
Markov Decision Process Framework for Flight Safety
Assessment and Management

Sweewarman Balachandran∗ and Ella Atkins†

University of Michigan, Ann Arbor, Michigan 48109

DOI: 10.2514/1.G001743

Loss of control is the most common precursor to aircraft accidents. This paper presents a flight safety assessment

and management system aimed at mitigating loss-of-control risks. Nominally, flight safety assessment and

management serves as a passive watchdog system. When loss-of-control scenarios are encountered, flight safety

assessment and management issues resilient control overrides to restore a safe operational state. This paper

formulates flight safety assessment andmanagement as aMarkovdecisionprocess to account for uncertainties in state

evolution and tradeoffs between passive monitoring and safety-based override. To ensure unsafe states are

unreachable, probabilistic constraints are incorporated into the Markov decision process formulation. The Markov

decision process framework is applied to prevent loss-of-control events during takeoff. An abstract representation of

the underlying state space is specified to minimizeMarkov decision process computational overhead and to facilitate

understanding of the resultingpolicy. Flight safety assessment andmanagement is evaluated in a runwayoverruncase

study motivated by a real-world incident.

Nomenclature

A = Markov decision process action set
F = feature
heng = engine health status
L = y − ψ abstract state
M = mode
NOOP = no operation
P = θ − h abstract state
p, q, r = angular rates
Q = v − x abstract state
R = reward function
S = Markov decision process state set
T = transition probabilities
TOGL = toggle
u, v, w = velocities in the aircraft body frame
V = utility/value
V lof = liftoff speed
VR = takeoff rotation speed
V1 = takeoff decision speed
V2 = safe takeoff speed
�v = true airspeed
x, y, z = three-dimensional position
Yw = runway half-width
γ = discount factor
δe, δa, δr, δt = elevator, aileron, rudder, and throttle control

inputs
θTS, hTS = tail-strike pitch angle, tail-strike altitude
χ = state distribution
ψ0 = runway heading
ϕ, θ, ψ = roll, pitch, and yaw angles

I. Introduction

A DVANCED capabilities such as fly-by-wire avionics, triply
redundant systems, and envelope protection logic have

dramatically reduced the accident rate in modern commercial
transport aircraft [1,2]. However, loss of control (LOC) remains a
primary contributing factor for commercial and general aviation
accidents. Over 4000 fatalities have been attributed toLOC in the past
decade alone [3–5]. LOCoften results from a chain of events initiated
by adverse environmental conditions and onboard anomalies/failures
followed by inappropriate crew inputs and vehicle upset. The
complex dependencies between LOC factors make it difficult to
construct a single intervention strategy for LOC prevention [4,6].
Belcastro and Jacobson proposed the concept of Aircraft

Integrated Resilient Safety Assurance and Failsafe Enhancement
(AIRSAFE) [6]. AIRSAFE combines online modeling, safety
assessment, and resilient control to recover a stable flight state in
cases with significant LOC risk. This architecture concept provides a
general LOC prevention capability consistent with this work. Other
researchers have focused on developing automation aids to reduce
specific LOC risks. Gingras et al. developed the Icing Contamination
Envelope Protection (ICEPro) system [7]. ICEPro helps identify
degradations in airplane performance and flying qualities resulting
from ice contamination, providing cues to pilots. Borst et al.
introduced the aircraft Safety Augmentation System (SafAS) [8].
SafAS is an automated pilot support system that prevents aircraft
from veering off course into hazards such as terrain, severe weather,
restricted airspace, etc. The RunwayOverrun Prevention Systemwas
introduced by Airbus to warn flight crews about degraded landing
performance during final approach. Srivatsan et al. [9],Milligan et al.
[10], and Zammit-Mangion and Eshelby [11] proposed systems that
aid the crew in making a safe go–no-go decision to avoid runway
overrun accidents during takeoff.
The Envelope-Aware Flight Management System (EA-FMS) was

introduced in previous publications [12,13] to mitigate LOC risk (see
Fig. 1). EA-FMS augments existing flight management system
(FMS) capabilities through online system identification and envelope
estimation, envelope-aware flight planning, and resilient control. The
Flight Safety Assessment and Management (FSAM) module of EA-
FMS is responsible for monitoring system state with respect to LOC
constraints and activating overrides only when necessary to avoid or
recover from LOC. FSAM overrides the pilot or the nominal
autopilot with envelope-aware planning and control logic that can
suitably prevent or recover from the impending LOC scenario.
Previous work modeled FSAM as a deterministic Moore machine
[12–14]. This paper explores the use of decision-theoretic planning to
allow override actions to be optimized over a probabilistic model of
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the overall system.A reward or cost function explicitly trades the cost

of inactionwith the cost of automatically switching between pilot and

(autonomous) envelope-aware control authorities.
Decision-theoretic techniques have been used for the development

and enhancement of the traffic collision avoidance system (TCAS).

Kochenderfer et al. [15,16], Temizer [17], andWinder [18] have used

the Markov decision process (MDP) or partially observable Markov

decision process to design alerting systems that could warn the flight

crew about imminent conflicts with other aircraft and issue conflict

resolution advisories.
Rules for FSAM to switch between available controllers to

mitigate risk could be encoded as finite-statemachines. FSAM finite-

state machines can be manually constructed by a system designer

based on domain knowledge and empirical simulations [14]. In

general, tools such as hybrid automata and reachability analysis can

further guide the designer in defining appropriate switching

strategies/rules [19]. Finite-state machines can also be synthesized

from linear temporal logic specifications [20]. However, manually

specifying a state machine can be inefficient when themachine needs

to address a broad class of scenarios. Use of a planner [21–23] to

generate rules that serve as a state machine to be executed can aid a

user in handling larger state-space sizes. The Markov decision

process (MDP) is a compelling planning tool because it can model

uncertainty, reward and cost, and arbitrary state-space features in an

optimization framework. This paper therefore uses an MDP to

generate a lookup table that effectively specifies switching decisions

for each state of the system.
This work presents a fully observableMDP formulation to enable

FSAM to make control mode override decisions that prevent LOC

scenarios. A single comprehensive MDP formulation over all

possible interacting LOC factors is computationally intractable due

to the complexity associated with a very large state space. However,

the full MDP can be decomposed into several sublevel MDPs,

where each sublevel MDP is responsible for preventing LOC for a

specific phase of flight or specific suite of elevated risk factors. This

paper contributes an MDP formulation to address common takeoff

LOC events associated with runway excursions and improper

rotations. A novel abstract representation of the underlying state

space is developed based on takeoff flight envelopes. This

abstraction reduces the size of the original state space and promotes

better understanding of the resulting policy. This MDP formulation

is extended with constraints to ensure that unsafe states are

unreachable. Note that this paper only focuses on developing an

MDP formulation that will enable selecting the appropriate control

authority (i.e., pilot/autopilot versus envelope-aware) to prevent

LOC. Suitable envelope-aware control, flight planning, and

guidance laws that prevent constraint violations or recover from

LOC situations have been proposed by others [24–29] and are not

the focus of this paper.
The rest of this paper is organized as follows. Section II reviews the

MDP, whereas Sec. III specifies an MDP to address a suite of takeoff

LOC risk factors. Section IV illustrates example policies obtained

from the MDP formulation. Section V discusses a constrained MDP

framework. Section VI applies the takeoff FSAMMDP formulation

to a real-world aviation incident. Sections VII and VIII provide a

discussion and conclusions, respectively.

II. Background

A discrete-time fully observable MDP [30,31] is represented as a

tuple �S;A; T ;R�, where S represents a finite set of all possible

discrete system states;A represents a finite set of actions that can be

executed; T ∶S ×A × S → �0; 1� represents the transition proba-

bilities associated with transitions from a given state to another state

when executing an action; and R∶S ×A → R represents a reward

function that assigns a finite real value to each state–action pair.

Actions a ∈ A for each state s ∈ S are chosen such that they

maximize the expected cumulative discounted reward function of the

form

Vπ�s� � E

�X
n�0

∞

γnR�sn; an�jπ; s0 � s

�
(1)

γ ∈ �0; 1� is a discount factor to specify the relative value of short
versus long-term rewards. π is a policy defined as π∶S → A.Vπ�s� is
the utility of state s due to policy π. The optimal policy π��s� is given
by

π��s� � argmax
a

�
R�s; a� � γ

X
s 0
T �s; a; s 0�V�s 0�

�
(2)

V�s� � max
a

�
R�s; a� � γ

X
s 0
T �s; a; s 0�V�s 0�

�
(3)

The optimal policy can be obtained using algorithms such as value
iteration, policy iteration, or linear programming [31].

III. Markov Decision Process Formulation for Flight
Safety Assessment and Management

FSAMMDP state must capture all information necessary to make
risk-optimal override decisions. State features relevant to LOC risk
assessment and decisionmaking can be broadly classifiedwithin four
main categories: aircraft dynamics and control F1, aircraft and sub-
system health F2, human operator characteristics F3, and environ-
ment characteristics F4. Each state s ∈ S of the FSAM MDP
formulation is represented by its composition s � �F1; F2; F3; F4�.
Detailed description of each state feature can be found in [32].
A complete MDP formulation over all flight phases would be

unreasonably large, particularly if continuous-valued state features
are discretized over a fine grid. Instead, the ideal MDP can be
decomposed into several smaller context-appropriate MDPs. A
phase-of-flight decomposition facilitates customizing the MDP to
address LOC scenarios related to a particular phase of flight.
Furthermore, state-space size can be significantly reduced by
mapping baseline state features into abstract features for a particular
phase of flight, as is illustrated later for takeoff. Abstract state features
are based on flight envelopes and their translation to a suitable reward
or cost function. This work specifies an MDP formulation to handle
common takeoff-related loss-of-control risks.
Takeoff and landing are the highest-risk phases of flight due to their

proximity to the ground. Ninety-seven rejected takeoff (RTO)
runway overrun accidents and incidents have been reported from
1960 to 2000, resulting in over 400 fatalities. A survey of causal
factors for takeoff-related accidents is provided in [33]. The most
common contributing factors to LOC during takeoff are improper
rejected takeoff procedures, poor directional control, and
inappropriate takeoff configuration. This paper develops an MDP
to address high-risk takeoff LOC scenarios, including runway
excursion and unsafe liftoff states. TheMDPpresented in this paper is
applicable given the following assumptions.
1) All actuators, sensors, and aircraft systems are functioning

nominally.
2) There are no increased weather-related risks; other aircraft and

obstacles remain clear of the runway and departure path.
3) Aircraft flight envelopes remain constant throughout takeoff,

implying no change in airframe or performance characteristics.
With these assumptions, the flight crew characteristics F3 and

environmental features F4 remain constant for the takeoff MDP
formulated in this paper. In the aircraft health feature F2, this work
models the engine status �E to capture engine failure associated LOC
events during takeoff. The remaining subfeatures in F2 are assumed
to remain constant. These assumptions must be relaxed in future
work, which must also consider appropriate decompositions based
on specific hazard scenarios to ensure that the takeoff MDP is
tractable.

818 BALACHANDRAN AND ATKINS

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

5,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

17
43

 



A. State Formulation for Takeoff

High-risk LOC scenarios such as runway overruns and improper
rejected takeoffs are captured in aircraft longitudinal dynamics and
runway position constraints. Events such as improper rotations and
tail strikes are associated with pitch dynamics, whereas runway
lateral excursion events are associated with lateral or directional
dynamics. The relevant aircraft dynamics states considered for the
takeoff MDP formulation are aircraft velocity V �

�����������������������������
u2 � v2 � w2

p
;

pitch θ; headingψ ; position x, y, zwith respect to the runway; control
mode M; mode select switch status �S; throttle control input �T; and
engine health status �E. MDP state is given as

s ∈ S; s � �V; θ;ψ ; x; y; z; �T; �M; �S; �E� (4)

This state-space formulation is infinite due to continuous variables
such as position, airspeed, and pitch. Knowledge of aircraft takeoff
dynamics and aircraft envelopes is exploited to combine the
continuous-valued state variables into abstract state features.
Aircraft takeoff envelopes are analyzed with respect to transla-

tional, rotational, and lateral dynamics. In a nominal takeoff, the
aircraft accelerates to liftoff speed from rest, lifting off and
accelerating to speed V2 before the end of the runway. In case of
engine failure during the takeoff ground roll, a rejected takeoff is
warranted unless airspeed is too high and insufficient runway
distance remains. Rejecting versus continuing a takeoff following an
engine failure was previously analyzed using simplified equations of
motion for takeoff [14]. Figure 2 is a vector field that illustrates the
evolution of the V − x dynamics under a rejected takeoff scenario
[14]. In Fig. 2, rejecting the takeoff at an airspeed–position state
below the solid curve leads to trajectories that decelerate and stop
within the available runway length. This actionwould correspond to a
safe rejected takeoff. Rejecting the takeoff at a state above the solid
curve results in the aircraft overrunning the remaining runway,
representing an unsafe rejected takeoff. A similar analysis can be
done for the continued takeoff case (see Fig. 3).
If an engine failure occurs at a point below the solid curve, the

airplane has sufficient airspeed to accelerate to lift off speed and reach
theV2 airspeed. However, if an engine failure occurs at a point above
the solid curve, the airplane has insufficient airspeed to accelerate to
V2 before the runway overrun. Combining the curves in Figs. 2 and 3
yields four distinct regions shown in Fig. 4. Clearly, a region exists

Fig. 1 Envelope-aware flight management system.

Fig. 3 One-engine inoperative envelope.

Fig. 2 Rejected takeoff envelope.
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where neither a rejected takeoff nor a continued takeoff is safe; this
region must be avoided at all times. One can estimate the minimum
thrust required to prevent the aircraft from entering this unsafe region.
The resulting minimum thrust trajectory is shown in Fig. 5. Each
curve in Fig. 5 can be described by polynomials of the form
x � �a0 � �a1V � �a2V

2 � �a3V
3, with coefficients �a0; : : : ; �a3 chosen

appropriately. LetVEF denote the smallest airspeed at which a takeoff
can be continued following an engine failure at x � 0. Let V1 denote

the airspeed at the intersection of the three curves. Let XV1
denote

the corresponding distance on the runway, and let Xlength denote the
length of the runway. With these parameters, the V and x states can
be aggregated into 17 abstract states, as shown in Fig. 6a. Note that
states 15 and 16 in Fig. 6a represent runway overrun scenarios where

the aircraft has crossed the available takeoff distance with
inappropriate airspeed to either take off or stop safely.
Envelopes for the rotational and lateral dynamics are constructed

based on geometric constraints. Increasing the pitch attitude beyond a
certain pitch angle results in a tail strike. Thus, care must be taken to
prevent tail strikes during rotation. Let θ ≥ θTS, z ≤ hTS denote the
condition at which a tail strike occurs, where θTS is the tail-strike
pitch attitudewhen the aircraft is below altitude hTS. Let θ1 � 0.2θTS
and θ2 � 0.8θTS. With these parameters, pitch-altitude space is
aggregated as shown in Fig. 6b.
Figure 7 illustrates geometric constraints for the lateral dynamics

imposed by the available runway width. Here, the cross-track
position and heading are combined into a single feature. Let Yw

represent the half-width of the runway. Let Y1 � Yw, Y2 � 0.5Yw.
Let ψ0 represent the runway heading. Let ψ1 � ψ0 � 4 deg and

ψ2 � ψ0 � 10 deg. With these parameters, partitions of the lateral
displacement and yaw space are obtained as shown in Fig. 8.
Thrust control inputs for takeoff are discretized as �T ∈

fTidle; Tmaxg. In this work, the two available control authorities are
the nominal pilot/autopilot P and the envelope-aware controller EA
such that �M ∈ fP;EAg. The engine health status is discretized as
�E ∈ fEAEO; EOEI; EAEIg, where EAEO represents “all engines

operational” (AEO), EOEI represents “one engine inoperative”
(OEI), and EAEI represents “all engines inoperative” (AEI). With the
compact state features described previously, the initial state
formulation in Eq. (4) is transformed into

s ∈ S;

s � � �Q; �P; �L; �T; �E; �S; �M�;
�Q ∈ fq1; q2; : : : ; q16g;
�P ∈ fp1; p2; : : : ; p8g;
�L ∈ fl1; l2; : : : ; l25g;
�T ∈ fTidle; Tmaxg;
�E ∈ fEAEO; EOEI; EAEIg;
�S ∈ fP;EAg;
�M ∈ fP;EAg (5)

Fig. 4 RTO and OEI envelopes: safe vs unsafe zones.

Fig. 5 Minimum thrust trajectory for safe takeoff.

Fig. 6 Representations of a) partitions �Q of V −X space, and b) partitions �P of θ −H space.
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Note that �Q is an abstraction of aircraft velocityV and longitudinal

position x. �P is an abstraction of pitch attitude θ and altitude z. �L is an

abstraction of cross-track position y and heading ψ .

B. Action Formulation for Takeoff

FSAM is a high-level watchdog system that passivelymonitors the

various state features for LOC risk. If sufficient time andmargin exist

for the flight crew to mitigate any elevated LOC risk factors, FSAM

continues to remain passive. FSAM issues override decisions only

when switching to the envelope-aware controller would enable LOC

prevention or recovery. FSAM then returns control back to the pilot

and nominal autopilot once LOC risk is lowered to acceptable levels.
The FSAMMDP selects from two actions: no operation (NOOP)

and toggle (TOGL). Any time FSAM selects NOOP, current control

mode �M is likely to remain engaged. If the current control mode �M
indicates nominal pilot/autopilot authority and FSAM selects the

TOGL action, FSAM activates the envelope-aware controller. If the

current control mode �M is the envelope-aware controller and FSAM

selects the TOGL action, authority is returned to the nominal pilot/

autopilot system. The pilot could also manually request activation of

the envelope-aware controller or transfer of control authority from the

envelope-aware control via the mode select switch �S. The MDP

actions are described as follows:

�A ∈ fNOOP;TOGLg (6)

C. Reward Formulation for Takeoff

FSAM MDP reward is formulated as a cost function (negative

reward) that penalizes unsafe aircraft states but also discourages the

routine selection of the toggle action. A weighted sum reward

formulation is proposed:

R�s; a� �
X
i�0

n

ηiRi�s; a� (7)

Ri�s; a� penalize unsafe states and unnecessary toggle actions,

whereas ηi represent tunable weighting parameters that may vary

depending as a function of flight mode. For example, the penalty for

violating an airspeed or angle of attack stall constraint at high altitude

can be lower than the stall penalty at low altitude due to the availability

of recovery margin. Weighting parameters may be learned from

accident flight data and investigation board recommendations.
In this work, the additive reward formulation is defined as in

Eq. (7):

R�s; a� � η1R1� �Q� � η2R2� �P� � η3R3� �L� � η4R4� �M; �A� (8)

Here, R1�Q� penalizes unsafe states with respect to the

translational dynamics (see Fig. 6) and is given by

R1� �Q� �
�
−1 if �Q ∈ fq15; q16g
0 otherwise

(9)

R2�P� penalizes unsafe states with respect to the rotational

dynamics:

R2� �P� �
�
−1 if �P ∈ fp4g
0 otherwise

(10)

R3� �L� penalizes unsafe states with respect to the lateral dynamics

(see Fig. 8):

R3� �L� �
�
−1 if �L ∈ fl1; l5; l6; l10; l11; l15; l16; l20; l21; l25g
0 otherwise

(11)

R4� �M; �A� penalizes unnecessary toggle actions to discourage

frequent mode switches and the resultingmode confusion. Staying in

the envelope-aware control mode when the pilot requests pilot mode

is also penalized to encourage transfer of control authority to the pilot

once the high-risk LOC scenario is averted. Thus,

Fig. 7 Lateral constraints.

Fig. 8 Partitions �L of Y − ψ space.
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R4� �M; �A� �

8>><
>>:
−1 if �M � P ∧ �S � P ∧ �A � TOGL

−o1 if �M � EA ∧ �S � P ∧ �A � NOOP

−o2 if �M � EA ∧ �S � EA ∧ �A � TOGL

0 otherwise

(12)

where 0 ≤ o1 ≤ 1 and 0 ≤ o2 ≤ 1. ηi represent positive weights per
Eq. (8). For this work, the authors manually tuned reward function

weights to ensure that policies favored pilot control but did not allow

the system to violate constraints.
Statistics can assist in computing rewardweights. For example, the

Flight Safety Foundation [33] reports that runway overruns and

lateral runway excursions have given rise to a larger number of fatal

accidents than tail-strike events during takeoff. Consequently, for the
takeoff MDP, the values of the weighting parameters on R1 and R3

are set significantly higher than the weight onR2. The choice of the
weight onR4 may be guided by human subject experiments and pilot
preferences; for thiswork, it is assumed the pilotwill prefer to assume
control whenever constraints are not otherwise violated. Methods
presented in [34] can also be adapted to compute reward function
parameters in future work.

D. Transition Probabilities

The transition probabilities are obtained using Monte Carlo
simulations. TheMonte Carlo simulation framework used in this work
is documented in Appendix B. States are sampled from the MDP state

Fig. 9 Runway excursion policy.
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space S described in Eq. (5), and their corresponding transition

probabilitiesT under a given control authority are estimated as follows:

T �skjsi�jM � N�si; sk�P
sl∈S

N�si; sl�
(13)

where N�si; sk� is the total number of transitions from state si to sk
under control authority M ∈ fP;EAg. With the aforementioned

information, the transition matrix for each action is defined as follows.

Let T NOOP denote the transition probabilitymatrix for a � NOOP. Let
T TOGL denote the transition probability matrix for a � TOGL. The
state features in Eq. (5) are permuted such that T NOOP and T TOGL can

be viewed as block diagonal matrices of the form

Fig. 10 Tail-strike policy: a) policy obtained from MDP and b) policy obtained from CMDP.
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T NOOP �
" T jM�P 0

0 T jM�EA

#
(14)

T TOGL �
"

0 T jM�EA

T jM�P 0

#
(15)

With the aforementioned states, actions, rewards, and transition
probabilities, the takeoff MDP is optimized using value iteration.

IV. Takeoff Markov Decision Process Policies

The total number of states in the takeoff MDP formulation is given
by the product of sizes of the individual state features. Thus, there are
76,800 states in the preceding takeoffMDP formulation. The optimal
policy for the takeoff MDP is stored as a lookup table mapping an
optimal action to each state. This section constructs a Markov chain
to facilitate MDP policy understanding.
Let T i represent the ith row of transition matrix T . The transition

probability matrix for the MDP policy is constructed as follows:

T i
π �

�
T i

NOOP if π�i� � NOOP

T i
TOGL if π�i� � TOGL

(16)

Transition matrix T π represents theMarkov chain of policy π. The
probability distribution over the states reached aftern steps (χn) while
starting from a given initial state distribution χ0 and following policy
π is

χn � χT0T
n
π (17)

TheMarkov chain representing the complete policy is also difficult
to visualize, and so segments of the policies as used to illustrate their
properties. Figure 9 presents a policy segment that illustrates FSAM
MDP policy response to an imminent runway excursion risk.‡ For
ease of illustration, only transitions in �M, �T and �Q are shown. Each
node represents a discrete state s annotated with features and optimal
value V�s�. Edges represent transitions between discrete states and
are labeled with the optimal action and transition probability. The
policy choosesNOOP if the pilot is in control and the aircraft remains
inside the safe takeoff envelope with sufficient margin. When the
aircraft enters an unsafe region (e.g., �Q � q9) with imminent runway
overrun risk, the policy chooses TOGL to transfer authority to the
envelope-aware controller, which then rejects the takeoff by reducing
thrust to idle (Tidle) to ensure that the aircraft remains within the safe
operating envelope. Policy behavior vary depending on the choice of
weighting factors η in Eq. (8). For example, increasing the penalty on
envelope-aware states (i.e., �M � EA) in Eq. (12) can result in transfer
of control back to the pilot immediately. The following example
illustrates the tradeoff between increasing the cost of NOOP versus
the cost of TOGL.
Figure 10a presents an FSAM MDP policy segment showing

response to a tail-strike risk. For ease of visualizing this policy, the
runway excursion/overrun risks states have been pruned in Fig. 10a.§

Only state transitions impacting risk level, specifically �M, �P, and �Q,
are shown. The aircraft starts from rest at the beginning of the runway,
with the pilot in control, and accelerates as throttles are set to takeoff
thrust �P; p1; q1�. Figure 10a illustrates the probable transitions from
this initial state. From rest until the rotation airspeed VR is reached,
the policy does not interfere with the crew operations because the
aircraft is within the safe V − x and θ − h envelopes. However,
during rotation, FSAM activates envelope-aware control at

�P;p3; q6� to prevent excessive rotation and the subsequent tail
strike (i.e., �P � p3). The envelope-aware control law reduces pitch
attitude to prevent tail strike during rotation. However, because of a
large penalty on the envelope-aware controller state (i.e., �M � EA),
control is returned to the pilot immediately, as would be the case in an
automobile when antilock brakes or traction control systems
temporarily engage. This policy favors the pilot control model, but
note that the aircraft still has a tail-strike risk. The tail-strike risk can
be eliminated by choosing a higher weighting factor for the R2 term
than R4 in Eq. (8).
The preceding policy segments illustrated the FSAM responses to

specific loss-of-control situations. The complete FSAMMDP policy
manages combinations of elevated risks associated with runway
excursions and overruns as well as potential tail strikes by assuring
that inappropriate longitudinal and lateral control inputs are
overridden in time to avoid LOC. The full policy must ultimately be
verified to ensure that unsafe states are unreachable. For the nominal
MDP formulation, this requires manually tuning reward weighting
factors and regenerating policies to ensure that the desired behavior is
obtained. This process can be cumbersome, especially if the
underlying state space is large. To overcome this difficulty, the
following section proposes an MDP formulation with constraints.

V. Constrained Markov Decision Process

A constrained Markov decision process (CMDP) formulation
enables FSAM to make risk-optimal decisions subject to upper
bounds on the probability of entering a LOC risk state. The CMDP
policy aims to maximize the expected cumulative discounted reward
function [Eq. (1)] subjected to constraints of the form

T �s�1 js�0� ≤ c1;

T �s�2 js�0� ≤ c2;

..

.

T �s�njs�0� ≤ cn (18)

where T �s�i js0� is the conditional probability of entering an unsafe
state s�i from a given initial state s0. Each ci ∈ �0; 1� represents a
probability upper bound. Equation (18) can be expressed in terms of
state–action frequencies. This facilitates solving the constrained
MDP formulation using a linear programming framework (see
Appendix A for more details on the linear programming CMDP
formulation for FSAM). Figure 10b illustrates the tail-strike policy
segment constructed using the CMDP. The probability of entering a
tail-strike state (i.e., �P � p4) is constrained to be zero rather than
imposing a cost penalty on tail-strike states. The CMDP policy is
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Fig. 11 Trajectory of Flight 407 (TOGA, takeoff/go around).

‡The weight parameters for this policy were η1 � 100, η4 � 0.4,
η2 � η3 � o1 � o2 � 0. A discount factor of γ � 0.7 was used. �S � P
remained constant throughout the Monte Carlo simulations.

§The transition probabilities for this policy were reconstructed such that
there were no runway excursions/overrun risks. The weight parameters used
were η2 � 10, η4 � 5, η1 � η3 � 0, o1 � 0.5, o2 � 0. Thus, Figs. 9 and 10
represent segments of two different policies.
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similar to theMDP policy in Fig. 10a until the initial override fromP
to EA. However, the CMDP policy overrides the pilot when there is
an imminent tail-strike risk and retains control until the probability of
entering a tail-strike state is zero.

VI. Case Study

On 20March 2009, an AirbusA340 operated by Emirates Airlines
failed to take off safely fromMelbourne Airport, Australia [35]. The
flight crew had programmed the flight computer with the wrong
weight calculations, which resulted in poor takeoff performance due
to inadequate thrust. Consequently, the aircraft overshot the runway
during the initial takeoff roll and experienced a tail strike due to
overrotation. The subsequent departure was uneventful, and the
aircraft returned to the airport for an emergency landing. The actual
weight of the aircraft was 362.9 tons, but the weight entered into the
flight computer was 262.9 tons. Figure 11 illustrates the takeoff
envelopes of the aircraft for theweight that was entered into the flight
computer (262.9 tons). If the aircraft was actually loaded at 262.9
tons, it would have followed the green trajectory in Fig. 11, remaining
within safe operating envelope regions. The dashed curve in Fig. 11
indicates the actual aircraft trajectory (weighing 362.9 tons) from
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Fig. 12 MDP policy applied to Flight 407 (TOGA, takeoff/go around).

Fig. 13 Comparison of flight trajectories of Flight 407 versus simulated aircraft response with EA-FMS.
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flight recorder data. Because of the data entry error, the aircraft began

its ground roll with a thrust setting that was too low for the higher

takeoff weight, resulting in insufficient acceleration to attain liftoff

speed V lof before overshooting the runway.
Figure 12 illustrates the application of the policy developed using

the MDP framework described for the preceding accident scenario.

As the accelerating aircraft enters �Q � q9, an unsafe region in the

V − x envelope, FSAM overrides the pilot with the envelope-aware

controller, which then rejects the takeoff. The aircraft then

decelerates and stops safely in �Q � q17 well before the runway

threshold. Figure 13 compares the aircraft states of Flight 407

modeled from data obtained from accident reports [35] and the

simulated aircraft response to the takeoff MDP policy developed in

this paper.

VII. Discussion

The preceding case study illustrates how an MDP can be

constructed for a particular set of LOC risks during takeoff. Separate

FSAM MDPs can be constructed for each phase of flight because

only one phase will be active at a time. When reducing the set of

assumptions, the remaining suite of state features in F will increase

complexity substantially relative to this paper’s case study.

Conditional independencewill be critical to exploit as will additional

state-space abstractions.
FSAM must sufficiently capture the capabilities and limitations

of the envelope-aware controller to recognize high-risk situ-

ations needing envelope-aware control and situations, where it is best

to leave the pilot in control. Interaction between pilot and FSAM is

also important to more fully characterize. Certainly, if FSAM

and flight crew agree on control mode, the decision is straight-

forward. FSAM override of the pilot’s designated mode, whether

toggling to envelope-aware (for recovery) or back to pilot control

(following recovery), requires further research in human factors as

well as in autonomous system development, validation, and

verification.
For the purpose of illustration, Monte Carlo simulations used in

this paper were constructed such that the probability of entering

unsafe states was higher under pilot control. This may not always be

the case. For example, instrumentmalfunctionsmay render the safety

controller ineffective, in which case the sensor health feature can bias

the MDP away from an autonomous control mode selection. In

addition to Monte Carlo simulations, accurate state transition

probabilities can be constructed from flight data. Care must be taken

to model the pilot’s inputs adequately because flight data only

represent one crew input case.Mining larger data sets (e.g., data from

all of an airline’s flights over a multiyear period) can be used to

determine statistically significant state-space transition dynamics and

probabilities.
The policies obtained from the MDP/CMDP formulations are

stored in the form of lookup tables. Verifying large lookup table

policies can be computationally intensive. Deterministic MDP

policies can be verified usingmodel checking tools such as SPIN [36]

and NuSMV [37]. For large-scale MDPs, probabilistic verification

algorithms described in [38,39] can be used to establish formal

guarantees. PRISM [40] can be used to verify stochastic MDP

policies. Note that FSAM is only an overriding mechanism. Thus, if

the available control authorities cannotmitigate a givenLOC risk, the

MDP policy can result in unsafe states.
In this work, optimal policies were constructed using a value

iteration algorithm that explicitly enumerates all states. This may be

infeasible for large state spaces. Instead, a modified form of value

iteration can be used to only enumerate states that are reachable from

a given initial state [41]. The availability of a simulation model for

takeoff dynamics makes it possible to use reinforcement-learning

techniques such as temporal difference/Q-learning to solve the

underlying MDP [41,42]. The use of a Monte Carlo tree search

algorithm to solve the ideal MDP formulation in an online fashion

was explored in a separate publication [32].

VIII. Conclusions

This paper contributes a decision-theoretic formulation of a Flight

Safety Assessment and Management (FSAM) system that monitors

each flight and activates an envelope-aware controller under high-

risk conditions. A generalized suite ofMDP state features and reward

formulation were proposed, and a takeoff case study was formulated

in detail. Specifically, this paper develops a takeoff MDP capable of

preventing LOC events such as runway excursion and tail strike and

demonstrates its ability to avoid LOC on a real-world accident case.

Intuitive state-space abstractions enabled the FSAM takeoff MDP to

remain computationally tractable. A CMDP formulation eliminates

the need to iteratively refine MDP policies by imposing probabilistic

constraints on high-risk states.
Previous work [14] formulated FSAM as a suite of manually con-

structed finite-state machines to govern control authority switching.

Manually generating finite-state machines can be cumbersome if the

underlying state space is large and requires significant experience to

ensure that the override directives are chosen appropriately. This paper

has shown that an MDP or CMDP FSAM formulation can eliminate

the need tomanually design finite-statemachines formanaging control

authority switches. Furthermore, any MDP formulation enables each

policy to be optimized over uncertainties and generalized reward

functions.
Despite the generality of the initial FSAM MDP formulation,

this paper makes several assumptions about pilot models,

environment, and aircraft health in the takeoff case study. Extending

the specific FSAMMDP models to not require these assumptions is

essential to ensure that FSAM policies do not actually increase risk

when assumptions no longer hold. Future research will formally

analyze additional scenarios over the full state space and develop

strategies to ensure that the actions of FSAM will not jeopardize

nominal operations of the aircraft. Case studies demonstrating the

integration of multiple EA-FMS modules to address LOC scenarios

related to an in-flight rudder jam are presented in complementary

work [43].

Appendix A: Constrained Markov Decision Process

The expected value or utility of state s0 when acting according to

policy π is given by

V�s0�π � E

�X∞
n�0

λnR�sn; an�
�
s0

(A1)

For a Markov process, Eq. (A1) can be expressed as

V�s0� �
X
si∈s

X
aj∈A

X∞
n�0

λnT �sn � si; an � ajjs0�R�sn � si; an � aj�

�
X
si∈s

X
aj∈A

ρ�si; aj�πs0R�sn � si; an � aj� (A2)

Here, ρ�si; aj�πs0 is defined as the occupational measure of the

state–action pair �si; aj�:

ρ�si; aj�πs0 : �
X∞
n�0

λnT �sn � si; an � ajjs0� (A3)

The occupational measure is the discounted total probability of

reaching a state si and executing an action aj as a result of starting in
state so and acting according to policy π. The sum of the occupational

measure of state ai over all possible actions aj ∈ A is obtained from

Eq. (A3):
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X
aj∈A

ρ�si; aj� �
X
aj∈A

X∞
n�0

λnT �si; ajjs0�

� T �s0� �
X
sx∈S

X
ay∈A

X∞
n�1

λn−1T �sx; ayjs0�T �sijsx; ay�

� T �s0� �
X
sx∈S

X
ay∈A

ρ�sx; ay�πs0T �sijsx; ay� (A4)

Here, T �s0� � 1 is the probability of starting in the initial state s0.
Equation (A4) leads to the expressionX

aj∈A
ρ�si; aj� −

X
sx∈S

X
ay∈A

ρ�sx; ay�πs0T �sijsx; ay� � T �s0� (A5)

Equations (A2) and (A5) can be expressed in their respective

matrix forms:

V � RTρ (A6)

�� I I : : : I � − �T T
a1T

T
a2 : : : T

T
an ��ρ � ξ (A7)

Here, V ∈ RjSj and R, ρ ∈ RjS×Aj. I ∈ RjSj×jSj is the identity

matrix, and T ai ∈ RjSj×jSj is the transition probabilitymatrix for each

action ai ∈ A. ξ ∈ RjSj is the initial state distributionwith ξ�s0� � 1,
and all other states ξ�si� are zeros. Using Eqs. (A6) and (A7), the

problem ofmaximizing the cumulative reward [Eq. (1)] is formulated

as a linear program (LP):

max RTρ (A8)

subject to the constraints

�� I I : : : I � − �T T
a1T

T
a2 ; : : : T

T
an ��ρ � ξ

ρ ≥ 0 (A9)

Note that the solution to Eqs. (A8) and (A9) corresponds to the

MDP without constraints [Eq. (1)]. The additional constraints

imposed by Eq. (18) are expressed in terms of the occupational

measures. For example, consider the constraint

T �sijs0� ≤ �pi

The preceding constraint can be expressed asX
aj∈A

T �si; ajjs0� ≤ �pi

X∞
n�0

λn
X
aj∈A

T �sn � si; an � ajjs0� ≤
X∞
n�0

λn �pi (A10)

X
aj∈A

ρ�si; aj�;≤
X∞
n�0

λn �pi (A11)

X
aj∈A

ρ�si; aj� ≤
1

1 − λ
�pi

�zTρ ≤
1

1 − λ
�pi (A12)

Here, �z is a vector of zeros, with ones in the positions

corresponding to the occupational measures of state si.
Equations (A8), (A9), and (A12) comprise the LP formulation for

the constrained MDP or CMDP [44]. For each state si, a probability

distribution over actions (policy) is obtained from the occupational

measures:

T �ajjsi� �
ρ�si; aj�πs0P
aj

ρ�si; aj�πs0
(A13)

Appendix B: Monte Carlo Simulation Framework

B1. Aircraft Dynamics

The aircraft is modeled by ordinary differential equations given by

[45]

m� _u − vr� wq� � −�sin θ�mg − �cos β��cos α� �D
� �sin α� �L� �cos ϕT�FT � Fxgear (B1)

m� _v� ur −wp� � �sin ϕ��cos θ�mg − �sin β� �D� Fygear (B2)

m� _w − uq� vp� � �cos ϕ��cos θ�mg − �cos β��sin α� �D
− �cos α� �L − �sin ϕT�FT � Fzgear (B3)

Ixx _p� �Izz − Iyy�qr − Ixz�_r� pq� � �Laero � �Lthrust � �Lgear

(B4)

Iyy _q� �Ixx − Izz�pr� Ixz�p2 − r2� � �Maero � �Mthrust � �Mgear

(B5)

Izz _r� �Iyy − Ixx�pq� Ixz�qr − _p� � �Naero � �Nthrust � �Ngear

(B6)

_x � u cos ψ cos θ� v�cos ψ sin θ sin ϕ − sin ψ cos ϕ�
�w�cos ϕ sin θ cos ϕ� sin ψ sin ϕ� (B7)

_y � u sin ψ cos θ� v�sin ψ sin θ sin ϕ� cos ψ cos ϕ�
�w�sin ψ sin θ cos ϕ − cos ψ sin ϕ� (B8)

_z � u sin θ − v cos θ sin ϕ −w cos θ cos ϕ (B9)

The translational motion is captured by Eqs. (B1–B3) and (B7–

B9). Rotational dynamics are modeled by Eqs. (B4–B6). u, v, w
represent aircraft body velocities. ϕ, θ, ψ represent roll, pitch, and

yaw, respectively. p, q, r denote the angular rates. x, y, z represent
aircraft position. �L, �D represent lift and drag forces, respectively. �L,
�M, �N represent roll, pitch, and yawing moments, respectively, due to

aerodynamic, thrust, and gear contact forces. Unlike conventional

aircraft equations of motion, modeling takeoff dynamics requires

knowledge of the gear forces and moments. Detailed description of

the landing-gear dynamics can be found in [13].

B2. Pilot Control Inputs

The pilot’s elevatorue and rudderur inputs are given next, whereas
the aileron input is assumed to be zero. Note that this work assumes

that the pilot’s control column and rudder inputs are translated

directly to control surface deflections (direct law [1]):
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ue �
� kpe

�θref1 − θ�t − τ�� � kdeq if �v ≥ Vr�
kpe

�θref2 − θ�t − τ�� � kdeq if �v < Vr�
;

ur � kpr
�ψ ref − ψ�t − τ�� � kdrr;

ψ ref � kYy (B10)

Equation (B10) represents a simple human operator model [46,47]
that treats the pilot as a proportional-derivative feedback law with
time delay. Elevator input is modeled such that the pilot increases
aircraft pitch attitude after rotation speed is reached. The rudder input
is modeled such that the pilot tries to track the runway centerline.
Here, kp is a proportional feedback gain, kd is a derivative gain, and τ
is the time delay. θ�t − τ� represents the inherent lag in pilot response
due to time taken for perception of and reaction to external stimuli
and neuromuscular interactions [46]. θref1 is the appropriate pitch
reference attitude during rotation. θref2 is the reference pitch attitude
before rotation (ideally zero). θref − θ�t − τ� is the error in tracking
the appropriate rotation attitude �θref�. Vr denotes the rotation
airspeed perceived by the pilot, ideally VR.
Equation (B10) represents a typical pilot behavior during takeoff.

Although nominal values for θref and Vr could be specified, actual
parameter values such as kpe

, kde , and τ will be pilot-dependent. For
example, it is rare for any two pilots to have the same response time;
thus, τ varies between pilots [46]. The delay τ can also be influenced
by other factors such as time of day and runway conditions.
Parameter values are also different for each takeoff due to pilot input
and environmental differences. For this work, θref , Vr, kp, kd, and τ
are uniformly sampled from bounded intervals �θrefmin

; θrefmax
�,

�Vrmin
; Vrmax

�, �kpmin
; Kpmax

�, �Kdmin
; Kdmax

�, and �τmin; τmax�,
respectively.
The pilot’s throttle control input is modeled as a function of

engines’ operational state. The engines can be all operational (EAEO),
one engine can be inoperative (EOEI), all engines can be inoperative
(EAEI). For each takeoff sequence, the operational state of the engine
E ∈ fEAEO; EOEI; EAEIg is sampled according to a specified
distribution called as the engine failure distribution. If the sampled
engine status denotes one or more engine failure(s) (i.e.,EOEI∕EAEI),
then an engine failure is simulated by initializing the aircraft with all
engines operational (EAEO) and then triggering the engine failure
event EOEI or EAEI at time tfail ∈ �0; tf� by setting the thrust in the
failed engines to zero. Note that �0; tf� denotes the takeoff time
interval, and tfail is sampled uniformly within this time interval. If
the sampled engine status is nominal (EAEO), it is assumed that the
appropriate takeoff thrust Tmax is used. Rejected takeoffs can also be
caused by other factors besides engine failures. To account for these
scenarios, a rejected takeoff scenario at time tfail is triggered
depending on the value of a Bernoulli random variable.

B3. Envelope-Aware Controller

When off-nominal conditions are encountered during takeoff,
FSAM transfers control to the envelope-aware controller that
attempts LOC prevention or recovery. Note that FSAM is only an
overridingmechanism that selects the appropriate control authority in
a LOC situation. In this work, the envelope-aware controller is
designed to ensure that the aircraft states remainwithin safe operating
envelopes. The design of control laws to prevent constraint violation
is beyond the scope of this work (see [48,49] and references therein
for related work). In this work, elevator input for the envelope-aware
feedback control law is modeled as

ue �

8>>><
>>>:

�K1��θref1 −θ�t��� �K2q if �θ�t� < θPR &v<VR�
�K3��θref2 −θ�t��� �K4q if �θ�t�≥ θPR &v<VR�
�K5��θref3 −θ�t��� �K6q if �θ�t�< θTS &v≥VR�
�K7��θref4 −θ�t��� �K8q if �θ�t�≥ θTS & z�t� <hTS &v≥VR�

(B11)

Here, �Ki, i � 1; : : : ; 8 and θrefj , j � 1; : : : ; 4 are chosen such that
the closed-loop response of the aircraft is free from high-risk states

such as premature rotation and tail strike. θ �TS, h �TS represents the
threshold when tail-strike protection should be activated, whereas
θPR represents the threshold when prevention against premature
rotation is activated.¶

The rudder input of the envelope-aware (EA) controller ismodeled
as

ψ ref �

8><
>:
ψ runway � 10 deg if

�
y < −

ywidth
4

�

ψ runway − 10 deg if

�
y >

ywidth
4

� (B12)

ur � Kpr
�ψ ref − ψ� � Kdrr (B13)

When all engines are operational (E � EAEO), the EA controller’s
thrust input is modeled as

T �
�
Tmax if �Q ∈ fq1; q2; q3; q4; q5; q6; q7g
Tidle otherwise

(B14)

When E � EOEI, thrust is

T �
�

Tmax

2
if �Q ∈ fq3; q4; q5; q6; q7g

Tidle otherwise
(B15)

A total of 100,000 trials were run. The initial conditions for x0, u0
were sampled uniformly over intervals �0; Rmax� and �0; V2�,
respectively. Here,Rmax denotes the available runway length, and V2

denotes the takeoff safety V speed. Initial conditions for the
remaining state variables were set to zero.
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