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Hypersonic vehicle design and simulation require models that are of low order. Modeling of hypersonic vehicles is

complicated due to complex interactions between aerodynamic heating, heat transfer, structural dynamics, and

aerodynamics in the hypersonic regime. This work focuses on the development of efficient modal solutions for

structural dynamics of hypersonic vehicle structures under transient thermal loads. The problem is outlined, and

aerothermoelastic coupling mechanisms are described. A previously developed reduced-order time-domain

aerothermoelastic simulation framework is used as the starting point for this study. This paper focuses on two main

modeling areas: 1) a surrogate modeling technique is employed for directly updating the generalized stiffness matrix

and thermal loads based on the transient temperature distribution, and 2) basis augmentation techniques are

employed in order to obtainmore accurate solutions for the structural dynamic response.The techniques to be studied

are described and applied to a representative hypersonic vehicle all-movable lifting surface.

Nomenclature

A = snapshot matrix
a�j� = jth proper orthogonal decomposition snapshot
b = vector of inputs to function
C = correlation matrix
C�b; X� = kriging correlation matrix
c = vector of proper orthogonal decomposition

modal coordinates
cp = specific heat at constant pressure
~c = vector of proper orthogonal decomposition

modal coordinates for transformed system
d = structural modal coordinates, kriging sample

point
E = modulus of elasticity
FS = structural load vector of full system in physical

space
FT = thermal load vector of full system in physical

space
Full = solution vector of full-order model
fS = generalized structural load vector of reduced

system in modal space
fT = generalized thermal load vector of reduced

system in modal space
G�X�i�; X�j�� = Gaussian correlation function for kriging model
Hi = coefficient matrices in numerical integration for

structural response
h = altitude
hi = thickness of ith layer of thermal protection

system
KG = geometric stiffness matrix
KS = structural stiffness matrix

KT = thermal conductivity matrix of full system in
physical space

K�
S = modified structural stiffness matrix

kT = generalized thermal conductivity matrix of
reduced system in modal space

k�S = generalized stiffnessmatrix of reduced system in
modal space

L = lower triangular factor in decomposition of K�
S

L∞ = L∞ error
l = number of augmented mode shapes
lbi = lower bound for ith proper orthogonal

decomposition modal coordinate
M = Mach number
MS = structural mass matrix of full system in physical

space
MT = thermal capacitance matrix of full system in

physical space
mS = generalized mass matrix of reduced system in

modal space
mT = generalized thermal capacitance matrix of

reduced system in modal space
maxi = maximum value of ith proper orthogonal

decomposition modal coordinate
mini = minimum value of ith proper orthogonal

decomposition modal coordinate
n = number of aerothermoelastic simulations used

to generate bounds
nb = number of basis terms used in kriging regression

model
ne = number of kriging evaluation cases
nF = number of specified load vectors in load-

dependent Ritz vector algorithm
niv = number of input variables to kriging model
nk = number of kriging sample points
nPOD = number of proper orthogonal decomposition

snapshots
np = number of output parameters in kriging snapshot
nR = number of load-dependent Ritz vectors per

specified load vector
nV = number of free vibration modes used in

structural basis
O = order of kriging regression model
pk = kriging fitting parameter in correlation function
q = number of kriging output quantities
R = kriging regression function
ROM = solution vector of reduced-order model

Rx = matrix of kriging basis functions evaluated at
each snapshot
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r = number of degrees of freedomof reduced system
rx = vector of kriging regression functions
s = number of degrees of freedom of full-order

system
T = vector of discrete nodal temperatures
T 0 = scalar value of uniform initial temperature

distribution
~T = excess of temperature over initial conditions
t = time
tE = time to evaluate kriging model
tK = time to generate kriging model
tT = time to generate kriging training data
U = upper triangular matrix
ubi = upper bound for ith proper orthogonal

decomposition modal coordinate
v = input variable to function
X = matrix of kriging sample points for training data
x = structural degrees of freedom in physical space
Y�X� = snapshot vector/matrix of training data for

kriging model
y�j�i = ith entry of response vector for jth kriging

snapshot
ŷ�b� = kriging approximation to function at point b
Z�b; X� = realization of stochastic process with zero mean

and variance σ2

z�X� = stochastic process vector evaluated at each
kriging snapshots

α = angle of attack
αT = coefficient of thermal expansion
β = coefficients of basis functions in kriging

regression model
Δt = time-step size
θk = kriging fitting parameters in correlation function
κ = thermal conductivity of material
ν = Poisson’s ratio
ρ = density of material
σ = variance
ΦS = modal matrix of structural reference modes
ΦT = modal matrix of full set of thermal proper

orthogonal decomposition basis vectors
�ΦT = modal matrix of truncated set of proper

orthogonal decomposition basis vectors
ϕ�j� = jth free vibration mode
φ�j� = jth thermal basis vector
ψ �i� = ith load-dependent Ritz vector
�ψ �i� = ith load-dependent Ritz vector before normali-

zation

Subscripts

AE = aeroelastic
AT = aerothermal
HT = heat transfer
h = heated
I = user-determined input
L = lower bound
max = maximum application temperature
U = upper bound
u = unheated
0 = initial

Superscripts

A = component of structural load vector due to
aerodynamic pressure

a = approximate
H = component of structural load vector due to

heating
�n� = time level
T = matrix transpose
−1 = matrix inverse

I. Introduction

D ESIGN and simulation of hypersonic vehicles (HSVs) require
consideration of a variety of disciplines due to the highly

coupled nature of their flight regime [1]. To capture all of the potential
effects on vehicle dynamics, one must consider the aerodynamics,
aerodynamic heating, heat transfer, and elastic airframe, aswell as the
interactions between these disciplines. The problem is further
complicated by the large computational expense involved in
capturing all of these effects and their interactions in a full-order
sense. Although high-fidelity modeling techniques exist for each of
these disciplines, the use of such techniques is computationally
infeasible in a vehicle design and simulation setting for such a highly
coupled problem. Early in the design stage, many iterations of
analyses may need to be carried out as the vehicle design matures,
thus requiring quick analysis turnaround times. Additionally, the
number of states and number of degrees of freedom used in the
analyses must be small enough to allow for efficient control
simulation and design. As a result, alternative approaches must be
considered for vehicle simulations.
There are two methodologies that can be used in the generation of

low-order models. The first approach is to apply assumptions that
enable the use of simplified models. These models are characterized
by their low-order form, and they can often be solved analytically.
Although these models are useful in generating a low-order
representation of the physics, the simplifying assumptions made to
employ these models often preclude the ability to model detailed
geometries or complex physics. This work therefore makes use of an
alternative approach that involves the use of reduced-order models
(ROMs) that are derived from high-fidelity analysis tools. Use of
high-fidelity tools alone is infeasible due to their high order and long
runtime. Thus, this study seeks to go beyond simply coupling
existing high-fidelity codes and routines, and it instead proposes to
use the output of these tools alongwithmodel reduction techniques to
generate computationally tractable systems of governing equations.
The objective of the current work is to make the aerothermoelastic
(ATE) simulation of complex geometries feasible without the need
for a priori assumptions regarding the physics of the problem. As
opposed to a simplified modeling approach, by first modeling as
much of the physics as possible and then systematically reducing the
order of the system, we can control and quantify the error incurred
throughmodel reduction. This also allows for tailoring of the number
of states and degrees of freedom, as different levels of fidelity may be
required as the vehicle configuration matures.

II. Previous Work on Aerothermoelastic Modeling

Recent work on reduced-order structural dynamic modeling has
focused largely on modal methods to reduce the size of the problem.
In two works associated with the geometrically nonlinear thermo-
elastodynamic response of panels [2,3], the structural basis was
composed as a set of linear modes appended with an ensemble of
“dual” or “companion” modes, which are associated with the in-
plane displacements induced by the transverse modes [4]. In both [2]
and [3], the dual modes were computed by performing a series of
nonlinear static solutions at specific loading conditions. Both works
demonstrated the ability of the methodology to capture the geo-
metrically nonlinear response of panels under thermal and acoustic
loading.
Another philosophy that has been used to obtain reduced-order

solutions to nonlinear vibration problems involves employing system
identification techniques to guide the modal basis selection [5–8]. In
[8], system identification of a nonlinear system was first performed
using proper orthogonal decomposition and smooth orthogonal
decomposition [9] in order to identify the dominant proper ortho-
gonal modes of the system. The modal assurance criterion or modal
expansion theorem was then invoked to determine the linear normal
mode corresponding to each dominant proper orthogonal mode.
Once the basis was assembled, it was applied to the nonlinear
equations ofmotion (EOMs) in order to reduce the size of the system.
Application of the methodology to a rectangular panel demonstrated
the ability of the formulation to select an accurate and efficient basis
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for the simulation. As opposed to previous efforts, the approach used
in [8] did not require separate analyses for the transverse and in-plane
displacement components.
Although the aforementioned works provided progress in the area

of reduced-order modeling, efforts to employ reduced-order models
within a fully coupled aerothermoelastic framework have been
limited. Additionally, in much of the thermoelastic reduced-order
modeling literature, either the temperatures or the heat flux loads on
the structure were prescribed a priori. In HSV applications, the
thermal boundary conditions (BCs) are not known a priori, as they
depend on the aerodynamic flow properties and the wall temperature
of the structure. Thus, the structural dynamic and thermal ROMs
must be coupled such that they capture this interdependence.
The thermoelastic portion of the current work is a continuation of

previous studies on reduced-order modeling of the heat transfer and
structural dynamics problems [10–13]. The thermoelastic ROM
developed by the authors was combined with an aerothermal ROM
[14] into a unified unsteady aerothermoelastic framework [13].
It used reduced-order structural dynamic, heat transfer, and
aerodynamic heating models in a time-marching simulation
framework. The structural and thermal modes were used to
parameterize the structural dynamic response andwall temperature to
allow for discretization of the parameter space and enable creation of
the aerothermal kriging surrogate. Note that the structural ROM
required the greatest amount of computational time of the various
components of the solution in [13].
This paper focuses on the use of reduced-order structural dynamic

and thermal models within a fully coupled aerothermoelastic
framework. Specific challenges associated with using such ROMs in
an integrated framework are discussed, and methodologies are
developed to address those challenges. One objective of the current
study is to improve the computational efficiency of the structural
ROM by developing the capability to directly update the generalized
stiffness and thermal loads as a function of temperature. Another
objective of this paper is to improve the accuracy of the structural
ROM via basis augmentation.

III. Fundamental Aerothermoelastic Problem

The progress described previously has led to further investigation
into the aerothermoelastic coupling exhibited in hypersonic flight. A
flowchart of the overall framework applied in this work is shown in
Fig. 1. The process begins with the calculation of the heat flux on the
outer surface of the structure at the initial time. With the boundary
conditions and initial conditions of the thermal problem known, the
transient temperature distribution is marched forward in time. A
solution of the heat transfer problem is carried out in modal space

using modes from proper orthogonal decomposition (POD) to avoid
the computational cost of running a full-order finite element analysis.
This work considers two coupling mechanisms between the thermal
solution and structural stiffness. The first involves geometric
stiffening due to thermal stresses that occur in the structure due to
differential thermal expansion resulting from the spatially varying
temperature distribution. The second is due to the temperature
dependence of the Young’s modulus resulting from the high
temperatures experienced in hypersonic flight. In addition to the
thermal effects on the stiffness, the change in temperature also results
in thermal loads being applied to the structure. With the stiffness and
structural loads known, the structural dynamics system of equations
in physical space is transformed to a suitable reduced modal basis, to
be described in a subsequent section. The reduced modal system is
then solved for the modal coordinates to obtain the structural
response.With the deformed configuration known at the current time
step, the unsteady aerodynamic flow properties are updated and the
process is repeated at the next time step. After a predetermined
number of aeroelastic iterations have been carried out, the heat flux
boundary conditions are recalculated and the thermal solution is
updated.
A time-marching procedure with updates to the thermal and

structural boundary conditions at specified intervals is proposed for
solution of the coupled aerothermoelastic problem. An outline of the
time-stepping schedule is given in Fig. 2. The size of the aeroelastic
time step ΔtAE is smaller than the size of the aerothermal time step
ΔtAT due to the fact that the aeroelastic timescale is faster than the
thermal timescale. The procedure begins by calculating the
aerodynamic flow properties over the undeformed structure at initial
time t0. Using the flow properties, the heat flux at the outer surface is
found along with the local skin-friction coefficients. The
aerodynamic pressures and viscous drag components are then
integrated to determine the aerodynamic forces and moments at
initial time. With the thermal boundary conditions known, a
predetermined number of thermal time steps are taken, each of size
ΔtHT, until the time t0 � ΔtAT is reached. The thermal loads based on
the temperature change between t0 and t0 � ΔtAE are then applied to
the structural configuration at t0. Additionally, the aerodynamic loads
based on the already calculated flow properties are applied to the
structure. The structural dynamic response solution is then marched
forward one time step of size ΔtAE. The displacements are fed back
into the aerodynamic solver, and the flow properties are calculated at
time t0 � ΔtAE over the updated deformed configuration. Each time
the flow properties are recalculated, the aerodynamic pressures are
also integrated to allow for characterization of the transient
aerodynamic forces and moments on the vehicle. The aeroelastic
iterations continue to be carried for a predetermined number of time

Thermal Model

Structural Model

Nodal
Temperatures

Structural 
Deformation

Eckert Reference
Temperatures

Aero-
loads

POD Reduction

Structural Stiffness

Modal Space

Update Heat Flux

Thermal BCs

Structural
Layout

Elastic BCs

Temperatures Effect on 
Material Properties

Thermal Loads

Geometric
Stiffness

Piston
Theory

Thermal
Analysis

Structural
Dynamic
EOMs

+

Fig. 1 Reduced-order aerothermoelastic modeling framework.
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steps. Once the time instant t0 � ΔtAT has been reached, the
instantaneous flow properties and wall temperatures are used to
update the heat flux boundary conditions to the thermal problem.
With the updated thermal boundary conditions known, the transient
thermal solution is marched forward from the time instant t0 � ΔtAT
to the time instant t0 � 2ΔtAT, and the process is repeated.

IV. Overview of ROM Generation Process

As some of the ROMs used in the aerothermoelastic simulation
process are dependent on components of other ROMs, these models
must be generated in a specific order.An overviewof the process used
for generating the thermoelastic ROM is given in Fig. 3. The first
ROM to be created is the POD model for the transient thermal
component of the solution. To begin, the range of vehicle flight
parameters is defined. Based on these parameters, representative
simulations are carried out and the POD snapshots are extracted. The
structural dynamic ROM is dependent on the thermal ROM, and thus
the high-fidelity structural model is used in these simulations. The
accuracy of the thermal ROM is evaluated by running representative
aerothermoelastic simulations using both the thermal ROM and full-

order thermal model and comparing their output. If greater accuracy
is desired, more snapshots are taken and the thermal ROM is updated.
Once an accurate thermal ROMhas been created, the next step is to

identify the reference thermal state at which to evaluate the structural
free vibration modes. The philosophy used in this work is to take the
reference thermal state to be the average nodal temperatures over the
thermal snapshots. Based on the frequency range of interest, a set of
free vibration modes is evaluated at the reference thermal state,
including both temperature-dependent material properties and
geometric stiffening due to thermal stresses. Additional modes
known as load-dependent Ritz vectors (to be described in a later
section) are computed and appended to the structural basis. To avoid
the need to reassemble the temperature-dependent stiffness matrix
and thermal load vector as the temperature distribution evolves,
kriging ROMs of the stiffness matrix and thermal load vector
(described in Sec. VI) are created. To generate these ROMs, bounds
on the POD modal coordinates are established and kriging training
cases are run. At this point, the accuracy of the structural ROM is
assessed by again running representative aerothermoelastic
simulations and comparing the output of the structural ROM with
that of the full-order structural model. If greater accuracy is desired,
the structural modal basis is updated and the process is repeated.

V. Reduced-Order Modeling Formulations

A. Proper Orthogonal Decomposition for Reduced-Order Thermal
Solution

This work makes use of POD for reduced-order solution of the
transient thermal problem. A detailed description of the POD
formulation was given in a previous work [12], and thus only a brief
overview is presented here. The method of snapshots [15] is used for
determination of the PODbasis vectors. In this case, the snapshots are
defined as vectors of nodal temperatures at various time instants and
are computed from a high-fidelity finite element analysis. The goal of
the POD formulation is to express the vector of nodal temperatures T
at any time instant as a linear combination of the basis,φ�x; y; z�, with
coefficients c�t�, i.e.,
8><
>:
T1�t�
..
.

Ts�t�

9>=
>; � c1�t�

8><
>:
φ�1�
1

..

.

φ�1�
s

9>=
>;� c2�t�

8><
>:
φ�2�
1

..

.

φ�2�
s

9>=
>;� · · · �cr�t�

8><
>:
φ�r�
1

..

.

φ�r�
s

9>=
>;
(1)

where s is the total number of degrees of freedom in the finite element
model, and r is the total number of POD basis vectors retained after
truncation. The basis is computed by first generating the snapshot
matrix A given by

A �

2
66664

T�1�
1 T�2�

1 T�nPOD�
1

T�1�
2 T�2�

2 T�nPOD�
2

..

. ..
. . .

. ..
.

T�1�
s T�2�

s T�nPOD�
s

3
77775 �

h
a�1�; a�2�; : : : ; a�nPOD�

i
(2)

where T�j�
i indicates the ith entry of the jth snapshot, nPOD is the

number of snapshots taken, and a�j� refers to the column vector
corresponding to the jth snapshot. An eigendecomposition or
singular value decomposition is used to obtain the PODmodalmatrix
ΦT . Based on the eigenvalues corresponding to each of the POD
modes, the dominant POD modes are identified and the truncated
POD modal matrix �ΦT is formed.
The advantage of using POD is that the computationally intensive

process of generating the basis is carried out a priori, and the basis is not
updated throughout the simulation. Once the basis has been created, it
is applied to the full-order system of heat transfer equations in order to
reduce its size. Consider the full-order system of first-order coupled
ordinary differential equations governing transient heat transfer:

MT
_T�t� � KTT�t� � FT�t� (3)

Transient Heat 
Transfer (POD)

Aeroheating (Eckert)

Structural Dynamic 
Response (Modal)

Unsteady Aerodynamics
(Piston Theory)

Heat Flux BCs

Aeroloads

Update 
Heat 
Flux

Vehicle Force/Moment
Calculation

Integrate 
Pressures

Increasing Time

Δ tAT

Δ tAE

Δ tHT

t0

Fig. 2 Overview of aerothermoelastic time-stepping schedule.
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Extract POD Basis

Define Reference
Thermal State

Extract Free 
Vibration Modes

Define Range of
Flight Parameters

Truncate POD Basis

Run Simulation with 
Eckert for Aeroheating

Extract Static
Modes

Identify Frequency 
Range of Interest

Assemble Structural 
Modal Matrix

Assemble POD 
Modal Matrix

Completed 
Thermal ROM

Completed 
Structural ROM

Evaluate Accuracy

Evaluate Accuracy

Bound POD Modal
Coordinates

Create Kriging ROMs for
Stiffness/Thermal Loads 

Fig. 3 Flowchart of thermoelastic ROM generation process.
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where MT is the thermal capacitance matrix, KT is the thermal con-
ductivity matrix, and FT is the thermal load vector. The first step of the
reduction process is to project the full-order system onto the truncated
POD basis and transform from physical space to modal space using

�ΦT
TMT

�ΦT _c�t� � �ΦT
TKT

�ΦTc�t� � �ΦT
TFT�t� (4)

The generalized thermal capacitance matrixmT , generalized thermal
conductivity matrix kT , and generalized load vector fT are then
identified such that

mT � �ΦT
TMT

�ΦT (5a)

kT � �ΦT
TKT

�ΦT (5b)

fT�t� � �ΦT
TFT�t� (5c)

Note that, because the POD basis vectors are not eigenvectors of the
generalized eigenvalue problem, mT and kT are not diagonal at this
stage.Thus, the coupled system is integratednumerically inmodal space
using a second-orderCrank–Nicolson scheme as described in a previous
work by the authors [12].

B. Reduced-Order Modal Basis Solution for Structural Dynamic
Response

Although the full-order system of structural dynamic equations of
motion is used for comparison purposes, its solution within the
aerothermoelastic framework presented here is not suitable for vehicle
design and control analysis purposes. The problem of solving for the
structural dynamic response of hypersonic vehicle structures within a
design and simulation framework is complicated by various factors.
Due to the large number of degrees of freedom involved in a traditional
finite element solution, steps must be taken to reduce the order of the
structural dynamics system of equations. A common approach is to
employ a modal transformation in which the structural displacements
are expressed as a linear combination of a small number of basis
vectors that are the free vibration mode shapes of the structure.
However, this approach cannot be applied directly for hypersonic
vehicle applications because the mode shapes change over time due to
modification of the stiffness from geometric stiffness and temperature-
dependentmaterial property effects. The approach taken in thiswork is
to first perform an offline calculation and select a reduced number of
Ritz modes onto which the equations of motion are projected. These
Ritz modes are then used as the modal basis for solution of the
structural response throughout the simulation. This procedure is
applicable because the Ritz modes need only to satisfy the geometric
boundary conditions [16], which will always be the case, regardless of
the stiffness distribution. The modal matrix containing the structural
reference modes ΦS is not updated throughout the simulation, thus
preventing the need to recompute the modes during the course of the
simulation. Though the reference modes are not updated throughout
the simulation, the stiffness matrix is updated each time the structural
dynamic response is calculated to account for its dependence on
temperature. Updating of the conventional stiffness matrix is
performed using the temperature dependence of thematerial properties
of the various materials. The geometric stiffness matrix is updated by
solving a static finite element problem based on the thermal loads from
temperatures at the current time step and the material coefficients of
thermal expansion to calculate the internal loads.
The full-order system of structural dynamic equations of motion in

physical space is given by

MS �x�t� � K�
S�T�x�t� � FH

S �t� � FA
S �t� (6)

whereMS is themassmatrix,FH
S is the loadvector due toheating,FA

S is
the load vector due to aerodynamic pressure, and x are the physical
degrees of freedom. Note that FA

S contains a normal pressure
component calculated using a third-order piston theory formulation as
well as a wall shear-stress component calculated using the local

element skin-friction coefficients obtained from an Eckert reference
temperature computation. Themodified stiffnessmatrixK�

S is givenby

K�
S�T� ≡ KS�T� � KG�T� (7)

whereKS�T� is the conventional stiffness matrix that varies due to the
temperature dependence of the material properties, and KG�T� is the
geometric stiffness matrix resulting from thermal stresses. The
reduced-order system is obtained by first expressing an approximation
to the physical degrees of freedom xa�t� as a linear combination of the
structural basis vectors such that

xa�t� � ΦSd�t� (8)

where d represents the modal coordinates of the reference modes,
which are stored as columns of the modal matrix ΦS. Note that,
because the number of referencemodes used in themodal expansion is
much less than the number of physical degrees of freedom in the
model, the computational cost of the numerical solution of the system
is relatively inexpensive. Once the modified stiffness matrix is known
at the current time instant, the system is reduced by substituting Eq. (8)
into Eq. (6) and premultiplying the system by ΦT

S, i.e.,

ΦT
SMSΦS

�d�t� �ΦT
SK

�
S�T�ΦSd�t� � ΦT

S �FH
S �t� � FA

S �t�� (9)

The generalized mass matrix mS, generalized stiffness matrix k�S ,
generalized load vector due to heating fHS , and generalized load vector
due to aerodynamic pressure fAS are then given by

mS � ΦT
SMSΦS (10a)

k�S�T� � ΦT
SK

�
S�T�ΦS (10b)

fHS �t� � ΦT
SF

H
S �t� (10c)

fAS �t� � ΦT
SF

A
S �t� (10d)

As the mass of the structure is taken to be constant in this work, the
referencemodes are orthogonalwith respect to themassmatrix and the
generalized mass matrixmS reduces to the identity matrix.
Since the modified stiffness matrix is continuously changing, we

have no guarantee of orthogonality of the reference modes with
respect to stiffness, and the equations are coupled. As such, the
reduced-order system of equations in modal space is integrated
numerically to calculate the vector of modal coordinates at each time
instant. As the high-fidelity structural dynamic response solution is
treated as the truth model, the numerical integration scheme used for
the high-fidelity model (based on Nastran Sol 109) is implemented
for solution of the reduced-order system for the modal coordinates
d�t� to eliminate any discrepancies in the response due to differences
in numerical integration schemes. The numerical integration method
is similar to the Newmark-β method, except that the load vector is
averaged over three time instants and the stiffness matrix is modified
such that the dynamic equation of motion reduces to a static solution
if no inertial effect or damping exists [17]. The scheme uses a central
finite difference representation for the velocity and acceleration at
discrete times, given by [17]

_d�n� � 1

2ΔtAE
�d�n�1� − d�n−1�� (11a)

�d�n� � 1

Δt2AE
�d�n�1� − 2d�n� � d�n−1�� (11b)

where the superscript �n� refers to time. The initial conditions, d�0�
and _d�0�, are used to generate the vectors d�n−1�, f�n−1�S , and f�n�S for
the initial time step (n � 0) using
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_d�−1� � d�0� − _d�0�ΔtAE (12a)

f�−1�S � k�Sd
�−1� (12b)

f�0�S � k�Sd
�0� (12c)

Note that this formulation assumes that the initial acceleration for all
points is zero (initial velocity is constant). Substituting the finite
difference approximations of the velocity and accelerations
[Eqs. (11)] into the equations of motion [Eq. (6)] and averaging the
applied loads over three adjacent time instants, the equations of
motion are rewritten as

H1d
�n�1� � H2 �H3d

�n� �H4d
�n−1� (13)

where

H1 �
1

Δt2AE
mS �

1

3
k�S (14a)

H2 �
1

3

�
f�n�1�
S � f�n�S � f�n−1�S

�
(14b)

H3 �
2

Δt2AE
mS −

1

3
k�S (14c)

H4 �
−1
Δt2AE

mS −
1

3
k�S (14d)

The solution vector at the next time step d�n�1� is obtained by
decomposing H1 and applying it to the right-hand side of Eq. (13).

VI. Efficient Updating of Stiffness and Thermal Loads

As the temperature distribution of the structure is continuously
changing in time, the stiffnessmatrix and thermal load vectormust be
updated during the course of the aerothermoelastic simulation due to
their dependence on temperature. Note that, in the current
framework, these quantities are updated at every iteration of the
structural dynamic response solution. Further investigation is
required to develop methodologies for determining the appropriate
time interval at which to update the structural stiffness and thermal
loads based on the rate of evolution of the thermal solution.
Calculation of the generalized stiffness involves generating the
physical stiffness matrix and pre- and postmultiplying by the modal
matrix. Updating the physical stiffness matrix requires assembling
KS�T� based on the temperature dependence ofmaterial properties as
well as solving a static finite element problem to generate KG�T�.
Computation of the generalized thermal load vector requires
updating the physical thermal load vector and premultiplying by the
modal matrix. Creation of the physical thermal load vector requires
updating each element load vector based on the temperature change
and assembling the global load vector.
Because the number of physical degrees of freedom in the

structural model is large, reassembling the physical stiffness matrix
and thermal load vector at every aeroelastic time step is undesirable.
One goal of this paper is to examine techniques for reducing the
computational cost of the structural ROM by avoiding the need to
reassemble the physical stiffness matrix and thermal load vector
during the course of the aerothermoelastic simulation. A method for
directly updating the stiffness matrix and thermal loads based on a
given temperature distribution has therefore been developed to

reduce the computational cost of the structural ROM. This can be
seen as replacing some of the blocks in Fig. 1 with a reduced-order
representation linking the transient thermal solution to the structural
dynamic equations of motion. The generalized load vector due to
aerodynamic loadsfAS is still assembled in the usualmanner, as it only
contains contributions to the loads at the outer surface of the structure
and the associated computational cost is relatively low.

A. Overview of Kriging Theory

The methodology employed in this work is based on the kriging
technique [18], which provides a global approximation to a function
based on sampled training data. Consider a multi-input/single-output
function y�v1; v2; : : : ; vniv�, where y represents the scalar output of
the function, v denotes the input variables to the function, and niv is
the number of input variables. Kriging provides an approximation
ŷ�b� to the function based on local deviations Z�b; X� from a global
approximation R�b; X� of the form [19]

ŷ�b� � R�b; X� � Z�b; X� (15)

where b is a vector of inputs corresponding to the untried location in
the parameter space, and X is a collection of the sample points used
for the training data. The training responses at the sample points are
stored in the response vector Y�X� such that

Y�X� �

8>>><
>>>:

y�1��X�1��
y�2��X�2��

..

.

y�nk��X�nk��

9>>>=
>>>;

(16)

where y�j��X�j�� indicates the function output for the jth kriging
snapshot X�j�, and nk is the number of kriging snapshots.
The regression model R�b; X� is an assumed function (usually of

polynomial form), whereas Z�b; X� ensures that the kriging model
interpolates the sampled data points exactly and is a realization of a
stochastic process with zero mean, a variance of σ2, and a nonzero
covariance. Alternatively,Z�b; X� represents uncertainty in the mean
of y�b�; and the covariance matrix of Z�b; X� for two points in the
parameter space, b�i� and b�j�, is given by

Cov�Z�b�i��; Z�b�j��� � σ2C�G�X�i�; X�j��� (17)

where C is the correlation matrix that is assembled based on the
chosen correlation functionG�X�i�; X�j��, andX�i� andX�j� are the ith
and jth sample points, respectively. In Eq. (17), the process variance
σ2 functions as a scale factor that can be tuned to the training data. The
role of the correlation function is to account for the effect of each
interpolation point on every other interpolation point and quantifies
how quickly and smoothly the function moves from point X�i� to
pointX�j�. In this work, a Gaussian correlation function is used, and it
is given by [19]

G�X�i�; X�j�� � exp

�
−
Xniv
k�1

θkjX�i�
k − X�j�

k jpk

�
(18)

where θk andpk are the unknown fitting parameters, andX�i�
k denotes

the kth component of the ith sample point. The bounds on the fitting
parameters are θk > 0 and 0 < pk ≤ 2. As the point X�i� approaches
X�j�, Eq. (18) approaches its maximum value of one, leading to the
property that the kriging surface passes through the sampled data
points. Therefore, theGaussian correlation function is intuitive in that
the closer two points become in the parameter space, the greater the
correlation between the two points becomes. The parameters θk in
Eq. (18) serve to provide a measure of activity in the variable Xk.
Large values of θ indicate that there is strong correlation only for
sample points that are close together. Small values of θ indicate that
sample points spaced further apart still have a strong influence on
each other because they are well correlated. An alternative
interpretation of the θk parameters is associated with dependence of
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the function on the kth input variable. If the function of interest has a
strong dependence on the kth input variable, there exist large
differences in the function values at X�i�

k and X�j�
k . Thus, the

corresponding θk parameter will be large such that, even though the
absolute difference between X�i�

k and X�j�
k is small, the correlation

between the function values at the ith and jth snapshots is low due to
the fact that it changes rapidly with changes in the kth input variable.
The exponents pk are related to the smoothness of the function of
interest in the direction of the kth input variable, with increasing pk

corresponding to increasing smoothness. To determine the fitting
parameters, the form of R�b; x� must first be chosen.
To derive the prediction equations, a vector containing the

regression functions, denoted by rx, is assembled such that

R�b; X� � rx�b�Tβ�X� (19)

where rTx is a 1 × nb row vector of basis functions, with nb being the
number of basis functions associated with the regression polynomial;
and β is an nb × 1 column vector of coefficients of each of the
polynomial terms. The expanded design matrixRx is of the form [20]

Rx�X� �

2
6664

rTx �X�1��
rTx �X�2��

..

.

rTx �X�nk��

3
7775 (20)

such that the ith row of Rx corresponds to the evaluation of the nb
basis functions at the ith kriging snapshot. If the stochastic process
evaluated at the kriging snapshot points is denoted as

z�X� �
h
Z�X�1��; Z�X�2��; : : : ; Z�X�nk��

i
T

(21)

then the training data can be represented as

Y�X� � Rxβ� z (22)

The goal of the kriging methodology is to obtain the best linear
unbiased predictor, where unbiasedness refers to the fact that the
expected value of the predictor must be equal to the expected value of
Eq. (22). This is accomplished by solving an optimization problem to
minimize the error of the predictor subjected to constraints that
ensure unbiasedness. This procedure results in the kriging predictor
being given by

ŷ�b� � rTx β̂� gT�b; X�G−1�Y�X� − Rxβ̂� (23)

whereY�X� is the columnvector of length nk containing the values of
the function outputs at the sample points, andgT�b; X� is a correlation
vector between the untried point b and the sample data pointsX. Note
that Eq. (23) is the equation that is used to give the kriging prediction
within the aerothermoelastic framework. The correlation vector g is
given by

g�b; X� � �G�b; X�1��; G�b; X�2��; : : : ; G�b; X�nk���T (24)

In Eq. (23), β̂ is the generalized least-squares estimator of β and is
given by

β̂ � �RT
xC

−1Rx�−1RT
xC

−1Y�X� (25)

At this point, one must determine the fitting parameters θk and pk

in Eq. (18). As the stochastic process associated with the error of the
kriging regressors is assumed to beGaussian, the optimal values of θk
and pk are those that maximize the likelihood that the interpolation
points have been drawn from such a process. Alternatively stated, we
seek to choose θk and pk leading to a kriging function such that the
consistency between the actual model and the kriging predictions of
the model is maximized. The problem of obtaining the maximum
likelihood estimates of θk and pk is posed as

min
θk>0;0<pk≤2

−
nk ln �σ̂2� � ln jCj

2
(26)

where jCj is the determinant of C, and σ̂ is the generalized least-

squares estimate of σ given by

σ̂2 � �y − Rxβ̂�TC−1�y − Rxβ̂�
nk

(27)

Themaximum likelihood estimate given in Eq. (26) is a function of

the θk and pk parameters only, and one can thus use nonlinear

optimization techniques to obtain these parameters. Although any

values of θk and pk would result in a kriging model that interpolates

the sample points exactly, the “best” kriging model is that which uses

those values of θk andpk thatminimize the function given in Eq. (26).
In this work, kriging is used to approximate vector and matrix

quantities. Therefore, an independent kriging predictor is generated

for each entry in the corresponding vector or matrix. The training

responses at the sample points are stored in matrix form such that

Y�X� becomes

Y�X� �

2
666664

y�1�1 �X�1�� y�1�2 �X�1�� · · · y�1�np �X�1��
y�2�1 �X�2�� y�2�2 �X�2�� · · · y�2�np �X�2��

..

. ..
. . .

. ..
.

y�nk�1 �X�nk�� y�2�2 �X�nk�� · · · y�nk�np �X�nk��

3
777775

(28)

where y�j�i indicates the ith entry of the response vector for the jth
kriging snapshotX�j�, and np is the number of output parameters in a

snapshot. Thus, a kriging predictor is generated for each column of

Y�X� as shown in Eq. (28).

B. Use of Kriging for Efficient Updating of Stiffness and Thermal
Loads

In this application, the quantities to be approximated using kriging

ŷ are the entries of the stiffness matrix and the thermal load vector,

and the inputs to function b are spatially varying temperature

distributions. Because the current full-order thermal model contains

thousands of degrees of freedom, it is impractical to treat each thermal

degree of freedom as a variable in the parameter space. This is due to

the fact that the resulting parameter space would be too large to

realistically sample when generating the kriging training data.

However, as POD is already being used for the thermal ROM, it

provides a convenient and optimal means for parameterizing the

transient temperature distribution in terms of a small number of

variables. By using the truncated set of thermal POD modal

coordinates as the parameters to represent the complete temperature

distribution, the number of parameters to be sampled is greatly

reduced. The large-scale reduction in the number of input variables

needed to represent the physical temperature distribution is due to the

optimality of the POD basis. Recall that the POD basis is optimal in

the sense that it captures the solution more accurately in a finite

number of modes than any other basis representation using the same

number of modes, provided that the POD snapshots adequately

capture the dynamics of the system. This optimality is critical as the

computational effort required to construct a kriging model is a strong

function of the number of input variables involved.
Because of the large number of structural degrees of freedom, the

computational cost and memory associated with updating the

physical stiffness matrix K�
S�T� and pre- and postmultiplying by the

structural reference modes at every aeroelastic time step is

undesirable. As such, kriging is used to directly create the generalized

stiffness matrix k�S�T�, which is of reduced size and does not possess
the computational issues associated with the physical stiffness

matrix. As the number of entries in the physical thermal load vector

FH
S is reasonable, error analysis is conducted on kriging models for

both the physical and generalized thermal load vectors to assess

which one can be more accurately represented.
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C. Methodology for a Priori Bounding of POD Modal Coordinates

It is important to establish a robust methodology for bounding the
PODmodal coordinates a priori, as there is no guarantee of accuracy
if they go outside of the bounds that were used in generating the
kriging training data. As such, a robust and efficient method for
bounding the POD modal coordinates is developed. An overview of
the proposed methodology is given in Fig. 4.
The process begins by identifying the range of flight conditions for

which the kriging ROMs are to be valid. The flight conditions of
interest are theMach number, angle of attack, and altitude. Using the
bounds on the flight conditions, a Latin hypercube sampling (LHS)
procedure is used to generate n flight condition sets. One of the
sample points must correspond to the highest dynamic pressure case
(maximum Mach number, maximum angle of attack, and minimum
altitude), and another sample point must correspond to the lowest
dynamic pressure case (minimum Mach number, minimum angle of
attack, and maximum altitude). For each set of flight conditions, a
full-order aerothermoelastic simulation is carried out and thermal
snapshots are taken. Note that these simulations are performed in
parallel such that the time to generate all of the thermal snapshots is
the computation time for a single full-order simulation. Once the
thermal snapshots are obtained from all of the full-order aero-
thermoelastic simulations, they are combined into a single snapshot
matrix and the POD basis is generated. The POD basis is then used
alongwith the snapshots to calculatewhat the time history of the POD
modal coordinates would have been had the thermal ROM been used
for each set of flight conditions. For each case, the maximum and
minimum values of each POD modal coordinate are identified, and
this information is used to create a kriging surface that gives the
bounds on each of the POD modal coordinates as a function of the
Mach number, angle of attack, and altitude. This kriging surface is
then used as a surrogate model for the purpose of finding the
maximum possible upper bound andminimum possible lower bound

for each POD modal coordinate at any location within the parameter

space of the flight conditions. Once the POD bounds are established,

they are used in the generation of sample points for the krigingROMs

of the stiffnessmatrix and thermal load vector. This framework serves

two important purposes. In addition to providing robust bounds on

the PODmodal coordinates, it also leads to the generation of a rich set

of thermal snapshots, leading to an accurate thermal POD model.
One challenge involved in bounding the PODmodal coordinates is

associatedwith their initial conditions. If the relations given in Eq. (4)

are solved directly for the PODmodal coordinates, it is likely that the

bounds will be exceeded for simulations for which the initial

conditions vary from those at which the bounds were generated. It is

therefore desirable to generate bounds that are independent of the

initial conditions by transforming Eq. (3) such that the initial

conditions are made to be uniform and homogeneous. This is

accomplished by defining a new variable ~T, which represents the

excess of temperature over the initial condition, i.e.,

~T�t� � T�t� − T0 (29)

where T0 is the vector of initial temperatures. Applying this

transformation to Eq. (3), the system becomes

M _~T�t� � K ~T�t� � GT�t� (30)

whereGT�t� � F�t� − KT0. As before, the system is transformed to

modal space using

�ΦT
TMT

�ΦT
_~c�t� � �ΦT

TKT
�ΦT ~c�t� � �ΦT

TGT�t� (31)

where ~c denotes the fact that the system has been transformed to

impose homogeneous initial conditions. Once the system is solved

Bound flight 
conditions (M, α, h)

Select combinations of 
(M, α, h) using LHS 

ATE sim3ATE sim2ATE sim1 ATE sim4 ATE simn

Thermal 
snapshots

Thermal 
snapshots

Must include: 
(Mmax, α max, hmin) and

(Mmin, αmin, hmax)

Thermal 
snapshots

Thermal 
snapshots

Thermal 
snapshots

POD basis

Time-history of 
POD modal 
coordinates

Time-history of 
POD modal 
coordinates

Time-history of 
POD modal 
coordinates

Time-history of 
POD modal 
coordinates

Time-history of 
POD modal 
coordinates

Max/min POD 
modal 

coordinates

Max/min POD 
modal 

coordinates

Max/min POD 
modal 

coordinates

Max/min POD 
modal 

coordinates

Max/min POD 
modal 

coordinates

Kriging surfaces: 
Bounds vs. (M, α, h) 

Maximize/minimize for 
each modal coord

POD bounds

…

…

…

…

Fig. 4 Proposed methodology for generating thermal snapshots and bounding POD modal coordinates.
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for ~c�t�, the physical temperatures are obtained by multiplying the

POD basis with the POD modal coordinates and adding the initial
conditions back on, i.e.,

T�t� � �Φ ~c�t� � T0 (32)

In addition to making the bounds independent of the initial
conditions, this transformation provides another benefit in terms of

improving the accuracy of the thermal ROM. If the initial conditions
were not made to be homogeneous, the initial value of each POD

modal coordinatewould be found by projecting T0 in the direction of
the corresponding POD basis vector, i.e.,

ci�0� � hφ�i�; T0i (33)

where h·i denotes an inner product. Because the POD basis does not

form a complete space for the physical temperatures, the initial
temperature distribution cannot be represented exactly in this

formulation. However, by transforming the equations to enforce
homogeneous initial conditions, ~c�0� is forced to become a vector of

zeros and T�t� can be represented exactly after the vector of initial
conditions is added back to the solution. For the current framework in

which Eq. (31) is integrated numerically and the solution at each time
step depends on that at the previous time step, the ability to represent
the initial conditions exactly is important.
To account for the transformation of Eq. (29) in the kriging

representation of the stiffness matrix and thermal loads, additional
input variables corresponding to T0 must be included in the kriging

functions. This is necessary because the input variables passed to the
kriging functions must be capable of reproducing the physical
temperature distribution, including the effect of the initial condition.

In this work, the initial temperature distribution is assumed to always
be uniform such that the physical temperature distribution can be

expressed as

T�t� �
�Xr
i�1

ci�t�φ�i�
�
� T 0f1g (34)

where T 0 is the scalar value of the uniform initial temperature, and

f1g is a vector of ones of length s. Thus, the input variables for the
krigingROMS are the PODmodal coordinates ci and the scalar value
of the initial temperature T 0. Because the initial condition is taken to

be uniform here, only one additional input variable is required to
represent the initial condition. Arbitrary spatial variation of the initial

conditions can be permitted by replacing T 0f1g in the right-hand side
of Eq. (34) with a linear combination of multiple basis vectors. Note

that this would require a larger number of input variables to represent
the initial conditions.

D. Selection of Parameters for Kriging Model Generation

The number of input variables, number of sample points, and order
of regression must be selected for both the kriging model of the
thermal loads and the kriging model of the generalized stiffness. In

selecting these parameters, considerationmust be given to a variety of
factors. The number of sample points used to generate the kriging

ROMs must be sufficient to provide enough training information to
achieve the desired level of accuracy. Additionally, if too few input

variables are used, the temperature distribution passed to the kriging
model may not be representative of the actual temperature

distribution. Finally, the computation time required to generate the
kriging ROMs must be balanced against the desired accuracy,
number of sample points, and number of input variables required to

obtain this accuracy for a given regression model. Because the
computation time increases quickly with number of sample points,

number of input variables, and order of regression, the tradeoff
between desired accuracy and computation time must be taken into

account. Though the kriging models are generated a priori and
offline, the computation time required to generate them must still be

reasonable.

VII. Techniques for Enhanced Modal Solutions

Previous work [13] has shown that the use of free vibration modes
alone within a mode-displacement approach for reduced-order
structural dynamic modeling may not always be sufficient to capture
the structural dynamic response under the aerodynamic and thermal
loads experienced in hypersonic flight. Thus, the goal of the
current section is to outline techniques for improving the modal
representation of the structural dynamic response while still
maintaining the low-order nature of the solution. Because both the
thermal and structural ROMs consist of modal solutions, the
techniques discussed are applicable to both. However, in this paper,
the techniques are applied only to the structural dynamic model.
The technique used in this study to improve the accuracy of the

structural ROM involves augmentation of the original basis with
additional Ritz vectors. In this approach, the original structural basis
containing the reference free vibration modes is augmented by
inserting additional columns into the modal matrix, i.e.,

ΦS �

2
66664

ϕ�1�
1 ϕ�2�

1 · · · ϕ�r�
1 ψ �1�

1 · · · ψ �l�
1

ϕ�1�
2 ϕ�2�

2 · · · ϕ�r�
2 ψ �1�

2 · · · ψ �l�
2

..

. ..
. . .

. ..
. ..

. . .
. ..

.

ϕ�1�
s ϕ�2�

s · · · ϕ�r�
s ψ �1�

s · · · ψ �l�
s

3
77775 (35)

where ψ �i� represents the ith augmented mode shape, and l is the
number of augmented modes. The specific technique used in this
work to obtain the augmented mode shapes is the method of load-
dependent Ritz vectors [21]. This approach is advantageous in that it
provides the capability for capturing quasi-static structural response
that might otherwise not be contained within a particular eigenvector
subspace. Thus, load-dependent Ritz vectors provide a means for
incorporating the spatial distribution of the loads into the modal
representation of the structural dynamics.
A summary of the algorithm for computing load-dependent Ritz

vectors is given inAlgorithm1. The procedure begins by selecting a set
of free vibration modes ϕ. In this application, the number of free
vibration modes r is determined based on a cutoff frequency beyond
which the correspondingmode shapes are not expected to contribute to
the solution. The physical mass matrix MS and modified stiffness
matrix at a reference thermal stateK�

S are then obtained from the finite
element model, and K�

S is decomposed into its lower–upper (LU)
factorization for efficient inversion. The first load-dependent Ritz
vector �ψ �1� is computed in step 4 by solving the static problemgiven by

K�
S �ψ

�1� � FI
S (36)

whereFI
S is a user-determined input. The quality of the load-dependent

Ritz vectors is dependent on the degree to which FI
S represents the

loading that the structure will experience in the actual simulation. To
make �ψ �1� orthogonal to the previously determined free vibration
modes with respect to MS, the modified Gram–Schmidt algorithm is
invoked in step 5, which repeatedly removes from �ψ �1� its projection
onto the previous modes according to

�ψ �1� � �ψ �1� − ϕ�j�ϕ�j�TMS �ψ
�1�; j � 1; : : : ; r (37)

In Eq. (37), every time �ψ �1� is updated, it overwrites the previous
version, thus reducing storage requirements. Note that the modified
Gram–Schmidt algorithm is used in order to avoid the well-known
numerical instabilities associated with the classical Gram–Schmidt
algorithm. The orthogonalized solution vector �ψ �1� is then
normalized with respect to the mass matrix to obtain ψ �1� using

ψ �1� � �ψ �1�

� �ψ �1�TMS �ψ
�1��1∕2 (38)

The static solution used to obtain ψ �1� neglected the inertial forces,
which are given by MS �ψ

�1�. Assuming harmonic motion in free
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vibration, the neglected inertial forces are of the form ω2MSψ
�1�,

where ω represents a typical frequency of the load. The vector of
neglected inertial loads is then applied as a load vector in the
generation of �ψ �2� at step 8. Again, a static solution is used to obtain
�ψ �2�, and ψ �2� is obtained by orthogonalizing inmass against all other
modes and normalizing with respect to the mass matrix. Steps 8–11
are repeated until the desired number of load-dependent Ritz vectors
are obtained. The procedure depicted in Algorithm 1 shows the steps
taken when a single load vectorFI

S is specified. The algorithm can be
generalized for the case in which multiple load vectors are specified.
In that case, steps 4–11 are repeated for each FI

S; each time a new
load-dependent Ritz vector �ψ is calculated, it is orthogonalized
against all previous vectors with respect to MS, and it is normalized
with respect to MS. The number of specified load vectors nF and
number of load-dependent Ritz vectors per specified load vector nR
will affect the solution accuracy. Note that nR corresponds to the
number of iterations performed in steps 7–11.
The main challenge associated with this approach is determining

the representative load vectors FI
S to use in step 4 of Algorithm 1. As

the quality of the basis is dependent on the choice of FI
S, it is

important to choose these vectors so that they most closely represent
the spatial distribution of loads that the structure will experience
during flight. To identify the dominant spatial components of the
loads, a POD analysis is applied to the structural load vectorFS based
on snapshots ofFS from high-fidelity aerothermoelastic simulations.
As discussed in Sec. V.A, the POD is optimal in the sense that it
arranges the modes such that the first mode contains the largest
amount of energy, the second mode contains the second largest
amount of energy, and so on. As a result of this optimality property,
PODcan be used to identify themost dominant spatial components of
the structural loads for use in the load-dependent Ritz vector
procedure. Algorithm 1 will be repeated for a specified number of
representative load vectors, resulting in a set of load-dependent Ritz
vectors to be appended to the set of free vibration modes.

VIII. Numerical Studies

A. Lifting Surface Model

A finite element model of a representative hypersonic vehicle all-
movable lifting surface has been created for use in this study. A
detailed description of the structure was provided in [13], and thus
only a brief overview is given here. The thickness from the top skin
layer to the bottom skin layer is 4% chord length [22]. The top and
bottom skin layers are each equipped with two 3.8-mm-thick thermal
protection system layers; thus, the thickness of the outer mold line is
4% chord length plus the 15.2 mm of thermal protection system
material. The chord length at the root is 5.2 m. (17 ft) [23], and the
leading edge makes an angle of 34 deg with the y axis, whereas the
trailing edge makes an angle of 18 deg with the y axis [24]. Planform
and cross-sectional views of the lifting surface are given in Figs. 5
and 6, respectively.

This study considers a thermal protection system consisting of an

outer heat shield and middle insulation layer on top of the skin, as

shown in Fig. 7. The material for the heat shield is chosen to be René

41, as it was found to be efficient in terms of mechanical properties at

elevated temperatures. Min-K insulation, which is a proprietary

silica-based material faced with Astroquartz® cloth [25], is selected

for the insulation layer due to its relatively low thermal diffusivity.

For the structure (both skin and stiffeners), the Titanium alloy

TIMETAL 834 (formerly known as IMI 834) is chosen.

The thermal and mechanical properties of the three materials

employed in themodel are shown inTable 1,where “T-dep.” indicates

that the property is temperature dependent [25–27]. Note that the

temperature-dependent material properties for René 41 are

extrapolated beyond the available data, and themaximumapplication

temperature Tmax is set to 1500K. The emissivity of the heat shield is

taken to be 0.85 [24]. The thermal strain is calculated based on the

temperature change with respect to a reference stress-free

Algorithm 1 Algorithm for generation of load-dependent Ritz vectors [21]

1. Select r free vibration modes ϕ
2. ObtainMS and K

�
S

3. K�
S � LU Decompose K�

S for efficient inversion
4. K�

S �ψ
�1� � FI

S Specify FI
S and solve for �ψ

�1�
5. for j � 1; : : : ; r Orthogonalize �ψ �1� against free vibration modes with respect toMS

�ψ �1� � �ψ �1� − ϕ�j�ϕ�j�TMs �ψ
�1� Modified Gram–Schmidt algorithm

end
6. ψ �1� � � �ψ �1�∕� �ψ �1�TMS �ψ

�1��1∕2� Normalize �ψ �1� with respect to MS

7. for i � 2; : : : ; l Loop to generate subsequent vectors
8. K�

S �ψ
�i� � MSψ

�i−1� Solve for �ψ �i� based on neglected inertia
9. for j � 1; : : : ; r Orthogonalize �ψ �i� against free vibration modes with respect toMS

�ψ �i� � �ψ �i� − ϕ�j�ϕ�j�TMs �ψ
�i� Modified Gram–Schmidt algorithm

end
10. for j � 1; : : : ; i − 1 Orthogonalize �ψ �i� against Ritz modes with respect toMS

�ψ �i� � �ψ �i� − ψ �j�ψ �j�TMs �ψ
�i� Modified Gram–Schmidt algorithm

end
11. ψ �i� � � �ψ �i�∕� �ψ �i�TMS �ψ

�i��1∕2� Normalize �ψ �i� with respect toMS

12. end Assemble modal matrix ΦS

Heat Shield: René 41

Insulation: Min -K

Skin: TIMETAL834

aeroq rad

h1

h2

h3

q

Fig. 7 Schematic of material stacking scheme at outer mold line of
structure.

c

0.04c+15.2 mm

Fig. 6 Cross-sectional geometry of lifting surface model.

5.2 m (17 ft)

3 
m

 (
9.

8 
ft

) 34° 18°

Flow Direction

y

x

Fig. 5 Planform geometry of lifting surface model.
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temperature. The reference temperature used for calculation of

thermal strain is taken to be 293K for all materials. The finite element

model used for the thermal and structural modeling aspects of the

study as described in [13] is shown in Fig. 8 with the top surface

removed for visualization purposes.

B. Bounding the PODModal Coordinates

To demonstrate the previously outlined approach for bounding the

POD modal coordinates, the framework of Fig. 4 is applied to the

lifting surface structure described previously for the ranges in flight

conditions shown in Table 2. Ten sets of flight conditions are

identified using LHS. Two different sets of time-step sizes are used in

the aerothermoelastic simulations. For the period of 0–150 s, the

time-step sizes are ΔtHT � ΔtAE � 0.1 s and ΔtAT � 1 s. For the
period from 150 to 3600 s, the time-step sizes are ΔtHT � ΔtAE �
1 s and ΔtAT � 5 s. One thermal snapshot is taken at each heat

transfer time step. This results in total of 4951 snapshots for each of

the 10 full-order aerothermoelastic simulations, and thus a total of

49,510 snapshots are used in the generation of the POD basis.

Using the 49,510 snapshots obtained from the 10 full-order

aerothermoelastic simulations, the POD basis is generated. The

eigenvalues associated with the first 50 POD modes are given in

Fig. 9. Based on the eigenvalues, the first 32 PODvectors are retained

after basis truncation in this case. Though the thermal ROM is not the

focus of this paper, its accuracy is assessed for one set of flight

conditions. The flight conditions used for verifying the accuracy of

the PODbasis are as follows:M∞ � 6.5,α � 2 deg, andh � 35 km.

The time steps for this case are ΔtAE � ΔtHT � 0.1 s and

ΔtAT � 1 s. The normalized root mean-squared error (NRMSE) and

L∞ error of the thermal ROM are calculated with respect to the full-

order thermal model at each heat transfer time step using Eqs. (40)

and (41). In the case of the thermal ROM, the vectors “Full” and

“ROM” correspond to the temperatures vectors from the full-order

and reduced-order thermal models at a given time step. To eliminate

any additional errors, the full-order structural model is used for both

cases. Time histories of the NRMSE and L∞ error for a simulation

time of 1200 s are given in Figs. 10a and 10b, respectively. Examining

these figures, the thermal ROM shows good agreement with the full-

order thermal model.

The next step is to obtain the upper and lower bounds for each of
the 32 POD modal coordinates using the procedure described in
Sec. VI.C. The maximization/minimization procedures are
performed using the function fmincon available within MATLAB®.
Note that the minimization/maximization steps are repeated at
different starting locations within the parameter space in order to
avoid the potential for obtaining local extrema. Plots of the upper and
lower bounds of each of the 32 POD modal coordinates are given in
Figs. 11a and 11b, respectively.
To verify that the bounds identified in Fig. 11 are indeed the

maximum upper bounds and minimum lower bounds over the range
of flight conditions given in Table 2, an additional set of 10
aerothermoelastic simulations is run. The Mach number, angle of
attack, and altitude for these simulations are selected by using the
LHSmethodology alongwith the criterion tomaximize theminimum
Euclidean distance between the flight conditions of the 10 new
simulations and the 10 simulations that were used in establishing the
bounds originally. The additional 10 simulations make use of the
thermal ROM that consists of the 32 retained POD modes; however,
the full-order structural model is used to calculate the structural
dynamic response. The time-step sizes for the additional simulations
are the same as those that were used in the original 10
aerothermoelastic simulations. At each heat transfer time step, the
vector of POD modal coordinates is stored. The maximum and
minimum values of each POD modal coordinate over all time steps
over all of the 10 simulations is then found. The bounds identified
using the procedure shown in Fig. 4 are comparedwith theminimum/
maximum values identified via the 10 additional aerothermoelastic
simulations by computingmargins of safety. Themargin of safety for
the upper bounds MSU and margin of safety for the lower bounds
MSL are found using

Table 1 Structural and thermal material properties used in the study

ρ, kg∕m3 E, Pa ν αT , μm∕m∕K κ,W∕m∕K cp, J∕kg∕K Tmax, K h, mm

Heat shield 8240 T-dep. 0.31 T-dep. 18 541 1500 3.8
Insulation 256 Neglect Neglect Neglect 0.052 858 1250 3.8
Skina 4550 T-dep. 0.31 11 7 525 873 6.35

aThe properties ν, κ, and cp for TIMETAL 834 were obtained from http://www.matweb.com/search/DataSheet.aspx?

MatGUID=a74096c99aa6486382a9c9e1be0883c4 [retrieved 2016].

Attachment region

Fig. 8 Finite element model of lifting surface used in study.

Table 2 Bounds on flight conditions
for kriging ROM generation

Lower bound Parameter Upper bound

5.0 ≤ M∞ ≤ 8.0
0.0 deg ≤ α ≤ 4.0 deg
25.0 km ≤ h ≤ 45.0 km
293 K ≤ T 0 ≤ 1500 K
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Fig. 9 Eigenvalues associated with first 50 thermal POD modes based
on 49,510 thermal snapshots.
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MSU;i �
ubi −maxi
jmaxij

× 100% (39a)

MSL;i � −
lbi −mini
jminij

× 100% (39b)

where ubi and lbi are the upper and lower bounds for the ith POD
modal coordinate, and maxi and mini are the maximum and
minimum values of the ith modal coordinate identified from the 10
additional aerothermoelastic simulations. For the upper and lower
bounds to encompass the ranges of the POD modal coordinates
experienced in the simulations, all elements of both MSU and MSL
must be greater than or equal to zero. Plots ofMSU andMSL are given
in Figs. 12a and 12b, respectively. In both figures, all values of the
margin of safety are greater than or equal to zero, and thus the bounds
are valid. Note that the data point corresponding tomode 1 in Fig. 12b
is not shown because both min1 and lb1 are zero.

Due to the prohibitive computational expense, it is not feasible to
use all 32 POD modal coordinates as input variables in the kriging
representations of the stiffness matrix and thermal load vector.
Although all 32 POD modes will be used in the solution of the

reduced thermal system, only a subset of the resulting POD modal
coordinates will be passed to the kriging functions at each aeroelastic
time step. Though some accuracy will be lost in representing the
physical temperatures using less than 32 POD modes, the penalty is
not expected to be significant due to the fact that the PODmodes are
sorted in order of decreasing energy and the modes that are excluded
from the kriging models are chosen to be the lowest energy modes.

C. Kriging for Efficient Updating of Stiffness and Thermal Loads

The methodology for efficient updating of stiffness and thermal
loads outlined in Sec. VI.B is now demonstrated. The first step in the
process is to generate the thermal POD vectors to be used in
parameterizing the transient temperature distribution. For the
purposes of this section, an aerothermoelastic simulation is run for a
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b) L∞ error
Fig. 10 NRMSE and L∞ error of thermal POD ROM atM∞ � 6.5, α � 2 deg, and h � 35 km.
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Fig. 11 Upper and lower bounds of POD modal coordinates for 32 retained POD basis vectors.
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Fig. 12 Margins of safety on upper and lower bounds based on 10 additional aerothermoelastic simulations.
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time history of 1 h atM � 8, h � 26 km, α � 3 deg, and a uniform
initial temperature distribution T0 of 293 K. In a previous work by
Falkiewicz et al. [13], it was found that there is a steep initial
temperature gradient as the structure begins heating up, and the
maximum temperature increases until approximately 150 s into the
transient, at which point it begins to reach a steady state. As such, two
different sets of time steps are used to adequately capture the
dynamics of the thermal system. For the period from 0 to 150 s, the
time steps are chosen as follows: ΔtHT � ΔtAE � 0.1 s and
ΔtAT � 1 s. For the period from 150 to 3600 s, the time steps are
chosen as follows:ΔtHT � ΔtAE � 1 s andΔtAT � 5 s. The goal of
using smaller time steps initially is to provide more resolution for the
period inwhich the dynamics of the thermal system are changing on a
faster timescale. One thermal snapshot is taken at each heat transfer
time step, regardless of the size of the time step, resulting in a total of
4951 snapshots. The first 24 eigenvalues of the correlation matrix are
shown in Fig. 13. Based on the eigenvalues, the first 15 POD modes
are retained.
With the input variables chosen, the next step of the process is to

generate the kriging sample points to be used in the ROM
construction. The LHS methodology is used to generate the kriging
sample points. Each kriging sample point consists of a set of 15 POD
modal coordinates. For the purposes of the error analysis in this
section, the bounds on the POD modal coordinates are computed
based on least-squares solutions using the thermal snapshots.
Because the sampling is performed on the PODmodal coordinates

and not on the nodal temperatures themselves, the resulting
temperature vector may be out of the expected range for the structure
for certain combinations of POD modal coordinates. To account for
this, bounds are also established on minimum and maximum
allowable values of the resulting nodal temperatures. After the
sample points are generated, the temperature vector corresponding to
each sample point is found using the chosen POD basis. A filtering
process is then employed that eliminates sample points for which the
corresponding nodal temperature values lie outside the range of 293–
1500 K. It is therefore necessary to generate more sample points than
desired, as not all sample points will be accepted.
Once the inputs for each training run are generated, a high-fidelity

analysis is conducted to generate the training data for each sample
point. This step consists of generating the temperature distribution
corresponding to the selected PODmodal coordinates and computing
the resulting stiffness matrix and thermal load vector at that
temperature distribution. The generalized stiffnessmatrix calculation
is performed by assembling the physical stiffness matrix and pre- and
postmultiplying by the chosen structural reference modes. The
physical stiffness matrix is computed using Eq. (7) and contains
contributions from both the conventional stiffness matrix with
temperature-dependent material properties KS�T� and the geometric
stiffness resulting from thermal stresses KG�T�. The assembling of
the matrices and vectors required for the kriging training process is
accomplished via the use of Nastran direct matrix abstraction
programming. For this case, the structural reference modes are
chosen to be the first 10 free vibration modes at the reference thermal

state. The reference thermal state is obtained by averaging the 4951
thermal snapshots used in generating the POD basis. Note that the
validity of this structural basis is not studied in the current section. It is
used simply as a placeholder at this stage for the purpose of evaluating
the accuracy of the kriging ROM with a fixed structural basis. A
subsequent sectionwill provide detailed examination of selection of a
robust structural basis.
Using the set of sample points along with the output data, kriging

surrogates are created for the stiffness matrix and thermal loads using
a second-order polynomial regression model. Once the kriging
models are generated, the errors associated with each are quantified.
If the accuracy of the models is acceptable, they can then be used
within the aerothermoelastic simulation framework. If greater
accuracy is desired, more sample points are added and the kriging
models are updated. The procedure for error quantification is based
on that used by Crowell et al. [14]. The process involves first
generating an independent set of evaluation points usingLHS.Again,
these evaluation points are subjected to the criteria that they must
generate nodal temperatures that lie within the range 293–1500 K.
The number of kriging evaluation points ne is chosen to be 500 in this
study. For each evaluation point, the stiffnessmatrix and thermal load
vector are calculated using both the full-order model and the kriging
ROM. To quantify the error between the full-order and kriging
solutions, two different errormetrics are used. The first errormetric is
the normalized root mean-squared error. Expressed as a percentage,
the NRMSE is given by

NRMSE �
�����������������������������������������������������������
�1∕q�Pq

i�1 �ROMi − Fulli�2
p

Max�Full� −Min�Full� × 100% (40)

where i is the ith output quantity, ROM represents a solutionvector of
the reduced-order model, Full represents a solution vector of the full-
order model, and q is the total number of output quantities. Also, note
that “Max” and “Min” correspond to the maximum and minimum
entries, respectively, of the vector of interest. The output quantities
are the entries of the generalized stiffness matrix and the physical or
generalized thermal load vector, and thus i is summed over all of the
entries of the vector of interest in the numerator of Eq. (40). Note that
the generalized stiffness matrix is reshaped into a column vector for
the purpose of error analysis. The second error metric used is the L∞
error. Expressed as a percentage, the L∞ error is given by

L∞ � Max
�jROM − Fullj�

Max�Full� −Min�Full� × 100% (41)

Note that the error metrics are calculated for each evaluation case.
To determine a scalar measure of error for the ROMs, both the
average and maximum values of the NRMSE and L∞ error over all
evaluation cases are examined.
To examine the error of the kriging ROMs as a function of number

of sample points, kriging models for both the generalized stiffness
matrix and generalized thermal load vector are created using varying
numbers of sample points. Two different criteria are used in
generating the set of Latin hypercube sample points. The first,
denoted “maximin,” aims to maximize the minimum distance
between sample points over a specified number of iterations. The
second, denoted “correlation,” aims to minimize the correlation
between sample points over a specified number of iterations. In both
cases, the maximum allowable number of iterations is set to 500. The
error metrics are computed for each kriging ROM over 500
evaluation cases, which are always generated using the maximin
criterion over 500 iterations. Plots of the average NRMSE and L∞
error for the generalized stiffness ROM as a function of number of
sample points are given in Figs. 14a and 14b, respectively, using both
the maximin and correlation criteria. Similarly, plots of the average
error for the generalized thermal load vector ROM are given in
Figs. 15a and 15b, respectively, using both the maximin and
correlation criteria. Due to memory requirements associated with the
maximin criterion, the maximum number of sample points used with
this criterion is 3000, whereas up to 6000 are taken for the correlation
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Fig. 13 Semilog plot of first 24 eigenvalues of correlation matrix.
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cases. As seen in the figures, there is not a significant difference

between the results obtained using the maximin criterion and the

correlation criterion. Due to the higher computational cost and

memory requirements associated with the maximin criterion, the

correlation criterion with a maximum of 500 iterations is used from

this point forward. Comparing Fig. 14 with Fig. 15, it is evident that

the generalized stiffness matrix ROM is significantly more accurate

than thegeneralized thermal load vectorROMfor the samenumber of

snapshots.
To understand why the error of the generalized stiffness ROM is

significantly lower than that of the generalized thermal load vector

ROM, the functional dependence of the generalized stiffness matrix

on the POD modal coordinates is examined. Recall that the physical

stiffness matrix is the sum of the conventional stiffness matrix and

geometric stiffness matrix, i.e.,

K�
S�T� ≡ KS�T� � KG�T� (42)

The entries of the generalized stiffness matrix are simply linear

combinations of the entries of the physical stiffnessmatrix and do not

affect the order of its dependence on temperature. The dependence of

KS�T� and KG�T� on the POD modal coordinates is through the

variation of material properties with temperature. In addition,KG�T�
is also a function of ΔT. The entries of the conventional stiffness

matrix KS�T� are only dependent on the Young’s modulus of the

corresponding material, i.e.,

KS;i ∝ E�Ti� (43)

where i denotes a particular degree of freedom. The entries of the

geometric stiffness matrix KG�T� are dependent on the Young’s

modulus, the coefficient of thermal expansion, and the temperature

change, i.e.,

KG;i ∝ E�Ti�; αT�Ti�; ΔTi (44)

where the temperature is always expressed as a linear combination of
the POD basis vectors such that

Ti �
Xr
j�1

cjφ
�j�
i (45)

where r is again the number of degrees of freedom in the reduced-order
thermal model. To understand the order of the functional dependence
the entries ofKS�T� andKG�T� on the PODmodal coordinates cj, it is
first necessary to know the order of the functional dependence ofE and
αT on temperature for each material in the model. This information is
given inTable 3 for eachof the threematerials used in themodel,where
each entry in the table gives the order of the polynomial approximating
the temperature dependence of the material property. Recall that the
stiffness and thermal expansion of the insulation layer are neglected in
the structural model.
Based on the information given in Table 3, the entries ofKS�T� can

depend on, at most, the second power of cj, and the entries ofKG�T�
can depend on, at most, the sixth power of cj. Because the regression
model used for the kriging function is quadratic, onewould expect the
generalized stiffness matrix to be well approximated by the kriging
model if the generalized stiffnesswas, at most, a quadratic function of
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Fig. 14 Average errors for generalized stiffness matrix ROM over 500 evaluation cases.
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Fig. 15 Average errors for generalized thermal load vector ROM over 500 evaluation cases.

Table 3 Orders of dependence of E and αT on
temperaturea

E�T� αT�T�
Heat shield (René 41) Quadratic Cubic
Insulation (Min-K) N/A N/A
Skin/stiffeners (TIMETAL834) Linear Constant

aN/A denotes “not applicable.”
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the POD modal coordinates. It is found that, for the structure under

consideration, KS�T� is dominant over KG�T�, and thus K�
S�T� is

essentially quadratic in T with small perturbations due to geometric

stiffening.
Though the average NRMSE of the generalized thermal load

vector remains below 10%, as shown in Fig. 15a, higher accuracy for

the thermal loads is still desired. One potential means for improving

the representation of the thermal loads is to perform the kriging

interpolation on the physical thermal load vector FH
S as opposed to

the generalized thermal load vector fHS . Because the number of

entries in the physical thermal load vector is at a feasible level (8074),

memory and computational cost issueswill not come into play as they

would in the case of the physical stiffness matrix. To investigate the

ability of kriging to capture the entries of the physical thermal load

vector, the same error analysis as used for the generalized thermal

load vector is repeated on the physical one. The correlation criterion

with amaximumof 500 iterations is again used to generate the sample

points for the training data. Plots of the averageNRMSE andL∞ error

over the evaluation cases are given in Figs. 16a and 16b, respectively.
ComparingFig. 16 toFig. 15, it is observed that greater accuracy can

be obtained by performing the kriging interpolation on the physical

thermal load vector instead of the generalized thermal load vector. To

understand why this is the case, first consider the dependence of the

entries of the physical load vector on temperature. The physical

thermal load vector is proportional to the Young’s modulus, the

coefficient of thermal expansion, and the change in temperature, i.e.,

FH
S;i ∝ E�Ti�; αT�Ti�; ΔTi; where Ti �

Xr
j�1

cjφ
�j�
i (46)

Based on the information presented in Table 3, this means that the

physical thermal load vector depends on the second power of c for skin
and stiffener elements and the sixth power of c for heat shield elements.

To compute the generalized thermal load vector, inner products

between the structural modes and the physical thermal load vector are

required. The ith entry of the generalized thermal load vector is given

by

fHS;i �
Xs
l�1

ϕ�i�
l FH

S;l (47)

where ϕ�i�
l denotes the lth entry of the ith structural reference mode,

and s is the total number of degrees of freedom in the structural model

(8074 in this case). Whereas the physical thermal load vector depends

on the second power of c for skin and stiffener elements and the sixth

power of c for heat shield elements, the generalized thermal load vector

depends on the sixth power of c for all elements because it is summed

over all entries ofFH
S . The only caveat associated with using kriging to

generate the physical load vector is that the physical thermal load

vector must be premultiplied by the structural reference modes each

time it is updated in order to transform to modal space. However, the

computation time involved in transforming the loads from physical

space to modal space is expected to be acceptable. Thus, the physical

thermal load vector and not the generalized thermal load vector will be

approximated with kriging in this work.
Though the accuracy of the generalized stiffness matrix and

physical thermal load vector ROMs appear sufficient based on the

NRMSE and L∞ plots given in Figs. 14 and 16, recall that these

results are obtained by averaging the error metrics over 500

evaluation cases. As one of the objectives of this study is to bound the

error of the kriging ROMs, it is necessary to investigate the worst-

case error over the parameter space. As such, the maximum L∞ error

over the 500 evaluation cases is plotted for both the generalized

stiffness matrix ROM and the physical thermal load vector ROM as a

function of number of sample points. Thismetric gives theworst-case

error over all degrees of freedomover all evaluation cases. Results are

given in Figs. 17a and 17b.Comparing the two figures, theworst-case

error of the physical thermal load vector ROM is several orders of
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Fig. 16 Average errors for physical thermal load vector ROM over 500 evaluation cases.
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Fig. 17 Maximum L∞ errors over 500 evaluation cases for kriging ROMs of k�S�T� and FH
S �T� using 2nd order regression model.

884 FALKIEWICZ AND CESNIK

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

5,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

41
22

 



magnitude higher than that of the generalized stiffness matrix ROM.
Further investigation reveals that the maximum percentage error
generally occurs at those degrees of freedom corresponding to the

heat shield. This is expected, as the thermal loads for the heat shield
are a higher-order function of temperature than the thermal loads for
the skin and stiffeners.
Due to the higher-order dependence of the heat shield thermal

loads on temperature, it is expected that the use of a higher-order
regression model will improve the accuracy of the representation of
the thermal loads. To examine this hypothesis, a third-order

regression model is implemented for comparison against the results
obtained using the second-order regression model. The maximum
L∞ error of the physical thermal load vector ROM over 500
evaluation cases is plotted as a function of number of sample points
for both the second-order and third-order regression models, as

shown in Fig. 18. The figure shows significant improvement in
capturing the thermal loads by moving from a second-order
regression function to a third-order regression function. It is observed
that, for the third-order regression function, all data points remain at
or below a 5% maximum L∞ error over the evaluation cases.
Note that the minimum number of sample points used in Fig. 18 is

1000. This is due to the fact that there is a minimum bound on the

number of sample points used to create the krigingROMbased on the
number of basis functions nb required by the regression model. To
ensure that the problem is not underconstrained, the number of
sample points used in creating the kriging ROM must be equal to or
greater than the number of basis functions in the regression model, i.

e., nk ≥ nb. Therefore, the order of the regression model must not be
chosen to be arbitrarily high because there is a tradeoff between the
order of regression and the minimum number of required sample
points.

D. Final Parameters for Kriging Models of Stiffness and Thermal
Loads

A summary of the final parameters selected for the two kriging
models as well as the errors over 500 evaluation cases are given in
Table 4, where O denotes the order of the kriging regression model.

The last three columns in the table give the CPU time required to
generate the kriging training data tT , create the kriging ROMs tK , and
evaluate the kriging ROMs tE. Though the two ROMs use a different
number of sample points to generate the models, both use 500

evaluation points for determining their accuracy. Note that tE is
greater for the kriging model of k�S�T� than for that of FH

S �T� due to
the longer computation required to evaluate k�S�T� at each evaluation
point. For the kriging model of the generalized stiffness, 20 input
variables, 500 sample points, and a second-order regression model
are used. For the resulting kriging model based on the 10 free
vibration modes employed, the average NRMSE and maximum L∞
error over 500 evaluation points are found to be 0.05 and 1.3%,
respectively. Because thegeneralized stiffnessmatrix is dependent on
the structural basis, this kriging ROMmust be updated each time the
basis is changed. However, because less sample points and a lower-
order regression model are required, the computational cost of
generating the kriging ROMof the generalized stiffness matrix is less
than that required to generate the kriging ROM of the thermal load
vector. For the krigingmodel of the thermal loads, 20 input variables,
5000 sample points, and a third-order regression model are used. For
the resulting kriging model, the average NRMSE and maximum L∞
error over 500 evaluation points are found to be 0.1 and 4.7%,
respectively. Because kriging is used to represent the physical
thermal load vector as opposed to the generalized one, this model is
independent of the structural basis and does not need to be updated if
the structural basis changes. As both kriging models use 20 input
variables, the first 19 input variables are the POD modal coordinates
of the corresponding POD modes, and the 20th input variable
represents the uniform initial condition as described previously.
As themotivation for the use of the krigingROMs is to improve the

computational cost of the structural dynamic solution, the
computational savings achieved via the use of these ROMs must be
quantified. To do so, the full-order and reduced-order structural
solutions are each run for 10 time steps. The full-order solution
consists of calling Nastran to generate the equations of motion in
physical space and marching the solution forward one time step. The
reduced-order solution consists of using the kriging ROMs to
generate the equations of motion in modal space and marching the
solution forward one time step. For both the full-order and reduced-
order solutions, the computation time is recorded for each of the 10
time steps. The maximum and minimum computation times are
removed for each case, and the remaining eight values are averaged to
determine the average computation time for the reduced-order and
full-order models. The average computation time for the full-order
structural model is found to be 7.22 s, whereas that for the reduced-
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Fig. 18 Maximum L∞ error over 500 evaluation cases for kriging
ROMs of FH

S �T� using both second- and third-order regression models.

Table 4 Parameters for kriging ROMs of k�S�T� and FH
S �T�

Model niv nk O Average NRMSE, % Maximum L∞, % tT a, h tK a, h tE a, h

k�S�T� 20 500 Second order 0.051 1.33 0.81 0.051 0.78
FH
S �T� 20 5,000 Third order 0.12 4.68 5.61 71 0.55

aOne 2.53 GHz Intel Xeon E5540 processor with 3.0 GB RAM.
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Fig. 19 Eigenvalues associated with first 50 PODmodes ofFS based on
3000 snapshots.
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order structural model is found to be 1.42 s, resulting in an
improvement in computational cost by a factor of five. Note that, in
both the full-order and reduced-order cases, the simulations are
performed using one 2.53 GHz Intel Xeon E5540 processor with
3.0 GB of RAM.

E. Load-Dependent Ritz Vector Results

As discussed in Sec. VII, the representative load vectors FI
S to be

used in the load-dependent Ritz vector formulation are identified
using the PODapproach. Similar to the case of the PODprocedure for
the thermal ROM, snapshots of the structural load vector FS must be

collected to derive the corresponding POD basis vectors. These
snapshots of the structural load include contributions due to both
thermal loads and aerodynamic loads, i.e.,

FS�t� � FH
S �t� � FA

S �t� (48)

The snapshots are taken by running an aerothermoelastic
simulation for a period of 3000 s. This simulation uses the thermal
ROMwith the 32 previously identified thermal POD modes. For the
structural dynamic solution, the full-order model is used. The flight
conditions for this simulation are M∞ � 6.5, α � 2 deg, and
h � 35 km, corresponding to the midpoints of the ranges given in
Table 2. The initial temperature distribution is taken to be a uniform
293 K. The time steps for the various solution components are as
follows: ΔtAE � ΔtHT � 0.1 s and ΔtAT � 1 s. The structural load
vector is stored at the end of each aerothermal time step, resulting in a
total of 3000 snapshots. The eigenvalues corresponding to the first 50
POD modes are given Fig. 19.
To exercise the load-dependent Ritz vector formulation,

aerothermoelastic simulations of the lifting surface model are
carried out using both the full-order and reduced-order structural
dynamic models. The full-order model is treated as the truth model,
and its solution is obtained by solving the equations of motion in
physical space given by Eq. (6). For the full-order model, the
equations of motion are generated directly using Nastran. Recall
that the full-order and reduced-order models are both solved using
the same Newmark-β integration scheme described in Sec. V.B to
eliminate discrepancies due to different numerical integration
methods. The reduced-order model consists of solving the modal
equations of motion given in Eq. (9) where the structural modal
matrixΦS can contain both reference free vibrationmodes and load-
dependent Ritz vectors obtained using the formulation outlined
previously. The reduced-order model can update the equations of
motion at each aeroelastic time step by calling Nastran directly or by
using the kriging ROMs of the generalized stiffness matrix and
physical thermal load vector obtained using the parameters niv, nk,
and O in Table 4. Both the full-order and reduced-order models
make use of the thermal ROM with the 32-mode basis described
in Sec. VIII.B. For the structural ROM, the basis consists of a
predetermined set of free vibration modes appended with a set of
load-dependent Ritz vectors. For all studies in the current section,
the number of free vibration modes nV is taken to be six and the
mode shapes are chosen to be the first six of the 10 reference modes
employed in Sec. VIII.C based on a cutoff frequency of 100Hz. This
six-mode subset has a maximum frequency of 94.9 Hz. The goal of
this section is to assess the effect of the number of specified load
vectors nF and the number of load-dependent Ritz vectors per
specified load vector nR on the accuracy of the reduced-order
structural dynamic model. Note that the total number of structural
basis vectors is equal to nV � �nF��nR�.
To quantify the error between the full-order and reduced-order

structural dynamic models, the NRMSE and L∞ error metrics, given
in Eqs. (40) and (41), are employed. In this case, the quantities Full
and ROM are taken to be vectors of z-direction displacements for

Table 5 Parameters used for
load-dependent Ritz vector case 1

Parameter Value

Case 1
M∞ 8
α, deg 4
h, km 35
ΔtAE, s 0.1
ΔtHT, s 0.1
ΔtAT, s 1
T0, K 293

Table 6 Parameters for aerothermoelastic subcases used to assess
error incurred due to kriging ROMs of k�S�T� and FH

S �T�

Subcase Structural model nV nF nR

Method for computing
k�S�T� and FH

S �T�
1a Full-order N/A N/A N/A N/A
1b ROM 6 0 0 Nastran
1c ROM 6 0 0 Kriging ROMs
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Fig. 20 Node 247 z displacements for subcases 1a, 1b, and 1c.

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

Time [s]

N
R

M
S

E
 [%

]

0 100 200 300 400 500 600
0

50

100

150

200

250

300

Time [s]

L
∞

 E
rr

or
 [%

]

a) NRMSE b) L∞ error
Fig. 21 Error of subcase 1c with respect to subcase 1b illustrating error incurred due to kriging ROMs of k�S�T� and FH

S �T�.
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nodes at the outer mold line from the full-order and reduced-order

models, respectively. The parameters for the aerothermoelastic

simulations used in this part of the study are given inTable 5. The total

simulation time for this case is chosen to be 600 s.

Before assessing the effect of load-dependent Ritz vectors, the

impact of using kriging ROMs to generate k�S�T� and FH
S �T� on the

accuracy of the solution must first be addressed. Doing so provides

insight into how much of the solution error can be attributed to error

associatedwith the krigingROMs as opposed to error associatedwith

the reduced structural basis. To accomplish this, aerothermoelastic

simulations are carried out for the flight conditions of case 1 for three

different subcases that are summarized in Table 6. For subcase 1a, the

full-order structuralmodel is used in the simulation and the results are

treated as the truth model. Subcase 1b consists of using the structural

ROM with only the six free vibration modes (i.e., nV � 6, nF � 0,
nR � 0), and using Nastran to compute k�S�T� and FH

S �T� at each
aeroelastic time step. Subcase 1c consists of using the structuralROM

again with the six free vibration modes, but employing the kriging

ROMs to compute k�S�T� andFH
S �T�. It is expected that the six-mode

basis will not adequately capture the structural response represented

by the full-order model. However, the goal of subcases 1a–1c is not to

assess the error associated with the reduced structural basis but rather

to evaluate the error incurred by employing the kriging models to

approximate k�S�T� and FH
S �T�.

To assess the response levels, the z-direction displacements of

node 247 (located at the mid-chord of the tip on the bottom surface)

are plotted for each of the three subcases given in Table 6. Results are

given in Fig. 20. To quantify the error incurred due solely to the

kriging ROMs of k�S�T� and FH
S �T�, the NRMSE and L∞ error

metrics are computed for subcase 1c with respect to subcase 1b and

are given in Figs. 21a and 21b, respectively. The error metrics show

an initial high error, which is due to the fact that the simulation begins

with the structure in the undeformed configuration. Therefore, the

structural displacements are small in the initial part of the transient,

which results in a small denominator in Eqs. (40) and (41), and

therefore a large error early in the transient. However, within 10 s into

the transient, the NRMSE and L∞ error decrease to below 10 and

20%, respectively, and remain below these values for the remainder

of the simulation.

With the error due to the kriging ROMs of k�S�T� and FH
S �T�

quantified, the next step is to assess the effect of inclusion of load-

dependent Ritz vectors on the accuracy of the structural ROM. For

all cases from this point forward, the kriging ROMs of k�S�T� and
FH
S �T� are usedwithin the structural ROM.The goal of this aspect of

the study is to assess the solution accuracy as a function of nF and

nR. A summary of the subcases used to perform this assessment is

given in Table 7. Note that the errors for these subcases are

computed with respect to subcase 1a in Table 6; therefore, they

include both error due to the kriging ROMs as well as error due to

structural basis truncation.

Plots of theNRMSE andL∞ errors of subcases 1c–1fwith respect

to subcase 1a are given in Figs. 22a and 22b, respectively.

Examining these figures, it is observed that the inclusion of load-

dependent Ritz vectors in addition to the six free vibration modes

results in a noticeable improvement in the structural ROM. It should

be noted that there is inherent error in the structural ROM due to the

use of kriging to approximate k�S�T� andFH
S �T�, and thus the overall

error of the structural ROM cannot be reduced to zero. Comparing

Fig. 22 to Fig. 21, it can be observed that the error due to basis

truncation has been reduced and the errors shown in Fig. 22

approach or surpass those shown in Fig. 21, especially for subcases

1e and 1f. Comparing subcase 1d to subcases 1e and 1f, it is

observed that the inclusion of only one load-dependent Ritz vector

in the basis does not provide the level of accuracy obtained by

including multiple load-dependent Ritz vectors. The greatest

difference in L∞ error beyond 10 s between subcases 1e and 1f

occurs at 78.1 s, with the L∞ error of subcase 1e being 11.2% lower

than that of subcase 1f. This is not surprising, as the structural

response is dominated by the slowly changing thermal loads for this

case; therefore, inertial effects are not significant. The maximum

improvement in L∞ error of subcase 1e with respect to subcase 1c

beyond 10 s is 45% and occurs at 590.1 s. Subcase 1e gives an

average improvement in L∞ error of 38% over subcase 1c,

demonstrating the advantage of using load-dependent Ritz vectors.
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Fig. 22 Total error of structural ROMs (subcases 1c–1f) with respect to full-order structural model (subcase 1a) using different structural bases.

Table 7 Parameters for aerothermoelastic subcases used to assess effect of load-dependent Ritz vectors on
structural ROM

Subcase Structural model nV nF nR Method for computing k�S�T� and FH
S �T�

1c ROM 6 0 0 Kriging ROMs
1d ROM 6 1 1 Kriging ROMs
1e ROM 6 10 1 Kriging ROMs
1f ROM 6 1 10 Kriging ROMs
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IX. Conclusions

A comprehensive study of structural dynamic response simulation
within an aerothermoelastic analysis framework has been conducted
with the goals of improving the computational efficiency and
accuracy of the structural dynamic reduced-order model (ROM). The
study addressed two main modeling areas associated with structural
dynamic reduced-order modeling in an aerothermoelastic framework:
1) A surrogate modeling technique was implemented to allow for

direct updates to the temperature-dependent generalized stiffness
matrix and thermal loads.
2) Load-dependent Ritz vectors were used to improve the accuracy

of the structural dynamic ROM.
The first part of this study focused on the development of a kriging-

based method for directly updating the generalized stiffness matrix
and thermal loads based on a given temperature distribution. The
temperature distribution was parameterized in terms of the thermal
proper orthogonal decomposition (POD) modal coordinates, as this
allowed for a small number of input variables to be used to represent
the high-dimensional temperature vector. A methodology was
described for bounding the PODmodal coordinates based on a set of
parallel aerothermoelastic simulations. A series of studies was used
to guide the selection of various parameters involved in the
generation of the kriging surrogates. The resulting ROMs of the
generalized stiffness matrix and physical thermal load vector were
found to have maximum L∞ errors of 1 and 5%, respectively, over
500 evaluation points, indicating good agreement with the full-order
model. Comparison of computation times showed that the structural
ROMwith the krigingmodels improved the computational cost of the
structural dynamic response solution by a factor of fivewith respect to
the full-order model.
To improve the accuracy of the structural ROM, basis

augmentation using load-dependent Ritz vectors was examined.
Load-dependent Ritz vectors are advantageous in that they allow for
incorporation of the expected spatial dependence of the structural
loads into the modal matrix. To determine the representative load
vectors to be used in generating the load-dependent Ritz vectors,
proper orthogonal decomposition was employed based on snapshots
of the structural load vector from representative simulations.
Application of the methodology to a hypersonic cruise trajectory
demonstrated an average improvement in L∞ error of 38% for one
case compared with a case using only free vibration modes. These
results indicated that basis augmentation can be advantageous in
caseswhere the structural response contains a quasi-static component
as a result of thermal loads.
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