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High-fidelity computational modeling and optimization of aircraft configurations have the potential to enable

engineers to create more efficient designs that require fewer unforeseen modifications late in the design process.

Although aerodynamic shape optimization has the potential to produce high-performance transonic wing designs,

these designs remain susceptible to buffet. To address this issue, a separation-based constraint formulation is

developed that constrains buffet onset in an aerodynamic shape optimization. This separation metric is verified

against a common buffet prediction method and validated against experimental wind-tunnel data. A series of

optimizations based on the AIAA Aerodynamic Design Optimization Discussion Group’s wing–body–tail case are

presented to show that buffet-onset constraints are required and to demonstrate the effectiveness of the proposed

approach. Although both single-point and multipoint optimizations without separation constraints are vulnerable to

buffeting, the optimizations using the proposed approach move the buffet boundary to make the designs feasible.

I. Introduction

N UMERICAL optimization is a powerful tool that can

complement more traditional design methodologies. Design

optimization based on high-fidelity physics-based simulations, such

as computational fluid dynamics (CFD) and computational structural

mechanics, is especially promising [1,2]. By capturing the relevant

physics of the underlying system, performance improvements

predicted by numerical simulations are more likely to be realized in

the real world. Effective optimization algorithms, however,

invariably exploit limitations in the numerical models or in

incomplete formulations of the optimization problems by violating

important design constraints that are not included.

CFD-based aerodynamic shape optimization dates back to Hicks

et al. [3], who first tackled airfoil design optimization problems, and

has steadily evolved over the last few decades. One of the major

advancements in this field was the development of adjoint methods

[4–6], which in conjunction with gradient-based optimization has

enabled optimization with respect to large numbers of shape

parameters, a necessity in the aerodynamic shape optimization of

wings [7–14] and full configurations [15–17]. Recently, a series of

benchmarks that include airfoil, wing, and wing–body cases was

developed by the AIAA Aircraft Design Optimization Discussion

Group (ADODG). These cases allow researchers to compare the

results of different design methods and to evaluate their relative

strengths and weaknesses [12,13,18–21]. The adjoint technique used

in aerodynamic shape optimization has also been extended to

simulations that couple aerodynamics and structures, enabling the

simultaneous design optimization of outer mold line shape and

structural sizing while accounting for wing flexibility and

aerostructural design tradeoffs [1,2,22,23]. Considering multiple

disciplines in design optimization is the basic principle of

multidisciplinary design optimization (MDO) [24], and the coupled

adjoint technique has been extended to general MDO problems [25].

Buffet is a critical aspect of transonic wing design and has yet to be
explicitly considered in aerodynamic shape optimization. Buffet may
be broadly defined as a high-frequency aerodynamic instability
caused by flow separation. This instability is undesirable because the
resulting unsteady aerodynamic loads compromise the ability to
comfortably control the aircraft and the aerodynamic performance.
In the transonic regime, as the Mach number or lift coefficient

increases, shocks on the wing gradually increase in strength. The
interaction of the shock-induced separation at the foot of the shock
with the oscillation of the shock causes transonic buffet, which limits
the maximum aircraft lift coefficient and Mach number. Because jet
transport aircraft are most efficient when a combination of the cruise
Mach number and lift-to-drag ratio is maximized, buffet is often an
active design constraint. The maximum lift coefficient at a given
Mach number decreases with increasing Mach number, effectively
limiting the aircraft altitude, i.e., the aerodynamic ceiling. This
ceiling is also known as the “coffin corner” because, although the
Mach number may be decreased to increase the lift coefficient (and
therefore achieve a higher altitude), the stall speed also increases due
to the decrease in density, which reduces the difference between the
stall speed and maximum speed. Ultimately, the stall and buffet
boundaries intersect at a sufficiently high altitude,making the aircraft
impossible to fly, hence the coffin corner.
Given that buffet crucially affects transport aircraft performance, a

need exists for an effective way to formulate buffet as a design
constraint. Although buffet has been considered in a few design
optimization studies, it has yet to be considered as a constraint in
CFD-based design optimization. Wakayama et al. [26] performed
MDO of a wing using a low-fidelity method calibrated against CFD
to estimate buffet onset based on Mach number, local wing sweep,
thickness-to-chord ratio, and lift coefficient. The method was
calibrated against flight-test and CFD calculations, and it was used in
theMDOof a blended-wing–body configuration [27].More recently,
Bérard and Isikveren [28] developed another inexpensive approach to
enforce a buffet-onset constraint in aircraft conceptual design
optimization. Buffet has beenmentioned in the context of CFD-based
aerodynamic shape optimization as a requirement to verify after
optimization [29,30], and it has been implicitly considered in airfoil
optimization by the addition of the drag at offdesign conditions to the
objective function [31]. Thus, a need exists to develop a CFD-based
method to explicitly enforce a buffet-onset constraint.
By using unsteady CFD, a number of researchers have made

strides toward modeling the physics of transonic buffet of airfoils
[32–38]. However, unsteady CFD is currently too computationally
intensive to serve as a constraint in a design optimization because it
requires hundreds of objective and constraint function evaluations.
To address this issue, Thomas and Dowell [39] used the frequency
domain approach to model the unsteady aerodynamics: a technique
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that was previously used in design optimization involving unsteady

phenomena [40,41]. They also implemented a discrete adjoint to

obtain gradients and demonstrated the use of this approach in the

optimization of an airfoil. Although they did not implement buffet

onset as a constraint, theyminimized the peak of the unsteady loading

for a NACA 0012 airfoil.
In the present work, we are not interested in modeling actual

unsteady transonic flow shock buffeting. Instead, our goal is to

predict the transonic buffet-onset lift coefficient for fixed Mach and

Reynolds numbers so that we can add a design constraint that keeps

the wing design within the buffet boundary at 1.3g. If this constraint
is implemented correctly, the optimization couldminimize the drag at

the design lift coefficients, subject to buffet constraints. It is

particularly important to implement the buffet requirement as a true

optimization constraint, as opposed to adding buffet off-design points

in the drag minimization because 1) the optimal solution might not

actually satisfy the buffet requirement, and 2) the solution will be

suboptimal with respect to the properly constrained formulation.
To quantify buffet onset in aerodynamic shape optimization, we

develop a new prediction method that is based on the extent of

separated flow present on the wing in a steady Reynolds-averaged

Navier–Stokes (RANS) CFD computation. We then use this method

to constrain the extent of separated flow near the buffet-onset

boundary, which ensures that the optimized design has a sufficient

buffetmarginwhile simultaneously improving the performance at the

design operating conditions. The constraint function is smooth, and

its gradient with respect to the wing shape variables is computed by

using a discrete adjoint method. We demonstrate the effectiveness of

the proposed approach by applying it to the multipoint drag

minimization of the wing–body–tail geometry defined by ADODG

Case 5 [21].
This paper is organized as follows: We begin by outlining the key

aspects of the computational methods used in this work; following

this, we describe the separation constraint formulation and how it is

used to enforce the buffet-onset constraint. We verify the proposed

approach by comparing it with the results of an alternate numerical

approach, and we validate it by comparing it with the results of a

wind-tunnel experiment. Finally, we present a sequence of numerical

aerodynamic optimization studies based on the ADODG wing–

body–tail case to evaluate how the buffet-onset constraints affect

transonic wing aerodynamic shape optimization.

II. Computational Methods

In this work, the aerodynamic shape optimization is done with the

MDO of the aircraft configuration with high-fidelity (MACH)

framework. This framework was developed for the aerostructural

design optimization of aircraft configurations [1,2], and it integrates

modules for CFD, structural analysis, geometry parametrization, and

numerical optimization. MACH has been used extensively for both

aerodynamic shape [11,12,14,17,42] and aerostructural design

optimizations of aircraft [23,43–45] and hydrofoils [46]. Herein, we

use only the aerodynamic capabilities of MACH, which we describe

in the remainder of this section.

A. Computational Fluid Dynamics Solver

The flow solver in MACH is ADflow, which solves the RANS

equations in either steady, unsteady, or time spectral modes [47,48].

ADflow applies the finite volume method to structured body-fitted

multiblock grids. The discretization scheme uses central fluxes with

artificial dissipation and the Spalart–Allmaras turbulencemodel [49].

A matrix dissipation scheme [50] is used herein, except where

explicitly noted. A fully coupled Newton–Krylov method is used to

simultaneously solve the mean flow and turbulence equations.

A discrete adjoint method is implemented by using a combination of

reverse-mode automatic differentiation and analytic methods for the

efficient computation of the gradients of functions of interest. Lyu

et al. [51] described the CFD adjoint implementation in more detail.

B. Geometric Parametrization

In this work, we use a free-form deformation (FFD) volume
approach [52] that we implemented [53] and have used extensively in
the past for aerodynamic [10–12,17,54,55] and aerostructural
optimization studies [1,2,23,43]. The FFD approach may be
visualized as embedding the spatial coordinates that define a
geometry inside a flexible volume. The parametric locations
corresponding to the baseline geometry are found by using a Newton
search algorithm. Once the baseline geometry is embedded,
perturbations made to the FFD volume propagate within the
embedded geometry by evaluating the nodes at their parametric
locations.

C. Mesh Movement

The FFD approach used to parametrize the geometry applies
deformations only to the surface mesh: that is, the part of the volume
mesh that lies on the physical surface. A separate procedure is then
required to propagate surface perturbations throughout the remainder
of the volumemesh. Themeshmovement algorithm used in thiswork
is an efficient analytic inverse distance method similar to that
described by Luke et al. [56]. Updating the mesh for a new
configuration is fast, typically requiring less than 0.1% of the CFD
solution time. Sensitivities required for the adjoint method are
provided by a combination of reverse-mode automatic differentiation
and analytic methods.

D. Optimization Algorithm

The high computational cost of RANS-based optimization
demands an optimization algorithm that minimizes the number of
function evaluation calls. We use SNOPT (which stands for sparse
nonlinear optimizer) [57] with the Python interface pyOpt [58].
SNOPT is a gradient-based optimizer that implements a sequential
quadratic programming method; it is capable of solving large-scale
nonlinear optimization problems with thousands of constraints and
design variables. SNOPT uses an augmented Lagrangian merit
function, and the Hessian of the Lagrangian is approximated using a
quasi-Newton method. We have already used the SNOPT algorithm
to solve a wide variety of aerodynamic and aerostructural
optimization problems [1,10,12,23,42].

III. Buffet-Onset Prediction

In the broadest sense, buffet is any form of vibration caused by
unsteady forces generated by separated flow. There are three main
types of flow separation: 1) separation at the foot of a shock wave,
2) leading-edge separation, and 3) trailing-edge separation.
Transonic (or high-speed) buffet is caused by the first type: shock-
induced separation. In transonic flow, at sufficiently high lift
coefficients and Mach numbers, instabilities in the interaction
between the shock and the separation bubble cause self-sustaining
periodic oscillations in the shock position [38], which cause large
fluctuations in pressure with a frequency on the order of 10 Hz [59].
Buffet is primarily an aerodynamic phenomenon because the
frequencies of the shock-induced vibrations are at least one order of
magnitude greater than the natural frequencies of the wing’s primary
elastic modes, so no aeroelastic computations are required to predict
it. Buffet develops gradually with an increasing lift coefficient or
Mach number, and buffet onset refers to the conditions at which
buffet first occurs.As theMach number increases, the buffet-onset lift
coefficient decreases, defining the buffet boundary.
Buffet is undesirable because it affects the ability to control the

aircraft and passenger comfort; if severe enough, it may compromise
the structural integrity of the aircraft. Therefore, the Joint Aviation
Requirements stipulate that commercial transport aircraft maintain at
least a 30% margin from the cruise operating condition to buffet
onset. This buffet margin provides a margin of maneuverability for
the aircraft. This allows the aircraft to perform a 1.3g maneuver in
cruise flight, which is equivalent to turning at a 40 deg bank angle. In
addition to ensuring that maneuvers can be executed free of buffet,
this margin also ensures that disturbances due to turbulence and
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upsets due to aircraft system failures can be handled safely. In this
work, we seek a way to predict the buffet onset numerically so that
our aerodynamic shape optimization can stay within the boundary
defined by the 30% margin.
Numerous researchers have modeled transonic buffet for airfoils

with unsteady CFD using large-eddy simulations [35], detached-
eddy simulations [32], and unsteadyRANS [33,34,36–38]. Although
such simulations have the merit of clarifying the physics, time-
accurate CFD is currently too computationally costly to include in a
numerical optimization process because hundreds of such time-
accurate simulations would be required to complete an optimization.
On the low-fidelity side, buffet constraints have been implemented in
conceptual aircraft design optimization [26–28]. However, these
low-fidelity methods do not consider how the detailed airfoil shape
design affects buffet onset, which is critical when performing CFD-
based aerodynamic shape optimization.
Therefore, the goal of the present work is to develop a CFD-based

method to explicitly enforce a buffet-onset constraint. To achieve
this, we do not need to model the unsteady transonic flow and the
physics beyond buffet onset. Instead, by using steadyRANS data, we
formulate a constraint function that predicts if a design is within the
buffet boundary. Although the literature is split on whether or not
steady RANS accurately models transonic buffet, Rumsey et al. [60]
reported steady RANS predictions that were consistent with flight
data through the buffet-onset regime and up to near the maximum lift
coefficient. However, they stipulated that this agreement was not well
understood andmight be case dependent. To clarify this question, we
present verification and validation results that confirm that steady
RANS is well suited for our purposes.
To ensure that a gradient-based optimization algorithm can handle

the buffet constraint, the constraint function should be continuous
and change smoothly upon approaching the buffet boundary.
Although the actual physical behavior is highly nonlinear, buffet
onset is a gradual process, so developing such a function should be
possible.
A number of techniques have been developed over the years to

correlate data, typically from wind-tunnel experiments, with buffet
predictions from a flight-testing program. These techniques include
correlations with the RMS signals from wind-tunnel model strain
gauges, trailing-edge pressure divergence, axial force break, pitching
moment break, and lift curve break [61,62]. The last two methods
may be employed in numerical predictions by using CFD to integrate
force and moment values. Oneway to implement the lift curve-break
method is the Δα � 0.1 method [63]. Using this method, the linear
portion of the lift curve is offset to the right by 0.1 deg. The
intersection of this linewith the actual lift curve is used to estimate the
buffet-onset point, as illustrated in Fig. 1.We could use thismethod to
develop a buffet-onset constraint function but, in using global
aerodynamic coefficients, such as CL and CM, we would not make
full use of the detailed flow solution provided by CFD. In addition,
the “linear” portion of the lift curve slope is not exactly linear in

transonic flow, and identifying the slope to be used introduces

ambiguity. The use of this approach with CFD requires at least two

additional flow solutions (one for the slope, and one for the

intersection). Finally, implementing a constraint based on this

method would provide the optimizer with the opportunity to

artificially affect the buffet onset by manipulating the lift curve at

lower lift coefficients.
To develop a more direct way of constraining buffet onset, we

focus on the physical mechanism of shock-induced flow separation,

which is responsible for the loss of lift and the subsequent lowering of

the lift curve slope. An example showing the typical progression of

this type of separation with increasing angle of attack is shown in

Fig. 2. To obtain the results shown in this figure, we performed a

series of RANS solutions for the full Common Research Model

(CRM) aircraft configuration (wing, fuselage, and horizontal tail),

which is the same geometry that was used in the Fourth Drag

Prediction Workshop [64], and it is representative of a long-range

transport aircraft. The first row in Fig. 2 shows the friction lines and

pressure coefficient, as well as the Lovely–Haimes shock sensor (in

orange) [65].
To determine if the flow is separated at a given location on the

surface, we check if the surface flow velocity has a component in the

negative freestream direction (which is approximately the negative

x-axis direction), i.e., if

cos θ � V ⋅ V∞

jVjjV∞j
< 0 (1)

where θ is the angle between the local surface velocity and the

freestream. We can then define a separation sensor as

χ �
�
1 if cos θ ≤ 0

0 if cos θ > 0
(2)

Thus, χ is specific to each surface location and is a Heaviside

function: It is equal to onewhen the flow is separated, and it is equal to

zero when the flow is attached. The blue areas on the surface for

α � 3.00 deg and α � 3.29 deg in the bottom row of Fig. 2 show

the regions where χ � 1, which approximately coincide with the

regions where the flow is separated.
Our hypothesis is that the value of the area where χ � 1 correlates

with buffet onset, which is given by the integral of χ over the whole
surface area of the wing. Because we need to use this function as a

constraint in a gradient-based optimization, we would like this

function to be smooth. However, because this integral will be

discretized based on a CFD surface mesh, and χ is either zero or one
for a given cell, the value of this area does not change continuously

with the design variables. To address this issue, we use a smooth

Heaviside function to blend the discontinuity as follows:

�χ � 1

1� e2k�cos θ�λ� (3)

In this equation, k and λ are free parameters, where k determines

the sharpness of the transition and λ is a parameter that can be used to

shift the smoothing function to the left or right as a function of the

angle. For our cell-centered solver, the values forV are taken from the

state variables at the cell center immediately adjacent to the wall

because the velocities at the wall are zero when enforcing the no-slip

condition. Figure 3 shows smooth Heaviside functions for λ � −0.1,
to 0, and 1; and k � 10. Avalue of k � 10 is used for all results in this
paper. The bottom row of Fig. 2 shows the value of the smoothed

separation sensor [Eq. (4)] on the wing surface at M � 0.85. The
smooth Heaviside function smoothes out Vx around the separated

flow region. This area formulation can also be applied to constrain

other undesirable phenomena, including cavitation [46,66].
Next, we can integrate the smooth separation sensor [Eq. (3)] over

the surface and normalize it by the aircraft reference area to obtain the

proposed separation metric:Fig. 1 Estimating the buffet boundary with the Δα � 0.1 method.
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Ssep �
1

Sref

Z
S
�χ dS (4)

This is equivalent to performing a weighted area integration of the
sensor value shown in the bottom row of Fig. 2.
To find out if the separation metric [Eq. (4)] is correlated to buffet

onset, we use the Δα � 0.1method as a reference. We start by using
the Δα � 0.1 method to compute the buffet boundary for the
baseline CRM configuration [64] at a flight altitude of 37,000 ft and
for Mach numbers ranging from 0.8 to 0.9. The resulting reference
buffet boundary is shown as the orange line in Fig. 4 (Δα � 0.1
method). We then plot the lines corresponding to various values of
the separation metric, and we determine that a cutoff value of
χ � 4% yields the best agreement when compared with the Δα �
0.1 method.
The overall shape of the buffet onset is consistent with the

separation-based criteria, although some discrepancy exists. The
discrepancy can be explained by analyzing the slopes of the lift
curves for the baseline configuration, which we plot in Fig. 5. The
figure also shows the application of theΔα � 0.1method, where the
line slopes are based on the first two analysis points at the lowest CL

values for each Mach number. The lift curves are close to linear, but
the slope of the lift curve increases for Mach numbers in the range
0.81–0.86. Therefore, at these Mach numbers, theΔα � 0.1method

overpredicts buffet onset compared with the separation-based
method because the slope of the lift curve must decrease more to
intersect the offset line. For Mach numbers greater than 0.86, the
opposite effect occurs: The lift curves exhibit a reduced slope and
intersect the linear offset at lower CL values, underpredicting the
buffet onset. The differences in Fig. 4 are consistent with this effect.
As we can see, the separation-based approach varies more smoothly

Fig. 2 Progression of separated flow for the CRMconfiguration atM � 0.85with increasing angle of attack. Top row shows the surface streamlines and
pressure coefficient, as well as the reversed flow (red) and the shock (orange). Bottom row shows the value of the separation area integrand from Eq. (4).

0 30 60 90 120 150 180
0

0.5

1

λ = -0.1

λ = 0

θ (°)

χ λ = 0.1

Fig. 3 Smoothed separation sensor value [Eq. (3)] versus angle of
surface flow. With k � 10, the smooth transition occurs over�15 deg.

3% cutoff
2% cutoff

Mach

C
L

0.8 0.82 0.84 0.86 0.88 0.9
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Δα = 0.1 method

Separation (λ = -0.1, 4% cutoff)

Fig. 4 Results of the Δα � 0.1 method compared with those of the
proposed separation-metric method.

C
L

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Mach: 0.805 0.82 0.835 0.85 0.865 0.88 0.895

2o Δα
Fig. 5 Baseline configuration lift curves and Δα � 0.1 linear offset for
Mach 0.8–0.9. Successive lift curves are offset by 0.5 deg.
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with respect to Mach number, which is beneficial for gradient-based

design optimization. Because the separation-based approach is more

representative of the actual physics, we believe that it is the more

accurate of the two methods.

Figure 6 shows how the separation-metric approach is used to

construct the buffet-onset boundary. For each α sweep at a fixed

Mach number, the intersection of the separation curve with the

specified cutoff value determines the boundary. With nearly fully

attached flow on the wing upper surface, the sensor metric is

close to zero. Next, as α increases, the sensor metric rapidly

increases as shock-induced flow separation becomes more severe.

The large slope of the separation sensor curve means that the CL

value predicted for buffet is not particularly sensitive to the

selected cutoff value.

To validate the proposed separation metric as a way to constrain

buffet-onset, we compare the results obtained by using this approach

with the experimental results by Balakrishna and Acheson [67], who

tested the CRM wind-tunnel model. They estimated the buffet onset

by making high-speed measurements of the strain at the wing root.

Buffet onset can be identified by the increase in the strain-gauge

signal amplitude, which is caused by the shock oscillations

interacting with the separated flow. Based on this increase in signal
amplitude, they defined the buffet coefficient CB.
Figure 7, which is reproduced from figure 4 in the work of

Balakrishna and Acheson [67], shows the evolution of the buffet
coefficient for two Mach numbers: a high subsonic Mach number
(M � 0.70), and a transonic Mach number (M � 0.85). We overlay
lines at α values, for which our method yields a separation sensor
value of 4%, with λ � −0.1. We see that the results of the separation
sensor method correlate well with the increase inCB, providingmore
evidence that the separation-metric approach correctly predicts
buffet onset.
Figure 8 shows the surface distribution of Cp and the smoothed

separation sensor for the two flow conditions. Due to the differing
freestream Mach numbers, the types of separation and the
corresponding separation locations are different. For the M � 0.70
case, a separation bubble appears just aft of the small leading-edge
sonic region, whereas for the M � 0.85 case, the separated flow
appears near the midchord position at the foot of a strong normal
shock. Although more comparisons with experimental results are
required, the separation sensor adequately predicts buffet onset at
both high subsonic and transonic flow conditions for this aircraft
geometry.

IV. Full-Configuration Aerodynamic Shape
Optimization Benchmark

We now demonstrate the need to consider buffet-onset criteria and
the effectiveness of the proposed approach for transonic aerodynamic
shape optimization by solving a series of aerodynamic design
optimization problems based on the AIAA ADODG Case 5
benchmark [21].

A. Baseline Geometry

The baseline geometry defined inADODGCase 5 is taken directly
from the Fourth Drag Prediction Workshop’s “wing–body–tail
iH � 0” aircraft configuration [68]. This configuration is known as
the Common Research Model and is representative of a twin-aisle
long-range transport. Themain reference parameters for theCRMare
listed in Table 1.

B. Computational Meshes

We generated a sequence of four CFDmeshes for the CRMwing–
body–tail configuration using themeshing software ICEMCFD. The
meshes are divided into two families: the “1 series” and the “0.5
series.” Each 0.5-series mesh has approximately 2.5 times more cells
than the corresponding coarser 1-series mesh below it and has
approximately 3.3 times fewer cells than the next finer 1-series mesh
above it. The two coarsest grids (L2 and L1.5) are used for
optimization, whereas the two finest grids (L1 and L0.5) are used
only for postoptimizationverification purposes. Themeshmetrics are
summarized in Table 2. Figure 9 compares the surface mesh
resolution of the four meshes. Grid-convergence studies for the
baseline mesh and all optimized configuration meshes are presented
in Sec. V.C.

C. Optimization Problem Statement

A sequence of seven design optimizations are solved to study
the aerodynamic shape optimization of the ADODG full CRM
configuration, as well as to demonstrate the effectiveness of the
proposed approach for satisfying buffet requirements. These cases,
numbered 5.1 through 5.7, are summarized in Table 3. Only cases 5.1
and 5.2 are currently specified by the ADODG [21]. We added the
other cases (cases 5.3 through 5.7) to further study the effects of
including buffet-onset conditions on the optimized geometries. The
objective of all optimizations (except for case 5.7, which is discussed
separately) is to reduce the weighted drag coefficient at the N
operating conditions. The optimization problem statement is
summarized in Table 4.
Each flight condition i is assigned a weight Wi that specifies to

what extent the drag of the given flight condition influences the

CL

S
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n

 (
%

)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

7

Mach: 0.8 0.82 0.84 0.86 0.88 0.9

Increasing α

Cutoff=4%

Baseline

Fig. 6 Separation sensor curves for α sweeps and for a range of Mach
numbers. The cutoff value indicates the estimated buffet boundary.

Fig. 7 Buffet coefficient CB obtained from wind-tunnel data [67].
Vertical lines are the buffet-onset locations predicted by the separation
sensor.
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objective function. The lift andmoment coefficient constraints ensure

that the aircraft is trimmed at each flight condition, which can be

achieved by the appropriate combination of angle of attack and tail

rotation angle. The thickness tj is computed at 750 points arranged in

a 25 × 30 regular grid in the chordwise and spanwise directions,

respectively. These thicknesses are constrained to be greater than or

equal to the original thicknesses of the CRM geometry at the

corresponding points. Because making thewing as thin as possible is

desirable in transonic flow [14], these constraints ensure that thewing

does not become too thin, whichwould result in a significant increase

in structural weight. Imposing thickness constraints means that only
changes in the wing camber are available to the optimizer.
Only cases 5.4, 5.5, and 5.7 use the separation constraint to

satisfy the buffet margin. In these cases, the separation constraint is
only enforced for the last two flight conditions, and the drag
coefficient for these conditions does not contribute to the objective
function (i.e., Wi � 0). Therefore, the adjoint for CD is not
evaluated for the buffet-onset conditions. Conversely, the
separation-metric adjoint is not evaluated for the conditions where
the drag coefficient weights are nonzero. This results in a total of
three adjoint solutions being required for both the cruise and buffet
flight conditions, which is desirable from a computational load-
balancing perspective.
The ADODG specification for Case 5 disallows the parameter-

ization from modifying the planform, and any shape modification
may only be made in the vertical direction. Additionally, twist
rotation is permitted for the wing, as is a solid-body rotation of the
horizontal tail for trimming the aircraft. We use the FFD approach
described in Sec. II.C. The FFD volume and the associated geometric
design variables are shown in Fig. 10.

V. Results

A. Multilevel Approach

To reduce the overall computational cost of performing the
optimizations, we employ the multilevel optimization approach
described previously by Lyu et al. [12] and the authors [14].
Optimizations are first carried out on the coarsest mesh (L2), the
resulting optimum design becomes the starting design for the next
finer mesh (L1.5), and so on. In this work, only the first two grid
levels are used for the optimization. Because optimizing on the coarse
grid costs less, we can afford to do more iterations on this grid. For

Fig. 8 Cp and smoothed separation sensor surface distribution for the two experimental buffet-onset conditions. In both cases, the separation (red)
appears behind the shock (orange).

Table 1 Reference quantities for CRM full
configuration [68]

Quantity Value

Reference area 594; 720.0 in:2

Reference chord 275.8 in.
Moment reference (1325.90, 0, 177.95) in.
Reynolds number (M � 0.85) 43 × 106

Table 2 Mesh characteristics and corresponding trimmed drag
coefficient for baseline configuration

Mesh
level

Chordwise
cells

Spanwise
cells y�max Total cells

Baseline CD

(counts)

L0.5 224 144 ∼0.5 14,233,600 231.15
L1 168 108 ∼0.7 5,921,536 234.87
L1.5 112 72 ∼1.1 1,779,200 249.47
L2 84 54 ∼1.7 740,192 269.76
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Fig. 9 Spatial resolution for each mesh size.

Table 3 Operating conditions for each optimizationa,b,c

Case Point Weights,Wi Mach CL Reynolds number M–CL plot

5.1 1 1 0.85 0.500 43.00 × 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

5.2 1 1∕3 0.85 0.500 43.00 × 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

2 1∕3 0.85 0.650 43.00 × 106

3 1∕3 0.89 0.456 45.00 × 106

5.3 1 2∕3 0.85 0.500 43.00 × 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

2 1∕6 0.85 0.650 43.00 × 106

3 1∕6 0.89 0.456 45.00 × 106

5.4 1 1 0.85 0.500 43.00 × 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

2 0 0.85 0.650 43.00 × 106

3 0 0.89 0.456 45.00 × 106

5.5 1 1∕5 0.845 0.490 42.75 × 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

2 1∕5 0.845 0.445 42.75 × 106

3 1∕5 0.845 0.408 42.75 × 106

4 1∕5 0.835 0.467 42.24 × 106

5 1∕5 0.855 0.418 43.25 × 106

6 0 0.85 0.650 43.00 × 106

7 0 0.89 0.456 45.00 × 106

5.6 1 1∕5 0.845 0.490 42.75 × 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

2 1∕5 0.845 0.445 42.75 × 106

3 1∕5 0.845 0.408 42.75 × 106

4 1∕5 0.835 0.467 42.24 × 106

5 1∕5 0.855 0.418 43.25 × 106

5.7 1 1∕5 0.845 0.520 42.75 × 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

2 1∕5 0.845 0.475 42.75 × 106

3 1∕5 0.845 0.438 42.75 × 106

4 1∕5 0.835 0.497 42.24 × 106

5 1∕5 0.855 0.448 43.25 × 106

6 0 0.85 0.690 43.00 × 106

7 0 0.89 0.469 45.00 × 106

aRed diamonds denote separation-constrained points.
bOperating conditions for Case 5.7 are determined by the optimization process itself.
cZero weight means that only the flight condition is considered for the constraints.
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this approach to be effective, the coarse grid must capture the main

characteristics of the flow.
Figure 11 compares the baseline and optimized designs for Case

5.1. The aircraft planform views show the baseline and optimized

designs obtained by using the L2 grid and the L1.5 optimization

obtained by using the L2 optimized shape as the starting point.

Color-coded slices of the airfoil shapes and the corresponding Cp

distributions are shown for four spanwise locations at the bottom of

the figure. We see that the coarse optimization (using the L2 grid)

successfully eliminates the shock on the upper wing surface,

resulting in parallel isobars. Even without further optimization,

almost all of the drag improvement predicted by the coarse grid is

realized on the fine grid. A comparison of the orange and black lines

on the outer Cp distributions shows that the only significant

difference is the appearance of a weak shock on the refined grid. The

fine optimization further improves the design, eliminating this shock

and lowering the drag even further. This behavior is consistent with

previous results, where three uniformly refined grid levels were used

[12]. We employ this multilevel approach for all optimizations in the

present work.

B. Optimization Results

In this section, we present the main results for each CRM

aerodynamic shape optimization (cases 5.1 through 5.7). Figure 12

shows the evolution of the SNOPTmerit function and optimality. The

merit function is the value of the augmented Lagrangian given by

SNOPT, which becomes the same as the objective function value

once all the constraints are satisfied toward the end of the

optimizations. The optimality is the residual of the Karush–Kuhn–

Tucker optimality conditions, which measure how well the

optimization has converged [57].
Fig. 10 CRM configuration showing the design variables for shape,
twist, and tail rotation.

Table 4 Design optimization problem
statement forN flight conditions

Function/variable Quantity

minimize
P

N
i�1 WiCDi

with respect to airfoil shape variables 216
wing twist 9
angle of attack, αi N
tail rotation angle, ηi N

subject to CLi
− C�

Li
� 0.0 N

CMyi
� 0.0 N

tj ≥ tjCRM 750
Ssepi ≤ 0.04 N

Fig. 11 Baseline design compared with optimized designs for Case 5.1. The coarse-grid optimum is a good starting point for the fine-grid optimization.
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The optimality tolerance was set to 10−5, which is achieved for
most optimizations. The L2 optimizations are limited to 150
iterations, whereas the L1.5 optimizations are limited to a further 50
iterations. Case 5.7 uses a different objective function and is a
maximization instead of a minimization. Generally, the finer
optimizations with the L1.5 mesh achieved the same convergence
tolerance as the coarse L2 mesh.
Figures 13 and 14 summarize the key features of the two ADODG

optimizations (cases 5.1 and 5.2, respectively). The results of the
baseline configuration are shown in red, and the optimized results are
shown in blue. The planform view of thewing and fuselage shows the
Cp contours of the baseline geometry (left) and the optimized
geometry (right) under the nominal operating conditions (M � 0.85,
CL � 0.5). Just below the planform view, the front view also shows
the Cp contours and adds a visualization of the shock surface [65].
Below the front view, we plot the spanwise distributions of the lift,
twist, and thickness-to-chord ratio (t∕c). A reference elliptic lift
distribution is shown in gray. The right side of the figure displays the
cross-sectional shapes and Cp distributions at the five spanwise
locations indicated by the labels A–E in the planform view. Finally,
the bottom-right plot shows the drag divergence behavior for three lift
coefficients: CL � �0.45; 0.50; 0.55�.
The single-point optimization (Case 5.1) is similar to the wing-

alone optimization done in previous work [12], where it was referred
to as “aerodynamic shape optimization without thickness reduction.”
In that case, the wing-alone configuration was optimized at the same
Mach number and lift coefficient but at a much lower wind-tunnel
Reynolds number of 5 × 106. The previouswork indicated that a 10.5
drag count reduction was possible for the CRM wing-alone
configuration. This compares well with the 8.6 count reduction that
we obtain in the full wing–body–tail configuration studied herein.
The cross-sectional plots of the airfoils at various spanwise sections
show how little the shape needs to be modified to obtain a substantial
change in performance. The drag divergence curves highlight the
single-point design nature of the optimized configuration. A drag dip
is present at the ondesign condition, but the performance is worse at
most other Mach numbers and lift coefficients.
Whenwe introduced the α � 0.1method previously for predicting

buffet onset, we showed the lift curves for the baseline configuration

in Fig. 5. We now compute the same curves for the optimized

configuration ofCase 5.1, as shown in Fig. 15. The deviation from the

linear slope observed in the baseline is more pronounced for this

optimized aircraft, which means that including a physics-based

buffet-onset constraint as we propose is all the more crucial;

otherwise, the optimizer would exploit the lack of such a constraint

and produce designs that are not realizable.
Case 5.2 adds two additional equally weighted operating

conditions near the buffet-onset boundary. Unlike Case 5.1, for

which we obtain a shock-freewing, Case 5.2 results in double shocks

at the nominal operating condition. In this case, the drag at the

nominal operating condition actually increases by 2.8 counts, as

shown in Fig. 14. The drag divergence curves indicate a significant

drag penalty across the lower Mach numbers, but this design does

have a much higher drag divergence Mach number than the baseline

design.
Although drag coefficient divergence curves yield useful insights

into optimized designs, examining the performance in the fullM–CL

space is particularly instructive. In the context of transonic transport

wing design, ML∕D is a better measure of performance because it

includes the benefit imparted on overall aircraft efficiency by a higher

cruise speed. This overall performance can be approximated by the

Breguet range equation

R � Ma

c

L

D
ln
�
W1

W2

�
(5)

where L∕D is the lift-to-drag ratio; a is the speed of sound; c is the

thrust-specific fuel consumption; and W1 and W2 are the initial and

final cruise weights, respectively. For a purely aerodynamic

optimization at a fixedMach number, onlyL∕D varies if we assume a

constant c and weight ratioW1∕W2, so we are left withML∕D.
The procedure for generating contour plots is detailed in the

Appendix. The contour plots are generated by using the L1.5 grid,

and we ignore the additional drag associated with the nacelle, pylon,

and vertical stabilizer. Figure 16 shows contour plots for all seven

optimizations and the baseline design.
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Fig. 12 Merit function and optimality evolution for each optimization case.
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The contours in each figure extend up to the predicted buffet-onset
curve shown in red. The orange curve shows the buffet onset
predicted by using the Δα � 0.1 method described in Sec. III.
Several regions appear where the orange curves are missing data,
which we attribute to the failure to find an intersection between the
two lift curves. Overall, the separation-metric method continues to
produce results that are close to those of the Δα � 0.1 method,
despite the large changes in the buffet-onset boundary.
The blue curve represents the 30% margin to buffet-onset

boundary and is computed directly from the red buffet-onset curve.
For normal operation, only operating conditions below the buffet-
margin curve can be considered. The absolute maximum ML∕D
value for each configuration is shown in pink. Two specific contours
for the optimization configuration (one for the baseline
configuration) are highlighted: the contour of 99% �ML∕D�max for
the particular design is shown in blue, and the contour of 99%
�ML∕D�max for the baseline configuration are shown in red. The
motivation for plotting these 99% contours is that airliners typically
fly between the Mach number yielding maximum range
(approximated by the maximum ML∕D value in the figures) and a
higherMach number that yields a 1% fuel-burn penalty but decreases
in the flight time. The area enclosed by both of these contours is used
to quantify the robustness of the design in these figures. The areas are
scaled by a factor of 1002 so that the area of the rectangle measuring
0.01 inM and 0.01 in CL has unit area.
The design operating conditions listed in Table 3 are shown as

diamonds. The operating conditions considered for the objective
function are shown in black, whereas the buffet-onset constraint

conditions are shown in red. The first buffet point (M � 0.85,
CL � 0.65) is at the nominal cruise Mach number and the CL value
corresponding to a 1.3g maneuver. The second buffet point
(M � 0.89, CL � 0.456) is 0.04 higher in Mach number, which is a
typical margin between a nominal cruise Mach number and the
maximumMach numberMMO condition. The lift coefficient for this
condition is adjusted to give the same dimensional lift as the nominal
cruise condition at the same altitude.
Two additional regions are highlighted in black and orange, which

we refer to as integration regions. They are constructed as follows:
The Mach range is from 0.83 to 0.86, which corresponds to the
typical range of operating Mach numbers for an aircraft such as the
CRM. The upper line corresponds to the buffet-margin boundary,
which is equivalent to specifying the maximum altitude the aircraft
can fly for a particular weight. The bottom line corresponds to the
reducedCL for a 4000 ft decrease in altitude. To put it in another way,
the integration region contains all operating conditionswithin 4000 ft
of the buffet-constrained ceiling and for all normal operating Mach
numbers. The aircraft spends the vast majority of cruising flight in
this region. The black integration region corresponds to the baseline
design, whereas the orange regions are adjusted to reflect the actual
buffet-margin boundary for each design. In addition, the upper edge
of the black region indicates how the buffet-onset boundary changes
for each design relative to the baseline configuration for the specific
Mach range of integration.
Figure 17 displays a different visualization of the data already

shown in Fig. 16. Here, we plot the percent change of each design
relative to the baseline configuration. Note that the plot region is

Fig. 13 Baseline analysis compared to the Case 5.1 result. This single-point optimization leads to high performance at the nominal operating condition.
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limited to flight conditions below the buffet boundary corresponding
to each design. The color of the boundary indicates which is one
active: The black boundary indicates the baseline buffet boundary is
active, meaning that the optimized design boundary is higher than
the baseline. The orange boundary means that the optimized
boundary is active, and thus lower than the baseline buffet boundary.
The integration region for each configuration is also shown in
orange.

The contour plots give a much more complete understanding of
the optimized designs. Unsurprisingly, the single-point optimiza-
tion (Case 5.1) produces the highestML∕D value, which is almost
exactly matched to the design operating condition. However, with
no way to constrain the buffet-onset boundary, the value of
�ML∕D�max is now above the buffet-margin boundary, which
means that this high-performance point cannot be achieved in
practice because it falls outside the normal flight envelope. The 99%
�ML∕D�max contour (blue) is small, indicating a highly localized
point design. Despite the highML∕D value, the averageML∕D in
its own integration region (orange) is 4.6% worse than that for the
baseline design.
For Case 5.2, the addition of operating conditions at the edge of the

buffet-onset envelope substantially improves the buffet boundary
over the entire range of Mach numbers. This case results in the most
robust buffet-onset behavior of all cases. However, the value of
�ML∕D�max barely improves over that of the baseline design (17.18
vs 17.13). Worse still, as in Case 5.1, the high-performance region
lies almost entirely outside the buffet-margin boundary, rendering the
high-performance region unattainable. Even for this case, the average
ML∕D in the integration region is slightlyworse (−0.5%) than for the
baseline design. Note that the increased performance afforded by the
higher buffet boundary is only possible if the baseline aircraft is
buffet limited in altitude over the specific range of Mach numbers, as
opposed to thrust limited. If the aircraft were thrust limited over the
integration range, the obtainable performance would be the integral
over the black integration region.

Fig. 14 Baseline analysis compared to theCase 5.2 result. To obtain a small improvement at the highestMach numbers, performance is sacrificed across
a large range of Mach numbers.

C
L

0.2
Δα

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Mach: 0.805 0.82 0.835 0.85 0.865 0.88 0.895

2o

Fig. 15 Lift curves for the Case 5.1 configuration with successive lift
curves offset by 0.5 deg. The lift curves for the optimized configuration

are more nonlinear.
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In Case 5.3, we attempt to improve upon Case 5.2 by reducing
the weighting factor for the near-buffet conditions. For this case, the
nominal operating condition has a weight of 2/3, whereas the
remaining two points each have weights of 1/6. The adjusted
weightings yield a much more useful design. This is the first case
where a significant portion of the 99% �ML∕D�max contour falls

within the integration region. In addition, the design is robust, as
evidenced by the larger area enclosed by the blue contour when
compared to the baseline design. As with the two previous cases, the
increased performance is only possible if the aircraft can operate at
higher altitudes. The other problem with this case is that the
specific weightings are picked arbitrarily. Although these particular
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Fig. 16 Contours of ML∕D for the baseline and for each optimized configuration.
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weights yield acceptable results, these weight values are not
guaranteed to work well for another configuration or optimization

problem.
Case 5.4 is the first optimization to use the separation sensor directly

as an optimization constraint. Case 5.4 retains the same operating

conditions as cases 5.2 and 5.3 but, instead of having the drag from the

flight conditions near the buffet boundary contribute to the drag
objective function, it uses the buffet-onset flight conditions to compute
the separation sensor and constrain its value. Note that a slight
discrepancy exists between the operating conditions (red diamonds)
and thebuffet-onset boundary itself. The reason for this result is that the
buffet-onset conditions are analyzed by using the scalar Jameson–

Fig. 17 Percent difference in ML∕D between the baseline design and the optimized configuration.
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Schmidt–Turkel dissipation scheme [69], which results in a solution
with more dissipation than the matrix dissipation scheme. The scalar
scheme provides the increased robustness necessary for the
optimization, which is not necessary for the contour plot evaluations.
The more dissipative scalar scheme slightly underpredicts the area of
separated flow, so the buffet boundary in the contour plot is lowerwhen
analyzed with the matrix scheme for the contour plot. Overall, the
performance of this design is similar to that obtained with single-point
optimization (Case 5.1). Most of the high-performance region lies
outside the integration region. However, the reduction in performance
is not as pronounced as with Case 5.1, for which the performance is
reduced by just 1.6% in the original integration region and by almost
zero in the on-design integration region. Nevertheless, there is a small
improvement in the buffet-onset boundary.
Upon analyzing the results from cases 5.1–5.4, we noticed that the

nominal design point always appears toward the upper side, or even
completely outside the integration region, and that all optimization
discussed thus far fails to improve the performance in the baseline
integration region. To address this issue, we formulate a multipoint
optimization (Case 5.5). Previous optimizations performed by the
authors on the CRM wing-alone configuration show that selecting
five operating conditions arranged as a cross in the M–CL space
results in highly robust designs [14]. Because our goal is to improve
the performance in the original integration region, we distribute the
five conditions as follows. The nominal Mach number is reduced to
0.845 for the first three operating conditions. The first point lies on
the 1.3g buffet-onset boundary, whereas the next two points are atCL

values corresponding to 2000 and 4000 ft below. The two remaining
points are 2000 ft lower than the buffet-onset boundary with a
variation in Mach number of�0.01. The buffet-onset conditions are
taken at M � 0.85, CL � 0.65, and M � 0.89, CL � 0.41. The
latter point is taken from the baseline design buffet-onset boundary.
The overall performance of this case is superior to all previously
discussed cases. The performance in the baseline integration region
increases by 1.2%, and the performance of the updated integration
region increases by 2.0%. The design is very robust, as shown by the
area inside the 99% �ML∕D�max contour. Furthermore, the point of
maximum performance appears inside the operating envelope. Given
these results, trying a lower nominal CL for cases 5.2–5.4 may be
worth considering in the future.
Next, we developed Case 5.6, which is designed to investigate the

effect of removing the buffet-onset conditions present in Case 5.5. We
wish to answer the following question: Is a multipoint optimization
near the design operating condition sufficient to ensure a robust buffet-
onset envelope? Unsurprisingly, without the buffet-onset constraints,
the buffet-margin boundary drops slightly over the integration
envelope, pushing the integration region into a lower-performance
region. The average value ofML∕D for the integration region is 16.88,
which is only 0.6% higher than for the baseline configuration and
much smaller than the 2.0% improvement obtained in Case 5.5.
Finally, for Case 5.7, we formulate a different design optimization

problem. We remove the requirement of specifying fixed design lift
coefficients and let the optimization itself determine the ideal ondesign
condition. All cases presented thus far are lift-constrained drag
minimizations with fixed operating conditions. The fixed operating
conditions also include fixing the value of CL for the buffet-onset
locations. In the formulation of Case 5.7, we want the optimization to
directly adjust the single nominal operating condition. The remaining
operating conditions are then explicitly linked to this designCL. More
specifically, the high-CL buffet-onset conditions must have 1.35 times
the lift of the nominal cruiseMach. Although theminimum load factor
is 1.3, to achieve a higher buffet-onset boundary for whichmore of the
integration region lies inside the 99% ML∕Dmax contour, we use a
factor slightly greater than the minimum, hence the 1.35 value. The
high-Mach buffet case must have the same physical lift as the nominal
operating condition at M � 0.89 and at the same altitude. Finally,
the remaining operating conditions move vertically in sync with the
changing design CL. The modified optimization formulation is
summarized in Table 5.
Note that the operating conditions (diamonds) shown in Fig. 16 are

the optimized values. The optimization increased the nominal design

CL from the initial value of 0.490 (the value used in cases 5.5 and 5.6)
to 0.520. This increase is made possible by a corresponding increase
in the buffet-onset boundary. The previous optimizations, especially
Case 5.2, showed that there can be a significant penalty in cruise drag
for a higher buffet boundary. For Case 5.7, we have given the
optimizer sufficient information to make this tradeoff optimal. This
results in a slightly higher average performance than Case 5.5 (17.13
vs 17.11), as well as a higher buffet-onset boundary. The design is
also highly robust, exhibiting the largest 99% �ML∕D�max contour of
all the cases.
Further insight into the differences between the optimized designs

is provided by Fig. 17. It is particularly interesting to see that there is a
region betweenM � 0.86 andM � 0.88 at lowCL that is universally
worse on all optimized designs. This is particularly noticeable on the
single-point designs (cases 5.1 and 5.4). It is least evident in Case 5.5,
where there is an improvement over almost the entire contour region.
Compared to Case 5.7, the higher buffet-onset performance appears
to be correlated with the reduced low-CL performance. The
performance reduction at lower lift coefficients in Case 5.7 is limited
to less than 2%,which is acceptable given the performance increase at
the higher lift coefficients.

C. Grid Convergence

We studied grid convergence for the baseline geometry and for all
optimized configurations. For the grid-convergence studies,we apply
the optimized geometry from the L1.5 mesh to the each of the four
meshes in sequence. The drag convergence for each mesh
configuration is shown in Fig. 18. The drag coefficient, when plotted

Fig. 18 Grid-convergence study for baseline and all optimized
configurations, showing that the change in drag is constant between grid
levels.

Table 5 Design optimization problem
statement for N flight conditions

Function/variable Quantity

maximize
P

N
i�1 WiMiLi∕Di

with respect to airfoil shape variables 240
wing twist 9
angle of attack, αi N
tail rotation angle, ηi N
design, CL 1

subject to CLi
− C�

Li
� 0.0 N

CMyi
� 0.0 N

tj ≥ tjCRM 750
Ssepi ≤ 0.04 N

KENWAYAND MARTINS 1943

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

5,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

51
72

 



against the grid factor N
−2∕3
cells , is approximately linear, indicating

second-order convergence.However, the finestmesh analyzed (L0.5)
does not fall directly on the line, which indicates that a more highly
resolved mesh is necessary to determine a grid-converged value.
However, for aerodynamic shape optimization, we are generally
more concerned with the change in drag coefficient resulting from a
design change as opposed to the grid-converged drag coefficient.
Figure 19 shows the change in drag coefficient for each configuration
on each mesh level. Remarkably little variation occurs across each
mesh level, which we attribute to the fact that the spurious drag
remains roughly constant for a givenmesh, independent of the design
modifications. The maximum variation between the improvement on
the L1.5mesh,which is the finestmesh used for optimization, and the
L0.5 mesh is 0.63 counts (in Case 5.6). Given the much larger
computational cost of optimizing with the L1 or L0.5 meshes and the
small difference in predicted drag improvement when using these
finer meshes, the use the L1.5 mesh for our optimizations is a good
choice.

D. Computational Cost

Multipoint three-dimensional RANS-based aerodynamic shape
optimizations are costly from a computational perspective, so we
make every effort to reduce the total cost of the optimizations. Table 6
lists the total CPU cost, in processor hours, required to generate the
results presented in this paper. All the computations were performed
on nodes with two four-core E5540 CPUs running at 2.53 GHz with
16 GB of RAM per node. The nodes are connected with QDR
InfiniBand [70]. All L2 and L1.5 meshes were run on 64 cores,
whereas the L1 and L0.5meshes for the grid-convergence study used
128 cores.

The optimization consumed 63% of the total computational time,
and the remainder of the time was used for postprocessing. The
ML∕D contour plots were particularly costly because each plot
required approximately 400–500 individual CFD evaluations.

VI. Conclusions

A new formulation for predicting buffet onset and for effectively
implementing it as a design optimization constraint is presented. The
proposed method is based on the integration of a separation sensor
along with a cutoff value to estimate when buffet first occurs and can
be directly evaluated with only one steady RANS CFD solution. The
results of this method compare well with those of the Δα � 0.1
method for the CRM configuration, and for various optimized
designs. A comparison with experimental data obtained from wind-
tunnel tests also shows that the proposed model has good predictive
capabilities. The separation sensor method is particularly well suited
for formulating a constraint in gradient-based optimization because it
is easy to implement in a discrete adjoint optimization framework,
and the resulting function (although highly nonlinear) is smooth.
To demonstrate the effectiveness of the proposed approach, seven

design optimization cases are solved starting from the CRM wing-
body-tail baseline. All optimizations are done with respect to 216
shape variables; nine twist variables; and a tail rotation angle subject
to lift, pitching moment, volume, thickness, and separation
constraints. To reduce the overall computational cost, a two-level
sequential optimization approach was applied. At the nominal
operating condition of M � 0.85, CL � 0.5, the single-point
optimization (Case 5.1) reduces the drag coefficient from 249.5
counts to 240.9 counts, which is a reduction of 3.4%. For a more
complete comparison of the optimized designs, contours of ML∕D
were plotted in M–CL space, which provided a visual and intuitive
way of comparing the performance and robustness of the optimized
configurations.
For Case 5.2, two operating conditions were added near buffet

onset, which increased substantially the performance at these points
and produced a high buffet-onset boundary. However, the overall
performance as measured by a typical operating envelope was lower
than the baseline. Although weighting the nominal cruise point
(Case 5.3) more than the off-design condition improved
performance, it required knowledge of how to choose the appropriate
weights, which might be case dependent.
In Case 5.4, the use of the separation metric to directly control the

buffet-onset and buffet-margin boundaries was introduced. Although
this approach was effective, the overall performance of the optimized
design was unsatisfactory; it was lower than that of the weighted-
points approach in Case 5.3.
The remaining cases use fivemain operating conditions to produce

more robust designs. The performance improves for Case 5.5 over
nearly the entire transonic range, with a simultaneous improvement
of part of the buffet-onset boundary. Case 5.6 removes the buffet-
onset conditions, demonstrating the insufficiency of a multipoint
optimization with all conditions near the ondesign condition. In this
case, the buffet-margin boundary encroaches onto the cruise
performance region, reducing the average usable improvement from
2.0% for Case 5.5 to only 0.6% for Case 5.6. Finally, in Case 5.7, a
ML∕Dmaximization was done with automatic determination of the
operatingCL, which improved the average performance above that of
Case 5.5 while pushing the buffet-onset boundary beyond the
operational envelope.
Given these results, it is recommended that physics-based buffet-

onset constraints be enforced for aerodynamic and aerostructural
shape optimization of transonic transports, as was done in this work.
The separation metric developed herein is easily implemented and
yields robust results, so it provides a much needed constraint
formulation for the aerodynamic shape optimization community.

Appendix: Generation of Contour Plots

The generation of the contour plots shown in Fig. 16 warrants
further explanation. These contours are not simple α sweeps because

Grid Factor

ΔC
D

0 2E-05 4E-05 6E-05 8E-05 0.0001 0.00012 0.00014
-12

-10

-8

-6

-4

-2

0

2

4

6

Fig. 19 Change in drag for the optimal designs relative to the baseline
design, showing that this change is roughly constant for all designs

between grid levels.

Table 6 Breakdown of computational cost in CPU hours

Case
L2

optimization
L1.5

optimization Contour
Grid

convergence Total

Baseline — — 1,346 817 2,162
5.1 289 611 1,270 1,009 3,179
5.2 2,378 2,394 1,795 1,121 7,688
5.3 1,290 2,505 1,750 910 6,457
5.4 1,507 2,602 1,384 1,024 6,518
5.5 2,090 3,506 1,392 830 7,369
5.6 1,111 1,803 1,147 610 4,673
5.7 4,136 6,623 1,800 696 13,255
Total 12,802 19,567 11,886 7,019 51,303

1944 KENWAYAND MARTINS

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

5,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

51
72

 



the tail angle that gives CM � 0 must be determined at each point.
Once the flight condition in the contour is trimmed, the trim drag
penalty is included in the computed drag coefficient. Naively

performing a secant search to determine the tail angle at each point
would require at least three CFD solutions. However, because each
contour plot requires approximately 400 trim-converged solutions,

we seek instead an alternative approach to reduce the computational
cost to the extent possible.
One way to reduce the computational cost of producing these

contours is to reuse previously evaluated points to continually update
the 2 × 2 Jacobian of the residual, F � �CL − C�

L; CM	, with respect
to �α; η	, where α is the angle of attack and η is the tail rotation angle.
With an accurate Jacobian, we can use Newton’s method to

simultaneously determine the new α and η required to produce a
trimmed solution at a new CL. The full procedure is listed in

AlgorithmA2. An auxiliary function for computing the residual for a
given (α, η) is given in Algorithm A1.
In practice, only one subiteration is necessary for most points

because theCL andCM functions are not highly nonlinear functions of
α and η over most of the contour region. Generally, additional
subiterations are only necessary as buffet is approached due to themore
rapid variation in the lift curve slope. For example, the contour for the
baseline configuration requires 430 function evaluations toproduce356
converged trimmed-CL solutions, which is an increase of only 20%.
Note that we only check for the convergence of CM because precisely
matching the lift coefficients to the specified target is not critical.
Once all the raw data are generated, CL, CD, CM, and the

separation sensor values are interpolated by using an Akima spline
[71] to produce a regularM–CL grid. This regular grid is then used for
further computations, such as the difference plots shown in Fig. 17
and the drag-divergence curves in Figs. 13 and 14, as well as for
extracting particular contours and computing the average
performance over specific integration regions.
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Algorithm A2 Trimmed-CL contour computation

1: Given: CLmin
, �M1; : : : ;MN 	, ΔC�

L, α0, η0, Δα, Δη, Sepmax, Nsub, ϵ
2: SetM � M1

3: F0 � F��α0; η0	T; CLmin
�

4: F1 � F��α0 � Δα; η0	T; CLmin
�

5: F2 � F��α0; η0 � Δη	T; CLmin
�

6: J � ��F1 − F0∕Δα��F2 − F0∕Δη�	 (Initial finite-difference Jacobian approximation)
7: Jsave � J
8: xsave � �α0; η0	T
9: for k←1; N, do (Loop over N sequential Mach numbers)
10: setM � Mk

11: J � Jsave (Restore Jacobian for lowest CL)
12: xn � xsave (Restore x for lowest CL)
13: ΔCL � ΔC�

L (Restore target CL increment)
14: C�

L � CLmin
(Set the target CL to the lowest desired CL)

15: Fn � F�xn; C�
L� (Evaluate current point)

16: continue � True
17: iα � 0
18: while continue, do (α increment loop)
19: for j←1, Nsub, do (Subiteration loop)
20: dx � J−1Fn (Newton’s method for update)
21: xn�1 � xn − dx (New [α, η] solution)
22: Fn�1 � F�xn�1; C

�
L� (Solve CFD for the new x)

23: dF � Fn�1 − Fn

24: J � J � ��dF − Jdx�∕�kdxk2��dxT (Update Jacobian using Broyden’s method)
25: xn � xn�1 (Set xn for next subiteration)
26: if iα � 0 (Store J and xn�1 for the next Mach number on the lowest CL)
27: Jsave � J
28: xsave � xn
29: end if
30: Evaluate separation sensor, Sep
31: if Sep > 0.01 then
32: ΔCL � 0.01 (Reduce the target ΔCL as buffet is approached)
33: end if
34: if abs(Fn�1	) <ϵ or j � Nsub, then (Only check convergence for moment)
35: C�

L � C�
L � ΔCL (Update the next target CL)

36: Fn � �Fn�1�0	 − C�
L; Fn�1�1	] (Set the function value for the next CL)

37: Break subiteration loop
38: else

39: Fn � Fn�1 (Continue to refine the current target CL)
40: end if
41: end for
42: iα � iα � 1
43: if Sep > Sepmax, then
44: continue � False (Reached buffet onset, so proceed to next Mach number)
45: end if
46: end while
47: end for

Algorithm A1 Trim-CL

function

1: function F�x; C�
L�

2: Set α � x�0	 and η � x�1	
3: Solve CFD problem
4: return F � �CL − C�

L; CM 	T
5: end function
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