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Thepaper describes a framework for constrained flight control basedon the use of recoverable sets that are chained

together to guide constrained admissible transitions between trim points. The recoverable set is the set of all states for

which there exists a control sequence such that the subsequent response is guaranteed to satisfy the imposed

constraints. The constraints can reflect actuator range/rate limits, safety limits, as well as ranges of validity of the

aircraft model. Because in aircraft loss-of-control situations, fast onboard computations are necessary, the approach

to computing recoverable sets in this paper exploits linear discrete-timemodels (which can be generated via onboard

system identification and reflect effects of failures and degradations) and recovery sequences generated, either by a

stable linear finite-dimensional subsystem or through a reset of the dynamic controller states or of its set points.With

this approach, only subsets of the full recoverable set can be computed, however, these recoverable subsets possess

certaindesirable control invarianceproperties, and their computations are simple;moreover, the onboardgeneration

of the recovery sequence reduces to a low-dimensional quadratic programming problem. The applications of this

approach to longitudinal and lateral linearized and nonlinear aircraft flight models are reported.

Nomenclature

b = wing span
c = mean wing chord
O∞ = safe set
p = roll rate
q = pitch rate
R∞ = recoverable set
r = yaw rate
S = wing surface area
U0 = nominal air speed
U, V,W = X, Y, Z components of aircraft airspeed
α = angle of attack
β = sideslip angle
γ = flight-path angle
Δx = perturbed state in linearized system model
δa, δe, δr = aileron, elevator, and rudder angles
δT = thrust
θ = pitch angle
ρ = air density
ϕ = bank angle

I. Introduction

A N AIRCRAFT loss-of-control (LOC) event is defined by

Wilborn and Foster [1], based on a large study of aviation

accidents jointly performed byNASA and The Boeing Company [2],

as an excursion from three or more critical envelopes: the adverse

aerodynamics envelope, unusual attitude envelope, structural

integrity envelope, dynamic pitch control envelope, and dynamic

roll envelope. These envelopes are essentially a collection of

structural, control, and dynamic constraints. Although deviation

from one or more of these envelopes does not immediately spell

disaster for an aircraft, if more of these constraints are violated, the

aircraft recovery becomes increasingly more difficult.
Techniques to characterize aircraft states that can lead to future

constraint adherence or violation are thus necessary to be able to

detect, prevent, and mitigate LOC events. In this paper, we focus on

safe and recoverable sets as primary tools for this characterization.

A safe set is the set of aircraft initial states for which the nominal

closed-loop response does not violate the imposed constraints. A

recoverable set is the set of aircraft initial states for which there exists

control inputs as functions of time that prevent constraint violation.

The literature on computing these and closely related forward and

backward reachable sets for constrained aircraft dynamics is

extensive (see, e.g., [3–11] and references therein). Many of the

existing approaches exploit nonlinear models and require extensive

computations to solve partial differential equations. Consequently,

their onboard usewith aircraft models being identified online in LOC

situations may be infeasible unless significant simplifications are

made and short horizons are assumed (see [6]).
To enable the computations of safe and recoverable sets to be

feasible for onboard implementation, in this paper we focus on

exploiting discrete-time linear models. In addition, we restrict the

recovery mechanisms to permit simple computations of sets of

recoverable states. Specifically, we consider recovery control

sequences generated either by a stable linear finite-dimensional

subsystem or recovery mechanisms that operate through a reset of

states of the controller or through modifications of the controller set

points.With this approach, only subsets of the full recoverable set are

determined, however, the computations are simple and reduce to

constructions of the conventional safe sets for appropriately aug-

mented or extended systems. These recoverable subsets also possess

certain desirable control invariance properties. Moreover, the on-

board generation of the recovery sequence is feasible and reduces to a

low-dimensional quadratic programming problem.
Finally, we demonstrate that these recoverable subsets can be

exploited for constrained flight control based on chaining them

together to guide constrained admissible transitions between trim

points. Previous approaches based on the use of safe constraint-

admissible and contractive sets [12–15] are thus generalized to the

use of recoverable subsets of various kinds. These recoverable

subsets can be significantly larger and enable less conservative

transitions between trim points further apart to take place while

employing suitable recovery sequences. Another attractive feature of

our transition planning framework, as shown in [13], is being able to

easily handle unmeasured additive set-bounded disturbances and

uncertainties.
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The rest of the paper is organized as follows. In Sec. II, we describe
our approach to defining and computing recoverable sets based on
different recovery mechanisms, and we characterize their properties.
The use of recoverable sets for constrained trim-point-to-trim-point
transition planning is described in Sec. III. In Sec. IV, we describe the
aircraft model and constraints. Numerical examples of recoverable
sets are reported in Sec. V, in which we also illustrate their use for
constrained maneuver planning and LOC prevention. Simulations
based on the nonlinear aircraft model are included to validate our use
of linearized models, combined with appropriate model validity
constraints. Section VI presents concluding remarks.
Our previous publications [16–18] reported some of the develop-

ments described in this paper in a conference format. This paper
contains generalizations, more comprehensive examples, and the
results of evaluation on the nonlinear model.

II. Recoverable Sets

We consider procedures for constructing sets of initial conditions
for which closed-loop trajectories of a discrete-time linear system

x�k� 1� � Ax�k� � Buc�k�;
y�k� � Cx�k� �Duc�k� (1)

in which k ∈ Z�, x�k� ∈ Rnx is the state vector, uc�k� ∈ Rnu is the
control vector, and y�k� ∈ Rny is the constrained output vector, can
be made to satisfy constraints with an appropriate choice of control
input. The constraints are given by

y�k� ∈ Y � fy: Gy ≤ gg (2)

in which G ∈ Rnh×ny , g ∈ Rnh , and nh is the number of inequalities
that make up the output constraint set.
Note that Eq. (1) can represent a discrete-time model of open-loop

linearized aircraft dynamics. The output constraints (2), in that case,
are generated from consideration of the flight envelope, control
constraints, and assumptions made for the region of validity of the
linearized model.

A. Safe States for Closed-Loop Systems with a Static Controller

Suppose a static state feedback controller is used for the system (1)
so that

uc�k� � −Kx�k� (3)

Then, the closed-loop dynamics are given by

x�k� 1� � ACLx�k�;
y�k� � CCLx�k� (4)

in which ACL � A − BK, CCL � C −DK, and the controller gainK
is assumed to be stabilizing.
The response of Eq. (4) to an initial state x�0� is easily predicted as

x�k� � Ak
CLx�0�;

y�k� � CCLA
k
CLx�0� (5)

The trajectory resulting from an initial condition x�0� satisfies the
constraints at time k if

GCCLA
k
CLx�0� ≤ g (6)

The set of all initial conditions x�0� that lead to responses that
satisfy constraints for all future time instants is referred to as O∞
[19,20]:

O∞ � fx�0� ∈ Rnx : y�k� � CCLA
k
CLx�0� ∈ Y; ∀ k ≥ 0g (7)

If ACL is Schur (i.e., the gain K is stabilizing), (CCL, ACL) is
observable, 0 ∈ intY, and Y is compact, then O∞ is positively
invariant, is finitely determined, and is a polytope (bounded
polyhedron) [19]. Finite determinationmeans that there exists t� such
that O∞ � Ot for all t ≥ t�, where

Ot � fx�0� ∈ Rnx : y�k� � CCLA
k
CLx�0� ∈ Y; for k � 0; : : : ; tg

(8)

In practice, t� is comparable to the settling time of the closed-loop
system and an upper bound on t� can be easily estimated based on
contractivity properties of the closed-loop system. The representation
for O∞ is obtained by stacking the inequality constraints

2
666664

G
GCCLACL

GCCLA
2
CL

..

.

GCCLA
t�
CL

3
777775x�0� ≤

2
6664
g
g

..

.

g

3
7775 (9)

Assuming an efficient method of performing matrix operations is
being used, the inequalities (9) can be formed very quickly. Note also
that some of the constraints forming O∞ in inequality (9) may be
redundant and can be eliminated to reduce storage memory
requirements and simplify subsequent computations involving O∞.
Simpler subsets that closely approximate O∞ can be generated by
eliminating the almost redundant constraints and applying a pull-in
transformation [21]. However, constraint elimination, often
performed by linear programming, may require nonnegligible
computing effort and hence may be avoided altogether in online
applications. Note also that O∞ is dependent on the choice of the
nominal controller (3) and sampling period used to obtain the
discrete-time model (1).

B. Recoverable States with Controller State Reset

In situations when dynamic controllers are used, the set of plant
states that result in constraint-admissible responses can be enlarged
through the controller state reset. In fact, controllers frequently
employ integral action to guarantee offset-free tracking of constant
reference commands and asymptotic rejection of constant input
disturbances. For a controller with integral action, the closed-loop
system is described by the following equations:

x�k� 1� � Ax�k� � Buc�k�;
xI�k� 1� � CIx�k� � xI�k� (10)

in which x�k� ∈ Rnx , xI�k� ∈ RnI , and

uc�k� � −K1x�k� − K2xI�k� (11)

The closed-loop system model can be written as

�x�k� 1� � �A �x�k�;
�y�k� � �C �x�k� (12)

in which

�x�k� �
�
x�k�
xI�k�

�
(13)

�A �
�
A − BK1 −BK2

CI I

�
(14)

and �y ∈ Rn �y , �C are appropriately defined to reflect the constrained
outputs. The constraints have the form
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�y�k� ∈ �Y � f �y: �G �y ≤ �gg (15)

The safe set for this closed-loop system is defined as the set of all
initial plant and controller states �x�0�, such that the ensuing closed-
loop trajectories are constraint admissible. We denote this set by

OI
∞ � f �x�0� ∈ Rnx�nI : �C �Ak �x�0� ∈ �Y; ∀ k ≥ 0g (16)

If �A is Schur, ( �C, �A) is observable, 0 ∈ int �Y, and �Y is compact,OI
∞

in Eq. (16) is positively invariant, is finitely determined, and is a
polytope [19]. Similar to inequality (9), the inequality representation
for OI

∞ in can be generated through constraint stacking as2
666664

�G
�G �C �A
�G �C �A2

..

.

�G �C �At�

3
777775 �x�0� ≤

2
6664

�g
�g

..

.

�g

3
7775 (17)

Note that, unlike the plant state, the controller state xI can be reset if
this facilitates the constraint enforcement. The set of plant states that
can be recovered (i.e., the ensuing closed-loop response can be made
to satisfy constraints) by resetting the controller state is a projection of
OI

∞ onto the plant states, that is,

RI
∞ � fx�0�: ∃xI�0� such that �x�0�; xI�0�� ∈ OI

∞g (18)

We note that RI
∞ possesses a desirable control invariance property

that can be exploited in the construction of constrained control
schemes. Specifically, x�k� ∈ RI

∞ and xI�k� being selected
consistently with the requirement that �x�k�; xI�k�� ∈ OI

∞, imply
that x�k� 1� ∈ RI

∞.
Finding a suitable xI�0� for a given x�0� ∈ RI

∞ can be posed as a
quadratic programming problem similar to the one used in the
controller state governor (CSG) [17,18,22]. Specifically, the reset of
the controller states aims at the decrease of the closed-loop energy, as
defined by a Lyapunov function

VL� �x�k�� � �x�k�TPL �x�k� (19)

in which PL � PT
L > 0 is the positive-definite symmetric matrix

satisfying the following Lyapunov equation:

�ATPL
�A − PL �QL � 0 (20)

in whichQL � QT
L > 0. Then, the state xI�0� is determined based on

the solution of the following quadratic programming problem:

x�I �0� � argmin
xI�0�

VL� �x�0��

subject to �x�0� � �x�0�T; xI�0�T �T ∈ OI
∞ (21)

TheCSG [17] actually exploits this strategy at every time instant k,
not just at k � 0, to produce a constraint-admissible response that
also has faster convergence through the repeated minimization of the
closed-loop system energy. We note that, although in this paper we
explicitly consider dynamic controllers based on integral action (11),
other dynamic controllers can be treated analogously.

C. Recoverable States Through Controller State Reset

and Adjustable Reference

Tracking controllers respond to reference commands and lead to
closed-loop systems of the form

�x�k� 1� � �A �x�k� � �Br�k�;
�y�k� � �C �x�k� � �Dr�k� (22)

in which r�k� ∈ Rnr is the reference command, �B ∈ R�n�nI�×nr ,
�C ∈ Rn �y×�n�nI�, and �D ∈ Rn �y×nr . The state �x�k� is of the form of

Eq. (13) and is composed of resettable controller states xI and
nonresettable plant states x. For instance, Eq. (22) may result from
replacing the integrator dynamics in Eq. (10) by

xI�k� 1� � xI�k� � CIx�k� − r�k� (23)

The matrix �A is assumed to be Schur. Let �xe � Hrr,
Hr � �I − �A�−1 �B, denote the equilibrium state corresponding to a
constant command r�k� ≡ r.
The safe set for Eq. (22) is defined as the set of all initial closed-

loop states �x�0� and constant reference commands r, such that the
ensuing closed-loop response satisfies the following constraints:

OI;r
∞ � f� �x�0�; r�: �y�k� � �C�I − �Ak��I − �A�−1 �Br� �Ak �x�0�
� �Dr ∈ Y; � �CHr � �D�r ∈ �1 − ϵ�Yg (24)

The last constraint

� �CHr � �D�r ∈ �1 − ϵ�Y (25)

inwhich ϵ > 0 is sufficiently small, tightens constraints on r in steady
state to guarantee finite determination [21] of OI;r

∞ . By stacking
inequalities, we obtain a representation for OI;r

∞ in the form

2
666664

� �G �C �G �D�
� �G �C �A �G �C�I − �A��I − �A�−1 �B� �G �D�
� �G �C �A2 �G �C�I − �A2��I − �A�−1 �B� �G �D�

..

.

� �G �C �At� �G �C�I − �At���I − �A�−1 �B� �G �D�

3
777775
�
�x�0�
r

�
≤

2
6664

�g
�g

..

.

�g

3
7775
(26)

The set of plant states that can be recovered is the projection ofOI;r
∞

onto the plant states

RI;r
∞ �

n
x�0�: ∃�xI�0�; r� such that ��x�0�; xI�0��; r� ∈ OI;r

∞

o
(27)

We note that RI;r
∞ possesses a desirable control invariance property

that can be exploited in the constructionof constrained control schemes.
Specifically, x�k� ∈ RI;r

∞ and xI�k�, r�k� being selected consistently
with ��x�k�; xI�k��; r�k�� ∈ OI

∞, imply that x�k� 1� ∈ RI;r
∞ .

Finding a suitable xI�0� and r for a given x�0� ∈ RI;r
∞ can be posed

as a quadratic programming problem similar to the one exploited by
the controller state and reference governor (CSRG) [17]. Specifically,
the following cost function is introduced:

J� �x�k�; r�k�� � k �x�k� − �xe�k�k2PL
� kr�k� − �r�k�k2Γ (28)

in which, for a matrixM, kzk2M � zTMz, �r�k� is the desired reference
at time instant k (which, e.g., could be zero if the linearization is at
the desired trim point), Γ � ΓT > 0 and PL � PT

L > 0 satisfies the
Lyapunov equation (20) with QL � QT

L > 0, and the following
quadratic programming problem is solved:

� �x��k�; r��k�� � argmin
xI�k�;r�k�

J� �x�k�; r�k��

subject to � �x�k�; r�k�� ∈ OI;r
∞ ; �x�k� � �x�k�T; xI�k�T �T (29)

The CSRG [17] actually exploits this strategy at every time instant
k, not just at k � 0, to produce a constraint-admissible response that
also has faster convergence through the repeated minimization
of Eq. (29).
We note that, due to the additional flexibility gained by being able

to change the reference command, RI
∞ ⊂ RI;r

∞ .

D. Recoverable States with Parametrized Feedforward Sequences

Another approach to enlarge the set of recoverable plant states is to
consider simply parameterized feedforward control sequences. The
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simple parameterization is achieved by generating these feedforward
sequences with a stable auxiliary subsystem with a resettable
subsystem state. Unlike the previous approaches, we do not rely on
reset of given controller states but reset states of an auxiliary
subsystem.
Consider the controller (3) augmented with a feedforward signal

vc�k�,

uc�k� � −Kx�k� � vc�k� (30)

With Eq. (30), the closed-loop system takes the form

x�k� 1� � ACLx�k� � Bvc�k�;
y�k� � CCLx�k� �Dvc�k� (31)

in which vc�k� is the feedforward signal used to enforce the
constraints (i.e., recover the plant states) as necessary.
We note that the viability set V∞ [23,24] for Eq. (31) with

constraints (2), that is, the set of all initial conditions x�0�, for which
there exists a sequence v�·� that enforces the constraint, is difficult to
compute. To develop a more easily computable inner approximation
to V∞, we assume that the recovery sequence is generated by an
auxiliary system of the form

vc�k� � ĉ� Ĉ x̂�k�;
x̂�k� 1� � Â x̂�k� (32)

inwhich Â is a Schurmatrix and x̂ is thenx̂ vector state of the auxiliary
system. The safe set for Eqs. (31) and (32) with constraints (2) is the
set of initial plant states x�0� and initial auxiliary states x̂�0�, ĉ, such
that the ensuing closed-loop trajectory is constraint admissible,
that is,

Oext
∞ �

n
�x�0�; ĉ; x̂�0�� ∈ Rnx�nu�nx̂ : y�k� ∈ Y;

k � 0; : : : ; t�; CCLHrĉ�Dĉ ∈ �1 − ϵ�Y
o

(33)

in which Hr � �I − ACL�−1B. The last constraint
CCLHrĉ�Dĉ ∈ �1 − ϵ�Y, in which ϵ > 0 is sufficiently small, is
introduced to guarantee that Oext

∞ is finitely determined [20].
The recoverable set is the projection of Oext

∞ onto the plant states:

Rext
∞ � fx�0�: ∃ĉ; x̂�0� such that �x�0�; ĉ; x̂�0�� ∈ Oext

∞ g (34)

Note that, because the constraints (2) are affine, bothOext
∞ and Rext

∞
are polyhedral. From the computational standpoint, generating Oext

∞
and Rext

∞ can be accomplished using the conventional safe set
computations and projection methods.
Given x�0� ∈ Rext

∞ , computing an appropriate ĉ � ĉ�0� and x̂�0�
for which constraints are enforced can be performed by solving a
quadratic programming problem of the form

1

2
ĉ�0�Tĉ�0� � 1

2
x̂�0�TPrx̂�0� → min

ĉ�0�;x̂�0�

subject to �x�0�; ĉ�0�; x̂�0�� ∈ Oext
∞ (35)

in which Pr � PT
r > 0. The minimization in Eq. (35) aims at

preserving the operationwith the nominal controller and avoiding the
unnecessary use of recovery sequence. Once x̂�0� and ĉ are
determined, the execution of Eq. (32) yields a recovery sequence for a
given x�0�.
We note that the set Rext

∞ possesses a desirable control invariance
property that can be exploited in the construction of constrained
control schemes. Specifically, x�k� ∈ Rext

∞ and x̂�k�, ĉ being
selected consistently with �x�k�; ĉ�k�; x̂�k�� ∈ Oext

∞ , so that
v�k� � ĉ� Ĉ x̂�k�, implies that x�k� 1� ∈ Rext

∞ . We also note that,
for x�0� ∈ O∞, in which O∞ is defined by Eq. (7), the solution of
Eq. (35) yields ĉ�0� � 0 and x̂�0� � 0.

Several choices exist for the selection of the auxiliary dynamics

(32), including the shift register and Laguerre’s sequence generators.
These choices aremotivated by related developments in the extended

command governor case [25] and in the model-predictive control
[26]. When using the shift register, the recovery sequence becomes

equal to ĉ after H � 1 steps, and Â and Ĉ have the form

Â �

2
6664

�S1 0 · · · 0

0 �S2 · · · 0

..

. ..
. . .

. ..
.

0 0 · · · �Snu

3
7775; Ĉ �

2
6664

�T1 0 · · · 0

0 �T2 · · · 0

..

. ..
. . .

. ..
.

0 0 · · · �Tnu

3
7775
(36)

with

�Si �

2
666664

0 1 0 · · · 0

0 0 1 · · · 0

..

. ..
. ..

. . .
. ..

.

0 0 · · · · · · 1

0 0 · · · · · · 0

3
777775 ∈ R�H�1�×�H�1�;

�Ti � � 1 0 · · · · · · 0 � ∈ R1×�H�1�

(37)

with the number of blocks in Â and Ĉ being equal to the number of

control channels being used in the recovery sequence.
When using Laguerre’s sequence generators, Â and Ĉ have the

form of Eq. (36) and �Si and �Ti have the following structure:

�Si �

2
666664

αL βL −αLβL α2LβL · · ·

0 αL βL −αLβL · · ·

0 0 αL βL · · ·

0 0 0 αL · · ·

..

. ..
. ..

. ..
. ..

.

3
777775;

�Ti �
������
βL

p
� 1 −αL α2L −α3L · · · �

(38)

in which βL � 1 − α2L and 0 ≤ αL ≤ 1 are parameters. The choice
αL � 0 corresponds to the shift register. Numerical examples suggest

that low-dimensional Laguerre’s sequence generators for αL ≠ 0 are
capable of producing a rich set of recovery sequences.
To incorporate the auxiliary subsystem dynamics with the nominal

closed-loop system dynamics, we note that

uc�k� � −Kx�k� � vc�k� � −Kx�k� � ĉ� Ĉ x̂�k�

and thus,

uc�k� �
�
−K I Ĉ

�24 x�k�
ĉ

x̂�k�

3
5 (39)

Therefore, when one constructs Oext
∞ with the inclusion of a

nominal controller using conventional safe set computation tools, the

state vector becomes

2
4 x�k�

ĉ
x̂�k�

3
5

and the system dynamics and output matrices take the form

Aext�
2
4A−BK B BĈ

0 I 0

0 0 Â

3
5; Cext�

�
C D DĈ
−K I Ĉ

�
(40)

The second row of Cext is introduced to handle the constraints

imposed on the control.
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The expression for Oext
∞ , with the knowledge of t�, has the

following form: 2
666664

Gext

GextCextAext

GextCextA
2
ext

..

.

GextCextA
t�
ext

3
777775
2
4 x�0�

ĉ
x̂�0�

3
5 ≤

2
6664
g
g

..

.

g

3
7775 (41)

in which Gext � �G 0 0 �. It should be noted that nothing in
general can be said about the relationship of Rext

∞ to RI
∞ or RI;r

∞ .

E. Recoverable States Through Resettable Controller States and

Parametrized Feedforward Sequences

Various generalizations of the preceding recovery sequence
generation schemes can be proposed. For instance, we can combine
the reset of dynamic controller states with the use of recovery
sequences generated by an auxiliary subsystem. Specifically, the
dynamic controller

uc�k� � −K1x�k� − K2xI�k� � vc�k� (42)

can be used in place of Eq. (11) with vc�k� generated by an auxiliary
subsystem (32). For this case, the safe and recoverable setsOext;I

∞ and
Rext;I
∞ , respectively, are similarly defined. For x�0� ∈ Rext;I

∞ , ĉ � ĉ�0�,
xI�0�, and x̂�0� are determined through the solution of the following
quadratic programming problem, which is a combination of Eq. (21),
to reduce closed-loop system energy, and Eq. (35), to select the
recovery sequence:

1

2
ĉ�0�Tĉ�0� � 1

2
x̂�0�TPrx̂�0� � �x�0�TPL �x�0� → min

xI�0�;ĉ�0�;x̂�0�

subject to �x�0�; xI�0�; ĉ�0�; x̂�0�� ∈ Oext;I
∞ (43)

in which PL and Pr are defined as before.

III. Constrained Control of Trim-Point-to-Trim-Point
Transitions Using Recoverable Sets

Constrained control schemes that plan and execute constraint-
admissible transitions between trim points based on the use of safe/
contractive sets and graph search have been proposed in our previous
work [13]. Here, we describe necessary modifications to accommo-
date the recoverable sets.
Suppose a nonlinear model of the system has the following form:

X�t� 1� � F�X�t�; Uc�t�� (44)

in which X�t� is the vector state and Uc�t� is the vector control.
A point Xeq is a trim point of Eq. (44), if there exists a constant value
of the input Uc � Ueq for which Xeq is an equilibrium [i.e.,
F�Xeq; Ueq� � 0]. Two trim points are connected, if there exists a
trajectory from one trim point to any open neighborhood of another
trim point that does not violate constraints.
Assuming that the linearized models remain sufficiently accurate,

which can be facilitated through the imposition of artificial model
validity constraints, we determine the connectedness of a trim
point X−

eq to another trim point X�
eq, based on the recoverable sets

corresponding to the linearized system atX�
eq. Depending on the type

of safe or recoverable sets being used, one of the following conditions
can be exploited:

X−
eq − X�

eq ∈ O�
∞ (45)

or

X−
eq − X�

eq ∈ RI�
∞ (46)

or

X−
eq − X�

eq ∈ RI;r�
∞ (47)

or

X−
eq − X�

eq ∈ Rext�
∞ (48)

or

X−
eq − X�

eq ∈ Rext;I�
∞ (49)

in which the superscript “�” stands for the next trim point in the

sequence.
Without loss of generality, we now consider in more detail the

control logic based on recoverable sets Rext
∞ introduced in Sec. II.D.

Other cases are treated similarly.
Suppose a connected sequence of trim points

fXi
eq; i � 1; : : : ; nsg

has been determined using the graph search and the corresponding

recoverable sets are Rext;i
∞ with 0 ∈ intRext;i

∞ . Typically, X1
eq is the

initial trim point and Xns
eq is the final trim point.

LetX�t� be the current state, and suppose the previously commanded

trimpoint isXi�t−1�
eq , inwhich i�t� ≤ ns. If a feasible solution toEq. (35)

[i.e., x̂�0� and ĉ�0�] exist for x�0� � X�t� − Xi�t−1��1
eq , that is,

X�t� − Xi�t−1��1
eq ∈ Rext;i�t−1��1

∞ (50)

then we set i�t� � i�t − 1� � 1 and reconfigure the controller for the

next trim point in the sequence so that

Uc�t� k� � Ui�t�
eq − Ki�t��X�t� k� − Xi�t�

eq � � vc�t� k� (51)

inwhichUi�t�
eq is the constant feedforward control necessary tomaintain

the equilibrium,Ki is the nominal feedback gain in Eq. (30) at the trim

point i, and vc�t� k� � ĉ�0� � ĈÂkx̂�0�. This controller is applied as
long as the transition condition (50) is not satisfied for the next

equilibrium in the sequence or i�t� � ns.
We now make several remarks on applicability of this approach in

LOC situations.
Remark 1: We note that, in LOC situations (e.g., caused by wing

icing or control surface malfunction), aircraft dynamics and

constraints may change and hence the model, nominal controller,

trim states, constraints, and recoverable sets need to be reidentified

and reconfigured onboard. The dynamicmodel changes at the current

trim point can be identified from the measured data and also used,

based on flight-condition-dependent aircraft model parameterization

(see the Appendix), to infer how the model and constraints may be

changed at other trim points [27]. Recoverable sets calculated for the

identified model and constraints at the current trim point can be

scaled, exploiting a flight-condition-dependent scaling, to estimate a

subset of a safe or recoverable set at a different (and not yet flown)

trim point [16,22]. Ifmodel parameters and constraints have changed,

the trim point transition plan can be reconfigured.
Remark 2: The actuator degradations/faults can be handled by

modifying the control constraints or considering the additive set-

bounded disturbance inputs. The specific approach to be taken

depends on the actuator degradation type (e.g., stuck in position,

stuck in a range, or controllable in a range).
Remark 3: The safe sets are dependent on the nominal con-

troller being used in the closed loop. The recoverable sets with

parameterized feedforward sequences, especially for large nx̂, are
expected to provide a more controller-independent assessment of

aircraft maneuvering capability. In particular, such an assessment and

trim point transition plan can be used in combination with a direct

adaptive controller [28]. Our procedure for assessing and planning

feasible transitions can also be extended to use multiple controller

gains [13].
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IV. Linearized Aircraft Model, Nominal Controller
Design, and Constraints

We use a standard aircraft dynamics model with parameters

corresponding to the Twin Otter aircraft [29,30]. This nonlinear

aircraft model is linearized about different trim conditions. Note that

the longitudinal and lateral linearized dynamics are decoupled (see

the Appendix).

A. Longitudinal Aircraft Dynamics Model

The state vector for the longitudinal linearized aircraft dynamics

model is of the form

xLong: � �Δu;Δα;Δq;Δθ�T

and the control inputs are the elevator position and the thrust

ulong: � �Δδe;ΔδT �T

The “Δ” notation is used to designate state deviations from the

corresponding equilibrium [i.e., x�k� � ΔX�k� � X�k� − Xeq].
As an example, at the trim point corresponding to airspeed of

U0 � 60 m∕s, altitude of 2500 m, flight-path angle of γ0 � 0 deg,
and bank angle ϕ0 � 0 deg, the dynamics and input matrices of the

longitudinal linearized continuous-time model are

ALong: �

2
64
−0.0395 5.3887 0.2245 −9.7845
−0.0069 −1.6732 0.9475 0

0 −11.3863 −4.1119 0

0 0 1 0

3
75;

BLong: �

2
64

0.4977 0.0002

−0.1163 0

−8.4728 0

0 0

3
75

(52)

B. Nominal Controller Design for Longitudinal Dynamics

The nominal controller for the longitudinal dynamics is designed

using Linear Quadratic plus Integral (LQ-I) control techniques. The

sampling period is chosen as 0.1 s. The elevator is controlled by the

discrete-time feedback law

δe�k� � −Kδe

2
66664
Δu�k�
Δα�k�
Δq�k�
Δθ�k�
xI;γ�k�

3
77775 (53)

in which xI;γ�k� is the integrator of error in flight-path angle

γ � θ − α. For the aforementioned trim condition, the calculated LQ-

I control gain has the form

Kδe � � 5.036 −10.288 −0.353 4.083 2.453 � (54)

For the thrust, the discrete-time LQ-I controller has the following

form:

δT�k� � −KδT

2
6666664

Δu�k�
Δα�k�
Δq�k�
Δθ�k�
xI;γ�k�
xI;U�k�

3
7777775

(55)

in which xI;U�k� is the integrator of the airspeed error, and

KδT ��950.452 −5279.233 229.799 5361.131 942.276 −9.903 �
(56)

C. Lateral Aircraft Dynamics Model

The state vector for the linearized model of aircraft lateral

dynamics has the form

xlat � �Δβ;Δp;Δr;Δϕ�T

The control inputs are the aileron and the rudder so that the control

input vector is of the form

ulat � �Δδa;Δδr�T

For the aforementioned trim condition, the dynamics and input

matrices of the lateral linearized continuous-time model are

Alat �

2
664

0.2406 0.0044 −1.0824 0.1633

−6.5985 −4.1142 1.7850 0

2.7041 −0.3416 −2.2539 0

0 1 0 0

3
775;

Blat �

2
664

0.0150 −0.0568
−12.3586 6.8408

0.4242 −2.6649
0 0

3
775

(57)

D. Nominal Controller Design for Lateral Dynamics

The sampling period for the lateral dynamics is 0.1 s and is the

same as for the longitudinal case. The aileron controller uses the

following discrete-time LQ-I feedback-law:

δa�k� � −Kδa

2
666664

Δβ�k�
Δp�k�
Δr�k�
Δϕ�k�
xI;ϕ�k�

3
777775 (58)

in which xI;ϕ�k� is the integrator of the error in the bank angle ϕ. For
the aforementioned trim condition, the calculated LQ-I control gains

for the aileron are

Kδa � � 0.521 −1.258 −0.233 −9.414 −2.003 � (59)

The rudder controller uses the following discrete-time LQ-I feedback

law:

δr�k� � −Kδr

2
66664

Δβ�k�
Δp�k�
Δr�k�
Δϕ�k�
xI;ϕ�k�

3
77775 (60)

in which the control gain is

Kδr � �−0.013 −0.067 −0.001 0.521 0.114 � (61)

E. State and Control Constraints

The constraints are imposed to maintain actuators within their

limits, ensure that aircraft operates within the linear model validity

range, and preserve safety. The control constraints are imposed on the
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four control inputs: the elevator, thrust, aileron, and rudder. In our
numerical examples, these constraints have the form

−0.2793 ≤ Δδe � δe0 ≤ 0.3491;

−0.2793 ≤ Δδa � δa0 ≤ 0.4800;

−0.3491 ≤ Δδr � δr0 ≤ 0.3491;

100 ≤ ΔδT � δT0 ≤ 28;000 (62)

in which Δδe, Δδa, Δδr, and ΔδT are the deviations in the elevator
deflection, aileron deflection, rudder deflection, and thrust,
respectively, from the equilibrium values of δe0, δa0, δr0, and δT0.
In the preceding, the elevator, aileron, and rudder deflections are in
radians and the thrust is in newtons. Also, these constraints are
imposed for the nonlinear aircraft model, which means that, once a
trim condition is selected (and thus, a selection of δe0, δa0, δr0, and
δT0 is made), the constraints for the linearized system can be
obtained. For the preceding trim condition and linearized model,
δa0 � δr0 � 0 rad, δe0 � −0.0644 rad, and δT0 � 4521 N.
The model validity constraints are imposed on the deviation in

airspeed Δu, deviation in sideslip angle Δβ, and deviations in the
body-fixed angular ratesΔp,Δq, andΔr. In our numerical examples,
these constraints have the following form:

−15 ≤ Δu ≤ 15;

−0.2618 ≤ Δβ ≤ 0.2618;

−0.2618 ≤ Δp ≤ 0.2618;

−0.2618 ≤ Δq ≤ 0.2618;

−0.2618 ≤ Δr ≤ 0.2618

in which the angular rates Δp,Δq, andΔr are in radians per second,
side slip angle Δβ is in radians, and the airspeed Δu is in meters per
second.
The safety constraints are imposed on the airspeedU � Δu�U0,

the angle of attack α � Δα� α0, and the bank angle ϕ � Δϕ� ϕ0

as follows:

Umin ≤ Δu�U0 ≤ Umax;

αmin ≤ Δα� α0 ≤ αmax;

−0.7854 ≤ Δϕ� ϕ0 ≤ 0.7854

In the preceding, Umin, Umax, αmin, and αmax correspond to the
boundaries of the flight envelope. In particular, Umin is selected as

Umin � maxfUstall; Up;ming (63)

in which Ustall is calculated as

Ustall �
���������������������������������

2W

ρSCL;max cosϕ0

s
(64)

in which W is the weight of the aircraft, S is the surface area of the
wings, ρ is the air density at the current altitude, and CL;max is the
maximum coefficient of lift. The value of UP;min is the minimum real
root of the following polynomial equation, which characterizes the
relationship between themaximum power produced by the engine of a
propeller-driven aircraft at a given altitude and the resulting airspeed:

1

2
ρSCD0U

4
0 �W sin�γ0�U2

0 − ηPs
max

�
ρ

ρs

�
m

U0 �
2KW2

ρScos2ϕ0

� 0

(65)

In the preceding, η is the propeller efficiency, Ps is the maximum
engine power at sea level, ρs is the air density at sea level,CD0 is an air
drag coefficient,K is the air friction constant, and all other parameters

are previously defined. The value of Umax is calculated as maximum
real solution to Eq. (65).

V. Numerical Examples

A. Recoverable Set Comparisons

In this section, we numerically construct and compare O∞, R
I
∞,

Rext
∞ , RI;r

∞ , and Rext;I
∞ for the trim condition corresponding to an

airspeed of U0 � 60 m∕s, an altitude of 2500 m, a flight-path angle
of γ0 � 0 deg, and a bank angle of ϕ0 � 0 deg. The linearized
models and the nominal longitudinal and lateral controllers have been
given in Sec. IV.
For Rext

∞ and Rext;I
∞ , a horizon of H � 1 was used to define the

auxiliary subsystem.Thevalue of t� � 15was used for all the sets (an
upper bound). The time to calculate 121 differentO∞,O

I
∞,O

I;r
∞ ,Oext

∞ ,
and Oext;I

∞ sets (i.e., the time to form and stack up the inequalities in
the polyhedral set representation) at 121 different trim points for
linearized longitudinal and lateral dynamics (i.e., 1210 total sets, 605
for longitudinal dynamics, 605 for lateral dynamics) was recorded.
The average time to calculate the sets O∞, O

I
∞, and OI;r

∞ (726 total)
was 0.0024 s per set without redundant constraint elimination and
1.7245 s per set with redundant constraint elimination. The average
time to calculate the setsOext

∞ andOext;I
∞ (484 total) was 0.0036 s per

set without redundant constraint elimination and 3.5155 s per set with
redundant constraint elimination. These calculations were performed
on a computer with 4 GB RAM running a 2.66 GHz duo-core
processor usingMATLAB 2012a. Fast calculation times of these sets
indicate that their computation would be feasible onboard.
Figures 1 and 2 show projections of the safe and recoverable sets

for the longitudinal linearized dynamics. Figures 3 and 4 show the
projections of the safe and recoverable sets for the lateral linearized
dynamics.Note that, in Fig. 1,RI

∞,R
I;r
∞ , andRext;I

∞ are all the same size
in this projection because they have reached the size of the initial
constraints and hence overlap.
Based on the figures, O∞ is the smallest compared with the other

four sets, that is,O∞ ⊂ RI
∞,O∞ ⊂ Rext

∞ ,O∞ ⊂ RI;r
∞ , andO∞ ⊂ Rext;I

∞ .
These figures also confirm that RI

∞ ⊂ RI;r
∞ , Rext

∞ ⊂ Rext;I
∞ , and

RI
∞ ⊂ Rext;I

∞ ,which are facts that canbe easily established theoretically.
For the longitudinal dynamics (Figs. 1 and 2), it appears that the set
inclusions O∞ ⊂ Rext

∞ ⊂ RI
∞ ⊂ RI;r

∞ ⊂ Rext;I
∞ may hold, however, for

the lateral dynamics (Figs. 3 and 4),O∞ ⊂ RI
∞ ⊂ RI;r

∞ ⊂ Rext
∞ ⊂ Rext;I

∞ .
Note that, in general, the relative size relationships between RI

∞ and
Rext
∞ , RI;r

∞ and Rext
∞ , and RI;r

∞ and Rext;I
∞ are problem dependent.

B. Connected Trim Points

We consider a set of destination trim points corresponding to
U0 ∈ f40;45;50; : : : ;90gm∕s, γ0 ∈ f−5;−4; : : : ;5g deg,ϕ0 � 0 deg,
and an altitude of 2500 m. An initial trim point corresponds to an

-15 -10 -5 0 5 10 15
u [m/s]

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

 [
ra

d]

O

Rext

RI

Rext,I

RI,r

Fig. 1 Projections of the longitudinalO∞,R
I
∞,R

ext
∞ ,RI;r

∞ , andRext;I
∞ sets

onto the Δu − Δα plane.
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-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
 [rad/s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 [
ra

d]

O

Rext

RI

Rext,I

RI,r

Fig. 3 Projections of the lateralO∞,R
I
∞,R

ext
∞ ,RI;r

∞ , andRext;I
∞ sets onto

the Δβ − Δϕ plane.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
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-0.8
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0.8
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ra

d]

O

Rext

RI

Rext,I

RI,r

Fig. 4 Projections of the lateralO∞,R
I
∞,R

ext
∞ ,RI;r

∞ , andRext;I
∞ sets onto

the Δr − Δϕ plane.
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Fig. 5 Trim conditions (with ϕ � 0 deg at an altitude of 2500 m) to
which a safe transition from U0 � 60 m∕s and γ0 � 0 deg using O∞ is
feasible. There are five connections total.
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 [rad]

-0.25

-0.2

-0.15

-0.1

-0.05

0
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Fig. 2 Projections of the longitudinalO∞,R
I
∞,R

ext
∞ ,RI;r

∞ , andRext;I
∞ sets

onto the Δα − Δθ plane.
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Fig. 6 Trim conditions (with ϕ � 0 deg at an altitude of 2500 m) to
which a safe transition from U0 � 60 m∕s and γ0 � 0 deg using Oext

∞ is
feasible. There are 12 connections total.
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Fig. 7 Trim conditions (with ϕ � 0 deg at an altitude of 2500 m) to
which a safe transition from U0 � 60 m∕s and γ0 � 0 deg using OI

∞ is
feasible. There are 51 connections total.
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airspeed of U0 � 60 m∕s, an altitude of 2500 m, a flight-path angle
of γ0 � 0 deg, and a bank angle of ϕ0 � 0. Based on the linearized
models (52) and (57), the control schemes described earlier, and
criteria (45–49), the set of trim conditions to which constrained
admissible transitions from the initial trim point have been
determined (see Figs. 5–9). In total, there are 120 possible transitions
(not counting remaining at the starting trim condition).
Figure 5 shows the connections for O∞. The use of O∞ produces

the fewest number of constraint-admissible connections: only five
connections. Figure 6 shows the connections for Oext

∞ . The number
of connections with Oext

∞ increases to 12. Figure 7 shows the
connections for OI

∞. There is a substantial increase in the number of
constraint-admissible connections for OI

∞ as compared with Oext
∞ ,

with a total of 51 connections. Figure 8 shows the constraint-
admissible connections for OI;r

∞ , with 60 total connections. And
finally, Fig. 9 shows the constraint-admissible connections forOext;I

∞ ,
with a total of 61 connections.

C. Simulated Transitions Based on the Linearized Models

Transition trajectories from an initial trim point to a new trim point
using different sets and respective control schemes are compared in
Fig. 10, in which constraints are plotted as well. In the simulated
transitions, the initial trim point corresponds to an airspeed of
U0 � 60 m∕s, an altitude of 2500 m, a flight-path angle of
γ0 � 0 deg, and a bank angle of ϕ0 � 0 deg. The target trim
condition corresponds to an airspeed ofU0 � 75 m∕s, an altitude of
2500 m, a flight-path angle of γ0 � 1 deg, and a bank angle of
ϕ0 � 0 deg. Note that the transition trajectories based on O∞ and
Oext

∞ overlap one another. In the case of OI
∞, we reset the integrator

state according to Eq. (21) at discrete-time instants every ts � 0.1 s.
In the case ofOI;r

∞ , both the integrator state and the reference are reset
according to Eq. (29) at discrete-time instants every ts � 0.1 s. In the
case of Oext;I

∞ , both the integrator state and the state of the auxiliary
subsystem are reset according to Eq. (43) at discrete-time instants
every ts � 0.1 s.
The trajectories resulting from the use of OI

∞, O
I;r
∞ , and Oext;I

∞ and
resets have substantially quicker convergence in the Δu state than the
nominal trajectorywithout resets. Figure 11 shows the timehistories of
the two integral states of the controller and the Lyapunov function
[which is used in Eq. (21)] for the trajectory in Fig. 10 that uses OI

∞.
Note that, in this case, the integrator state for the error in flight-path
angle γ is kept artificially high until the integrator state for the error in
airspeed has converged close to zero. The apparent chattering in the
integrator state for γ is due to the integral state updates at discrete-time
instants and its natural evolution in between the discrete-time instants.
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Fig. 8 Trim conditions (with ϕ � 0 deg at an altitude of 2500 m) to
which a safe transition from U0 � 60 m∕s and γ0 � 0 deg using OI;r

∞ is
feasible. There are 60 connections total.
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Fig. 9 Trim conditions (with ϕ � 0 deg at an altitude of 2500 m) to
which a safe transition fromU0 � 60 m∕s and γ0 � 0 deg usingOext;I

∞ is
feasible. There are 61 connections total.
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Fig. 10 Transition time histories from one trim point to another using different implementations. Constraints are shown by red dashed lines.
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D. Nonlinear Model Simulations

Constraint-admissible trajectories developed based on the

linearized model are now shown to remain constraint admissible or

nearly constraint admissible based on the simulations on the

nonlinear aircraft model [30]. The model’s states are

X � �U V W P Q R ϕ θ ψ Θlat ΘLong: ha �T

in which U, V, andW are the body-fixed airspeeds; P, Q, and R are

the body-fixed angular accelerations; ϕ, θ, and ψ are the body-fixed

Euler angles; Θlat andΘLong: are latitude and longitude; and ha is the
altitude. The simulated control scheme is based on the use ofOI;r

∞ sets

and CSRG [17] to reset the integrator states and the reference

command at discrete-time instants every ts � 0.1 s according

to Eq. (29).
Note the recursive feasibility of Eq. (29) is only guaranteed for the

linearized model. If the feasibility is lost in the simulations on the

nonlinear model, the integrator states are updated according to
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Fig. 11 Integrator states (top andmiddle plots) and Lyapunov function
values (bottom plot) for trajectory from Fig. 10, corresponding to use of
OI

∞ and controller state reset.

Fig. 12 Nonlinear model trajectories projected onto Δu–Δα plane with
associatedRI;r

∞ . Note that red (lighter) trajectories satisfy constraints and
blue (darker) ones slightly violate constraints (color in online).

Fig. 13 Nonlinear trajectories projected onto Δu–Δθ plane with
associatedRI;r

∞ . Note that blue (darker) trajectories in this figure represent

those that violate the minimum α constraint as in Figs. 12 and 14.

Fig. 14 Nonlinear trajectories projected onto Δα–Δθ plane with
associatedRI;r

∞ . Note that red (lighter) trajectories satisfy constraints and

blue (darker) ones violate constraints (color in online).

Fig. 15 Nonlinear trajectories projected onto the Δp–Δϕ plane with
associated RI;r

∞ .
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their nominal dynamics and the reference is maintained at the

previous value.

We first consider transitions to the target trim point corresponding to

an airspeed ofU0 � 60 m∕s, an altitude of 2500m, a flight-path angle

of γ0 � 0 deg, and a bankangleofϕ0 � 0 deg. The initial trimpoints

were chosen from possible values of U0 ∈ f30; 35; : : : ; 100g m∕s,
γ0 ∈ f−5;−4; : : : ; 5g deg, ϕ0 ∈ f−30;−25; : : : ; 30g deg, and alti-
tude of 2500 m. The transitions from the initial trim points satisfying

Eq. (47) were simulated using the nonlinear aircraft model.

Figures 12–15 show the trajectories from trim conditions that satisfy

Eq. (47) plotted over planar projections of RI;r
∞ , corresponding to the

target trim point. The red trajectories are constraint admissible

in the projection and the blue trajectories violate constraints in the

projection. The constraint being violated is the minimum α constraint.

Its violation is very slight.

We next consider transitions from the same trim point to target trim

points that are constraint admissible according to Eq. (47). The

feasible transitions based on the linearized dynamics are identified in

Fig. 8. Figures 16 and 17 show the results of these simulations, with

Fig. 16 Constraint-admissible nonlinear trajectories from U0 � 60 m∕s, γ0 � 0 deg, ϕ0 � 0 deg, and an altitude of 2500 m to those that satisfy
criterion (47).
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Fig. 17 Constraint violating nonlinear trajectories from U0 � 60 m∕s
and γ0 � 0 deg, ϕ0 � 0 deg, and an altitude of 2500 m to those that
satisfy criterion (47).
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Fig. 18 Constraint-admissible connections from Fig. 8, maintained
during nonlinear simulations. There are 57 connections total here
(compared with 60 connections in the linear case).

0 10 20
Time [s]

50

100

U
0
 [m

/s
]

0 10 20
Time [s]

0
0.1
0.2

 [r
ad

]

0 10 20
Time [s]

-0.5

0

0.5

q 
[r

ad
/s

]

0 10 20
Time [s]

-0.1

0

0.1

 [r
ad

]

0 10 20
Time [s]

0

1

2

3

T
 [N

]

104

0 10 20
Time [s]

-0.5

0

0.5

e  [
ra

d]

Fig. 19 Nonlinear state trajectories and control inputswhen transitioning

through a sequence of trim conditions. Note that no constraints (shown by
dashed red lines) are violated due to use of CSRG control scheme andOI;r

∞
sets (color in online).
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Fig. 18 showing which connections are constraint admissible (there

are 57 total of the total 60). In Figs. 16 and 17, the relevant constraints

are also shown, including the safety constraints (63) forU and α. The
transitions to airspeeds of 60, 65, or 70 m∕s and a flight-path angle of

−4 deg result in trajectories that slightly (less than 0.01 rad) violate
the minimum constraint on α.
Finally, we simulate transitions between a sequence of trim points

satisfying Eq. (47) based on the linearized models. The initial trim

point is at an airspeed of U0 � 55 m∕s, an altitude of 2500 m, a

flight-path angle of γ0 � 0 deg, and a bank angle of ϕ0 � 0 deg.
The target trim point is at an airspeed ofU0 � 85 m∕s, an altitude of
2500 m, a flight-path angle of γ0 � 0 deg, and a bank angle of

ϕ0 � 0 deg. The direct transition to the target trim point is not

feasible [e.g., the change in airspeed violates the model validity

constraints (63)]. However, by linking several “in-between” trim

points together, a constraint-admissible trajectory can be obtained

(see Figs. 19 and 20). In these simulations, a sequence of trim

points Xi
eq is used that corresponds to the sequence of air-

speedsU0 ∈ f55; 60; 65; 70; 75; 80; 85g m∕s, all with an altitude of
2500 m, a flight-path angle of γ0 � 0 deg, and a bank angle of

ϕ0 � 0 deg. The feasibility of switching to the next set point in the
sequence is checked every ts � 0.1 s and occurs immediately once

it is determined to be feasible based on Eq. (29), configured for the

next trim point in the sequence; if not feasible yet, CSRG is

still applied to reset the integrator states and reference commands

based on Eq. (29), configured for the current trim point in the

sequence.

Figure 19 shows the state trajectories and control sequences used

plotted with the constraints used at each of the different trim

conditions. Note that the only constraint that changes in time is the

airspeed constraint. Figure 20 shows the integrator states and the

references throughout this transition that are reset at discrete-time

instants.

VI. Conclusions

The paper described several approaches to computing recoverable
sets and recovery control sequences for use in aircraft LOC situations.
The recoverable sets characterize the sets of initial conditions of the
aircraft, for which there exists a recovery sequence generated through
one of the recovery mechanisms that enables the aircraft to avoid
constraint violation. The recovery mechanisms include resetting
controller states, references, states of an auxiliary, finite-dimensional
subsystem, and various combinations of the preceding. With these
recoverymechanisms, the computations of the recoverable sets reduce
to the computation of the conventional safe sets. If linear discrete-time
models are used, these computations can be performed very rapidly
and are feasible for onboard implementation. The simulations on the
nonlinear aircraft model demonstrate that predictions of feasible trim-
point-to-trim-point transitions between close-by trim points is fairly
accurate based on linearized models. It has also been shown that the
recoverable sets corresponding to different trim points can be chained
together and transition logic can be defined to effect constraint-
admissible transitions between trim points further apart.

Appendix: Aircraft Model

The aircraft model used in this paper is amodel of theDHC-6 Twin
Otter. This aircraft was chosen because it has a rich modeling history,
which includes aerodynamic coefficient changes dues to wing icing
[31]. The aerodynamic coefficients are from [29]. The nonlinear
aircraft model is the standard model with the translational dynamics
described by

m� _U − VR�WQ� � − sin�θ�mg − cos�β� cos�α�D� sin�α�L� cos�ϕT�FT;

m� _V −UR�WP� � sin�ϕ� cos�θ�mg − sin�β�D;

m� _W −UQ� VP� � cos�θ� cos�θ�mg − cos�β� sin�α�D − cos�α�L − sin�ϕT�FT (A1)

and the rotational dynamics described by

Ixx _P� �Izz − Iyy�QR − Ixz� _R� PQ� � LA � LT;

Iyy _Q� �Ixx − Izz�PR − Ixz�P2 − R2� � MA �MT;

Izz _R� �Iyy − Ixx�PQ − Ixz�QR − _P� � NA � NT (A2)

A trim condition is defined as an equilibrium point of Eqs. (A1)

and (A2). In the preceding, U, V, and W are the X, Y, and Z
components of the airspeed, respectively;P,Q, andR are the angular

speeds about the body-fixed X, Y, and Z axes, respectively; α is the

angle of attack; θ is the pitch angle; ϕ is the bank angle; β is the

sideslip angle; ϕT is the angle at which the thrust affects the aircraft;

FT is the thrust force; LT ,MT , andNT are the moments produced by

the thrust; and the I terms are the aircraft moments of inertia. The

aerodynamic forces are dragD and liftL. The aerodynamicmoments

are LA, MA, and NA and are described by

D � CDpdS;

L � CLpdS;

LA � ClpdSb;

MA � CmpdS �c;

NA � CnpdSb (A3)
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Fig. 20 Integrator states and reference signals when using CSRG
control scheme and associated OI;r

∞ sets to transition through a sequence
of trim conditions.
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with pd � 1∕2ρU2
0 being the dynamic pressure and S, b, and �c being

aircraft-specific parameters. The aerodynamic coefficients CD, CL,

Cl, Cm, and Cn, and the functions that describe them, for the DHC-6

Twin Otter are found in [29].

Equations (A1) and (A2) are linearized about a trim condition and

algebraically manipulated to generate the following decoupled

longitudinal and lateral linear dynamics models. The linearized

longitudinal dynamics are described by

_Δu � −pdS

mU0

�2CD0 � CDu�Δu� pdS

m
�CL0 � CDα�Δα� pdSc

2 mU0

CDqΔq − gΔθ� pdS

m
CDδeδe �

Tmax

m
δth;

_Δα � −pdS

mU2
0

�2CL0 � CLu�Δu� −pdS

mU0

�CLα � CD0�Δα� �1 − pdSc

2 mU2
0

CLq�Δq −
pdS

mU0

CLδeδe;

_Δq � pdSC

IyyU0

�2Cm0 � Cmu�Δu� pdSc

Iyy
CmαΔα� pdSc

2

2IyyU0

CmqΔq −
pdSc

Iyy
CLδeδe;

_Δθ � Δq (A4)

and the linearized lateral dynamics are described by

_Δβ � −pdS

mU0

�CD0 � CEβ�Δβ�
−pdSb

2 mU2
0

CEpΔp�
�
pdSb

2mU2
0

CEr − 1

�
Δr −

pdS

mU0
CEδaδa −

pdS

mU0
CEδrδr;

_Δp −
Ixz
Ixx

_Δr � pdSb

Ixx
ClβΔβ�

pdSb
2

2IxxU0

ClpΔp� pdSb
2

2IxxU0

ClrΔr�
pdSb

Ixx
Clδaδa� pdSb

Ixx
Clδrδr;

_Δr −
Ixz
Izz

_Δp � pdSb

Izz
CnβΔβ�

pdSb
2

2IzzU0

CnpΔp� pdSb
2

2IzzU0

CnrΔr�
pdSb

Izz
Cnδaδa� pdSb

Izz
Cnδrδr;

_Δϕ � Δp (A5)

In the preceding, there are several terms of the form Cxy which
represent stability derivatives and derivatives of the force and
moment coefficients (CL,CD,CE,Cl,Cm, andCn) with respect to the
different states. Using Cxy as a template, x would be the force or
moment (L,D,E, l,m, or n) and ywould be the plant state (u, α, q, θ,
β, p, r, ϕ). As an example, CLα is the derivative of the coefficient of
lift with respect to the angle of attack, that is, how the coefficient of
lift changes as the angle of attack α changes.
There are several ways to calculate or estimate these stability

derivatives, including wind-tunnel testing, computational fluid
dynamics, or model identification. We used values from [29], which
uses model identification techniques to fit polynomial expressions of
plant states to known data of force and moment coefficients.
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