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Microstructure design can have a substantial effect on the performance of critical components in numerous

aerospace applications. However, the stochastic nature of metallic microstructures leads to deviations in material

properties from the design point, and it alters the performance of these critical components. In this work, an inverse

stochastic design approach is introduced such that the material is optimized while accounting for the inherent

variations in the microstructure. The highlight is an analytical uncertainty quantification model via a Gaussian

distribution to model propagation of microstructural uncertainties to the properties. A metallic microstructure is

represented using a finite element discretized form of the orientation distribution function. A stochastic optimization

approach is proposed that employs the analyticalmodel for uncertainty quantification, tomaximize the yield strength

of Galfenolmicrostructure in a compliant beamwhen constrained by uncertainties in the designed natural frequency

of vibration. The results of the stochastic optimization approach are validated using a Monte Carlo simulation. It is

also shown that multiple microstructure solutions can be identified using the null space of the linear systems involved

in the optimization.

Nomenclature

A = orientation distribution function
C = coefficient matrix of multiple solution direct solver
E1 = Young’s modulus along axis 1
f = vector of objective function
G12 = shear modulus in 1–2 plane
Ip = polar inertia moment
I1 = moment of inertia along axis 1
J = torsion constant
k = number of orientation distribution functions
L = beam length
m = unit mass
N = number of independent nodes
n = axis of rotation
n = number of null space vectors
p1 = property vector for S11
p6 = property vector for S66
q = volume normalization vector
r = orientation
S = compliance
t = computational time
V = null space vector
x = vector of unknowns
ϵ = volume-averaged strain
μ = mean value vector
Σ = covariance matrix
σ = volume-averaged stress
σy = yield stress

σ2 = variance
ω1b = first bending natural frequency
ω1t = first torsion natural frequency

I. Introduction

M ICROSTRUCTURAL uncertainties arise from variations in
manufacturingprocess conditionsandcanaffect theperformance

of metallic materials in aerospace components. This is an aleatoric
uncertainty, is unavoidable, and is naturally present in metallic systems.
The present work aims to investigate the effect of aleatory uncertainties
in microstructure modeling and the inverse design of stochastic
microstructural features to achieve a prescribed statistical range of
engineering properties. The current state of the art only addresses
the direct uncertainty quantification problem (effect of uncertain
microstructures on properties), and the stochastic inverse problem has
not been addressed to the best of our knowledge. The direct problemhas
been generally addressed using computational techniques such as the
MonteCarlo simulation (MCS), collocation, and spectral decomposition
methods. Huyse and Maes [1] studied the effect of microstructural
uncertainties on homogenized parameters by using random windows
from the real microstructure, and they performed a MCS to identify the
stochasticity in elastic parameters such as Young’s modulus and
Poisson’s ratio. Sakata et al. [2] showed the variations in Young’s
modulus and Poisson’s ratio due to microscopic uncertainties. They
validated the results of their perturbation-based homogenizationmethod
with theMCS. In another paper, Sakata et al. [3] implemented a kriging
approach to calculate the probability density functions of the material
properties, and they used a MCS to study the uncertainties in geometry
and the material properties of a microstructure through the same
perturbation-based homogenization method. A computational stochas-
tic modeling approach for random microstructure geometry was
presented by Clement et al. [4,5]. The authors presented a high-
dimensional problem due to the high number of stochastic variables to
represent the microstructure geometry. This high-dimensionality was
reducedwith implementationofpolynomial chaos expansion.Creuziger
et al. [6] examined the uncertainties in the orientation distribution
function (ODF) values of a microstructure due to the variations in the
pole figure values by using a MCS. Juan et al. [7] used a MCS to
study effects of sampling strategy on the determination of various
characteristic microstructure parameters, such as grain size distribution
and grain topology distribution. Hiriyur et al. [8] studied an extended
finite element method coupled with an MCS approach to quantify
the uncertainties in the homogenized effective elastic properties of
multiphase materials. The uncertain parameters were assumed to be
aspect ratios, spatial distribution, and orientation. They used a strain
energy approach to analyze the uncertainties of the in-plane Young’s
modulus and Poisson’s ratio. Kouchmeshky and Zabaras [9] presented
propagation of initial texture and deformation process uncertainties on
the final product properties.Theyusedadata-driven approach to identify
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the joint probability distributions of random variables with a maximum
entropy method, and they modeled the stochastic problem using
a stochastic collocation approach. Madrid et al. [10] examined the
variability and sensitivity of an in-plane Young’s modulus of thin nickel
polycrystalline filmsdue to uncertainties in themicrostructuregeometry,
crystallographic texture, and numerical values of single crystal elastic
constants by using a numerical spectral technique. Niezgoda et al. [11]
computed the variances of the microstructure properties by defining a
stochastic process to represent the microstructure. They marked the
sensitive regions in the convex hull that were generated with a principal
component analysis, and they calculated the probability distributions of
they stiffness and yield stress in cases of low, medium, and high
variances.
Thesenumerical uncertainty quantification techniques studied in the

literature require high computational costs because they represent the
joint probability distributions of the random variables using either
interpolation functions or samples. As the problem complexity or the
number of variables increases, the number of interpolation terms or
sample points also increases. This is especially true for the ODFs that
are discretized using finite element nodes or a spectral basis, and
they contain a large number of free parameters for which the
joint distribution needs to be sampled. Another drawback of the
computationalmethods is the difficulty of satisfying design constraints
such as volume fraction normalization. All these disadvantages imply
the necessity of developing analytical solutions as a first step in
uncertainty quantification. In this work, we present an analytical
formulation based on aGaussian distribution approach to represent the
variations of the random parameters. The variations of the in-plane
Young’s modulus E1 and the shear modulus G12 are assumed to be
provided by the manufacturer, and they are consistent with the
Gaussian distribution. Then, the probability distributions of the
ODFs are computed by solving an inverse problem. The variations
in the compliance parameters, S11 and S66, are found first with
transformation of the randomvariables rule byusing input variations in
E1 and G12. The compliance parameters are calculated first because
they canbe representedwith linear equations in termsof theODFs.The
probability distributions of the compliance parameters are also
assumed to be modeled with a Gaussian approach despite their
nonlinear relation to E1 and G12 because the input uncertainties are
very small. Then, the inverse problem to find the statistical properties
of theODFs is defined as a linear programming (LP) problem.Aglobal
stochastic optimization approach is implemented to this analytical
solution framework tomaximize theyield stress under vibration tuning
constraints defined for the first bending and torsion natural frequencies
of the cantilever beam.The optimizationvariables are defined as the in-
planeYoung’smodulusE1 and they shearmodulusG12 of the galfenol
material, and each design sample is assumed to have the same level of
uncertainty. TheLPproblemapproachhas been studied before byAcar
and Sundararaghavan to find the optimal processing route to produce a
optimum microstructure design to the same vibration tuning problem
[12]. However, the LP approach presented before was for the ODF
solution of a deterministic system [12–14]. In this paper, we extend the
LP solution methodology to identify the statistical parameters of the
ODFs in the case of uncertainties in material properties. To the best of
the authors’ knowledge, this is the first analytical effort in the literature
for quantification of microstructural stochasticity given the desired
statistical range in properties: in effect, a stochastic inverse problem for
microstructure design. The optimization results are also compared to
the results of computational methods that employ a MCS to quantify
the uncertainties. The analytical algorithm is able to compute the same
optimization variables and a very close objective function value to the
MCS solution while decreasing the computational time by almost two
orders of magnitude. Once the optimum ODFs are achieved, then the
multiple solution directions are identified using the direct linear solver,
which was presented in our earlier works [12–14]. The linear solver is
capable of finding exact solutions for multiple- and infinite-solution
problems. The effect of uncertainties on the design objective is also
discussed at the end by comparing the optimum results with the
deterministic solution for the maximum yield stress. The organization
of the paper is as follows: Section II addresses multiscale modeling
of microstructures: particularly, the computation of volume-averaged

properties. We introduce the analytical model for uncertainty
quantification and a stochastic optimization approach in Sec. III. In
Sec. IV, we report the results of the stochastic optimization studies
performed using the analytical model and the MCS to quantify the
uncertainties. A summary of the paper with potential future
applications is presented in Sec. V.

II. Multiscale Modeling of Microstructures

The alloy microstructure consists of multiple crystals, with each
crystal having an orientation. The generalized Hooke’s law for the
aggregate of crystals may be written in the following form:

< ϵij >� Seff
ijkl < σkl > (1)

where < ϵij > and < σkl > are the volume-averaged strain and stress,
respectively; and Seff is the effective compliance tensor in the
coordinate system of the part. Assuming homogeneity of the
deformation in a macroscale elementary volume, the effective elastic
properties may be found through averaging using the Taylor
approximation [15]:

Seff �< S > (2)

If the effect of the factors (e.g., crystal size and shape) is ignored,
averaging (denoted by < ⋅ > in the preceding equation) can be
performed over the ODF (represented by A). The ODF gives the
volume density of each orientation in the microstructure. If the
orientation-dependent property for single crystals χ�r� is known, any
polycrystal property can be expressed as an expected value, or
average, given by the following:

< χ >�
Z
R
χ �r�A�r; t� dv (3)

where the ODF A is a function of orientation r and time t (for
plasticity problems). The average value is computed by integrating in
the representative volume element dv, which can be obtained by
considering the crystallographic symmetries.
The present work employs the axis-angle parameterization of the

orientation space proposed by Rodrigues [16] because angle-axis
representations define an alternate way of representing orientations
compared to Euler angles [17,18]. The Rodrigues parameterization is
created by scaling the axis of rotation n as r � n tan�θ∕2�, where θ is
the rotation angle. Finite element discretization of the orientation
space and associated integration schemes using Gauss quadrature
allowmatrix representation of Eq. (3). The ODF is discretized intoN
independent nodes with Nelem finite elements and Nint integration
points per element. Using this parameterization, any polycrystal
property can be expressed in a linear form as follows [19]:

<χ>�
Z
R
χ �r�A�r;t�dv

�
XNelem

n�1

XNint

m�1

Z
R
χ �rm�A�rm�wmjJnj

1

�1�rm ⋅rm�2
(4)

where A�rm� is the value of the ODF at themth integration point with
global coordinate rm of the nth element, jJnj is the Jacobian
determinant of the nth element, wm is the integration weight
associated with the mth integration point, and

1

�1� rm ⋅ rm�2

represents the metric of the Rodrigues parameterization. This can be
shown to be equivalent to an equation linear in the ODF:
< χ >� pTA, whereA is a vector containing theODF values at the k
independent nodes of the ODF mesh [20]. In addition, the ODF is
normalized to unity as qTA � 1 where q is a normalization vector.
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The polycrystal compliance �S is computed through a weighted
average (over A) of the compliance values of individual crystals
expressed in the sample reference frameusing the lowerboundapproach
(Reuss average). The yield stress is computed using a crystal plasticity
model from recent work by Liu et al. [21]. The ODF representation for
body-centered cubic (BCC) galfenol material is shown in Fig. 1.

III. Stochastic Design Optimization of Microstructures

A. Problem Definition: Vibration Tuning for a Galfenol Beam

The optimization problem studied in this paper aims to find the
optimum microstructure design to maximize the yield stress of a
cantilever beam made of galfenol under vibration tuning constraints
(Fig. 2). The material properties of the galfenol beam are computed
with the ODF values at independent nodal points. The same
optimization problem was presented before [12–14] in the case of
deterministic design variables. The vibration tuning constraints are
defined for the first natural bending and torsion frequencies of the
beam, which can be formalized in terms of the Young’s modulus E1

and the shear modulus G12 for an orthotropic material:

ω1t �
π

2L

�����������
G12J

ρIp

s
(5)

ω1b � �αL�2
����������
E1I1
mL4

r
and αL � 1.87510 (6)

whereG12 � 1∕S66,E1 � 1∕S11, andS11 andS66 are the compliance
elements. In these formulations, J is a torsion constant, ρ is the
density, Ip is the polar inertia moment, m is the unit mass, L is the
length of the beam, and I1 is the moment of inertia along axis 1. To
solve the problem, the length of the beam is taken asL � 0.45 m and
the beam is considered to have a rectangular cross section with
dimensions of a � 20 mm and b � 3 mm.

B. Analytical Model for Uncertainty Quantification

The stochastic optimization approach presented in this work for
vibration tuning of a galfenol beam microstructure starts with an
assumption that we are given the variations of E1 andG12 parameters.
According to this assumption, bothE1 andG12 vary�5% around their
meanvalues with respect toGaussian distribution. The uncertainties of
theODFs are identified through an inverse design LP problembecause
compliances S11 and S66 can be defined with linear equations in terms
of the ODFs using a lower bound average. However, the relation
between the compliances and input parameters is nonlinear because
S11 � 1∕E1 and S66 � 1∕G12. Similarly, the variables for the
vibration tuning constraints, the first torsion natural frequencyω1t, and
the first bending natural frequency ω1b are nonlinear in terms of the
input variables. The transformation of the randomvariables rule is used
to identify the statistical properties for S11, S66,ω1t, andω1b. Once the
probability distributions of S11 and S66 are identified, the uncertainties
in theODFvalues are calculatedusing linear transformation.Weassume
that the probability distributions of the compliance parameters can be
modeled with a Gaussian distribution approximation because the
variations in the Gaussian input parameters (E1 andG12) are small. The
analyticalmodeling approaches used for computing linear andnonlinear
material properties are summarized in the next sections.

1. Uncertainties in Linear Material Properties

The uncertainties in the linear material properties are computed using
Gaussian distribution features in linear relations. The summary of the
Gaussian approach to model a linear property is given in the following:
Assume a d-dimensional multivariate Gaussian distribution:

X ∼Nd�μ;Σ�. Now, we define a new random variable:

Z � CX (7)

whereC is a constantmatrix. Then,Z is alsoGaussian distributed [20].
Themeanvector andcovariancematrixofZ aregivenby the following:

μZ � CμX (8)

ΣZ � CΣXC
T (9)

TheGaussian approach presented here can bemodified accordingly
to represent the variations in the ODFs and linear material properties.
Because the ODF values are identified from an inverse problem, we
assume that the first k − 1 number of ODFs are independent (where k
indicates the total number of ODF variables at independent nodes) to
decrease the amount of random variables. To satisfy the unit volume
fraction constraint, the equations to compute the statistical properties
of the kth ODF are modified. The mean and variance of the kth ODF
value can be obtained as

E�Ak� � cTμA � 1

qk

and

σ2�Ak� � cTΣAc

where ci � −�qi∕qk�, μA � E�Ai�, and

X Y

Z

Fig. 1 ODF representation in the Rodrigues fundamental region for

cubic crystal symmetry.

Fig. 2 Geometric representation of galfenol beam vibration problem.

ACAR, SRIVASTAVA, AND SUNDARARAGHAVAN 3163

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

5,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

60
00

 

https://arc.aiaa.org/action/showImage?doi=10.2514/1.J056000&iName=master.img-000.jpg&w=400&h=114


ΣA � E��Ai − μAi
��Aj − μAj

��

After the modification for the kth variable, the ODF covariance matrix
can be written as follows:

ΣA �
"
Σ	
A S

ST σ2k

#
(10)

where Σ	
A is the covariance matrix defined for the first independent

k − 1ODFs, andS is a columnvector forwhich thevalues are given by
the following:

Si � −
1

qk

Xk−1
j�1

qj�Σ	
A�ij (11)

The uncertainties in the linear material properties are computed
using the linear transformation. The linear variables chosen for this
study are the compliance parameters: S11 and S66. The mean and
variance equations for S11 can be shown as follows using the Gaussian
approach. The same computation also applies to the statistical
parameters of S66:

μS11 � pT
1μA (12)

σ2S11 � p1ΣAp
T
1 (13)

where p1 represents the single crystal property values for S11.

2. Uncertainties in Nonlinear Material Properties

The uncertainties in nonlinear material properties are computed
using the transformation of random variables rule. The application
of this rule is as follows: Given the input parameter x and the
output parameter y, we assume that the relation between x and y
can be identified using y � h�x� and can be inverted as x � u�y�.
This method computes a Jacobian value J based on this explicit
relation (where J � du∕dy), and it finds the probability density
function (PDF) of the output variable as a product of the input PDF
and the Jacobian. Equation (14) shows the computation of the
output PDF:

fy�y� � fx�u�y�� × jJj (14)

where fx and fy are the PDFs of input and output variables,
respectively. Because the input PDF fx and inverted function u�y�
are already known, the output PDF fy can be computed using this
method. Then, the expected value E�y� and variance σ2y of the
output parameter can be calculated using Eqs. (15) and (16),
respectively [22]:

E�y� �
Z

ymax

ymin

yfy�y� dy (15)

σ2y � E��y − E�y��2� (16)

where ymin and ymax are the minimum and maximum values the
output variable y can take. These values can be computed using
the relation y � h�x� for the minimum and maximum values of the
input variable: xmin and xmax, respectively. The approach is first
applied to compute the PDF of the compliance parameters: S11 �
1∕E1 and S66 � 1∕G12. The same method is then used to compute
the PDFs of the first torsion and bending natural frequencies of a
cantilever beam, ω1t and ω1b, using Eqs. (5) and (6).

C. Linear Programming Approach for Inverse Design

The statistical properties of the ODF values are identified by
solving the inverse design problem as an LP problem. The PDFs of
S11 andS66were previously computed using the transformation of the
random variables rule. The mean values and variances of S11 and S66
were then computed using Eqs. (15) and (16). The variations in these
parameters were assumed to agreewith the Gaussian distribution due
to small variations in the input parameters, E1 and G12. With this
assumption, the ODF values can be determined by solving an LP
problem. A general formulation of an LP problem is given as follows:

min fTx

such thatAeqx � beq

Ax ≤ b

lb ≤x ≤ ub

The unknownvectorx of this LP problem includes themeanvalues
and variances of the first k − 1ODF values: μA and σ2A. Themean and
variance terms related to the kth ODF value can then be obtained
using the definitions for μA and σ2A in the volume fraction
normalization constraint equation. The equality constraints are
derived by using the homogenized linear equations for the mean
values [Eqs. (17) and (18)] and variances [Eqs. (19) and (20)]:

pT
1μA � μS11 (17)

pT
6μA � μS66 (18)

p1ΣAp
T
1 � σ2S11 (19)

p6ΣAp
T
6 � σ2S66 (20)

In these equations, p1 and p6 are the vectors of length k including
single crystal coefficient values for S11 and S66, respectively; μS11 and
μS66 are the mean values; and σ2S11 and σ2S66 are variances of S11 and
S66. Accounting for the normalization constraint, we only solve for
the k − 1 ODF values. The augmented system of the equality
constraints for the first k − 1 ODF values can be derived as follows:

2
66666666664

�
pT
1 −

p1�k�
qk

qT
�
1×�k−1�

01×�k−1��
pT
6 −

p6�k�
qk

qT
�
1×�k−1�

01×�k−1�

01×�k−1� P	
11×�k−1�

01×�k−1� P	
61×�k−1�

3
77777777775

"
μA�k−1�×1

σ2A�k−1�×1

#
�

2
6666664

μS11 −
p1�k�
qk

μS66 −
p6�k�
qk

σ2S11
σ2S66

3
7777775

where q is a vector containing the first k − 1 values of the
normalizationvector, and 01×�k−1� is a rowvector of zeroswith a length
of k − 1. The elements of the row vectorsP	

1 andP
	
6 can be calculated

as follows by using Eqs. (19) and (20) with the definition for
ΣA �i � 1; 2; : : : ; k − 1�:

P	
1�i� � �p2

1�i� � �p1�k� � 1��p1�i�c�i�� � �p2
1�k�c2�i��� (21)

P	
6�i� � �p2

6�i� � �p6�k� � 1��p6�i�c�i�� � �p2
6�k�c2�i��� (22)

The first inequality equation is derived for the lower boundary of the
kth ODF value such that the first k − 1 ODFs should satisfy the
constraint qTμA ≤ 1 to guarantee that the unit volume normalization
constraint is satisfied with a nonnegative kth ODF value (q > 0 and
qk > 0). Because the compliance parameters are assumed to agree
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with theGaussian approach, theODFvalueshave the samedistribution
because of their linear relation. We used the following inequalities
to ensure that the probability distributions of the ODFs always
satisfy the following nonnegativity condition: −μA � zσ2A ≤ 0 and
−μAk

� zσ2Ak
≤ 0, where z is a constant to be determined. In these

inequality equations, the standarddeviation parameter is approximated
by the variance because the variances are the unknowns in the LP
problem definition. The standard deviation can be replaced with the
variance because the standard deviation and variance values of the
compliances are in the sameorder, and theODFsare assumed to follow
the same trend.However, the variances are controlledwith the constant
parameter z rather than directly considering the traditional 3.5σ
assumption for Gaussian distribution. The inequality equation for the
variation of the kth ODF can be manipulated further by using the
definitions for μAk

and σ2Ak
. The final forms of the inequality equations

are given in Eqs. (23–25):

qTμA ≤ 1 (23)

−μA � zσ2A ≤ 0 (24)

−
1

qk
qTμA � zC	σ2A ≤

1

qk
(25)

where the elements of the C	 vector are C	�i� � c�i�2. Using
Eqs. (23–25) the augmented system for the inequality constraints can
be derived as follows:2

6664
qT1×�k−1� 01×�k−1�

−�I��k−1�×�k−1� z�I��k−1�×�k−1�
1
qk
qT1×�k−1� zC	

1×�k−1�

3
7775
"
μA�k−1�×1

σ2A�k−1�×1

#
≤

2
6664

1

0�k−1�×1
1
qk

3
7775

where �I� is the identity matrix. The objective of the stochastic
optimization problem is tomaximize themean yield stress value of the
beam. Because the standard LP problem defines the objective function
for minimization instead of maximization, the negative of the yield
stress value−σy is minimized. This objective function is also linear in
the ODFs such that

−σy �
�
−yT �

�
yk
qk

�
qT

�
μA −

yk
qk

where y is the vector of yield stress coefficients for the first k − 1 single
crystals, and yk is the same coefficient value for the kth single crystal.
The objective function f is defined as follows:

f �
�
−yT �

�
yk
qk

�
qT

�
μA

and therefore −σy � f − �yk∕qk�. The objective function of the LP
problem for min fTx, can be written as follows:

f � �y	T1×�k−1�01×�k−1��T (26)

where y	T is defined as follows:

y	T � −yT �
�
yk
qk

�
qT

In the final step, the lower and upper bounds are determined by
considering the nonnegativity conditions for the ODFs. The unknowns
of the LP problem, the mean values, and ondiagonal variance terms of
the ODF parameters have a zero value lower bound. An ODF Ai can
have the value of 1∕qi as an upper bound. This is also true for the mean
values μAi

. However, the variances are known to be lower than themean
values in this problem. Therefore, defining the same upper bound values

for the corresponding variance terms is mathematically possible. The
lower and upper bound vectors for this problem are then defined as
lb� �01×2�k−1�� and ub � � 1∕qi 1∕qi �, where i � 1; 2; : : : ; k − 1.

D. Definition of the Stochastic Optimization Problem

The stochastic optimization problem for the vibration tuning of a
galfenol beam microstructure with a yield stress objective is defined
with the implementation of the presented analytical solution
methodology for uncertainty quantification. The optimization starts
with the global sampling for the input variables μE1

and μG12
, which

are the mean values of E1 and G12. In the next step, the statistical
properties of compliancesS11 andS66 and natural frequenciesω1t and
ω1b are calculated using the random variables transformation rule in
Sec. III.B.2. The ODF solution satisfying the calculated statistical
properties of the compliances and maximizing the mean yield stress
value is identified by implementing the LP problem of Sec. III.C to
the optimization algorithm. The mathematical formulation of the
optimization problem is given as follows:

max μσy (27)

subject to

P�20.25 Hz ≤ ω1t ≤ 24.25 Hz� � 1 (28)

subject to

P�132.75 Hz ≤ ω1b ≤ 139.75 Hz� � 1 (29)

s � �μE1
; μG12

� (30)

where the optimization variables are μE1
and μG12

in the global
problem, aswell as themeans and variances of the first k − 1ODFs in
the LP problem definition. Equation (27) shows the objective
function, which is determined as the maximization of the mean yield
stress value. The output variables have probability distributions
based on their statistical properties. The constraint parameters are
expected to satisfy the strict vibration tuning constraints in every
point of their probability distribution. Therefore, the probability of
satisfying the design constraints is expected to be one, as shown in
Eqs. (28) and (29). In the last row, s shows the vector of global
optimization variables. The corresponding ODF solution to the
optimum values of the global variables provides the optimal
microstructure design of the problem. The nonnegativity condition of
the ODFs is considered as a lower bound in the LP problem. The
volume normalization constraint is also considered through the
definition of the kth ODF and the inequality constraint in Eq. (23).

E. Multiple Solutions with a Direct Linear Solver

After the computation of one optimum design, the multiple
optimum ODF solutions to the galfenol problem are identified with
the implementation of a direct linear solver through the use of linear
parameters. These linear parameters are the optimum values of the
compliance parameters and yield stress of the orthotropic galfenol
beam, which can be computed through the optimum ODFs using the
following equations:

< S	 >�
Z

SA	 dV (31)

< σ	y >�
Z

σyA	 dV (32)

In Eqs. (31) and (32), S	 and σ	y are the optimum values for the
compliance parameters and yield stress, respectively; andA	 denotes
the vector of optimum ODF values. The objective of this step is to
identify all the ODFs that provide the same S	 and σ	y values.
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The direct linear solver determines the multiple ODFs for the

optimumproperties. The solver is capable of findingmultiple/infinite

solutions because it uses the null space of the coefficient matrix to

find the directions of the solutions. The use of the null space approach

requires any one solution to the problem. This one solution comes

from the global optimization result for this problem. The remaining

infinite solutions are defined as the sums of this one solution and

solution directions represented by null space vectors. The coefficient

matrix can be defined using the linear relations for macroproperties

and the unit volume fraction constraint for the ODF. The size of the

coefficient matrix is (4 × k) because the rows are representing three

independent linear equations for S11, S66, and σy calculations, as

well as one design constraint for volume fraction normaliza-

tion �∫A dV � 1�.
Assuming C is the coefficient matrix including the entries for

compliances S and yield stress σy, the infinite solutions can be

represented as shown next (i � 1; 2; 3; 4; : : : ; n):

Ai � A1 � λVi (33)

Vi � Null�C�:; i�� (34)

where Eq. (33) defines the infinite solutionsAi using one solutionA1

and null space vectors Vi. Note that n is the number of null space

vectors. Even though the number of null space vectors is finite, the

number of solutions can be infinite because λ can be any number
that satisfies the ODF positiveness constraint (A ≥ 0). Because the
optimization problem is solved in the space of macroproperties
(property closure of homogenized parameters) and the space of
macroproperties is generated by the ODF values through averaging
equations, any point inside this solution domain corresponds to a
known set of ODF values. Therefore, there is always at least one
optimal ODF solution inside this domain. The solution strategy aims
to find this optimum solution not onlywhen it is unique but alsowhen
it ismultiple. Amore detailed discussion about implementation of the
linear solver and generation of the property hulls can be found in
earlier papers by Acar and Sundararaghavan [12–14].

IV. Results

The stochastic optimization is performed using the incremental
space filler (ISF) as the global sampling method for the input
parameters and the nondominated sorting genetic algorithm (known
as NSGA-II) as the optimization algorithm in modeFRONTIER
software. To compare the effect of uncertainty to the final design and
material properties, we also performed a deterministic optimization
for the same problem. The constant parameter z of the analytical LP
approach is considered as z � 3.5. In addition, we performed another
stochastic optimization using the MCS method to model the
uncertainties. In this MCS technique, we used 10,000 samples to
generate the probability distributions for one set of global ISF sample
points. The compliance values, S11 and S66, were calculated using the
exact equations in terms of the input parameters. Then, the ODF
solutions were identified by solving for 10,000 separate LP problems
per one global sample. These deterministic LP problems were
simplified forms of the presented LP methodology because they did
not consider the inequality constraints defined for the variations
[Eqs. (24) and (25)]. The MCS method, despite the use of the LP
approach to solve the ODFs, was a computational burden compared
to the required computational time to run the analytical solution. The
optimum design parameters of stochastic optimization studies are
given in Table 1. In all cases, the optimum parameters correspond to
multiple optimal polycrystal designs with the implementation of the

Table 1 Stochastic optimization results for vibration tuning of

the galfenol beam

Deterministic case Stochastic (analytical) Stochastic (MCS)

σy � 367.9385 MPa μσy � 340.1034 MPa μσy � 340.2584 MPa
ω1t � 22.7038 Hz μω1t

� 22.8272 Hz μω1t
� 22.7408 Hz

ω1b � 134.3167 Hz μω1b
� 136.4554 Hz μω1b

� 136.2892 Hz
E1 � 262.5002 GPa μE1

� 270.3112 GPa μE1
� 270.3112 GPa

G12 � 87.5001 GPa μG12
� 87.8067 GPa μG12

� 87.8067 GPa
t � 5 min t � 20 min t � 44 hours 35 min

22 22.5 23 23.5

1t (Hz)

0

50

100

150

200

250

300
MCS
Analytical LP

130 135 140

1b (Hz)

0

50

100

150

200

250

300
MCS
Analytical LP

330 340 350

y (MPa)

0

50

100

150

200

250 MCS
Analytical LP

σωω

Fig. 3 Variations of yield stress and vibration frequencies of the stochastic optimum designs.
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direct linear solver. The optimum deterministic parameters are also

shown as the best case (with no uncertainties) in Table 1 to indicate

the significant impact of the uncertainties to the design objective. The
significant difference between the computational times spent on the

stochastic optimization studies is also shown in the last row of

Table 1.
The difference between the optimum objective function values of

the deterministic case and the stochastic optimization (Table 1)

implies the substantial impact of the input uncertainties to the

engineering properties. One critical feature of the results is that both

stochastic optimization applications were able to identify the same

solution for the global input parameters, μE1
and μG12

. However, the
optimum design criteria and objective function values are slightly

different due to the different solution approaches in the analytical

model, such as the random variables transformation rule and

extended LP problem implementation by consideration of the ODF
variances in contrast to the exact solution formulas being used by the

MCS method. The variations of the yield stress and vibration

frequencies of the stochastic optimum designs are shown in Fig. 3.

According to the results in Fig. 3, the analytical model is able to

capture the values and variances of the optimum material properties.
After identifying the optimum solutions to the stochastic problems,

the multiple polycrystal designs are also computed using the direct

linear solution methodology with a null space approach. Some of the

multiple optimum solutions to the ODF mean values obtained by the
analyticalmodel andMCSare shown inFig. 4. The firstmicrostructure

design of both solutions is the optimum initial design identified with

the global optimization. The other microstructures are obtained using

the same independent null space vectors in the direct linear solver for
both analytical and MCS solutions.
The small differences between the analytical model and MCS

results in the final material properties shown in Fig. 3 and multiple

optimum ODF solutions shown in Fig. 4 can be explained with two

features of the analytical approach. First, the analytical solution
assumes that the first k − 1 ODFs are independent, and it identifies

only the ondiagonal variances for these ODFs. The system of

equations in the LP problem already implies an underdetermined

system, and the consideration of the nondiagonal terms makes the
solution infeasible. However, the MCS method automatically

considers the dependencies of the ODFs because it uses the exact

solutionswith direct sampling. The other reason is predicted to be the

effect of the adjustable constant parameter z of the analytical solution,
which represents the ODF variations. We used z � 3.5 in the results
reported in Figs. 3 and 4. The effect of this parameter is further

investigated by computing the yield stress values of the optimum

microstructure using different z values. The same analysis is not

performed for the natural frequency parameters because they are
directly related to the global variables, and not to the LP problem, so
the change in z parameter does not affect them. The yield stress
distributions of the optimum microstructure design with varying z
values in the analytical solution are shown in Fig. 5.
Figure 5 implies that the variations in the optimum yield stress

parameter are smaller when z is smaller. This is an expected result
because z represents thevariations in theODFs. Compared to theMCS
samples, the best matching analytical result is provided by the z � 3.5
condition, which was also used in the stochastic optimization.

V. Conclusions

The present work addresses a stochastic optimization problem
that employs an analytical uncertainty modeling approach. The
optimization problem is solved to maximize the mean value of the
yield stress of a galfenol beam under vibration tuning constraints
defined for the first torsion and bending natural frequencies. It was
initially assumed that the probability distributions of the Young’s
modulus and shear modulus parameters (E1 andG12) were provided.
The probability distributions of these input parameters were assumed
to be Gaussian with �5% variations around the mean value. For
vibration tuning constraints, the random variables transformation
rule was applied to compute the probability distributions of the first
torsion and bending natural frequencies of the beam. To compute

Fig. 4 Examples for multiple optimum microstructures of the stochastic optimization problem.

325 330 335 340 345 350 355

y (MPa)σ

0

50

100

150

200

250

300

350
MCS
Analytical LP (z=0)
Analytical LP (z=1)
Analytical LP (z=2)
Analytical LP (z=3.5)
Analytical LP (z=5)

Fig. 5 Yield stress distributions of the optimum microstructure design

with varying z values in the analytical solution.
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the probability distributions of the orientation distribution function
values, the statistical properties of the compliances, S11 and S66, were
first computed using the same random variables transformation
technique. It was assumed that the probability distributions of the
compliance parameters could be modeled with a Gaussian approach
because the input uncertainties were small. Next, an inverse problem
was solved to identify the mean and variances of the orientation
distribution function (ODF) parameters. The inverse design problem
was solved by implementing a linear programming problem
approach because the equations to compute the compliance
parameters and yield stress were linear in terms of the ODFs. The
values for the first k − 1ODF parameters were computed, and the kth
ODF was identified through the implementation of the volume
fraction normalization constraint to the linear programming (LP)
problem. The stochastic optimization was performed on this
analyticalmodel to find the optimalODF solution thatmaximized the
mean yield stress value. Another stochastic optimization was also
performed that used a Monte Carlo simulation method to model the
uncertainties. The analytical solution for uncertainty modeling not
only reduced the computational time requirement for the
optimization but also provided the same optimum parameters with
very slight differences in yield stress and frequency parameters as
compared to the Monte Carlo simulation results. A deterministic
optimization was also performed to compare the optimum results
with and without the effect of uncertainties. The differences on the
optimum solutions of the deterministic and stochastic cases implied
the necessity of considering uncertainties when modeling the
materials. The multiple optimal microstructure designs were also
identified by using a direct linear solver with a null space approach.
Finally, a parametric study was performed to analyze the
mathematical definition of the ODF variations in the LP problem
and its effect on the optimum result. A future effort will aim to
improve the analytical solution methodology to solve the ODF
parameters without the independency assumption.
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