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This paper presents a case study on the application of retrospective cost adaptive control to the NASA generic
transport model under conditions of uncertainty and failure. To apply retrospective cost adaptive control to the
generic transport model, a collection of control architectures is defined, where each architecture has a decentralized
adaptation structure in the sense that a performance (error) variable is assigned to each control channel for online
decentralized adaptation. Sensor signals may be shared among the channels to account for channel coupling. Then, a
series of cases that examine the performance of retrospective cost adaptive control under various conditions is
considered, including trim finding, startup, unknown time-varying aircraft dynamics (such as icing and mass
variation), unknown flight envelope (including the possibility of conflicting commands), known sensing constraints (a
failed air data system), known actuation constraints (requiring differential thrust), unknown sensor failure (stuck and
biased airspeed measurement), and unknown actuator failure (severe stroke and rate saturation, dead zone, and jam).
For each case, a range of scenarios is considered that captures various commands and performance objectives.

Disturbance rejection is included in the form of unknown wind shear.
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Nomenclature
ailerons
desired path on ground
elevator

signed distance error parallel to a R

signed distance error perpendicular to a

Earth frame

aircraft body-fixed frame

filter transfer function applied to ¢ and u

altitude

channels 1-4 for T, e, a, and r, respectively
relative degree of controller

order of controller o
angular velocity of Fz¢ relative to Fg in direction izc, jacs kac
control penalty

performance penalty

controller-coefficient penalty

rudder

throttle A
aircraft speed relative to air in direction ipzc, jac, kac
input

ith actual/requested actuator setting

ith constant actuator setting for trim flight
airspeed

ground speed

north coordinate

east coordinate

measurement

measurement at trim flight

performance variable

Z transform

angle of attack

sideslip angle

flight-path angle

ith actual actuator setting increment

ith requested actuator setting increment specified by the adaptive controller

measurement increment from the trim flight
incremental command from the trim flight
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= ground velocity alignment error with a
pitch, roll, yaw angles

controller coefficients

turn rate

= feedback vector
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1. Introduction

LONG with aerodynamics, lightweight structures, and propulsion, feedback control is one of the key technologies that enable aviation.

Feedback control uses inertial and noninertial sensors to provide measurements of position, velocity, acceleration, attitude, and angular rates
to specity thrust and aerodynamic surfaces to apply corrective forces and moments. Closed-loop control enables the operation of autopilots, which
can either assist the pilot or assume complete control of aircraft operation.

The standard approach to feedback control of aircraft is based on classical control techniques [1-3]. With the advent of optimal control methods,
state-space-based control techniques have also been successful [4,5]. Although classical optimal control does not account for model uncertainty,
aircraft flight control has benefited from advances in robust control [6,7].

For conventional aircraft operating under emergency flight conditions, as well as for unconventional aircraft, recent research has focused on
adaptive control techniques [8—13]. The failure of the Honeywell MH-96 self-adaptive controller used on the X-15-3 was analyzedin [12],and L,
adaptive control with an uncertain flight envelope has been flight tested on the NASA AirStar scaled aircraft [13].

The goal of the present paper is to investigate the performance of an alternative technique for adaptive flight control, specifically, retrospective
cost adaptive control (RCAC). RCAC is a direct discrete-time adaptive control technique for stabilization, command following, and disturbance
rejection [14]. As a discrete-time approach, RCAC is motivated by the desire to implement control algorithms that operate at the sensor sample rate
without the need for controller discretization. This also means that the required modeling information can be estimated based on data sampled at
the same rate as the control update.

RCAC was originally motivated by the notion of retrospectively optimized control, where past controller coefficients used to generate past
control inputs are reoptimized in the sense that if the reoptimized coefficients had been used over a previous window of operation, then the
performance would have been better. Unlike signal processing applications such as estimation and identification, however, it is impossible to
change past control inputs, and thus the reoptimized controller coefficients are used only to generate the next control input.

RCAC was originally developed within the context of active noise control experiments [15]. The algorithm used in [15] is gradient based, where
the gradient direction and step size are based on different cost functions. In subsequent work [16], the gradient algorithm was replaced by batch
least-squares optimization. In both [15,16], the modeling information is given by Markov parameters (impulse response components) of the open-
loop transfer function G, from the control input  to the performance variable z. More recently, in [17], a recursive least-squares algorithm was
used, along with knowledge of the nonminimum-phase (NMP) zeros of G_,,. The approaches in [15-17] are closely related in the sense that all of
the NMP zeros outside of the spectral radius of G, are approximate zeros of a polynomial, for which the coefficients are Markov parameters of
G.,; this polynomial is a truncated Laurent expansion of G, about infinity. RCAC uses a filter G, to define the retrospective cost by filtering the
difference between the actual past control inputs and the reoptimized control inputs. To construct Gy, Markov parameters are used in [15,16,18]
and NMP zeros are used in [17,19].

In the present paper, we interface RCAC with the NASA generic transport model (GTM) simulation model [20-23]. This aircraft model
includes an aerodynamic database, trim function, and interface to facilitate feedback control from realistic sensors to thrust and control surfaces.
For RCAC, which operates at a fixed sample rate, A/D and D/A operations are implemented through Simulink blocks.

The goal of this paper is to explore the ability of RCAC to control the GTM in various operational scenarios with minimal modeling
information. To set the stage for this study, we begin by presenting notation relevant to the GTM simulation; this notation is used to precisely
define the control architectures and scenarios considered for adaptive control. A summary of the RCAC algorithm, including the definition of the
retrospective cost, controller structure, and modeling information that RCAC requires, is given in Appendix B. The RCAC algorithm is a multiple-
input/multiple-output control law, where the performance variable, measurements for feedback, and control inputs may be vectors. Appendix A
provides the tuning parameters for the various architectures. Except for the evaluation of warmup strategies, these parameters are fixed for each
architecture.

To apply RCAC to the GTM, we define a collection of architectures that assign specified performance (error) variables to control inputs. This
means that each RCAC implementation is a decentralized controller, although the individual channel controllers may share measurement signals
to account for channel coupling. We then consider a series of cases that examine the performance of RCAC under various conditions, including
trim finding, startup, unknown time-varying aircraft dynamics (such as icing and mass variation), unknown flight envelope (including the
possibility of conflicting commands), known sensing constraints (such as a failed air data system), known actuation constraints (requiring
differential thrust), unknown sensor failure (stuck and biased airspeed measurement), and unknown actuator failure (such as anomalous stroke and
rate saturation, dead zone, and jam). Some of these cases are considered in [24-28]. For each case, we consider a range of scenarios that capture
various commands and performance objectives. Disturbance rejection is included in the form of unknown wind shear.

All of the applications of RCAC assume extremely limited modeling information about the GTM. In particular, no information about the
aerodynamics of the GTM are used. In addition, each of the six architectures considered in this paper uses limited measurements, and none of the
architectures assumes that full-state measurements are available. Consequently, full-state-feedback controllers such as linear-quadratic-regulator
can be used with these architectures.

An additional distinction between the RCAC controllers and standard practice concerns the use of integrators. Most applications of flight
control insert an integrator in each loop. The examples in this paper show that RCAC can automatically develop an integrator in response to trim
commands. In addition, many of the scenarios considered in this paper involve commands for transitioning the aircraft from a given trim to another
trim. This transition is performed by RCAC under fixed tuning parameters, without manual intervention to facilitate the transition. The goal is to
determine the ability of RCAC to perform trim-to-trim transitions without gain scheduling, which is the traditional approach to trim transition, as
well as without an inner-/outer-loop controller structure.

II. Assumptions, Notation, and Terminology

The Earth frame and aircraft body-fixed frame are denoted by Fg and Fuc, respectively. We assume that Fy; is an inertial frame and the Earth is
flat. The origin Og of Fg is any convenient point fixed on the Earth. Fg is defined with the axes ig and jg horizontal, whereas the axis kg points
downward. Fyc is defined with is¢ pointing out the nose of the aircraft, j,c pointing out the right wing, and k¢ pointing downward, that is,
kac = iac X jac- Fac and Fg are related by
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Fac = Rac/eFe (1)

where R Ac/E 18 @ physical rotation matrix represented by a 3-2-1 Euler rotation sequence, involving two intermediate frames Fg, and Fg. In
particular,

Rac/e = R; , (P)R; (O)R; (V) ()
where Fg' = ﬁE /eFE, Fgr = I_éE e Fe/, and 13;, (x) is the Rodrigues rotation about the eigenaxis 7 through the eigenangle x according to the
right-hand rule. At each time instant, let “a” denote the air particle located at a point that is fixed relative to the aircraft and upstream of the pitot
tube. The location of the aircraft center of mass c relative to Og at each time instant is given by

Te/op = Te/a + Tajog 3
Differentiating Eq. (3) with respect to F yields
V.=V +V, )
where
IR Ee N Ee N Ee
Vc=vc/OE/E = T'¢/Og» VAC=vc/a/E = T¢/a> Vazva/oh/E = Tajog (5)

and Ee denotes the time derivative with respect to Fg. The angular velocity w ac/E Of Fac relative to Fy is obtained from the rotation matrix R AC/E
by Poisson’s equation

ACe
R ace = RAC/EC‘):C/E (6)

where the operator “X” creates a skew-symmetric physical matrix. We resolve V 5 and E)AC /B in Foc using the notation

v AT P A—
V [=Vaclacs 0 | =wacselsc @)
w R

A. Airspeed V¢ N
The airspeed V z¢ is the magnitude of V 5¢ and thus is the speed of the aircraft relative to the local atmosphere, that is,

Vac = [Vacl = VU + V2 + W? 3

B. Flight-Path Angle y N
The flight-path angle y is the angle between V. and its projection onto the horizontal plane spanned by {E and ]AE

C. Turn Rate 7
We resolve wuc /g in Fg as

Pg N
Ok éCUAC/1~:|E 9
Rg
The turn rate of the aircraft is defined by réRE.
D. Altitude h
We resolve 7C/OE in Fg as
X
Y | 270, (10)
VA

The altitude % of the aircraft is given by h = —Z.

E. Angle of Attack o N N N

The projected velocity vector V sc oo is the Aperjection of V oc onto the plane spanned by i ac and k Ac- Assuming that V sc i is nonzero, i 58
the unit vector aligned with V o proj» that s, ig=V sc proj- The angle of attack a € (=, z]is the signAed angle from g to 15 about jsc. The stability
frame F is then defined by rotating the aircraft frame F 5 by the angle —a about j,c, thatis, Fg=R e (—a)F pc. Using the components of V z¢
resolved in Fzc, a is given by

a = atan2(W, U) (11)
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F. Sideslip Angle g N
Assuming that V 5¢ is nonzero, iy is the unit vector aligned with V ¢, that s, iwéVAc. The sideslip angle § € (-, ] is the signed angle

from fs to fw about IQS. The wind frame Fyy is obtained by rotating the stability frame Fg by the angle $ about lgs, thatis, Fy é]?,;g (#)Fs. Using the

components of ;AC resolved in Fy¢, f is given by
B = atan2(V, v U? + W?) (12)

G. Ground Speed V, R
Using Eq. (10), the velocity vector V. is resolved in F as

_ X
Velg = [Y} (13)
Z

The ground velocity V, is the projection of V. onto the horizontal plane spanned by zAE and fE, that is,

Vel = [ﬂ (14)

where the north—east frame Fyg, is defined with the direction i E representing north and the direction fE representing east. The ground speed V., is
the magnitude of V, that is,

Vo=V, = VX* + V7 (15)
Note that Z = —h.

H. Ground Position R,
The ground position r, of the aircraft is the projection of r o, onto the horizontal plane spanned by Fyg, that is,

ro(t) = X(0)ig + Y (1) (16)
We define
R027,0he = 50 | (an
Likewise, the desired ground position ?g‘deg of the aircraft is given by
Ryaes 0= T gaes(Dle = [’;jgg] (18)
Using Egs. (17) and (18), at each time ¢ we define
GO2T it +T) = Toaes®. DOETpau () = 7o), 2 %2, Y (19)
a

:;vhfe':re T, is the ground track interval, and candd are parallel and perpendicular to a, respectively, as shown in Fig. 1. Using Eqs. (14) and (19), we
efine

ey 2sen[c - a][c| (20)
ey 2sen(d x @) - kglld| @)

- L Vyxa
;7ésgn[(vg X a) - kglsin~! [V xal (22)

[Vellal
where ¢ and e, are signed distance errors relative to the desired path update a, and the angle 7 is the velocity alignment error.

I. Wind Shear Model

Figure 2a shows the wind vector in Fyg. To model wind shear, we assume that the wind velocity direction is east and the wind speed varies with
altitude. Figure 2b shows the wind model parameters, where the wind speed is zero from the ground up to 7920 ft, above which the wind speed
increases linearly with a gradient of 0.05 kt/ft, becoming constant above 8320 ft.
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Desired aircraft
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T gdes (t)

Origin O on
Earth

Fig.1 Ground position R,. Note that |?| and | d| represent distance errors relative to the desired path update ;, and the angle 7 is the velocity alignment
error.

North Altitude
4ig t
i ——  » 20 ktabove
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i
i
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| |
v b) v

a)
Fig.2 Wind shear model: a) wind vector in Fyy; b) variation of wind speed with altitude. Wind speed varies linearly with a slope of 0.05 kt/ft between
7920 and 8320 ft.

J. Steady and Trim Flight
Steady flight is defined as aircraft flight that satisfies the conditions

ACe ACe
Vac =0, @ acg =0 (23)

These conditions state that the velocity vector V 4 and the angular velocity vector P ac,/E are constant with respect to the aircraft frame F 5, that
is, U, V, W, P, Q, and R are constant. In the case V, = 0, the following steady flight regimes are defined, although not all of these regimes are
feasible for many aircraft.

1) In hovering flight, the aircraft maintains a constant location relative to the Earth. In this case, VAC =0.

2) In straight-line flight, the aircraft flies along a straight line with its wings level. Straight-line flight may be either ascending (y > 0), horizontal
(y = 0), or descending (y < 0). In all of these cases,

Ee
\%4 AC = 0

VAC is nonzero, and coAC g =0.

3) In bullet flight, the aircraft flies along a straight line while rotating about its velocity vector. In this case, V ac and o Ac/E are nonzero and
parallel.

4) In circular flight, the aircraft flies along a circle. The circle may be either horizontal, vertical, or tilted relative to the Earth, whereas the aircraft
attitude along the circle may be either banked or level. In all of these cases, Vac and @wac/g are nonzero and mutually orthogonal.

5) In helical flight, the aircraft flies along a helix. In this case, Vac and /g are nonzero and neither parallel nor mutually orthogonal. A
special case of helical flight is a barrel roll, where the wheels of the aircraft can be viewed as rolling along the inside of a cylinder.

In all steady flight regimes, Vzc, 7, 7, a, and f are constant. However, i, ¥, ®, and ® may vary with time.
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Steady flight in which

that is, the gravity vector is constant with respect to Fzc, is called trim flight. Equivalently, ® and ® are constant. Since
ACe
\%4 AC = 0

an equivalent condition is that @ and y are constant. Therefore, steady flight is trim flight if and only if it is either 1) hovering flight, 2) straight-line
flight, 3) circular flight in a horizontal plane, or 4) helical flight around a vertical axis. In trim flight, the total force vector on the aircraft is constant
with respect to Fc (zero in hovering and straight-line flight) and the total moment vector on the aircraft is zero. These force and moment
conditions imply that the thrust is constant and the control surfaces are set to constant trim angles.

III. Defining Control Architectures

In this section, we define six control architectures. Each control architecture is decentralized with respect to adaptation, where, for each
component of the performance variable z in Eq. (B3), a separate RCAC block has a scalar output u given by Eq. (B4). Table 1 defines the control
architectures, where each row defines a control architecture and each column represents a performance variable. For each control architecture,
each row entry specifies the actuator that is used to follow commands given for the performance variable at the top of the corresponding column.
Note that, by following specific commands, each architecture meets certain controlled flight objectives. For example, A; can hold an altitude by
specifying zero flight-path-angle command but cannot specify the altitude, whereas A, can specify an altitude but cannot specify the flight-path
angle. These scenarios may be useful under emergency conditions.

The aircraft control inputs are T, e, a, and r, which denote throttle, elevator, ailerons, and rudder, respectively. Note that each architecture has
either two, three, or four control channels. For each architecture, we use the index i = 1, 2, 3, 4 to denote the channels for 7', e, a, r, respectively.
Note that one channel is missing in A4, and that two channels are missing in Ag. The feedback vector for each channel is defined separately for each
architecture. In later sections, each example is done by choosing one control architecture; each architecture is associated with a performance
objective as listed in Table 1. For a chosen control architecture, the command may involve transitions among multiple trim conditions. However,
none of the examples involve switching between different architectures.

Taking control architecture A; as an example, we define the measurement increments in each channel as

3V ac()=Vac(k) = Vac.im 24)
570 Z7(K) = Vi (25)
St(k)21(k) — Tuim (26)
AU =BK) = Pim @7

where the subscript “trim” refers to the initial trim flight, and k denotes the current time step. We choose the sample time to be 0.1 s for all control
architectures. The chosen sample rate is approximately 7.86 times the frequency (in Hertz) of the short period mode of the GTM trimmed in
horizontal flight at airspeed 100.59 kt and altitude 8000 ft. The performance variable z is given by the error signals

Vac(k) = Vac.ema(k) OV ac(k) = 6V ac.cma(k)
A Y(k) — Vem (k) _ 5}/(k) - 5}/cm (k)
St I T/ N Il B4 T i (28)
ﬂ(k) - ﬁcmd (k) 5ﬁ(k) - (sﬂcmd (k)

where Voc cmds> Yemds Temd> and femg are the commands and

Table 1 Definition of control architectures

Vac Y T h a p e [ n Example

A T e a — — r — — — Al1,A12,A13,A14,A21,A22,A23, A24, A3.1,A3.2,A33,
— — — — — G.1.1,G3.1

A, T — a e — r — — — B.1.1,B.1.2,B.1.3,B.1.4,B.2.1,B.2.2, F1.1, E2.1,E3.1,G.1.2, G.2.1

Aj T e a — e r — — — C.l1.1,C.12

Ay T e a — — — — — — C2.1,C22

As — — — — e — — T a r D.1.1,D.1.2,G.1.3

Ay — — — T e — — — — — E.1.1,E.1.2

For each control architecture, the throttle T', elevator e, ailerons a, and rudder r are assigned to specific measurements that define the performance variable in the associated feedback
channel. The feedback signals for each channel are defined separately for each architecture.
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5VAC,cmdéVAC,cmd = Vac.uim 29
S emd =V AC.cmd = YACim (30)
STemd=TAC cmd = TAC,tim (€20)
SPema=Pac.ema = Pac.vim (32)

are the incremental commands. Note that all increments are defined relative to the initial trim.
Let the requested actuator settings be denoted by

T1oq () 2T iy + 6T g (k) 33)
Creq(K) 2 e + 56,0q(K) (34)
lreq(K) 2@y + S81eq (k) 35)
req(K) =P i + 81cq (K) (36)

where the first term on the right-hand side denotes the constant actuator setting for the initial trim and the second term on the right-hand side
denotes the requested actuator setting increment specified by RCAC. The actual actuator settings are determined by the actuator dynamics, which
are modeled as first-order systems with saturation nonlinearities modeled by stroke and rate limits [23,29]; the parameters of the actuator models
are given in Table 2.

Thus, the requested actuator settings may not be equal to the actual actuator settings, which are denoted by

T setuat () =T iy + ST e (K) (37)
Cactaa () Zeyim + S (K) (38)
et () = iy + 800 (K) (39)
Pactaat ()= i + P qotgar (K) (40)

where the left-hand side denotes the actual actuator setting and the second term on the right-hand side denotes the actual actuator setting
increment. Except for the examples in case G concerning unknown actuator failure, we assume that the actual actuator settings are known
to RCAC.

For each channel, RCAC updates a strictly proper dynamic controller represented in input—output form as

5ui$rcq(k) = d)t(k)Tet(k) (41)
where 6, ;.q denotes the requested actuator setting increment for the ith channel, where, for example, the corresponding actuator in the ith channel
of control architecture A is 6T 'req, 6€reqs Ollreq, and 51 fori = 1,2, 3, 4, respectively. For channel i in control architecture A, the components of

the feedback vector ¢; include values of the actual actuator setting increment u; ,eqa, Which is 0T ,cqal> 0€actuals O@acrual, and OF yqa for
i =1,2,3,4, respectively, as well as the additional signals

Table 2 Parameters of actuator models for throttle, elevator, ailerons, and rudder

Stroke limits Rate limits Bandwidth
Throttle T [0,100]% 00 207 Hz
Elevator e [-20, 30] deg [-300, 300] deg/s 20z Hz
Ailerons a [-20, 20] deg [—300, 300] deg/s 207z Hz

Rudder r [-30, 30] deg [-300, 300] deg/s 207z Hz
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Fig. 3 Block diagram for channel 1 in A, which uses thrust to follow the airspeed command. The error signal z; for the control is the difference
6V Ac,cma — 0V ac- This channel also uses the flight-path angle for feedback.

¢1(k)é[5Tactual(k - ]) e 5Tactual (k - nc) 6VAC,cmd(k - 1) e 5VAC,cmd(k - nc)

k=1 - z(k=n.) Sy(k=1) -+ sy(k—no)]"
¢2(k)é[5eactual(k - 1) e 5eactual(k - nc) 67/cmd(k - 1) U 5}/cmd(k - nc)

Zk=1) - zo(k—n,) 8Vaclk=1) -+ 8Vaclk = no)]", (42)
¢3 (k)é[éaactual(k - 1) e 5aactual (k - nc) 5Tcmd(k - 1) e 5Tcmd(k - nc)

zk=1) -+ z3(k—n.) op(k=1) -+ 5p(k —n)I",
¢4(k)é[6ractual(k - l) e 6ractual(k - nc) 5ﬁcmd(k - l) e 5ﬂcmd(k - nc)»

2li=1) - z(k—n,) Srlk—1) -+ ot(k —n,)"

wherez = [z, 2, z3 z4]Tandzy,z,, 23,24 are the components of z in Eq. (28), which is the vector of command-following errors. The vector 8;
of controller coefficients has the same size as ¢;. Figure 3 shows the block diagram for channel 1, which uses thrust to follow the airspeed command.
In doing so, A, uses the airspeed command as a feedforward signal, airspeed command-following error as a feedback signal, and flight-path angle as
coupling feedback signals. The remaining channels of A; use similar structures to follow flight-path-angle, turn-rate, and sideslip-angle commands.
For architecture A, we use
Gi(z) = diag(1/z*,—1/z*,-1/z* 1/z%)
and the tuning parameters

ne = 8,R, = I,,R, = diag(0.5, 1,10, 10), Ry = diag(10~1, , 1071, , 1021, , 1071, )

The same notation is used for the remaining control architectures. The feedback vector ¢;, filter G, and tuning parameters n., R, R, and R for
control architectures A,, Az, Ay, As, and Ag are given in Appendix A. Except for the evaluation of warmup strategies in Scenario A.1, the tuning
parameters are fixed for each control architecture.

IV. Comparison of Trimgtm and RCAC for Determining Trim

One of the most fundamental tasks in aircraft flight control is to determine states and actuator settings that define trim. This problem continues to
be of interest [9,30-34]. Given initial states and actuator settings, the GTM applies the function trimgtm to the aircraft equations of motion and
aerodynamic lookup table to determine the closest trim states and actuator settings. We use trimgtm to determine initial trim states and actuator
settings for all simulations. We also test the ability of RCAC to determine trim states and actuator settings. To do this, we initialize the states and
actuators of the GTM with values that are not necessarily trim states and actuator settings. We then use a subset of these initial aircraft states as
commands and use RCAC to control the GTM. The goal is to determine whether RCAC can reach a nearby trim state. We then compare the
attained trim states and actuator settings with the values obtained by trimgtm for the same initial states and actuator settings. Note that using RCAC
to determine trim states and actuator settings can be viewed as using RCAC to fly the aircraft from an initial nontrim flight condition to a trim. In so
doing, RCAC uses no knowledge of the aircraft equations of motion or the aerodynamic lookup table.

For illustration, we initialize the GTM with the states and actuator settings

U(0) = 126.4 ft/s, (0) = 0 ft/s, (0) = 6.6 ft/s, (0) = 0 deg /s, (0) =0 deg /s,
R(0) =0 deg /s, (0) = 8000 ft, ®(0) = 0 deg, ®(0) = 4 deg, ¥(0) = 45 deg,
T(0) = 20%,e(0) =0 deg,a(0) =0 deg,r(0) =0 deg (43)

The initial airspeed, flight-path angle, turn rate, sideslip angle, and angle of attack corresponding to Eq. (43) are
Vac(0) =75 kt,y(0) = 1 deg,7(0) =0 deg/s,(0) =0 deg,a(0) =3 deg (44)

which represents straight-line flight.
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We first use trimgtm to determine nearby trim. From the initial flight Eqs. (43) and (44), trimgtm yields the trim states and actuator settings

Vacuim = 75.04 kt,  yyim = 0.96 deg, 7y, = 0.485 deg /Sy Puim = —0.04 deg, ayim = 5.15 deg,
Tiwim = 21.91%, eyi, = 1.12 deg, ayim = 0.33 deg, ryim = —0.06 deg (45)
Note that Eq. (45) is a helical trim flight.

Next we use RCAC with the commands (44) to fly the aircraft from the initial flight Egs. (43) and (44) to a nearby trim. To do so, we use control
architecture 1. Figure 4 shows that RCAC reaches trim flight with the trim states and actuator settings
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Fig. 4 Control architecture A; for attaining trim flight from the initial states and actuator settings (43). Considering the nontrim flight
Vac(0) =75 kt,y(0) =1 deg,z(0) = 0 deg /s,and f(0) = 0 deg, RCAC gives a nearby ascending straight-line trim flight, whereas trimgtm gives a
helical trim flight. Consequently, the trim computed by trimgtm and trim reached by RCAC are qualitatively different.
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VAC.trim =72.05 kt’ Yirim = 0.99 deg’ Tirim = 0 deg /57 ﬂtrim =0 deg’
Oyim = 6.85 deg, Ty = 25.90%, ey, = —0.21 deg, ayy, =0 deg, ryn =0 deg (46)

Note that Eq. (46) is a straight-line trim flight. Comparing Eqgs. (45) and (46), note that the trim reached by RCAC is qualitatively close to the
commands (44).

V. Case A: Control with Minimal Modeling

A. Scenario A.1: Adaptation Warmup Strategies

Unless stated otherwise, at the start of each scenario, the aircraftis assumed to be flying in an initial trim without the use of feedback control. The
components of the controller-coefficient vector  are thus initially set to zero, that is, 8(0) = 0. Although 6(0) can be set arbitrarily, we choose
0(0) = Otoreflect the absence of additional modeling information. RCAC must therefore adapt the components of & from their initial zero values
to suitable nonzero values. We compare four techniques for doing this. First, we consider the case in which no special effort is made to assist in the
transition from open- to closed-loop control. This case is called no warmup. To improve the transient performance, we then consider three
approaches to controller warmup, namely, ambient warmup, impulsive warmup, and noise warmup. Unless stated otherwise, the GTM is
initialized with the trim

Vac(0) = Vacuim = 100.6 kt,  ¥(0) = yyiy = 0 deg, 7(0) = 7y, = 0 deg /s,

P0) = Puim = 0 deg, a(0) = ayim = 3 deg, (0) = 8000 ft (47)
for all of the examples in the paper. The initial actual actuator settings for all actuators are set to the actuator settings for the initial trim, that is,
Tocnat (0) = Tyim = 22.8%, €01 (0) = €y = 2.7 deg,  @ueqar(0) = @i = 0 deg, Foenar (0) = ryim = 0 deg

For no warmup and each controller-warmup technique, we use slightly different tuning parameters to compare the performance of each strategy

under the most favorable conditions.
Example A.1.1: For no warmup, horizontal straight-line flight with trapezoidal airspeed command, the incremental commands are given by

— { 0, k <700,
ACmaT T\ min{5, 0.005(k — 700)} kt, & > 700,
5}/cmd(k) =0 deg, 6Tcmd(k) =0 deg /S, Bﬁcmd(k) =0 deg (48)

where the trapezoidal airspeed command starts at t = 70 s. We use control architecture A; and the tuning parameters

n.=10,R, = I,, R, = diag(0.5, 1,10, 10), Ry = diag(1071,, , 10721y, , 10721y, , 1071y, )

Figure 5 shows that no adaptation occurs until # = 70 s when the trapezoidal command starts. This is because the simulation starts from a trim
with zero command-following error and no disturbance is introduced. Note that the maximum command-following errors for airspeed, flight-path
angle, turn rate, and sideslip angle are 4.1 kt, 15.0 deg,5.3 deg /s, and 0.6 deg, respectively. In the next three examples, the goal is to improve
the transient response by using a warmup strategy. u

Example A.1.2: For the same problem as in Example A.1.1, but for ambient noise warmup, horizontal straight-line flight with trapezoidal
airspeed command, we introduce zero-mean white noise with standard deviation 0.001 kt into the wind speed for the entire simulation starting
from t = 0 s. All tuning parameters are the same as in the case of no warmup (Example A.1.1) except for Ry, which for this example
is Ry = diag(107°1;, , 10741, , 10721y, , 10721, , 1071, ).

Comparing with Example A.1.1, Fig. 6 shows that the transient error is smaller with ambient noise warmup. As expected, Figs. 6g and 6j show
that the turn rate and sideslip angle are corrupted by the ambient noise. u

Example A.1.3: For the same problem as in Example A.1.1, but for actuator impulse warmup, horizontal straight-line flight with trapezoidal
airspeed command, we introduce impulses into 7'.q and e.q at# = 10 sfor 0.1 s with amplitude 1% and 1 deg, respectively. All tuning parameters
are the same as in the case of no warmup (Example A.1.1) except for n. and Ry, which for this example are n, = 12
and Rg = diag(10_214nr B 10_314,1(} s 10_1 14,,’_ s 10_314,“).

Comparing with Example A.1.1, Fig. 7 shows that the transient error is smaller with actuator impulse warmup. ]

Example A.1.4: For the same problem as in Example A.1.1, but for actuator noise warmup, horizontal straight-line flight with trapezoidal
airspeed command, we introduce zero-mean white noise with standard deviation 0.001% into T, and zero-mean white noise with standard
deviation 0.001 deg into eyeq, Areq, and rreq from 7 = 10 to 70 s. All tuning parameters are the same as in the case of no warmup (Example A.1.1)
except for n, and Ry, which for this example are n, = 8 and Ry = diag(10_313,lc, 10‘41,,( , 10‘314,,[ Ay, s 10‘314,10).

Comparing no warmup, ambient noise warmup, actuator impulse warmup, and actuator noise warmup, Figs. 5-8 show that the peak transient
errors averaged over all four channels are 6.25, 2.57, 3.05, and 2.22 for no warmup, ambient noise warmup, actuator impulse warmup, and actuator
noise warmup, respectively. Note that the smallest value is obtained with actuator noise warmup. With actuator noise warmup, the maximum
command-following errors for airspeed, flight-path angle, turn rate, and sideslip angle are 4.4 kt, 3.2 deg, 1.2 deg /s, and 0.1 deg, respectively. In
addition, unlike the case of ambient noise warmup, the final command-following error using actuator noise warmup is not corrupted by ambient
noise, which is more convenient for performance comparison. Thus, we use actuator noise warmup for all subsequent simulations unless
mentioned otherwise. |

B. Scenario A.2: Trim Command Following

Example A.2.1: For ascending straight-line flight with trapezoidal flight-path-angle command and constant airspeed command using control
architecture Ay, the incremental commands are given by
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Fig. 5 Example A.1.1: Control architecture A for horizontal straight-line flight with trapezoidal airspeed command without warmup.

_— { 0, k <700,
7emd ¥ = mings, 0.005(k — 700)} deg, k> 700,
5VAC,cmd(k) =0 ktv 5Tcmd(k) =0 deg /S, 5ﬁcmd(k) =0 deg (49)

where the trapezoidal airspeed command starts at = 70 s.

Figure 9d shows that the maximum flight-path-angle command-following error is less than 0.35 deg and that the aircraft maintains constant
flight-path angle and airspeed in ascending straight-line flight. Note that the transfer-matrix realization of the controller (41) corresponding to the
converged elevator € at t = 250 s shown in Fig. 9f has a pole at one. This means that RCAC automatically develops an integrator for flight-path-
angle command following. This is the case in several subsequent examples but is not mentioned explicitly. u
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Fig. 6 Example A.1.2: Control architecture A, for horizontal straight-line flight with trapezoidal airspeed command and ambient noise warmup. The
noise in the wind speed V, starts at £ = 0 s and persists for the entire simulation.

Example A.2.2: For horizontal circular flight with trapezoidal turn-rate command, constant airspeed command, and zero sideslip-angle
command using control architecture A;, the incremental commands are given by

0,
5Tcmd(k) = {

min{5, 0.005(k — 700)} deg /s,

k <700,
k > 700,

6VAC‘cmd(k) = 0 kt, 5}/cmd(k) =0 deg, 5ﬂcmd(k) =0 deg

where the trapezoidal turn-rate command starts at t = 70 s.

(50)
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Fig.7 Example A.1.3: Control architecture A, for horizontal straight-line flight with trapezoidal airspeed command and actuator impulse warmup. The

impulses in 7 and e occur at ¢ = 10 s.

Figure 10j shows that the maximum sideslip angle is less than 0.07 deg and the aircraft maintains constant turn rate and airspeed in horizontal
flight. This shows the ability of RCAC to decouple the lateral channels. In addition, the use of ailerons to follow turn-rate commands implies
banked turn, and the roll angle (not shown in Fig. 10) is 24.8 deg at t = 250 s. u

Example A.2.3: For horizontal circular flight with trapezoidal turn-rate command, constant airspeed command, and zero sideslip-angle
command, we compare the performance of the converged RCAC controller in Example A.2.2 with the full-state-feedback LQR controller under
nominal flight conditions. In doing so, we initialize Eqs. (B16) and (B17) with 6 and P of Example A.2.2 at the last time step, and thus no warmup
strategy is used. The incremental commands are given by
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Fig. 8 Example A.1.4: Control architecture A, for horizontal straight-line flight with trapezoidal airspeed command and actuator noise warmup. The
noise in 7, e, a, and r begins at = 10 s and ends at 7 = 70 s.

Otema(k) = {

0,

min{5, 0.025(k — 700)} deg /s,
6VAC,cmd (k) =0 kt’ 57/cmd(k) =0 deg, 6ﬂcmd (k) =0 deg

k <700,
k > 700,

(5D

where the trapezoidal turn-rate command starts at = 70 s. Note that this example is similar to Example A.2.2, except that the incremental turn-
rate command ramps up in 20 s rather than 100 s as in Example A.2.2.
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Fig. 9 Example A.2.1: Control architecture A, for ascending straight-line flight with trapezoidal flight-path-angle command and constant airspeed

command.

To design the LQR controller, we linearize the GTM about the trim (47). The linearization is given by

where

Sx(k + 1) = A8x(k) + BBityeq (k)

Soy(k) = Cox(k)

sx(k) = [6Uk) 6V(k) oW(k) 6P(k) 0(k) O6RK) Sh(k) 6dk) 60%K)]T

(52)

(53)

(54)
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Fig.10 Example A.2.2: Control architecture A, for horizontal circular flight with trapezoidal turn-rate command, constant airspeed command, and zero

sideslip-angle command.

Sy(k) =[6Vac(k) y(k) ot(k) Sp(R)]

(Sureq (k) = [5Treq (k) 5ereq (k) 6areq (k) 5rreq (k) ]T

and the matrices A, B, and C are obtained using the GTM function linmodel. The LQR control law with integrator is given by

5ureq(k) = _Kl&x(k) - KZyim(k)

(55)

(56)

(57
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where the integrated output y;, (k) is given by

T
z—-1

Yinc(k) = — z(k) (58)

T, = 0.1 sisthe sampling time, z(k) is given by Eq. (28), and the gain matrices K| and K, are obtained using the linearization (A, B, C) with state
weighting R; = [543 and control weighting R, = diag(0.1, 0.1, 100, 100). Note that, with z(k) given by Eq. (28), the LQR controller has the
same objective as the control architecture A;, namely, following airspeed, flight-path-angle, turn-rate, and sideslip-angle commands. To
implement LQR Eq. (57), 13 measurements [nine states Eq. (34) and four outputs Eq. (56)] are needed, whereas, for implementing A, eight
measurements (four inputs and four outputs) given by Eq. (42) are required.

Figure 11 shows that the maximum RCAC command-following errors for airspeed, flight-path angle, turn rate, and sideslip angle are 0.45 kt,
0.02 deg, 0.15 deg /s, and 0.02 deg, respectively, whereas the maximum LQR command-following errors for airspeed, flight-path angle, turn rate,
and sideslip angle are 0.02 kt, 0.06 deg, 0.42 deg /s, and 0.15 deg, respectively. Note that, by using the converged controller coefficients from
Fig. 10 as 0(0), the obtained transients are small relative to Fig. 10. Figure 11i shows that the aileron controller coefficients adapt to follow a larger
slope in the turn-rate command compared with Fig. 10g. The RCAC command-following errors at ¢ = 250s for airspeed,
flight-path angle, turn rate, and sideslip angle are 0.04 kt, 0.0003 deg, 0.001 deg /s, and 6 x 10~ deg, respectively, whereas the LQR
command-following errors at t = 250 s for airspeed, flight-path angle, turn rate, and sideslip angle are 0.0009 kt, 0.003 deg, 0.02 deg /s, and
0.005 deg, respectively. Comparing the maximum command-following errors and command-following errors at = 250 s for RCAC and LQR
controllers, RCAC has better performance in following flight-path-angle, turn-rate, and sideslip-angle commands, whereas LQR has better
performance in following the airspeed command. The roll angle (not shownin Fig. 11)is 24.79 degfor RCAC and 24.62 deg for LQR at = 250 s.®

Example A.2.4: For helical flight around a vertical axis with trapezoidal turn-rate command, trapezoidal flight-path-angle command, constant
airspeed command, and zero sideslip-angle command using control architecture A;, the incremental commands are given by

0, k < 700,
5Tcmd(k) = { .
min{5,0.005(k — 700)} deg /s, k > 700,
0, k < 700,
5}'cmd(k) = { .
min{4, 0.004(k — 700)} deg, k > 700,
6VAC4,cmd(k) =0 kt’ 5ﬂcmd(k) =0 deg (59)

where the trapezoidal flight-path-angle and turn-rate commands start at # = 70 s.

Figure 12] shows that the maximum sideslip angle is less than 0.06 deg and the aircraft maintains constant airspeed during helical flight. This
shows the ability of RCAC to decouple the lateral channels. In addition, the use of ailerons to control turn rate implies banked helical flight, and the
roll and pitch angles (not shown in Fig. 12) are 24.9 and 7.2 deg, respectively, at t = 250 s. u

C. Scenario A.3: Robustness of RCAC Tuning to the Initial Trim

We now investigate the robustness of RCAC to variations in the initial trim and trim command using control architecture A;. Because the force
and moment coefficients of the GTM are functions of a, #, P, Q, and R, changing a(0) = a;,, results in different initial vehicle dynamics. For all
of the examples in this scenario, the incremental commands are given by

0, k <700,
5Tcmd(k) = { .
min{5, 0.005(k — 700)} deg /s, k > 700,
6VAC,cmd(k) = 0 kt, ycma(k) = 0 deg, 5fcma (k) =0 deg (60)

where the trapezoidal turn-rate command starts at t = 70 s.

Example A.3.1: For the robustness of RCAC tuning, given an increase of 16 kt in V5 (0) relative to the trim given by Eq. (47), the GTM is
initialized with the trim a(0) = iy, = 2 deg, Vac(0) = Vacuim = 116.6 kt, ¥(0) = yyim = 0 deg, 7(0) = 7y, = 0 deg /s, and p(0) =
Puim = 0 deg with 2(0) = 8000 ft. In this example, the control surfaces have more authority than in Example A.2.2, where V zc yim = 100.6 kt
due to the increased dynamic pressure.

Figure 13 shows that the maximum command-following errors for airspeed, flight-path angle, turn rate, and sideslip angle are 3.2 kt, 4 deg,
2.1 deg /s,and 0.5 deg, respectively, and the aircraft maintains constant turn rate and constant airspeed in horizontal flight after 170 s. This shows
the robustness of RCAC to variations in the initial trim and trim command. u

Example A.3.2: For robustness of RCAC tuning, given a decrease of 18.6 kt in V 5c(0) relative to the trim given by Eq. (47), the GTM is
initialized with the trim a(0) = @y, =5 deg, Vac(0) = Vacyim = 82 kt,7(0) = yyim = 0 deg, 7(0) = 7y, = 0 deg /s, and p(0) =
Puim = 0 deg with 4(0) = 8000 ft. In this example, the control surfaces have less authority than in Example A.2.2, where V zc yim = 100.6 kt
due to the decreased dynamic pressure.

Figure 14 shows that the maximum RCAC command-following errors for airspeed, flight-path angle, turn rate, and sideslip angle are 4.4 kt,
1 deg, 0.2 deg /s, and 0.02 deg, respectively, and the aircraft maintains constant turn rate and constant airspeed in horizontal flight after 170 s.
This shows the robustness of RCAC to variations in the initial trim and trim command. For this example, as shown in Fig. 14, LQR given by
Eq. (57) is not able to follow the incremental commands and diverges around ¢ = 800 s. u

Example A.3.3: Robustness of RCAC tuning, given a decrease of 24.6 ktin V 5 (0) relative to the trim given by Eq. (47), the GTM is initialized
with the trim @(0) = qyim = 6 deg, Vac(0) = Vac ugim = 76 kt, 7(0) = yuim = 0 deg, 7(0) = 7 = 0 deg /s, and f(0) = fyim = 0 deg
with #(0) = 8000 ft. In this example, the control surfaces have less authority than in Example A.3.2, where V zc yim = 82 kt due to the decreased
dynamic pressure.

Figure 15 shows that the maximum command-following errors for airspeed, flight-path angle, turn rate, and sideslip angle are 3.3 kt, 1.9 deg,
11.7 deg /s, and 6.2 deg, respectively, and the aircraft maintains constant turn rate and airspeed in horizontal flight after 200 s. Note that the
decrease of 24.6 kt in V 5 (0) causes an increase in the transient response; however, after 190 s, the command-following errors become small.®
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Fig.11 Example A.2.3: Control architecture A for horizontal circular flight with trapezoidal turn-rate command, constant airspeed command, and zero
sideslip-angle command. The performance of the converged RCAC controller in Example A.2.2 is compared with the full-state-feedback LQR controller
under nominal flight conditions.

VI. Case B: Control with Unknown Time-Varying Aircraft Dynamics
A. Scenario B.1: Changing Mass, Moments of Inertia, and C.G. Location During Flight
We now investigate scenarios where the dynamics of the aircraft change in an unknown way during flight. In particular, we consider changes in
the aircraft mass, moments of inertia, and c.g. location along i,¢ during flight. For all of the examples in this scenario, we use control architecture
A, with the following incremental commands

6VAC,cmd(k) =0 kt’ 5hcmd(k) =0 ft’ 5Tcmd(k) =0 deg /S’ 6ﬂcmd(k) =0 deg (61)



Downloaded by UNIVERSITY OF MICHIGAN on April 5, 2018 | http://arc.aiaa.org | DOI: 10.2514/1.1010454

ANSARI AND BERNSTEIN 141

106, 100 ; ‘
S - Teeq
105¢ &~ — Tactual
3 50
104} ---Vac,emd 3
& —Vac a
2 103f 1 0 : ‘
< 0 50 100 150 200 250
3 b) Time (s)
g 1oz 2000
z
101f <1000 | ]
3
100r = o—%
E = |
99 : : : : ! |
0 50 100 150 200 250 10005 50 100 750 200 250
a) Time (s) ¢) Time (s)
5
=
LY
] g
&
o =
)
=
= e)
=
X
fﬂ =
£ g 0
<
Z
= -10
o 50 100 150 200 250 20 50 100 150 200 250
d) Time (s) f) Time (s)
6 : : : : 0.4
E}
sl = 02
IS
4 g ! el
3 4 u
= 3t -04 : : ‘ ‘
- 0 50 100 150 200 250
° h) Time (s)
<
- 4
E 1t ES 2
2
=]
0 £
< 2
-1 L L L L
0 50 100 150 200 250 -4 ’ . : .
. .0 50 100 150 200 250
g) Time (s) i) Time (s)
0.08 0.1
0.06} =
s
=
% o004} - - - Bema £
=) —5 z
oy 5
o 0.02 -03 ‘ : ‘ ‘
) 0 50 100 150 200 250
g k) Time (s)
s 0 - 1
E
2-0.02f s 9 e
[
z
-0.04f Z
-0.06, : ‘ ‘ : _ ‘ ‘ ‘ ‘
0 50 100 150 200 250 0 50 100 150 200 250
j) Time (s) 1) Time (s)

Fig. 12 Example A.2.4: Control architecture A, for helical flight around a vertical axis with trapezoidal turn-rate command, trapezoidal flight-path
angle, constant airspeed command, and zero sideslip-angle command.

We let the aircraft fly in a straight line with constant altitude and airspeed, while the aircraft dynamics change during flight. For all of the examples
in this scenario, the center of pressure and c.g. are initially collocated.

Example B.1.1: For time-varying dynamics with c.g. moving forward, we first fly the aircraft with fixed c.g. location for a baseline comparison,
and then we linearly vary the c.g. location along i, with a rate of 0.0008 ft/s during flight, so that, at 250 s, the c.g. has moved forward by 0.2 ft,
and does not change after 250 s.

Figure 16 shows that, with fixed c.g. location, the maximum command-following errors for airspeed, altitude, turn rate, and sideslip angle are
4.12 kt, 8.01 ft, 0.07 deg /s, and 0.01 deg, respectively. Note that the transients in Figs. 16a, 16d, 16g, and 16j are due to the actuator noise
warmup, from r = 10 to 70 s, to adapt to suitable controller coefficients 6. Figures 16¢, 16f, 16i, and 161 show that 8 converges after the actuator



Downloaded by UNIVERSITY OF MICHIGAN on April 5, 2018 | http://arc.aiaa.org | DOI: 10.2514/1.1010454

142 ANSARI AND BERNSTEIN

119 100 - ‘
Q\’E : -==Treq
118 & H — Tactual
£ 50 !
= i<
z 17t E
el 0 50 100 150 200 250
) b) Time (s)
2 400
% 115t - Vacem
= 115 AC,cmd < 200
—Vic P
114f 1 g 0
&
=-200
13 : : s s ‘ ‘ : :
0 %0 100 150 200 250 400y 50 100 150 200 250
a) Time (s) ¢) Time (s)
1 6
i - -ereq
o——\- = S 4 €actual
B 5
: | £ o2
%D 2 .0 50 100 150 200 250
= e) Time (s)
£ 40
Y < J .
E = i
- e
)
A 20 | 1
% 50 700 150 200 250 -40 , : : :
. , 50 100 150 200 250
d) Time (s) f) Time (s)
6 2
o0
o
5r = 0 1
IS
= Y : 1 — |
B r = —— Qactual
< 3 <
Ey, ] ~ 50 100 150 200 250
£ E—— h) Time (s)
~ 10
g i
F—E < 5
0| 2
2 0
3 =
1 :
2% 50 700 150 200 250 -10 : : : :
. e O 50 100 150 200 250
g) Time (s) i) Time (s)
0.6 0.4
0.5} £ o2
Do
80 3 o]
] 0.4 E o2
Rl
0.3f 0.
%D ---Bemd 0'40
= —3 k) Time (s)
s 0 1 2
E
= o1t s
0 £ o0
& -1
04 0 100 150 200 250 -2 . : : :
- S 5 5 0 50 100 150 200 250
j) Time (s) 1) Time (s)

Fig. 13 Example A.3.1: Control architecture A, for horizontal circular flight with a modified initial trim. V 5 (0) is increased by 16 kt relative to the
trim (47).

noise warmup and subsequently brings the aircraft back to its initial trim with zero command-following errors for airspeed, altitude, turn rate, and
sideslip angle.

Figure 17 shows that, with moving c.g. location, the maximum command-following errors for airspeed, altitude, turn rate, and sideslip angle are
4.9kt,32.51t,0.05 deg /s, and 0.02 deg, respectively, and the aircraft maintains constant altitude and airspeed in straight-line flight. Note that the
requested actuator settings in all four channels become constant after 250 s. R u

Example B.1.2: For time-varying dynamics with c.g. moving aft, we linearly vary the c.g. location along —i 5 with arate of 0.0008 ft/s, so that,
at 250 s, the c.g. has moved aft by 0.2 ft and does not change after 250 s.

Figure 18 shows that the maximum command-following errors for airspeed, altitude, turn rate, and sideslip angle are 4.2 kt, 28.1 ft, 0.52 deg /s,
and 0.17 deg, respectively, and the aircraft maintains constant airspeed and altitude with 24.5 ft offset in straight-line flight. Note that the requested
actuator settings in all four channels become constant after 250 s. [ ]
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Fig. 14 Example A.3.2: Control architecture A for horizontal circular flight with a modified initial trim. V 5 (0) is decreased by 18.6 kt relative to the
trim (47). LQR is not able to follow the incremental commands and diverges around ¢ = 800 s.

Example B.1.3: For time-varying dynamics with decreasing mass, decreasing moments of inertia, and c.g. moving aft, we vary the c.g. location
as in Example B.1.2 and we linearly decrease the mass and moments of inertia. The initial mass and moments of inertia of the GTM are 1.54 slug
and[1.32,4.25,5.4,0.1125] Ibf-ft? /s, respectively. At 250 s, the mass decreases by 0.1 slug and the moments of inertia [/, Iy, I, 1,;] decrease
by [0.083,0.26,0.34,0.0075] 1bf - ft? /s. After 250 s, the mass and moments of inertia are constant.

Figure 19 shows that the maximum command-following errors for airspeed, altitude, turn rate, and sideslip angle are 3.3 kt, 21.9 ft, 0.4 deg /s,
and 0.05 deg, respectively, and the aircraft maintains constant airspeed and altitude. Note that the requested actuator settings in all four channels
become constant after 250 s. |

Example B.1.4: For time-varying dynamics with decreasing mass, decreasing moments of inertia, and c.g. moving forward, we vary the c.g.
location as in Example B.1.1 and we vary the mass and moments of inertia as in Example B.1.3.
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Fig. 15 Example A.3.3: Control architecture A; for horizontal circular flight with a modified initial trim. V 5 (0) is decreased by 24.6 kt relative to the
trim (47). Note that the decrement of 24.6 kt in V5 (0) causes an increase in the transient response; however, after 190 s, the command-following errors
become small.

Figure 20 shows that the maximum command-following errors for airspeed, altitude, turn rate, and sideslip angle are 5.2 kt, 32.8 ft, 0.06 deg /s,
and 0.02 deg, respectively, and the aircraft maintains constant airspeed and altitude. Note that the requested actuator settings in all four channels
become constant after 250 s. |

B. Scenario B.2: Icing

To model the increased drag and reduced lift due to icing, we linearly increase the aerodynamic force coefficient by 40% in the direction i AC
until 250 s, and we linearly decrease the aerodynamic force coefficient by 30% in the direction —k ¢ until 250 s, respectively. After 250 s, we do
not further alter the forces. This corresponds to a scenario where the ice forms in 250 s and then maintains its profile. For all of the examples in this
scenario, we use control architecture A,.
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Fig. 16 Example B.1.1: Control architecture A, for straight-line flight with constant altitude and airspeed commands. This example is with fixed c.g.
location to provide a baseline comparison for the subsequent examples involving the moving c.g. The transients are due to the actuator noise warmup, from
t =10to 70 s.

Example B.2.1: For horizontal straight-line flight in the presence of icing with constant altitude and airspeed command, the incremental
commands are given by

5VAC,Cmd(k) =0 ktv 6hcmd(k) =0 ftv 5Tcmd(k) =0 deg /37 aﬁcmd(k) =0 deg (62)

Figure 21 shows that the maximum command-following errors for airspeed, altitude, turn rate, and sideslip angle are 7.7 kt, 38.4 ft, 1.7 deg /s,
and 0.2 deg, respectively, and the aircraft maintains constant altitude and airspeed in straight-line flight. To compensate for the effect of icing, RCAC
changes the throttle, elevator deflection, and aileron deflection from 22.8%, 2.7 deg, and 0.0014 deg at t = 0 s to 24.3%, 1.15 deg, and 0.005 deg at
t = 250 s, respectively. After 250 s, there is no further ice formation and the requested actuator settings in all four channels become constant. H
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Fig.17 Example B.1.1: Control architecture A, for straight-line flight with constant altitude and airspeed commands. The c.g. moves forward from 0 to
250 s and then remains fixed. Note that the requested actuator settings in all four channels become constant after 250 s.

Example B.2.2: For straight-line flight in the presence of icing with trapezoidal altitude command, followed by horizontal circular flight with
trapezoidal turn-rate command and constant altitude command, the incremental commands are given by

0, k <700,
5hcmd(k) = {
max{—1000, —1(k — 700)}ft, k > 700,
0, k < 2700,
6Tcmd(k) = {
min{5, 0.005(k — 2700)} deg /s, k > 2700,

5VAC,cmd (k) =0 kt, 5ﬁcmd (k) =0 deg (63)
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Fig. 18 Example B.1.2: Control architecture A, for straight-line flight with constant altitude and airspeed commands. The c.g. moves aft from 0 to 250 s
and then remains fixed.

where the trapezoidal altitude command starts at + = 70 s and the trapezoidal turn-rate command starts at t = 270 s.

Figure 22 shows that the maximum command-following errors for airspeed, altitude, turn rate, and sideslip angle are 7.7 kt, 38.4 ft, 1.7 deg /s, and
0.2 deg, respectively, and the aircraft maintains constant heading and airspeed in straight-line flight until 270 s and afterward transitions to horizontal
circular flight. Note that the requested actuator settings in all four channels are constant between 250 and 270 s as well as after 370 s. u

VII. Case C: Control with Unknown Flight Envelope

A. Scenario C.1: Conflicting Trim Commands

‘We use architecture A, which extends architecture A; by including the angle of attack as a performance variable. For given airspeed and turn-
rate commands, the commanded angle of attack and flight-path angle may be conflicting due to uncertainty in the achievable trim flight. To test the
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Fig.19 Example B.1.3: Control architecture A, for straight-line flight with constant altitude and airspeed commands. The mass and moments of inertia
decrease, and the c.g. moves aft from 0 to 250 s and then becomes constant.

robustness of RCAC to uncertainty in the flight envelope, the goal is thus to investigate the effect of possibly conflicting commands. In A3, we use
the elevator e to control both flight-path angle and angle of attack by adding the corresponding outputs of the adaptive controllers. The requested
actuator setting for the elevator control channel (34) thus becomes

ereq (k) éetrim + 6ereq,y (k) + 5ereq.a (k) (64)

where Je,.q , (k) and Je,.q (k) are the outputs of the adaptive controllers for y and a, respectively.
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Fig.20 Example B.1.4: Control architecture A, for straight-line flight with constant altitude and airspeed commands. The mass and moments of inertia
decrease, and the c.g. moves forward from 0 to 250 s and then becomes constant.

Example C.1.1: For horizontal straight-line flight with zero flight-path-angle and trapezoidal angle-of-attack commands, the incremental

commands are given by

_— { 0, k <700,
Q, =

emd min{1,0.001(k — 700)} deg, & > 700,

5VAC,cmd(k) = 0 kt, 5ycmd (k) =0 deg7 6Tcmd(k) =0 deg /57 5ﬂcmd (k) =0 deg (65)
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Fig. 21 Example B.2.1: Control architecture A, for horizontal straight-line flight with constant altitude and airspeed commands. Ice forms from 0 to
250 s and then maintains its profile. Note that the requested actuator settings in all four channels become constant after 250 s.

where the trapezoidal angle-of-attack command starts at = 70 s. Note that, for the first 70 s, the commanded trim is as in Eq. (47), which
indicates no conflict in the commands. After 70 s, the commanded angle of attack increases, whereas the airspeed, flight-path angle, turn rate, and
sideslip angle are kept the same as in the trim (47). The angle-of-attack command thus conflicts with the remaining commands.

Figure 23 shows that the adaptive controller trims the aircraft at Vyc = 91.2kt, y =5 deg, @ =4 deg, r = 0.06 deg /s, and f =
0.0009 deg with the command-following errors Vac — Vacema = 935 kt, ¥ — Yema = 5 deg, @ — dpg = 0.02 deg, 7 — 7. = 0.06 deg /s,
and f — B.na = 0.0009 deg at t = 250 s. The adaptive controller resolves the conflicting commands at the expense of steady-state command-
following errors in airspeed and flight-path angle. Note that all of the requested actuator settings are constant after the conflict is resolved. M

Example C.1.2: For ascending straight-line flight with trapezoidal flight-path-angle and constant angle-of-attack commands, the incremental

commands are given by
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Fig. 22 Example B.2.2: Control architecture A, for straight-line flight with trapezoidal altitude command, followed by horizontal circular flight with
trapezoidal turn-rate command and constant altitude command. Ice forms from 0 to 250 s and then maintains its profile.

0,

Srema(k) =
Fem () { min{5,0.005(k — 700)} deg,

k <700,
k > 700,

6VAC,cmd(k) =0 ktv 6acmd(k) =0 deg, 6Tcmd(k) =0 deg /S, 6ﬂcmd(k) =0 deg

(66)

where the trapezoidal flight-path-angle command starts at = 70 s. Note that, for the first 70 s, the commanded trim is as in Eq. (47), which
indicates no conflict in the commands. After 70 s, the commanded flight-path angle increases, whereas the airspeed, angle of attack, turn rate, and

sideslip angle are kept the same as in the trim (47). The flight-path-angle command thus conflicts with the remaining commands.
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Fig.23 Example C.1.1: Control architecture A ; for horizontal straight-line flight with zero flight-path-angle and trapezoidal angle-of-attack commands.
After 70 s, the commanded angle of attack increases, whereas Vo, 7, 7, and f§ are kept unchanged. The angle-of-attack command thus conflicts with the

remaining commands.
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Figure 24 shows that the adaptive controller trims the aircraft at V,c = 96.7 kt, y = 1.97 deg, a = 3.34 deg, = = —0.02 deg /s, and
B =0 deg with the command-following errors Vac — Vacema = 44 kt, ¥ — Yema = 2.7 deg, a — aemg = 0.38 deg, 7 — 7.g = 0.02 deg /s,
and ff — fomg = 0 degatt = 250 s. The adaptive controller resolves the conflicting commands at the expense of steady-state command-following
errors in airspeed, flight-path angle, and angle of attack. Note that all of the requested actuator settings are constant after the conflict is resolved.®

B. Scenario C.2: Trim Flight Stability

We investigate the open-loop stability of the trim flight achieved by the adaptive controller without knowing the flight envelope (see Sec. ILJ for
details on trim flight) using control architecture A4. We consider the following two possibilities for stability of the trim flight:

1) For asymptotically stable trim, the aircraft returns to the trim if the control surfaces are slightly perturbed and then set back to their trim angles.

2) For not asymptotically stable trim, the aircraft does not return to the trim if the control surfaces are slightly perturbed and then set back to their
trim angles.

The GTM is initialized with the trim

VAC(O) = VAC.trim = 67.36 kt’ }/(O) = Yuwim = 0 deg’ T(O) = Tyrim = 0 d€g /57
$(0) = Puim = 0 deg, a(0) = ayim = 8 deg, (0) = 8000 ft (67)
for all of the examples in Scenario C.2.

Example C.2.1: For horizontal circular flight with trapezoidal airspeed command and trapezoidal turn-rate command, the incremental
commands are given by

0. k <700,
5V acema(8) = { min{5, 0.005(k — 700)} kt, & > 700,
0, k <2500,
Stana(k) = | min{4,0.004(k — 2500)} deg /s, 2500 < k < 4000,
min{6, 4 + 0.002(k — 4000)} deg /s, k> 4000,
OYema(k) =0 deg (68)

where the airspeed and turn-rate commands start at # = 70 and 250 s, respectively.

At t = 900 s, the adaptation is disabled and the control surfaces are fixed at their trim angles. At t = 1000 s, the elevator and aileron are
perturbed by 0.5 deg for 0.2 s, respectively, from their trim angles. Figure 25 shows that the aircraft is in trim flight from ¢ = 900 to 1000 s. After
the perturbation, the aircraft returns to the same trim, indicating that the trim achieved by the adaptive controller is asymptotically stable. H

Example C.2.2: For horizontal circular flight with trapezoidal airspeed command and trapezoidal turn-rate command, the incremental
commands are given by

0, k <700,
OVacama() =y (C5.—0.005(k—T00)} ki, k> 700,
0, k <2500,
Stana(k) = | min{4,0.004(k — 2500)} deg /s, 2500 < k < 4000,
min{6, 4 + 0.002(k — 4000)} deg /s, k > 4000,
OYema(k) =0 deg (69)

where the airspeed and turn-rate commands start at + = 70 and 250 s, respectively.

At t = 900 s, the adaptation is disabled and the control surfaces are fixed at their trim angles. At ¢+ = 1000 s, the elevator and aileron are
perturbed by 0.5 deg for 0.2 s, respectively, from their trim angles. Figure 26 shows that the aircraft is in trim flight from # = 900 to 1000 s. After
the perturbation, the aircraft does not return to the same trim but converges to a new trim, indicating that the trim achieved by the adaptive
controller is not asymptotically stable. This shows the ability of RCAC to actively stabilize trim flight that is not asymptotically stable. u

C. Scenario C.3: Flight Envelope Exploration

‘We now explore and map the flight envelope using architecture A4. The exploration scheme consists of the following steps, which maneuver the
aircraft around the flight envelope and determine the stability of the attained trim states:

1) Start the aircraft at an initial trim condition.

2) Specify a trim command.

3) Increase or decrease the airspeed to the desired value by a sequence of intermediate trapezoidal commands with a slope of 0.1 kt/s and
sufficient dwell time for the aircraft to reach the command; 67,y and y.,q are zero during this step.

4) Increase or decrease the turn rate to the desired value by a sequence of intermediate trapezoidal commands with a slope of 0.1 deg /s and
sufficient dwell time for the aircraft to reach the command; 8y ,,q is zero during this step.

5) After reaching the desired trim, return to open-loop flight by disabling the adaptation and freezing all the actuators and throttle settings.

6) Impulse the elevator and aileron to observe the stability of the aircraft at the new trim state.

Figure 27 shows the mapping of the flight envelope after the exploration scheme is completed. Starting from the initial trim (67), we search
through a slice of the flight envelope by keeping flight-path-angle zero while varying airspeed and turn rate, as indicated by the arrows. Note that,
during this search, the tuning settings of RCAC remain unchanged and the aircraft transitions between different trims without gain scheduling, as
is traditionally done in practice for transitioning between different trims in the flight envelope. The region of attained trim states consists mainly of
asymptotically stable trims, with trims that are not asymptotically stable at the boundary.
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Fig. 24 Example C.1.2: Control architecture A; for ascending straight-line flight with trapezoidal flight-path-angle and constant angle-of-attack
commands. After 70 s, the commanded flight-path angle increases, whereas V¢, «, 7, and § are kept unchanged. The flight-path-angle command thus
conflicts with the remaining commands.
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Fig.25 Example C.2.1: Control architecture A, for horizontal circular flight with trapezoidal airspeed command and trapezoidal turn-rate command.
Att = 900 s, the adaptation is disabled and the control surfaces are fixed at their trim angles. To determine the stability of the achieved trimat ¢ = 1000 s,
the elevator and aileron are perturbed by 0.5 deg for 0.2 s, respectively, from their trim values.

VIII. Case D: Control with Known Sensing Constraints

We investigate Scenario D.1 where the air data system (ADS) fails during flight, and thus no angle-of-attack, sideslip-angle, or airspeed
measurements are available. We thus rely on GPS and inertial measurement unit data to follow a desired ground position trajectory. To do so, we
use control architecture As, which uses no ADS measurements, as shown in Eq. (A3).

Example D.1.1: For reference flight-trajectory following in the presence of wind shear, the reference trajectory is composed of ascending, right-
turn, and straight-line maneuvers. The incremental command 6/, is
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Fig.26 Example C.2.2: Control architecture A, for horizontal circular flight with trapezoidal airspeed command and trapezoidal turn-rate command.
Att = 900 s, the adaptation is disabled and the control surfaces are fixed at their trim angles. To determine the stability of the achieved trimat ¢ = 1000 s,

the elevator and aileron are perturbed by 0.5 deg for 0.2 s, respectively, from their trim values.

1000

0, k <700,

Shema(k) = {min{SOO, 0.5(k —700)} ft, k > 700 70

where the trapezoidal altitude command starts at # = 70 s.

Figure 28 shows that the maximum command-following errors for ¢|, i, e, , and 7 are 373, 119, and 195 ft, and 5.3 deg, respectively, whereas
the GTM follows the reference flight trajectory. The maximum angle of attack, sideslip angle, and airspeed (not shown in Fig. 28) are 13 deg,
0.2 deg, and 129 kt, respectively. [ ]
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Fig. 27 Region of the attained trim states starting from the initial trim (67) and keeping the flight-path angle zero. Further exploration starting from a
different initial condition, indicated by the blue dot, is also shown.

Example D.1.2: For reference flight-trajectory following in the presence of wind shear, the reference trajectory is composed of descending, left-
turn, and straight-line maneuvers. The incremental command 6/, 1s

0 k <700,

Shema(k) = {max{—lOOO, —1(k = 700)} ft, k> 700 a

where the trapezoidal altitude command starts at t = 70 s.

Figure 29 shows that the maximum command-following errors for e, h, e, ,andnare 370,52, and 147 ft, and 1.9 deg, respectively, whereas the
GTM follows the reference flight trajectory. The maximum angle of attack, sideslip angle, and airspeed (not shown in Fig. 29) are 9.4 deg,
0.08 deg, and 115 kt, respectively. |

IX. Case E: Control with Known Actuation Constraints

We investigate Scenario E.1, where the aircraft is initially flying in the straight-line trim given by Eq. (47) and the ailerons and rudder become
stuck at their trim deflections in the initial trim flight beginning at = 0 s. The goal is to maintain lateral flight control using differential thrust with
control architecture Ag. The requested actuator setting increments for the left and right engines are 6Ty and —6T 4, respectively.

Example E.1.1: For horizontal circular flight with trapezoidal turn-rate command and constant altitude command, the incremental commands
are given by

0 k <700,

FTema(k) = {min{2, 0.002(k — 700)} deg /s, k> 700, OMema(k) =01t 72

where the trapezoidal turn-rate command starts at t = 70 s.

Figure 30 shows that the maximum command-following errors for turn rate and altitude are 2.1 deg /s and 8.2 ft, respectively, and the aircraft
maintains constant turn rate and altitude in horizontal flight. At = 400 s, the sideslip angle is 0.03 deg, the roll angle (not shown) is 10.2 deg, and
the command-following errors for turn rate and altitude are 0.05 deg /s and 0.2 ft, respectively. u

Example E.1.2: For helical flight around a vertical axis with trapezoidal turn-rate command and trapezoidal altitude command, the incremental
commands are given by
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Fig. 28 Example D.1.1: Control architecture As for ascending flight-trajectory following in the presence of wind shear. The reference trajectory is
composed of ascending, right-turn, and straight-line maneuvers. The GTM follows the reference flight trajectory.

0, k <700,
5Tcmd(k) = .
min{2, 0.002(k — 700)} deg /s, k> 700,
0, k <700,
5hcmd(k) = (73)
max{—1000, —1(k — 700)} ft, k > 700

where the trapezoidal turn-rate and altitude commands start at # = 70 s.

Figure 31 shows that the maximum command-following errors for turn rate and altitude are 2.4 deg /s and 46.4 ft, respectively, and the aircraft
maintains constant turn rate and altitude in horizontal flight. At = 400 s, the sideslip angle is 0.03 deg, the roll angle (not shown) is 10.2 deg, and
the command-following errors for turn rate and altitude are 0.05 deg /s and 0.08 ft, respectively. u
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Fig. 29 Example D.1.2: Control architecture As for descending flight-trajectory following in the presence of wind shear. The reference trajectory is
composed of descending, left-turn, and straight-line maneuvers. The GTM follows the reference flight trajectory.

X. Case F: Control with Unknown Sensor Failure
A. Scenario F.1: Stuck Sensor

Example F.1.1: For horizontal straight-line flight with stuck pitot-tube measurement after ¢+ = 50 s using control architecture A,, the
incremental commands are given by

— 0, k <700,
ACR ) mings, 0.005(k — 700)} ke, k > 700,
5hAC,cmd(k) =0 ftv 5Tcmd(k) =0 deg /Sv 5ﬁcmd(k) =0 deg (74)

where the trapezoidal airspeed command starts at # = 70 s.
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Fig. 30 Example E.1.1: Control architecture A4 for horizontal circular flight with trapezoidal turn-rate command and constant altitude command.
Beginning at t = 0 s, the ailerons and rudder become stuck at their trim deflections. The turn-rate command following is recovered using differential
thrust.
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Fig. 31 Example E.1.2: Control architecture A4 for helical flight around a vertical axis with trapezoidal turn-rate command and trapezoidal altitude
command. This example is similar to Example E.1.1, except that the incremental altitude command is a trapezoid.

Figure 32a shows that, after = 50 s, the pitot-tube measurement V ¢ e, 18 fixed at 100.6 kt. After t = 70 s, Fig. 32 shows that the adaptive
controller initially uses full throttle when V s¢ meas — Vac.cma 18 increasing and then converges to a constant throttle setting at # = 160 due to the
lack of effect on the error signal Vac meas — Vac.cma- After £ = 170 s, 6V oc cma 18 constant, and the adaptive controller trims the aircraft at
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Vac = 12298 kt, h = 8010 ft, = 0.004 deg /s, and f = 0.006 deg with the command-following errors Vac — Vacema = 17.39 kt,

h—hepg = 10 ft, 7 — 7 = 0.004 deg /s, and B — B.,q = 0.006 deg at t = 250 s.

B. Scenario F.2: Biased Sensor

Example F.2.1: For horizontal straight-line flight with biased pitot-tube measurement using control architecture A,, the incremental commands

are given by
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Fig.32 Example F.1.1: Control architecture A, for horizontal straight-line flight with stuck pitot-tube measurement after ¢ = 50 s. After £ = 70 s, the
adaptive controller initially uses full throttle when V s ¢ meas — Vac,cma IS increasing and then converges to a constant throttle setting at # = 160 due to the

lack of effect on the error signal V¢ meas — Vac,ema-
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Fig. 33 Example F.2.1: Control architecture A, for horizontal straight-line flight with biased pitot-tube measurement. After ¢ = 50 s, the pitot-tube
measurement Vs c meas has a bias of 5 kt and the aircraft follows the commanded airspeed with 5 kt bias.

S { 0, k <700,
ACm T min{5, 0.005(k — 700)} kt, & > 700,
5hAC,cmd(k) =0 ft, 5Tcmd(k) =0 deg /S7 5ﬂcmd (k) =0 deg (75)

where the trapezoidal airspeed command starts at t = 70 s.
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Fig. 34 Example F.3.1: Control architecture A, for horizontal straight-line flight with broadband sensor noise. The adaptive controller is able to follow
the commands in the presence of noisy measurements.

Figure 33a shows that, after t = 50 s, the pitot-tube measurement V sc peqs has a bias of 5 kt. Figure 33 shows that the aircraft follows the
commanded airspeed with a bias of 5 kt. At = 250 s, the command-following errors for airspeed, altitude, turn rate, and sideslip angle are 5 kt,
0.5 ft, 0.002 deg /s, and O deg, respectively. ]

C. Scenario F.3: Broadband Sensor Noise

Example F.3.1: For horizontal straight-line flight with broadband sensor noise using control architecture A,, the incremental commands are
given by
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Table 3 Stroke and rate limits for severely saturated throttle, elevator, ailerons, and rudder®

Stroke limits Rate limits
Throttle T’ [20,40]1% [—4,4]%/s
Elevator e [—4,4] deg [-1,1] deg /s
Ailerons a [—4,4] deg [=1,1] deg /s
Rudder r [—4,4] deg [=1,1] deg/s
“These values determine the actual actuator settings.
sV ® { 0, k <700,
ACemaT T\ min{5, 0.005(k — 700)} kt, & > 700,
5hAC,cmd(k) =0 ﬂv 5Tcmd(k) =0 dEg /Sv 5ﬁcmd (k) =0 deg (76)

where the trapezoidal airspeed command starts at = 70 s.

To emulate sensor noise, we use a subroutine of the GTM that models the sensor noise using 1) white Gaussian random variable, 2) sensor bias,
and 3) scaling factor [23,29]. Figure 34 shows that the adaptive controller is able to follow the commands in the presence of noisy measurements.
From ¢t = 170 to 250 s, the root mean square of the errors in command following for airspeed, altitude, turn rate, and sideslip angle are 0.58 kt,
5.7 ft, 0.81 deg /s, and 0.209 deg, respectively. ]

XI. Case G: Control with Unknown Actuator Failure

We investigate several scenarios involving actuator failure, where the actuator failure is unknown to RCAC. Because the actuator failure is
unknown, we use the requested actuator setting increment in place of the actual actuator setting increment in the feedback vector ¢ for all control
architectures in this section.

A. Scenario G.1: Severe Stroke and Rate Limits

We investigate a scenario where the actuator stroke and rate limits become severely saturated during flight due to a failure, for which the onset
and limits are unknown to the adaptive controller. Table 3 gives the stroke and rate limits of the saturated actuators, which are severe compared with
the nominal limits in Table 2.

Example G.1.1: For ascending helical flight around a vertical axis, followed by horizontal circular flight with severe throttle, elevator, aileron,
and rudder stroke and rate limits using control architecture A;, the incremental commands are given by

0, k <700,
éfcmd(k) = {
min{5, 0.005(k — 700)} deg /s, k > 700,
0, k <700,
Sremg(k) = 1 min{4,0.004(k —700)} deg, 700 < k < 4000,
max{0,4 — 0.004(k — 4000)} deg, K > 4000,
5VAC,cmd(k) =0 kt’ 5ﬁcmd(k) =0 deg (77)

where the trapezoidal flight-path-angle and turn-rate commands start at t = 70 s.

Figure 35b shows that the throttle reaches the upper stroke limit of 40% during helical flight. Because of the stroke-saturated throttle, the
airspeed drops to a maximum of 69 kt at r = 400 s, as shown in Fig. 35a. Figure 35 shows that the maximum command-following errors for
airspeed, flight-path angle, turn rate, and sideslip angle are 31 kt, 11 deg, 4.4 deg /s, and 0.5 deg, respectively, and the aircraft maintains constant
turn rate and airspeed in horizontal flight after 500 s. |

Example G.1.2: For horizontal straight-line flight with severe throttle and elevator stroke and rate limits using control architecture A,, the
incremental commands are given by

— { 0, k < 700,
ACem | min{s, 0.005(k — 700)} ke,  k > 700,
6TAC,cmd(k) =0 deg /S’ 5hcmd(k) =0 ft, 6ﬂcmd(k) =0 deg (78)

where the trapezoidal airspeed command starts at ¢ = 70 s.

Figures 36b and 36e show that the throttle and elevator reach the stroke limits. Figure 36 shows that the maximum command-following errors
for airspeed, altitude, turn rate, and sideslip angle are 20 kt, 250 ft, 0.3 deg /s, and 0.02 deg, respectively, and the aircraft maintains constant
airspeed and altitude in horizontal straight-line flight after 300 s. u

Example G.1.3: For reference flight-trajectory following with severe throttle, aileron, and rudder stroke and rate limits in the presence of wind
shear using control architecture A5 (note that no ADS measurements are used in As), the reference trajectory is composed of ascending, right-turn,
and straight-line maneuvers. The incremental command 6k, is

0 k <700,

Shema(k) = { min{500,0.5(k — 700)} ft, k > 700 7

where the trapezoidal altitude command starts at t = 70 s.
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Fig. 35 Example G.1.1: Control architecture A; for ascending helical flight around a vertical axis, followed by horizontal circular flight with severe
throttle, elevator, aileron, and rudder stroke and rate limits. The throttle reaches the upper stroke limit of 40 % during helical flight and thus the airspeed
drops to a maximum of 69 kt at ¢ = 400 s.

Figure 37 shows that the maximum command-following errors for ¢|, i, e, , and 17 are 1082, 61, and 287 ft, and 4.5 deg, respectively, whereas
the GTM follows the reference flight trajectory. The maximum angle of attack, sideslip angle, and airspeed (not shown in Fig. 37) are 10 deg,
0.18 deg, and 123 kt, respectively. ]
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Fig. 36 Example G.1.2: Control architecture A, for horizontal straight-line flight with severe throttle and elevator stroke and rate limits. The aircraft
maintains constant airspeed and altitude in horizontal straight-line flight after 300 s.

B. Scenario G.2: Dead Zone

Example G.2.1: For horizontal circular flight with aileron-deflection dead zone of +0.1 deg using control architecture A,, the
aileron deflection is zero in the dead zone and follows the requested actuator settings outside the dead zone. The incremental commands are
given by
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Fig.37 Example G.1.3: Control architecture A5 for reference flight-trajectory following with severe throttle, aileron, and rudder stroke and rate stroke
and rate limits in the presence of wind shear. The GTM follows the reference flight trajectory.

S © { 0, k <700,
T =

ACemd min{3, 0.003(k — 700)} deg /s, k > 700,

5VAC,cmd(k) = 0 Kt, 6hemg (k) = 0 ft, §fema(k) = 0 deg (80)

where the trapezoidal turn-rate command starts at t = 70 s.

Figure 38h shows that the aileron deflection is zero in the dead zone. Figure 38 shows that the maximum command-following errors for
airspeed, altitude, turn rate, and sideslip angle are 3.7 kt, 26.9 ft, 0.5 deg /s, and 0.1 deg, respectively, and the aircraft maintains constant turn rate
and altitude in horizontal straight-line flight after 170 s. u
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Fig. 38 Example G.2.1: Control architecture A, for horizontal circular flight with aileron-deflection dead zone of +£0.1 deg. The aircraft maintains
constant turn-rate and altitude in horizontal circular flight after 170 s.

C. Scenario G.3: Jam

Example G.3.1: For horizontal circular flight, followed by straight-line flight with a rudder jam at # = 200 s using control architecture A, the
incremental commands are given by
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Fig.39 Example G.3.1: Control architecture A ; for horizontal circular flight, followed by straight-line flight with a rudder jam at# = 200 s. Comparing
Trcac and 7y, gr, RCAC trims the aircraft in the commanded straight-line flight after ¢ = 350 s, whereas LQR trims the aircraft in horizontal circular
flight after £ = 350 s due to the 0.35 deg /s command-following error in the turn rate.

0, k<700,
5tema(k) =1 min{5,0.005(k—700)} deg /s, 700 < k<4000,
max{0,5—0.005(k—2500)} deg /s,  k>2500,
Y ema (k) =0 deg, 8V s cma (k) = OKt, e (k) = 0 deg (81)

where the trapezoidal turn-rate command starts at + = 70 s and ends at r = 350 s.
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Figure 39k shows that the rudder jam occurs at # = 200 s. Because of the jammed rudder, the aileron controller coefficients adapt in response to
the failure to follow the turn-rate command, as shown in Fig. 39i. The RCAC command-following errors at t = 600 s for airspeed,
flight-path angle, turn rate, and sideslip angle are 0.003 kt, 10~ deg, 4 X 107 deg /s,and 0.16 deg, respectively, whereas the LQR command-
following errors at + = 600 s for airspeed, flight-path angle, turn rate, and sideslip angle are 0.005 kt, 0.005 deg, 0.35 deg /s, and 0.013 deg,
respectively. Comparing tpcac and 7 gg in Fig. 39g, RCAC trims the aircraft in the commanded straight-line flight after # = 350 s, whereas LQR
trims the aircraft in horizontal circular flight after # = 350 s due to the 0.35 deg /s command-following error in the turn rate. u

XII. Conclusions

In this paper, the performance and robustness of retrospective cost adaptive control for an aircraft under conditions of uncertainty and failure
were investigated. In this regard, the ability of RCAC to control the NASA GTM with minimal modeling information and limited measurements
were explored. In addition, RCAC does not require an inner-/outer-loop controller structure and it is used to transition between flight regimes
without the benefit of gain scheduling.

The GTM is a realistic high-fidelity aircraft model that includes an aerodynamic database and interface to facilitate feedback control from
realistic sensors to thrust and control surfaces, including stroke and rate limits. To apply RCAC to the GTM, a collection of architectures were
defined that assign specified performance (error) variables to control inputs. Each architecture thus has a decentralized controller structure with
respect to adaptation. In addition, measurement signals may be shared among the channels to account for channel coupling.

To determine trim states, the ability of RCAC to reach trim flight from an initial nontrim flight condition was demonstrated and then the attained
trim was compared with the trim computed from the trimgtm subroutine of the GTM. Starting the adaptive controller from a trim flight, warmup
strategies to improve the transient response of the aircraft during command following were then presented. Examples showed that the transient
error was smallest with actuator noise warmup. Then, the ability of RCAC to follow trim commands involving straight-line, circular, and helical
flight was shown. The robustness of RCAC tuning to the initial trim flight was also investigated.

For the cases of uncertainty and failure, a series of scenarios that examine the performance of RCAC in various flight regimes was considered.
Cases of unknown time-varying aircraft dynamics (such as mass variation and icing) and unknown flight envelope (including the possibility of
conflicting commands) were presented, and it was shown that RCAC was able to trim the aircraft under these scenarios. The ability of RCAC to
actively stabilize a trim flight that is not asymptotically stable was also demonstrated. RCAC was then used to explore the flight envelope by
employing a sequence of trim commands.

For the cases of known sensing and actuation constraints, scenarios of controlling the GTM with total air data system failure were presented, as
well as maneuvers with differential thrust in the presence of stuck aileron and rudder. In both cases, RCAC was able to follow the commands.

For the cases of unknown sensor failure, scenarios were presented involving a stuck and biased pitot tube. For the case of a stuck pitot-tube
measurement, RCAC converged to a constant throttle setting corresponding to trim flight. For the case of biased pitot-tube measurement, the GTM
followed the commanded airspeed with respect to the biased measurement.

For the case of unknown actuator failure, scenarios were presented involving severe stroke and rate limits, dead zone, and jam. RCAC was able
to follow commands under these scenarios at the expense of degradation in the transient response and steady-state command-following errors.

RCAC was originally developed for linear plants and was applied to the GTM as a case study of a realistic nonlinear model of a flight vehicle.
The examples considered in this paper show that RCAC is able to handle the nonlinearities arising in the GTM, such as in its aerodynamic
database, actuator dynamics, and kinematics. The ability of RCAC to handle input nonlinearities is not unexpected due to the application of RCAC
to Hammerstein systems in [35]. The most severe cases in terms of unknown nonlinearities are the cases of unknown sensor and actuator failure.
Although unknown actuator failure might be viewed as an unknown disturbance, RCAC has no knowledge that the stuck control surface whose
deflection it is requesting is not responding. Likewise, RCAC has no way to ascertain that a sensor signal is stuck. In both cases, however, RCAC
was able to bring the aircraft to trim flight.

Each example in this paper was confined to a single architecture. Although these examples involve transitions between different trims, the
problem of transitioning between different architectures was not considered. This remains an open research problem. Because RCAC does not
depend on full-state measurement, it may find application to aircraft that require output feedback control, such as aircraft with sensor and actuator
dynamics as well as flexible modes. Each architecture is based on decentralized adaptation, although the separate controllers can take advantage of
coupling signals, and thus the controller is centralized. For the case of a scalar performance variable and scalar input signal, as in all architectures
used in this paper, limited numerical testing suffices to determine suitable tuning parameters. A more general formulation would be to use fully
centralized adaptation, which may provide improved transient performance. However, techniques for choosing the tuning parameters for this case
remain to be developed. Given the ease of application of RCAC, this method may provide a path to fast prototyping of control laws for
unconventional aircraft for which a simulation model exists. As a first step, RCAC can be used to find trim conditions without derivation and
analysis of the linearized flight equations. Finally, RCAC remains to be flight tested. This is a future objective.

Appendix A: Tuning Parameters

The feedback vector ¢;, filter G4, and tuning parameters n, R, R,,, and R, for control architectures A,, A3, A4, As, and Ag are as follows. These
tunings are used consistently in all examples.

Al. Control Architecture A,
The feedback vectors ¢, ¢3, and ¢, for A, are the same as in A; given by Eq. (42), whereas ¢, is

200 20 (k= 1) -+ Seseua (k= 1) Shema(k = 1) -+ Shemg(k = ) (A1)
2k=1) - zk-n) Vacltk=1) -+ Vc(k = n)]"

where z, (k)éh(k) — hema (k). We use
Gi(z) = diag(1/z*,=1/z*. =1/z*.1/2%)
and the tuning parameters

n. =8, R, =14, R, = diag(0.5,10, 10, 10), Ry = diag(107*1y,, . 14, 10721y, , 1071y, )
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A2. Control Architecture Aj
The feedback vectors ¢y, ¢, ¢3, and ¢, for Az are the same as in A; given by Eq. (42), whereas ¢ is

¢5 (k)é[éeactual(k - 1) e 5eaclual(k - }’lc) §acmd(k - 1) e 5acmd(k - nc)
zs(k—=1) -+ zs(k—n,) 8Vaclk=1) -+ 8Vaclk—n)"

where the additional performance variable is z5 éoc(k) — QAema (k). We use
Gi(z) = diag(1/z*,—1/z* =1/z* 1/z* -1/z%)
and the tuning parameters
n. =8 R, =1I,R, =diag(0.5,1,10,10,1), Ry = diag(10™*1y,_, 1071y, . Iy, . 10714, . I, )
A3. Control Architecture A,
The feedback vectors ¢y, ¢,, ¢ for A4 are the same as in A; given by Eq. (42). We use
Gi(z) = diag(-1/z*, -1/z% -1/z*%)
and the tuning parameters
n. = 8,R, = 1R, = diag(0.5, 1, 10), Ry = diag(1071,,, , 1071y, , 107*1,, )

Ad4. Control Architecture As
The feedback vectors ¢, ¢,, ¢, and ¢, are given by

$1 ()2 [6T etk = 1) -+ STk =) 8V (k—=1) - 5V (k—n,)

ak=1) - z(k—n.) Sy(k=1) -+ &y(k —n)",
A
¢2(k):[5eaclual(k —1) -+ ey (k —ne) 5hcmd(k - 1) “ov Shema(k — nc)
ZZ(k - 1) e ZZ(k - nc) 5Vg(k - 1) T 6Vg(k - nc’)]T,
¢3 (k)é[éaaclual(k - 1) e §aactual (k - nu) 6Tcmd (k - 1) e 5Tcmd(k - nc)
zz(k=1) -+ zz(k—n.) stk —1) --- stk —n)|",
¢4(k)é[6ractual(k - 1) e 6raclual(k - I’l(,) 5Tcmd (k - 1) e 6Tcmd(k - nc)
24k—=1) --- z4(k—n,) dr(k—1) --- st(k—n)|T
where the performance variable z is given by the error signals
A h(k) - hcmd(k)
k=
O= e w
n(k)

We use
Gi(z) = diag(-1/2*, —1/2z% —1/2%,1/z%)
and the tuning parameters

ne = 8,R, = Iy, R, = diag(10, 10,1000, 10), Ry = diag(10*Ly, , Ly, , 10721y, , 1071y, )

AS. Control Architecture Ag
The feedback vectors ¢, and ¢, are given by

¢1 (k)é[(STactual (k - 1) e 6Tactual (k - nc) 6Tcmd(k - 1) e 6Tcmd(k - nc)

zi(k=1) -+ zy(k=n.) 8Pk —1) -+ 8p(k —n,)",
¢2(k)é[5eacmal (k - 1) e 5eactual (k - nc) 6hcmd(k - 1) e 5hcmd(k - nc)
k=1) - z(k—n) 8Vaclk=1) -+ 8Vac(k = n)]"

where the performance variable z is given by the error signals

A T(k) — Tem (k)
Z(")‘[h(lo ~ (&) ]

We use

171

(A2)

(A3)

(A4)

(AS5)

(A6)
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Gi(z) = diag(1/z* ~1/z%)
and the tuning parameters

n.=8,R, = I, R, = diag(0.1,10), Ry = diag(l,, , 10721, )
Appendix B: RCAC Algorithm

B1. Plant Model
Consider the MIMO discrete-time system

x(k+ 1) = Ax(k) + Bu(k) + Dyw(k) (B1)
y(k) = Cx(k) + Dyw(k) (B2)
z(k) = Ex(k) + Eqw(k) (B3)

where x(k) € R is the state, y(k) € R% is the measurement, u(k) € R« is the input, w(k) € R'» is the exogenous signal, and z(k) € R’ is the
performance variable. The goal is to develop an adaptive output feedback controller that minimizes z in the presence of the exogenous signal w
with limited modeling information about Eqs. (B1-B3). The components of w can represent either command signals to be followed, external
disturbances to be rejected, or both, depending on the choice of D, and E,y. This formulation defines the signals that play arole in RCAC. However,
no assumptions are made concerning the state-space realization because RCAC requires input—output model information rather than details of the
state-space realization.

B2. Controller

Define the dynamic compensator
u(k) =Y Pi(uk —i) + Y Qi(k)E(k — i) (B4)
i=1 i=ko

where P;(k) € R, Q,(k) € R4*k are the controller-coefficient matrices, ko > 0, and £(k) € R% consists of components of y, z, and w. We
rewrite Eq. (B4) as

u(k) = p(k)O(k) (BS)
where the regressor matrix ¢ (k) is defined by
M u(k—1) "
Al u(k—n.) [
k)= ¢ ®I, €Rw B6
(;b( ) f(k _ kO) L, (B6)
L f(k - nc) .
and
()= vec[ Py (k) -+ P, ()0, (k) -+ 0, (k)] € RY (B7)
where lgélﬁnc + Lle(n. + 1 = ky), “®” is the Kronecker product, and “vec” is the column-stacking operator. Note that k, = 0 yields an exactly

proper controller, whereas kq > 1 yields a strictly proper controller.

B3. Retrospective Performance Variable
We define the retrospective control as

(k) = ¢(k)d (B8)

and the corresponding retrospective performance variable as

2k 22(k) + pe(k)0 — us(k) (B9)
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Evhere 0 € RY is determined by optimization next, and ¢¢ (k) € R=*% and u (k) € R’ are filtered versions of ¢p(k) and u(k), respectively, defined
y

¢ () =G (@) (k) (B10)
us ()2 G(g)u(k) (B11)

The filter G; has the form
Gi(9)=D;" (9)N:(q) (B12)

where D; and N; are polynomial matrices and Dy is monic. The choice of the filter is discussed in the next section.

B4. Markov Parameters

complex numbers z for which the absolute value is greater than the spectral radius of A, it follows that
-1 > Hi
qu(z) =E1(Z1_A) BZZ_, (B13)
i=0 %
where, for all, i > 1, the ith Markov parameter of G, is defined by
H,2E,A-'B (B14)

BS5. Retrospective Cost Function
Using the retrospective performance variable Z(k), we define the retrospective cost function

k
T2 k[ ET()R.2() + (¢()0) R, p(0)B] + (0 — 0(0)) Ry(6 — 6(0)) (B15)
i=1

where R, R, and R, are positive definite.
Proposition: Let P(0) = R;". Then, for all k > k, the retrospective cost function (B15) has a unique global minimizer 6(k), which is given by

0(k) = 0(k — 1) = P(k — (k) "T(k) " [p(k)O(k — 1) + Z(k)] (B16)
Pk) = P(k—1) = P(k — D)(k)T(k) "' p(k)P(k — 1) (B17)
where

b2 ¢f'(k)] (UL,
¢(k) [ ok | € R+ (B18)
Ié(k)é[Rzék) Ru(zk) ] € RUALIXUAL) (B19)
g(k)é [ z(k) _()Mf (k) :| e RU:A+L) (B20)
T()= R K™ + Gk Pk — (k)" (B21)
| |
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