full-order data were
recorded every 5µs and 1025 snapshots are taken in total. In the present study, 700 snapshots are used as
training data covering a period of 5 pressure oscillation cycles, and the rest are retained for testing.

The singular value spectrum for the first 100 modes of the training data is presented in Fig. 13, where
a larger decay rate than the 1D case is observed, providing the foundation for more sparse reconstructions.

aThe anomalous result at mL = 101 requires further investigation as the DEIM achieves its minimum error while a peak is
observed for ADEIM at the same point. The random selection of the additional sampling points in ADEIM could be at fault.
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Figure 9: Singular value spectrum for 1D training data

Figure 10: 1D sparse sampling reconstruction error at variate mL
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(a) mL = 31 (b) mL = 151

(c) mL = 31 (d) mL = 151

Figure 11: Pressure perturbation signal and error history for 1D sparse sampling reconstruction

Based on the number of available high-fidelity data snapshots, the maximum number of sampling points that
were evaluated is 700, corresponding to just 0.63% of the total.

The total reconstruction error (space and time) is plotted against number of sampling points in Fig. 14.
The error decays in a similar trend as the singular values, and the ADEIM results in a considerably reduced
error than the DEIM in most cases. The QDEIM manages to perform close to the ADEIM in most tests,
yet a unexpected deficiency occurs at mL = 100 and requires further investigation.

The reconstruction results using 700 sampling points are shown in Fig. 15, where training data is in
t < 0 and testing data in t > 0. The results indicate that the updated basis plays a more important role in
reducing the error.

Despite this observation, no significant differences were observed in the sectionally-averaged pressure
history.

Comparisons of detailed error profiles are given in Fig. 16. The average L2 error for all methods are below
3% with ADEIM performing noticeably better. The difference can be better visualized in the x− t− error
diagram.

VII. Conclusions

Working towards a broad vision of developing predictive reduced order models of liquid-fueled rocket
engines, this work explored the application of projection-based reduced-order models (ROM) to a single
element model rocket combustor. As a representative geometry, the continuous variable resonance combus-
tor (CVRC)17,18 was investigated. Two types of models were considered: i) Quasi-one-dimensional Euler
equations with one additional transport equation and a source term to represent heat release; and ii) Ax-
isymmetric solutions based on 32-species finite rate chemistry.

A projection-based ROM solver was developed for the quasi-1D model. By retaining 12.5% of the full
order modes, the ROM was shown to be able to capture the evolution, growth and saturation of pressure
perturbations to within 2% accuracy in an L2 sense. This result was verified to be consistent for a range of
geometric and heat release parameters.

To further reduce the computational complexity, the viability of using sparse sampling was explored. The
discrete empirical interpolation method (DEIM) and two variants, namely QR decomposition-based DEIM
(QDEIM) and adaptive DEIM (ADEIM) were introduced. The static methods (DEIM/QDEIM) select the
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(a) mL = 31

(b) mL = 151

Figure 12: 1D spatial pressure distribution at instant of maximum error. Sampling points marked by magenta
crosses.
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Figure 13: Singular value spectrum for 2D train-
ing data

Figure 14: 2D sparse sampling reconstruction error at
variate mL

(a) Instantaneous pressure field. Sampling points marked by red dots.

(b) History of average pressure at x = 0.05m

Figure 15: 2D sparse sampling reconstruction from 0.63% of total points
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(a) Error history (b) Sectional-temporal error profile

(c) Spatial error distribution, t = 0µs (d) Spatial error distribution, t = 500µs

(e) Spatial error distribution, t = 1000µs (f) Spatial error distribution, t = 1500µs

Figure 16: Error in 2D sparse sampling reconstruction from 0.63% of total points
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sensors by minimizing the sampling error for a fixed basis. The ADEIM is an online method that updates
the basis as well as sampling points by taking randomly picked auxiliary evaluation points at each step and
minimizing interpolation errors.

Predictive sampling/reconstruction tests were performed on data from the quasi-1D solver as well as
axisymmetric (2D) simulations.39 In the 1D test, the pressure was reconstructed in the entire domain using
12.5% of the points. The static methods achieved a reconstruction error below 3% and ADEIM further
reduced the error to below 0.5%. In the 2D case, pressure reconstruction was performed from 0.63% of the
total points, resulting in errors of 3%, 2.5% and 2% using the DEIM, QDEIM and ADEIM, respectively. It
is notable that the reconstruction evaluations were performed on data that was not used in the formulation
of the sample selection basis functions.

The ability of the ADEIM to adapt the sampling points and basis functions to the state of flow was
shown to result in consistently improved reconstructions compared to static methods.

An interesting observation in the 2D problem was that no significant differences were observed between
the reconstructions from the three methods when sectionally averaged quantities were considered. This could
potentially imply that the prediction of system level quantities might be less sensitive to the sparse sampling
scheme.

This work suggests that the ADEIM might prove to be a viable approach for application in predictive
ROMs of realistic rocket combustors. reconstruction of localized quantities such as species mass fractions
have to be assessed as they may pose a different set of challenges compared to a more global quantity such
as pressure. Further, it has to be mentioned that the ADEIM involves additional cost from the minimization
problem which has to be solved at every (or every few) time step(s).
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