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Motivated by the growing need to accommodate large transient thrust and electrical load requests in future

more-electric aircraft, a coordinated control strategy for a gas turbine engine, generators, and energy storage is

developed. An advanced two-generator configuration, with each generator connected to a shaft of the gas turbine

engine, is treated. Model predictive control maximizes system performance and protects this system against

constraint violations. The controller design is exploits rate-based linear prediction models. In addition, an auxiliary

offset state improves the match between the linear prediction model and the nonlinear system. The auxiliary offset

state allows the system to be controlled over the large operating range without requiring multiple linearizations/

controllers. The advantages of different energy storages are also compared to complement the two-generator

configuration in a more electric aircraft. Primary results indicate that the coordinated model predictive control with

an auxiliary offset state yields better performance than other control strategies, and it successfully controls the

considered system to satisfy specified requirements over a large operating range. The battery–ultracapacitor pack

allows improvement of the overall system performance.

I. Introduction

I N THE past few decades, the electrical power requirements for
aircraft have been steadily increasing, and this growth has been

concomitant with trends towardmore-electric aircraft (MEA) and all-
electric aircraft (AEA) [1]. A typical aircraft power system involves
one or more generators connected to one or more gas turbine engines,

which are integrated with energy storage elements that provide
supplemental electrical power, a distribution system, and loads. The
large electrical loads, including both steady and transient loads, affect
the operation of the generators and of the gas turbine engines. For

instance, large electrical load changes induce large torque
disturbances on the gas turbine engine and can affect engine thrust
and shaft speeds. These changes, in turn, affect the generators; hence,

the system exhibits strong static and dynamic interactions. Thus, in
the presence of large electrical loads, the interactions between the
electrical system and the gas turbine engine have to be addressed for
the efficient and safe operation of aircraft.
Our objective is to establish an integrated model-based control

capability for an aircraft’s propulsion and electrical power systems

(including thrust generation, electric power generation, and energy
storage) that improves the capability of the system to accommodate
large transients, including those caused by large transient electrical

loads, while maintaining the operation of the components and
the overall system within a specified safe range by enforcing
appropriately defined state and control constraints.
Specifically, this paper considers the development of an integrated

control system that accommodates large steady and transient

electrical loads; maintains aircraft flight performance by delivering
requested thrust; enforces gas turbine engine constraints (e.g., surge
margins), as well as electrical system constraints (e.g., component
power limits); and reduces fuel consumption. To facilitate the

achievement of these goals, an advanced two-shaft distributed

generator configuration is considered, where one generator is
connected to the high-pressure shaft (HPS) and the other is connected
to the low-pressure shaft (LPS) of the gas turbine engine. This
configuration affords an extra degree of freedom to accommodate the
effects of large loads compared to the single-shaft configuration.
Furthermore, it potentially achieves better fuel efficiency than the
single-shaft configuration. In addition, the integration of high-
performance storage elements that can react quickly to transient loads
to assist the generators and the gas turbine engines is considered.
To control such an advanced system with two generators, a gas

turbine engine, and energy storage, we define a power split strategy
between the two generators based on the offline minimization of the
fuel consumption and a rule-based strategy to determine when to
charge and discharge the energy storage. To protect the engine and the
electrical system components against constraint violation, a rate-
based model predictive control (MPC) framework is exploited and
several MPC controller designs are developed, validated on a
nonlinear model of the system, and compared with each other. The
proposed framework is flexible and modular, and it can accommodate
other constraints not explicitly treated in the paper, such as temperature
constraints in the engine or voltage stability constraints in the electrical
system, provided the prediction model is updated with representations
for these constraints. Because only linear MPC design techniques are
employed, the controller implementation is feasible with standard
quadratic programming solvers, which are a mature and reliable
technology.
The system configuration of interest in this paper is illustrated in

Fig. 1. The system consists of a single gas turbine engine, energy
storage element(s), and two generators: one of which is attached to
the LPS of the gas turbine engine, whereas the other is attached to the
HPS of the gas turbine engine.
The growing electrical power requirements of MEA and AEA are

highlighted in [1,2]. For instance, at least 1.6MWwill be required for
a next-generation 300-passenger aircraft [2]. Large electrical power
is required for turboelectric propulsion. Three megawatt generators
were considered in [3], and a 40.2 MW generator was planned in
[4,5]. Electrical weapons systems for military applications also
require large electrical power: from 0.025 to 4.5 MW, depending on
the type [6]. Directed energy systems are one of the key 12 potential
capability areas for the U.S. Air Force [7]. To deal with these large
electrical loads on aircraft, integrated control of the aircraft’s gas
turbine engine, electrical power system, and thermal management is
necessary. Challenges in aircraft engine control and integrated power
and thermal management were discussed in [8–11].
MPC-based approaches have been considered to develop solutions

to many recent control problems, including gas turbine engine
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control; see, e.g., [12–14]. Rate-based MPC allows setpoint tracking
and was applied to turbofan engine clearance control in [13] and to
turbocharged compression ignition engine control in [15]. In this
paper, the Multi-Parametric Toolbox (MPT) [16] is employed for
computational implementation of a rate-based MPC controller.
The two-generator configuration for aircraft, with one generator

connected to theHPS and the other generator connected to the LPS of
a gas turbine engine, was introduced in [17]. The challenges and
possible research directions for unmanned aerial vehicles and MEA
with a gas turbine engine, a two-generator configuration, and a
battery (and/or supercapacitor) were discussed in [18]. The authors of
[18] indicated the necessity of integrated control of the electrical
system and the gas turbine engine due to interactions between both
systems. In [19], the authors designed a voltage and current controller
for the generators, and this work was extended in [20]
to include a battery. The controller proposed in these references
was based on a master–slave configuration for high-load situations.
Existing publications on two-generator configurations focused
primarily on the electrical system, especially voltage and current
stability, and a control design exploiting batteries.
Integrated control of a gas turbine engine and electrical power

system has been considered in some publications. The nonlinear
MPC approach for a 166 MW heavy-duty single-shaft gas turbine
powerplant based on simplified gas turbine engine and generator
models was presented in [21]. The control goal was to supply all-
electrical loads while maintaining the rotor speed, exhaust gas
temperature, and turbine firing temperature by controlling airflow
and fuel flow despite transient load changes. The control of the
gas turbine engine and electrical system, which focused on their
thermal management, for the U.S. Navy’s future all-electric ship was
considered in [22]. The importance of interactions between the gas
turbine engine and the electrical system for aircraft was highlighted in
[23], where the engine response when a step change reduction of
electrical power occurred was simulated. In [24], an energy storage
element (supercapacitor)wasused to reduce the effects of dynamic loads
on the engine using a proportional-integral (PI) supercapacitor
controller. A load management system, which consisted of generators,
contactors, buses, loads, and a battery for an aircraft electric power
system was presented in [25]. The paper [25] focused on the electrical
system of the aircraft, mainly controlling contactors for safety and
reliability, using load shedding.The aircraft gas turbine enginemodeling
and control were discussed in [26].
In this paper, the following problem formulation is considered:

Given a gas turbine engine; energy storage elements; two generators,
with one connected to each shaft of the gas turbine engine; a
requested thrust level; and (large) expected/requested electrical
loads, determine the fuel-to-air ratio of the gas turbine engine,

the input/output power of the energy storage elements, and the
electrical power output of each generator to supply all the required
electrical loads, maintain the requested thrust level, and minimize fuel
consumption, subject to surge margin limits and other constraints.
The Simulink-based Toolbox for the Modeling and Analysis of

Thermodynamic Systems (T-MATS) [27–29] is used for the gas
turbine engine modeling and is supplemented by an electrical power
systemmodel in Simulink. T-MATSallows one tomodel both steady-
state and dynamic gas turbine engine operation.
The original contributions of this paper are now highlighted. Most

of the existing studies on the two-generator configuration are limited
only to the electrical system. In this paper, the effects on the gas
turbine engine are considered, and it is shown that coordinated
control solutions can be developed to increase capability and
efficiency of the system. An advanced electrical power system
configurationwith two generators and an electrical storage element is
also treated, for which control designs based on MPC are developed
that accomplish simultaneous tracking of requested thrust and
electrical power output commands while satisfying the imposed
component protection constraints within the engine and the electrical
system, as well as minimizing fuel consumption. These designs
account for static and dynamic interactions between the gas turbine
engine, generators, and energy storage. The paper illuminates the link
between energy storage characteristics and control performance.
Existing aircraft power systems are typically optimized on a quasi-

static individual component basis. Here, a novel control system
architecture based on the combination of a rate-based linear quadratic/
MPC controller, a power split map between generators optimized
for steady-state operation, and a supervisory logic to govern energy
storage charging/discharging is defined. The benefits of constrained
coordinated control include the ability to handle load pulses of higher
frequency and a larger magnitude than possiblewith existing systems.
Unlike many of the previous publications, system operation over

a large static and dynamic range is considered in this paper. The
MPC controller designs based on single linear and multiple linear
prediction models are compared where the linear prediction models
are obtained by applying system identification techniques. As the
paper shows, the mismatch between the linear prediction models and
the actual nonlinear system can be successfully handled by auxiliary
offset states; in particular, the surge margin constraints can be
robustly enforced. A novel linear transformation approach to match
states of different linear prediction models is also proposed. This
approach avoids the need for designing observers for nonphysical
states of the individual models. Furthermore, the paper demonstrates
that successful control of the system can be accomplished by using
a single rate-based linear prediction model with lower computational
and implementational complexity as compared to the switched MPC

Fig. 1 Schematic of the gas turbine engine and the electrical power system.
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approach. Based on a comparison of the closed-loop response with
the one from the classical linear quadratic regulator (LQR) controller,
the advantages of MPC are highlighted. We validate the design in
nonlinear model simulations over the large engine operating range
while responding to large transient thrust and electrical power load
commands. As considered case studies demonstrate, the MPC
control design framework is systematic and expandable to include
additional components.
This work extends and goes much beyond our previous work that

appeared in a conference paper [30]. In particular, in this paper, the
system configuration with the energy storage elements is treated, the
power split strategy for the tradeoff between the fuel consumption
and the surgemargin (rather than just fuel consumption) is optimized,
and MPC controllers for the large operating range of the engine
are developed and demonstrated to accommodate simultaneous
transients in electrical load and thrust. The rate-based MPC designs
based on a single andmultiple linear models are compared, and offset
states are introduced to compensate for the differences in response
between the linear model and the nonlinear system. The linear
transformation of the linear models is also introduced to match the
states of the multiple linear models with the physical states.
The organization of this paper is as follows. Section II describes the

system models and how linear models are constructed to predict
system response. Section III addresses the control design. Section IV
presents the simulation results on the full nonlinear model. Finally,
Sec. V presents our conclusions.

II. Modeling

In this section, models of the gas turbine engine, generators, and
energy storage elements are described. A simple relationship
between the shaft speeds of the gas turbine engine and the output
power of the generators is used, assuming the dynamics of the
generators are much faster than the dynamics of the gas turbine
engine; and a first-order model is adopted to represent the dynamics
of the energy storage elements. The engine model, generator models,
and energy storage element models are assembled into a system level
model in which one generator is connected to the HPS and the other
generator is connected to the LPS of the gas turbine engine. Note that
the assembledmodel is able to represent subsystem-level interactions
visible in the simulation results.
Then, a linearmodel of the gas turbine enginewith two generators is

obtained via system identification, followed by a linear transformation
of all the states of the linear model to physical states. Note that the
identified linear model takes into account the interactions between the
gas turbine engine and the generators. Finally, the identified linear
model, the generator models, and the energy storage element models
are combined to obtain the complete linear predictionmodel to be used
in MPC control design.

A. Gas Turbine Engine

The JT9D gas turbine engine model provided with the T-MATS
package [28] is used to represent engine dynamics. T-MATS is a
Simulink-based tool for thermodynamic system simulation that was
developed and released by NASA to facilitate research involving gas
turbine engine simulations and control of the kind pursued in this
paper. Unlike other packages, T-MATS is open to public use. It
includes generic modeling libraries and is suitable for gas turbine
engine modeling. The JT9D gas turbine engine model represents the
dynamics of shaft speeds, pressures, and flows invarious components
of the engine and predicts engine thrust. The model is developed and
verified based on data from the numerical propulsion system
simulation [29]. The thrust Fg is controlled using the fuel-to-air ratio
(FAR) as a control input.

B. Generators

The two generators are each connected to different shafts of the gas
turbine engine: one to the HPS, and one to the LPS. We refer to the
generator that is connected to the HPS as the high-pressure shaft
generator (HPSG) and the generator that is connected to the LPS as

the low-pressure shaft generator (LPSG). Then, the power requested
from the HPSG PHreq and the power requested from the LPSG PLreq

are two additional control inputs in our system. The total output
power from the generatorsPGT

is the sum of the output powers of the
HPSG PH and LPSG PL. The power difference between two
generators PD is one of the outputs of the system and is defined
as PH − PL.
Assuming that the dynamics of the generators are much faster than

those of the gas turbine engine [31], a simple relationship between the
shaft speeds of the gas turbine engine and the output power of the
generators is adopted based on given efficiencies of the generators:

PH � NH × τEH
× ηH;

PL � NL × τEL
× ηL (1)

whereNH , τEH
, and ηH are, respectively, the shaft speed, the torque on

the shaft, and the efficiency of the HPSG; and NL, τEL
, and ηL are,

respectively, the shaft speed, the torque on the shaft, and the
efficiency of the LPSG. Thus, given electrical power outputs of the
generators, the torques that the generators create on the gas turbine
engine shafts can be computed according to

τEH
� PH

NH × ηH
;

τEL
� PL

NL × ηL
(2)

Note that the preceding electrical power system representation is
suitablewhen given the specific control objectives in this paper, and it
is justified by the timescale separation between the engine dynamics
and the dynamics in the electrical power system. In the subsequent
analysis and simulations, constant values of the efficiencies
(ηH � ηL � 0.9) are assumed.

C. Energy Storage Elements

The energy storage element model is as follows:

dEj

dt
� −Pj (3)

whereEj is the total energy stored in the energy storage j,Pj is power
to/from the energy storage j, and j indicates the type of energy
storage element. In this paper, a battery and/or ultracapacitor are
exploited as the energy storage elements, so j ∈ fB;Cg, where B
indicates the battery andC indicates the ultracapacitor. Then, the state
of charge (SOC) is given by

SOCj �
Ej

EjMax

(4)

where EjMax
is the maximum energy that can be stored in the energy

storage j. The total output/input power of the energy storage elements
PEST

is the sum of the output/input power of all the energy storage
elements. Then, the total output power PT is the sum of the total
output powers from the generators PGT

and the total output/input
powers of the energy storage elements PEST

.

D. Linear Design Model

1. System Identification and Linear Transformation

The design of our MPC controller is based on a linear prediction
model. Because our gas turbine engine model is essentially of the
black-box type, either analytical or numerical (finite difference-
based) linearization cannot be easily implemented. Consequently, the
linear model is identified based on the input–output response data
collected from the nonlinear model of the engine near a nominal
operating point. The nominal operating point is the same as the one
used for verifying the model in [29] (27,593 lbf thrust and FAR of
0.0187), and PHreq � PLreq � 0 MW.
Our linear model to be identified has three inputs (FAR,PHreq, and

PLreq) and five outputs [HPS speed, LPS speed, thrust, low-pressure
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compressor (LPC) surge margin, and high-pressure compressor
(HPC) surge margin. The surge margins are added as outputs to the

model to predict the evolution of the surgemargin constraints over the
prediction horizon.
To identify the linear predictionmodel at a given operating point, a

system identification approach is followed. The input–output dataset

is based on a 400 s trace generated when chirp signals are applied to
each of FAR, PHreq, and PLreq channels for 100 s individually; and
then it is applied to all inputs in combination for another 100 s. The

magnitude of chirp signals is set to 0.001 for δFAR and 0.5 for δPHreq

and δPLreq, where δ designates the deviation from steady-state values
at the operating point. The chirp signal frequency ranges between

0 and 1.8 Hz. After the set of input–output data is obtained by
simulating the nonlinear model, mean removal is applied so that only

variations from the steady state are reflected in the signals.
Based on such input–output data collected around a specific

operating point, the linear model of order five is identified using the
system identification toolbox in MATLAB, and it is verified to be
both asymptotically stable and fully controllable. This identified

linear model has the following form:

δ _x � Aδx� Bδu;

δy � Cδx (5)

where δx is the state, δu is the input deviations from the operating

point, δy is the output deviations from the operating point,A ∈ R5×5,
B ∈ R5×3, and C ∈ R5×5. The resulting linear model from system

identification typically has C ≠ I, which indicates that the states are
not physical. Becausemodels with physical states have advantages in
terms of state estimation (e.g., nonphysical states must be estimated

even if physical states are measured) and control design (e.g.,
switching between different linear state feedback controllers is
straightforward), a state transformation is constructed to obtain

C � I. Specifically, let δz � δy, so δz is the physical state. Then,

δz � Cδx ⇒ C−1δz � δx ⇒ _C−1δz� C−1δ_z � δ _x (6)

Substituting for δ _x from Eq. (5) yields

_C−1δz� C−1δ_z � Aδx� Bδu ⇒ C−1δ_z � Aδx� Bδu (7)

Because δx � C−1δz,

C−1δ_z � AC−1δz� Bδu ⇒ δ_z � CAC−1δz� CBδu (8)

LetA 0 � CAC−1,B 0 � CB, and δx � δz. Then, the new system is
as follows:

δ _x � A 0δx� B 0δu;

δy � C 0δx � Iδx (9)

where now δx is the physical state, and

δx �

2
66664

δxNH

δxNL

δxFg
δxSMLPC

δxSMHPC

3
77775; δu �

2
4 δFAR
δPHreq

δPLreq

3
5 (10)

Here δxNH
is the HPS speed deviation, δxNL

is the LPS speed

deviation, δxFg is the thrust deviation, δxSMLPC
is the LPC surge

margin deviation, and δxSMHPC
is the HPC surge margin deviation.

The components of the control input vector are δFAR, δPHreq, and

δPLreq; and they represent the deviations in the respective inputs.
Note that choosing the order of the linear model equal to five is

essential for this transformation procedure to apply.
To confirm linearmodel accuracy,we have generated another 100 s

trace of input–output data for validation purposes. This trace was

constructed similarly to the one used to generate system identification
data but with the chirp signals frequency range being between 0 and
3.2 Hz, and chirp signals were applied to all inputs channels in
combination for 100 s. The agreement between the validation data
and the identified linear model was 81.34% for HPS speed, 80.24%
for LPS speed, 81.41% for thrust, 63.80% for LPC surge margin, and
82.62% for HPC surge margin. The agreement is defined in terms of
the normalized root mean square error as

agreement �%� � 100 ×
�
1 −

ky − ŷk
ky − yavgk

�
(11)

where y is the measurement vector, ŷ is the estimate vector, yavg is the
mean of y, and k ⋅ k denotes the 2-norm applied to the respective
vectors of measurements/estimates.
Figure 2 compares step responses of the linearmodel andT-MATS.

These results were obtained at the operating point corresponding
to FAR � 0.0187, and PHreq � PLreq � 0. The T-MATS initially
runs at the steady state; then, step increments of the inputs
δFAR � 0.0001, δPHreq � 0.1 MW, and δPLreq � 0.1 MW are
applied during the time period between 10 and 25 s. The agreement
between the nonlinear model (T-MATS) and the identified linear
model is 94.75% for HPS speed, 86.74% for LPS speed, 93.37% for
thrust, 74.15% for LPC surge margin, and 80.81% for HPC surge
margin; and the average is 85.96%. Note that, if the response of surge
margins is not considered, the average agreement for the step
responses between the nonlinear model and the identified linear
model increases to 91.62%, which is fairly accurate. A comparably
larger mismatch of the surge margin response prediction is
compensated by the auxiliary offset states (see Secs. III.D.2 and
III.D.3). Furthermore, our controller is feedback-based, and feedback
compensates for model inaccuracies.
To confirm model accuracy, we checked the sensitivity of the

results to the choice of signals used for identification. Specifically,we
considered 19 other random frequency subranges (within the overall
0–2.4 Hz range) for the chirp signal that was used to generate input–
output data for identification. This did not substantially change the
results against the validation data.
Steady-state values of thrust, LPC surge margin, and HPC surge

margin deviations as functions of different δFAR, δPH , and δPL for
different operating points based on the nonlinear model are shown in
Fig. 3. In the figure, different operating points (defined by different
thrust levels) are indicated. As observed, the gas turbine engine with
two generators is a highly nonlinear system. In particular, the static
(dc) gains are different at different operating points defined by
different thrust levels. Thus, multiple linear models may be needed to
represent the response at different operating points.

2. Combined Linear Model

The linear model [Eq. (9)] is combined with the generator and
energy storage elements models. The outputs of the integrated system
are the thrustFg, the total powerPT, the power difference between the
two generators PD, and the stored energy in energy storage elements
Ej. The total power is PH � PL � Pj � PHreq � PLreq � Pjreq,
and the power difference between the two generators is
PD � PH − PL � PHreq − PLreq. The combined model has the
following form:

�
δ _x
_Ej

�
�

�
A 0 0

0 0

��
δx
Ej

�
�

�
B 0 0

0 −1

��
δu
Pjreq

�
;

2
66664

δFg

δPT

δPD

δPD

Ej

3
77775�

2
66664

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

3
77775
�
δx
Ej

�
�

2
66664

0 0 0 0

0 1 1 1

0 1 −1 0

0 1 −1 0

0 0 0 0

3
77775
�

δu
Pjreq

�

(12)

For control purposes, two outputs for the power difference between
two generators PD are needed, as described in the next section.
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Fig. 3 Steady-state values of the nonlinear model for different operating points (thrusts).
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Fig. 2 Comparison of step responses of the linear and nonlinear models.
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Thus, the inputs in Eq. (12) are δFAR, δPHreq, δPLreq, and Pjreq; and
the outputs in Eq. (12) are δFg, δPT , δPD, δPD, and Ej.

III. Controller Design

A. Overall Architecture

Our control architecture is shown in Fig. 4. The control system
consists of a power split map and feedback controller designed as an
MPC controller. The power split map determines the maximum and
minimum optimal power differences (PDreqmax

and PDreqmin
) between

the two generators as a function of the requested thrust levelFgreq and
a total electrical power PTreq command. Then, the MPC controller
generates the four control signals (FAR, PHreq, PLreq, and Pjreq) to
track the thrust, the total electrical power, and the optimal power
difference setpoints while enforcing system constraints.

B. Optimal Power Split

In this section, the gas turbine engine behavior and operating
regions are analyzed for different electrical power loads and
operating points in steady state based on the models described in
Sec. II. In particular, fuel consumption and compressor surgemargins
are considered.
In the previous work [30], the optimal power split map was based

on a point that minimized fuel consumption for a given thrust and
total electrical power output. In this paper, we generalize this
approach and define the optimal power split range in which the fuel
consumption deviates from the optimal fuel consumption by nomore
than 0.3%. Examples of the fuel-optimal power split ranges obtained
by numerical optimization applied to our model for thrust levels of
21,593, 27,593 and 32,593 lbf are shown in Fig. 5. The lines
correspond to different levels of total electrical power, and they

represent fuel consumption as a function ofPH percentage for a given
total electric power level. The black dotted lines indicate the optimal
PH percentage where fuel consumption is minimal for given thrust
and total electrical power output. The black solid lines indicate the
interval of PH percentage values within which the fuel consumption
is not worse than 0.3% of optimal; this interval changes, depending
on the total electric power level and thrust. Thus, staying within the
fuel-optimal split range (between the black solid lines) yields good
fuel efficiency: that is, nomore than 0.3%worse than that for the fuel-
optimal split line (black dotted lines).
As observed, when the total electrical power is small, the fuel-

optimal power split range is large: we have much control flexibility.
However, when the total electrical power is large, the fuel-optimal
power split range is small, and hence an accurate control strategy is
necessary for fuel efficient operation at large electrical power levels.
The safe operation of the gas turbine engine also has to be ensured.

Thus, an additional requirement to maintain sufficient fan, LPC, and
HPC surge margins is considered in the definition of the power split
range. Specifically, 15% as the minimum surge margin for the fan,
20% as the minimum surge margin for LPC, and 14% as the
minimumsurgemargin forHPCare chosen for our control design and
simulation-based case studies.
The surgemargins as functions ofPH percentage at different levels

of thrust and electrical power are shown in Fig. 6. The black circles
indicate the power split that yields the highest surge margin for the
given thrust and electrical power output, and the black dotted lines
indicate the surge margin lower bounds for each compressor. Thus, if
the black circle lies below the black dotted line, it is impossible to
satisfy the surge margin constraint for the given situation. Note that
the fan always satisfies the lower limit, but LPC and HPC do not
satisfy the lower limits for certain situations.
Note also that using the LPSG more increases the fan and LPC

surge margins, and using the HPSG more increases the HPC surge
margin. Furthermore, for some split ranges for the fan and LPC, the
surge margins increase as the total electrical power output increases.
We now consider the power split ranges that satisfy both fuel

efficiency and surge margin constraints for the given thrust and total
electrical power level. See Fig. 7.
Not all values of PH percentage in the fuel-optimal power split

range satisfy the surge margin limits. For instance, for 27,593 lbf of
thrust and the total electrical power of 1.7 MW, the PH percentage of
40%, as indicated by the cross, is within the fuel-optimal range, but it
violates the HPC surge margin limit. The optimal power split range
that takes into account the fuel efficiency constraints and surge
margin limits is indicated in the shaded region of Fig. 7. The total
electrical power output becomes more limited as the thrust increases,
as expected. The optimal power split ranges for thrust varying
between 21,593 and 32,593 lbf and total electrical power varying
between 0 and 3 MWas indicated in Fig. 7.
Note that, for a given thrust and total electrical power, the optimal

power split range equivalently prescribes lower and upper bounds for
the power difference (PD � PH − PL) between the HPSG and LPSG.
Rather than using these values as constraints, in our MPC controller
design, we choose to use both of these bounds (PDreqmin

and PDreqmax
),Fig. 4 Control system architecture.
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respectively, as setpoints in the cost function for PD. As a result, PD is

maintained in the range between these two setpoints as we have

verified by simulations. This design approach leads to good

performance.

C. Energy Storage Elements Control Strategy

The energy storage SOC is constrained between 40 and 60%.

These SOC constraints are treated as soft in the control design. The

setpoint for the energy storage SOC is changed according to the

following rule-based strategy:
1) When the thrust and load are decreased, track the high SOC

setpoint, which is 90% in our simulation case study (charge).
2) When the thrust and load are increased, track the low SOC

setpoint, which is 10% in our simulation case study (supply).
3) When one is decreased and the other is maintained, track the

high SOC setpoint (charge).
4)When one is increased and the other is maintained, track the low

SOC setpoint (supply).
5) For all other cases, track the setpoint corresponding to the

midrange between the lower and upper limits (maintain desired SOC).

The basic idea behind these rules is to charge the energy storage if

extra power is available and discharge the energy storage if extra

power is needed. Given an SOC setpoint for the energy storage j
(SOCjd ), the stored energy setpoint of the energy storage j can be
computed based on Eq. (4) as follows:

Ejd � SOCjd × EjMax
(13)

Thus, the stored energy setpoint in theMPC controller can be used
instead of the SOC setpoint because the stored energy is one of the
outputs of the linear model for our MPC controller design.

D. Rate-Based MPC Controller Design

1. Scaled Model

To alleviate the effects of different orders of magnitude of the
inputs and outputs for the MPC controller, the inputs and outputs of
the linear model are scaled before controller design.Wewant to scale
the inputs and outputs such that the maximum value of each element
in the scaled inputs and outputs is one.
Let δus designate the vector of scaled inputs and δusmax

be the
maximum value of the scaled inputs so that each element in δusmax

is
one. Let the vector of the maximum values of the inputs δu be given
by δumax � �δu1max

δu2max
: : : δuimax

�T. Then, the relationship between
the inputs and the scaled inputs is defined as
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Fig. 7 Fuel and surge margin optimal power split ranges.
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δu � Suδus (14)

where Su is the input scaling matrix:

Su �

2
664
δu1max

0 0 0

0 δu2max
0 0

0 0 : : : 0

0 0 0 δuimax

3
775 (15)

Let δys be the vector of scaled outputs and δysmax
be the maximum

value of the scaled outputs so that each element in δysmax
is one.

Assume that the maximum value of the outputs is known. Let δy be
the outputs and δymax � �δy1max

δy2max
: : : δyjmax

�T be the maximum
value of the outputs. Then, the relationship between the outputs and
scaled outputs is defined as

δy � Syδys (16)

where Sy is the output scaling matrix:

Sy �

2
664
δy1max

0 0 0

0 δy2max
0 0

0 0 : : : 0

0 0 0 δyjmax

3
775 (17)

Assume that the unscaled linear system from Eq. (12) has the
following form:

δ _x � A 0 0δx� B 0 0δu

δy � C 0 0δx�D 0 0δu (18)

Substituting Eqs. (14) and (16) into Eq. (18) yields

δ _x � A 0 0δx� B 0 0Suδus

Syδys � C 0 0δx�D 0 0Suδus (19)

Then, the scaled system is

δ _x � A 0 0δx� B̂δus

δys � Ĉδx� D̂δus (20)

where B̂ � B 0 0Su, Ĉ � S−1y C 0 0, and D̂ � S−1y D 0 0Su. Themodel with
the scaled inputs and outputs is used for control design.

2. Offset State

Before the rate-based model for MPC design is introduced, we
describe how the nominal linear discrete-timemodel can be augmented
with extra offset states to compensate for errors between linear model
predictions and the response of the actual nonlinear system. The
approach of compensating for model mismatch using offset states has
also been used in other predictive control applications, such as for
referencegovernors [32,33]. For the design of rate-basedMPC, a linear
discrete-timemodel is needed. Let the discrete-time linearmodel of the
system have the following form:

δxk�1 � A 0
dδxk � B 0

dδuk;

δyk � C 0
dδxk �D 0

dδuk (21)

where k indicates discrete time instant, and yk denotes the output on
which constraints are imposed. Suppose that the actual nonlinear
system is given by

Xk�1 � f�Xk;Uk�;
Yk � g�Xk� (22)

The offset state at the time instant t is defined as follows:

dt � Yt − �δyt � yno� (23)

where δyt is the vector of outputs of the linearized model (deviations
from the nominal values) at the time instant t, and yno is the vector of

nominal values of the output at which the model is linearized. We

assume that themeasurements or accurate estimates ofYt are available

so that the current value of the offset state dt can be computed. Then,

the linear prediction model is given by

δxk�1jt � A 0
dδxkjt � B 0

dδukjt;

dk�1jt � dkjt;

δykjt � C 0
dδxkjt �D 0

dδukjt � dkjt (24)

where the standard notation in predictive control is used to designate

predictions, e.g., δxkjt is the predicted state k steps ahead when the

prediction is made at the time instant t. In the sequel, this approach

is used for handling surge constraints; hence, we assume (motivated

by existing literature; see, e.g., [34]) that accurate estimates or

measurements of surge margins are available in the gas turbine engine

control strategy to be able to compute d0jt � dt.

3. Rate-Based MPC

Thedesign process of the rate-basedMPCcontroller is nowdescribed.

The states of the linear model used for prediction are assumed to be

available frommeasurements and appropriatelydesigned estimators.The

rate-based MPC design described in this section is for the system

configurationwith a single energy storage element and two surgemargin

offset states. Other system configurations are handled similarly.
The discrete-timemodel is obtained using a sampling period of 0.04 s

based on the scaled input–output model in Eq. (20). A rate-based MPC

controller can be designed to perform set point tracking based on the

discrete-time prediction model shown, without extra offset states, as

δxk�1 � Adδxk � Bdδuk; δyk � Cdδxk �Ddδuk (25)

where A6×6
d , B6×4

d , C5×6
d , D5×4

d , and δyk��δFg δPT δPD δPD Ej �T .
The control objective is to follow a requested command (setpoint) r
where r � � δFgreq δPTreq δPDreqmax

δPDreqmin
Ejd �T ; that is,

follow thrust requests, total electrical power requests, optimal

maximum power difference requests, optimal minimum power

difference requests, and stored energy requests, respectively. Then, the

state and control increments are defined as

Δxk � δxk�1 − δxk; Δuk � δuk�1 − δuk (26)

and the error between the outputs yk and setpoints r is defined as

ek � Cdδxk �Ddδuk − r (27)

Then,

Δxk�1 � AdΔxk � BdΔuk;

ek�1 � CdΔxk �DdΔuk � ek;

δxk�1 � δxk � Δxk;

δuk�1 � δuk � Δuk (28)

Equation (28) can be extended with two surge margin offset states

and two compensated surge margin states as described in Sec. III.D.2.

The extended linear prediction model is as follows:

Δxk�1 � AdΔxk � BdΔuk;

ek�1 � CdΔxk �DdΔuk � ek;

δxk�1 � δxk � Δxk;

δuk�1 � δuk � Δuk;

dk�1 � dk;

δ �xk�1 � Fδxk�1 � dk�1 � Fδxk � FΔxk � dk (29)

where dk is the 2 × 1 surge margin offset states vector, δ �xk�1 is

the 2 × 1 compensated surge margin deviations vector, and

F � �02×4I2×2�. The cost function to be minimized is given by
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JN �
XN−1

k�0

eTkjtQekjt�ΔuTkjtRΔukjt;

subject to the constraints δxmin≤ δxkjt≤ δxmax; k�0; : : : ;N;
δumin≤ δukjt≤ δumax; k�0; : : : ;N−1;
Δumin ≤Δukjt ≤Δumax; k�0; : : : ;N−1

(30)

where N is the prediction horizon;Q is a 5 × 5 diagonal weight matrix

associated with the five errors; R is a 4 × 4 diagonal weight matrix

associated with the four inputs; ekjt is the predicted error k steps ahead
when theprediction ismadeat time instant t;δukjt is thepredicted inputk
steps ahead when the prediction is made at time instant t; δxmin and

δxmax designate state bounds; and δumin; δumax;Δumin, and Δumax
designate the bounds on the control inputs and their time rates of change.

Note that the cost function is constructed to penalize the deviation of
power difference between the two generators PD from the maximum
power difference setpoint PDreqmax

and the minimum power difference
setpoint PDreqmin

, where these setpoints are computed from optimal
power split ranges. The sameweights are used for both tracking errors.
This strategy maintains PD in between the two setpoints, and hence
within/in the middle of the optimal power split range.
The aforementioned trackingMPC formulation can be rewritten as

a standard MPC problem (to which standard MPC solvers are
applicable) for an extended system with a larger state vector:

xextkjt �
h
ΔxTkjt eTkjt δxTkjt δuTkjt dTkjt δ �xTkjt

i
T

(31)

and the extended state prediction model given by

xextk�1jt �

2
6666664

Ad 0 0 0 0 0

Cd I5×5 0 0 0 0

I6×6 0 I6×6 0 0 0

0 0 0 I4×4 0 0

0 0 0 0 I2×2 0

F 0 F 0 I2×2 0

3
7777775
xextkjt �

2
6666664

Bd

Dd

0

I4×4
0

0

3
7777775
Δukjt

(32)

For this extended system, the state penalty matrix has the form

Qext �

2
6666664

0 0 0 0 0 0

0 Q 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
7777775

(33)

Table 1 Agreement between the validation data and identified linear model at each operating point

Operating point determined by thrust level, lbf

20,593 21,593 22,593 23,593 24,593 25,593 26,593 27,593 28,593 29,593

HPS speed 94.11% 91.89% 92.48% 88.54% 82.82% 82.19% 83.38% 81.34% 80.60% 89.54%
LPS speed 92.66% 92.73% 82.14% 80.39% 79.00% 83.50% 81.36% 80.24% 82.32% 87.54%
Thrust 93.72% 93.21% 89.14% 84.78% 87.11% 82.69% 83.00% 81.41% 82.10 88.87%
LPC surge margin 90.44% 86.29% 84.46% 76.60% 72.83% 64.32% 64.97% 63.80% 69.89% 79.59%
HPC surge margin 90.02% 92.43% 52.71% 42.85% 51.72% 68.44% 40.84% 82.62% 43.69% 89.94%
Average 92.99% 91.31% 80.19% 74.63% 74.70% 76.23% 71.11% 77.88% 71.72% 87.09%

Table 2 Constraints for
LQR and MPC controllers

LQRa MPC

Input constraints

FAR N/A � inf
PH , kW N/A 0 ≤
PL, kW N/A 0 ≤
_FAR, /s N/A �0.0005
_PH , kW/s N/A �1000
_PL, kW∕s N/A �1000

State constraints

SMFAN, % N/A 15 ≤
SMLPC, % N/A 20 ≤
SMHPC, % N/A 14 ≤

aN/A denotes “not applicable.”

Fig. 8 Simulink model for simulating the closed-loop system with the offset MPC.
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and the control penalty matrix isRext � R. Two choices of prediction
horizon and sampling period are considered: N � 100 with a
sampling period of 0.04 s (which corresponds to 4 s of prediction),
and N � 30 with a sampling period of 0.12 s (which corresponds to

3.6 s of prediction). TheMPT [16] is used to implement and simulate

our MPC controller. Hard constraints are imposed on the power

output of the generators to be positive and power to/from the energy

storage elements. Soft constraints are imposed on surge margins and

stored energy of the energy storage elements.

E. Multiple MPC Controllers

The rate-based MPC controller exploits a single linear model

obtained as a linearization of the nonlinear model at 27,593 lbf of

thrust and zero electrical load. If the system operates far from this

nominal operating point, model inaccuracies may lead to poor

closed-loop performance. The standard approach to address this issue

[35–37], sometimes called switched MPC, is to design a set of linear

MPC controllers based on linear models at several operating points,

Table 3 Parameters for LQR and MPC controllers (Inf, infinity)

Uncoordinated
LQR

Integrated
LQR

Integrated
MPC

Sampling time, s 0.04 0.04 0.04
Prediction horizon, steps Inf Inf 30
Constraint horizon,
steps

N/A N/A 30

Control horizon, steps Inf Inf 10
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Fig. 10 Comparison of integrated LQR and MPC controllers.
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Fig. 9 Comparison of uncoordinated LQR and integrated LQR controllers.
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and then switch between the corresponding MPC controllers

depending, in our case, on the engine thrust level. The switching

process can be summarized as follows:
1) If the current operating point is different from the previous

operating point, go to step 3. Otherwise, go to step 2.
2) Generate control input using the current controller; then, return

to step 1.
3) Switch the controller and initialize the previous linear state as

follows:

δxold � 0 (34)

4) Update the previous input as follows:

δuold � δuold − �un0 − uold0� (35)

where un0 is the nominal input at the new operating point, and uold0 is
the nominal input at the previous operating point.
5) Update the current linear state as follows:

δx � Adδxold � Bdδuold (36)

where Ad and Bd are the discrete linear system matrices at the new
operating point.
6) Compute the input for the MPC controller as follows:

xcont � � �δx − δxold�T eT δxT δuTold dT δxT � dT �T (37)

where e is the measured error, and d is the vector of offset states.
Then, generate the control input using the current controller and
return to step 1.

Our switching MPC design was based on 10 operating points
corresponding to thrust levels of 20,593, 21,593, 22,593, 23,593,
24,593, 25,593, 26,593, 27,593, 28,593, and 29,593 lbf. At each
operating point, the linearized model was generated using identification
techniques as in Sec. II.D.
The agreements between the validation data and identified linear

models have been computed for each operating point as described in
Sec. II.D.1. See Table 1. Because the LPC and HPC surge margin
behavior is highly nonlinear, as shown in Fig. 3, the LPC and HPC
surge margins agreements are relatively poor when compared to the
other agreements. However, these inaccuracies can be handled by
using the extra offset state as described in Sec. III.D.2. The 10 MPC
controllers used in the switched MPC design are generated based on
these linearized models and the same weights.

IV. Simulations and Results

The results of different simulation case studies are reported in this
section. First, uncoordinated linear quadratic regulators, integrated
LQRs, and integratedMPCs are compared to show the benefits of the
integrated control and of the MPC. Second, the responses with
different energy storage elements are compared, and the benefits of
adding energy storage elements to the system are illustrated. Third,
LQR, MPC, MPC with surge margin offset states (offset MPC), and
10 MPC [multiple MPC (MMPC)] control designs are compared.
TheMPC controllers with offset states for the systems configurations
with and without energy storage elements are also compared.
The control objective is to satisfy the surge margin constraints,

maintain the requested thrust level, and supply the requested
electrical power during a 90 s simulation. All the simulations start
from steady state with Fg � 27;593 lbf, LPC surge
margin � 44.7%, HPC surge margin � 17.3%, FAR � 0.0187,
and PHreq � PLreq � Pjreq � PT � 0 MW. The initial energy
storage SOC is 50%, and the desired SOC range is between 40 and
60%. The state and input constraints are summarized in Table 2.
Because LQR controllers do not enforce constraints, no constraints
are defined for them.
The charge/discharge rate constraints of the energy storage

elements vary based on their types, so these constraints are as
indicated for each simulation.
All simulations are performed on the fully nonlinear model of the

system. The Simulinkmodel of the closed-loop systemwith the offset
MPC controller and the energy storage elements is shown in Fig. 8.

A. Performance Metrics

Performance metrics have been defined to compare different
controllers. The first metric is the average thrust deviation from the
set point FgAvgDev, which reflects the thrust tracking performance
and is defined by

FgAvgDev �
P jFgref − Fgj

nt
or

R td
0 jFgref − Fgj

td
(38)

whereFgref is the thrust setpoint,Fg is the thrust, nt is the number of
samples, and td is the total simulation duration. A smaller value of
FgAvgDev indicates better thrust request tracking.
The second metric is the average total electrical power deviation

from the setpointPTAvgDev
, which reflects the performance in supplying

the requested total electrical power. This metric is defined as
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Fig. 11 Comparison of integrated LQR and MPC controllers with
respect to input constraint handling.

Table 4 Performance comparison of uncoordinated LQR, integrated LQR, and
integrated MPC

Uncoordinated LQR Integrated LQR Integrated MPC

Wf , kg 84.74 84.77 84.59
FgAvgDev, lbf 236.13 109.05 191.79
PTAvgDev

, kW 0 7.42 32.48
nsmv, times 5 5 2
tdsmv

, s 1.6∕1.36∕0.68∕2.28∕0.92 1.44∕0.12∕1.16∕1.16∕0.48 1.36∕1.32
SMMaxV , % 2.78∕2.89∕0.13∕0.48∕2.49 3.90∕0.02∕3.47∕0.17∕0.97 0.34∕0.03
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PTAvgDev
�

P jPTref
− PT j

nt
or

R td
0 jPTref

− PT j
td

(39)

where PTref
is the total electrical power setpoint (i.e., the sum of

required electrical loads), andPT is the total electrical power generated

by the system. A smaller value of PTAvgDev
indicates better total

electrical power tracking, i.e., better supply of the electrical loads.

The next set of metrics is introduced to characterize the surge

margin (SM) violations. The metrics are as follows: the number of

surge margin violations nsmv, the duration of the ith violation tidsmv
,

and the maximum amount of the ith violation SMi
MaxV .

The final metric is the total fuel consumption wf. A smaller value

of wf indicates better fuel efficiency.

B. Comparison of Uncoordinated and Coordinated Control

In this section, three different controllers are compared:

uncoordinated LQR, integrated LQR, and integrated MPC. For the

purpose of this comparison, the system without the energy storage

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

F
g 

[lb
f]

104 Thrust

-0.5

0

0.5

1

1.5

2

2.5

P T   
[M

W
]

Total Electrical Power

Reference
Constraint
MPC
LQR1
LQR2

20

25

30

35

40

45

50

S
ur

ge
 M

ar
gi

n 
[%

]

LPC Surge Margin

13

14

15

16

17

18

19

20

S
ur

ge
 M

ar
gi

n 
[%

]

HPC Surge Margin

Constraint
MPC
LQR1
LQR2

0 10 20 30 40 50 60 70 80 90
Time [s]

0 10 20 30 40 50 60 70 80 90
Time [s]

0 10 20 30 40 50 60 70 80 90
Time [s]

0 10 20 30 40 50 60 70 80 90
Time [s]

Fig. 12 Comparison of integrated LQR and MPC controllers.

Table 5 Specification of battery cell and ultracapacitor cell

AMP20 battery cell K2 ultracapacitor cell

Weight, g 496 520
Stored energy, nominal,W ⋅ h 65 4
Discharge power, nominal, kW 1.2 4.4 (maximum 9.4)
Voltage, nominal, V 3.3 2.85

Table 6 Specifications of three different energy storage element configurations

Battery–ultracapacitor pack
(BAT–UCAP pack)

Battery pack (BAT pack) Ultracapacitor-pack (UCAP pack) Battery pack Ultracapacitor pack

Number of cells 77 88 38 44
Weight, kg 39 46 19 23
Volume, liter 20.3 36 10 18
Stored energy, nominal, kW ⋅ h 5 0.35 2.4 0.176
Voltage, nominal, V ≈250 ≈250 ≈125 ≈125
Discharge rate, nominal, kW 92 389 (maximum 824) 45 193 (maximum 413)

Table 7 Parameters and energy storage element input constraints for MPC
controllers

MPC

BAT–UCAP pack

Without BAT pack UCAP pack BAT pack UCAP pack

Controller parameters

Sampling time, s 0.04 0.04 0.04 0.04 0.04
Prediction horizon, steps 100 100 100 100 100
Constraints horizon, steps 100 100 100 100 100
Control horizon, steps 30 30 30 30 30

Input constraints

Pj, kW N/A �100 �800 �50 �400
_Pj, kW∕s N/A � inf � inf � inf � inf
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elements is considered. The uncoordinated LQR controller only

adjusts the FAR for the engine, whereas the generator power requests

are managed according to a simple strategy of the form

PHreq �
PTreq � PDreq

2
;

PLreq �
PTreq − PDreq

2
(40)

In the integrated LQR and MPC controllers, a single controller is

used for the whole system to provide coordinated control of three

inputs. Each choice of the controller was tuned for best performance.

The controller parameters are shown in Table 3.
The simulation results of the uncoordinated LQR and integrated

LQR controllers are shown in Fig. 9. As shown in the left subfigures,

both controllers accurately track the total electrical power setpoint.

However, the uncoordinated LQR controller yields larger thrust

deviations when the step change of electrical power occurs because it

does not account for the interactions between the generators and the gas

turbine engine. As expected, both controllers violate surge margin

constraints.
The simulation results of the integrated LQR and integrated MPC

controllers are shown in Fig. 10. As shown in the right subfigures, the

integrated MPC controller satisfies the soft surge margin constraints,

except for a few small violations, whereas the integrated LQR

controller does not. Note that the tracking of thrust and total electrical

power is worse for the integrated MPC than for the integrated LQR

controller; however, unlike the LQR, the former enforces the

constraints; see Fig. 11.
The performance metrics for the three controllers are compared in

Table 4. The uncoordinated LQR controller yields the best electrical

power tracking performance but the worst thrust tracking performance.

The integrated LQR controller yields the best thrust tracking

performance and good electrical power tracking performance.However,

both LQR controllers violate the HPC surge margin constraint five

times, sometimes by a large amount (2.89% for the uncoordinated LQR

and 3.9% for the integrated LQR at time instants of 50.52 and 10.68 s,

respectively), whereas the integratedMPC controller only violates these

constraints twice by very small amounts.
To illustrate the advantages ofMPC over the LQR, note that tuning

the LQR controller less aggressively could remove the surge margin

violations but, at the same time, the thrust and total electrical power

tracking will be slower for all the transients, even for small transients,

for which there is no danger of surge margin violations. Examples of

different tunings of the integrated LQR controller and comparison

with the integrated MPC are shown in Fig. 12.

As indicated in the figures, tuning the integrated LQR controller

less aggressively, indicated by LQR1 in Fig. 12, reduces the surge

marginviolations. However, it stills yieldsmore surgemarginviolations

and, furthermore, worse thrust tracking performance than the integrated

MPC. If the integrated LQR controller is tuned further (less

aggressively), as indicated by LQR2 in the figures, most of the surge

margin violations disappear, but the thrust and total electrical power

tracking are poor. Meanwhile, the MPC controller can provide

aggressive thrust and total electrical power tracking when there is no

danger of surge margin constraint violation, as well as less aggressive

tracking when the surge margin constraints are active. Furthermore, in

addition to the surge margins, there are other constraints handled by the

MPC controller (e.g., positive power limit, charge and discharge rate of

the energy storage elements, etc.) that theLQRcontroller is not designed

to handle. In the subsequent sections, the uncoordinated LQR controller

design is omitted, and only the integrated controllers are considered.

C. Comparison of Different Energy Storage Elements

In this section, the system responses with different energy storage

elements are compared, and the benefits of adding energy storage

elements are illustrated. Batteries and ultracapacitors are chosen as

the energy storage elements. The specifications of the chosen battery

cells [38] and ultracapacitor cells [39] are listed in Table 5.

Based on the specifications, three different energy storage element

configurations are considered: a battery pack, an ultracapacitor pack,

and a battery–ultracapacitor pack.All the energy storage elements are

limited to less than 50 kg and 40Lwhen considering the limited space

Table 8 Performance comparison of the systems without energy
storage and with different energy storage elements

MPC

Without BAT pack UCAP pack BAT–UCAP pack

Wf , kg 84.59 84.56 84.6 84.57
FgAvgDev, lbf 191.79 187.17 191.87 188.84
PTAvgDev

, kW 32.48 26.69 15.02 19.32
nsmv, times 2 1 2 2
tdsmv

, s 1.36∕1.32 1.32 1.36∕1.72 1.32∕0.76
SMMaxV 0.34∕0.03 0.34 0.34∕0.06 0.34∕0.01
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Fig. 13 Comparison of battery and ultracapacitor packs.
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on aircraft. Note that, currently, relatively small stored energy is
considered compared to our electrical load requests. The specifications
of the energy storage elements are shown in Table 6.
There are clearly differences between the battery pack and the

ultracapacitor pack in terms of the stored energy and the discharge rate.
The battery pack hasmuch larger stored energy than the ultracapacitor
pack, but the ultracapacitor pack has a much faster discharge rate than
the battery pack. The battery–ultracapacitor packs can take advantage
of both characteristics. Based on the specifications in Table 6, the
controller parameters and the energy storage element input constraints
(charge/discharge rate constraints) are defined as shown in Table 7.
All of the MPC controllers designed for systems with three

different storage element configurations use the same controller
parameters and constraints, except for the constraints on Pj that are
determined based on the discharge rate of the energy storage
elements. Constraints on _Pj are not considered. The simulation
results of MPC with the battery pack and the ultracapacitor pack are
shown in Fig. 13.
There are clear differences in the responses observed for the

two types of energy storage elements. The SOC of the ultracapacitor
pack varies more than the SOC of the battery pack because the
ultracapacitor pack has much smaller stored energy than the battery
pack, whereas the ultracapacitor pack is much faster than the battery
pack, so it can supply the electrical loads very quickly; see the right-
bottom subfigure, which shows the time history of the total electrical
power in the time interval between 18 and 32 s. However, due to
limited stored energy, the ultracapacitor cannot supply the electrical
loads for a long time; instead, it needs to be recharged to recover a
SOC in the 40–60% range, as shown in the left-bottom SOC
subfigure in the time interval between 20 and 25 s. Meanwhile, the
battery pack allows for better thrust command tracking, as shown in
the right-upper subfigure in Fig. 13,which represents the trajectory of
thrust in the time interval between 60 and 75 s. This is reasonable,
given the large stored energy in the battery pack. The battery pack can
deliver electrical power for a long time, which helps the gas turbine
engine to use power for thrust generation instead of supplying the
generators to satisfy the loads. In addition, the battery pack reduces
surge margin violations, as shown in Table 8. Thus, for faster
electrical loads supplying, the ultracapacitor pack appears to be a
suitable energy storage choice; however, for faster thrust responses
and stable gas turbine engine operation, the battery pack is preferred.
We next compare cases without and with the battery–

ultracapacitor pack that take advantage of the characteristics of

both types of energy storage elements. The simulation results are

shown in Fig. 14.

As shown in the right subfigures in Fig. 14, with the energy storage

element, the controller has better thrust and electrical power tracking.

The comparison of the performance of all the cases is shown in

Table 8. All energy storage element cases yield better performance

than the case without the energy storage element, except for the

second surge margin violation with the ultracapacitor pack. The

second surge margin violation for the ultracapacitor pack is longer

and larger than in the case without energy storage elements. This

violation likely occurs because the ultracapacitor pack needs to be

charged frequently, which requires the gas turbine engine to provide

more output than in the case without the ultracapacitor. Thus, using

the battery–ultracapacitor pack appears to be the preferred choice

from the perspective of system response to thrust commands and

electrical loads; and if the impact on weight, packaging, and cost is

not considered.

Note that the energy storage elements are beneficial, based on our

simulation results, despite the fact that their stored energy is limited in

this study. Evenmore substantial benefits are expected for the energy

storage elements with larger stored energy in future MEA.
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Fig. 14 Comparison of controller performance without and with energy storage elements.

Table 9 Parameters for LQR, MPC, offset MPC, and
MMPC controllers

LQR MPC MMPC Offset MPC

Sampling time, s 0.12 0.12 0.12 0.12
Prediction horizon, steps Inf 30 30 30
Constraint horizon, steps N/A 30 30 30
Control horizon, steps Inf 10 10 10

Table 10 Performance comparison of single LQR, singleMPC,
MMPC, and single MPC with offset controllers

LQR MPC MMPC Offset MPC

Wf , kg 75.34 74.47 75.13 74.28
FgAvgDev, lbf 170.06 719.72 497.93 718.93
PTAvgDev

, kW 7.50 101.14 92.18 101.14
nsmv, times 4 1 1 0
tdsmv

, s 1.44∕1∕5.4∕0.48 5.36 7.76 0
SMMaxV , % 3.9∕3.86∕1.24∕0.97 1.06 1.62 0
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D. Comparison of LQR, MPC, Offset MPC, and MMPC Controllers

In this section, the LQR, MPC, offset MPC, and MMPC
controllers are compared. The MMPC controller based on
linearizations at multiple (10 in our case) operating points and the
MPC controller with extra offset states are considered as potential
approaches to better deal with the nonlinearities. For the purpose of
quantifying the potential benefits of these design steps, the energy
storage elements are not included in the analysis, and a broader range
of thrust profiles is used compared to the previous simulations. The
controller parameters are shown in Table 9.
For all the controllers, the same parameters and constraints are

used. The closed-loop performance comparison is shown in Table 10.
As expected, the LQR controller yields the best thrust and

electrical load tracking, but it violates the surge margin constraints
four times with amaximum of 3.9%. It also consumes the largest fuel
amount. The MPC controller is able to reduce the surge margin
violations; nevertheless, it violates the surge margin constraint once
at 5.36 s with a maximum violation of 1.06%. This violation is likely
due to the discrepancy between the prediction model and the actual
nonlinear plant behavior. The MMPC design yields better thrust and
electrical loads tracking than the MPC controller, but the surge
margin constraint violation is longer and has larger magnitude than
the MPC controller, which is likely due to surge margin prediction
being insufficiently accurate. The offset MPC design yields very
similar tracking performance to that of theMPC controller, and it has
no violation of the surge margin constraint. The simulation results of
the MPC, MMPC, and offset MPC controllers are shown in Fig. 15.
The black vertical lines indicate the switching time instants for

MMPC controllers. As observed, switching does not cause improper
behaviors of the system. For most of the simulation, all three
controllers yield similar results, but the major differences can be
found in the time interval between 60 and 80 s. Specifically, between
60 and 70 s, the MPC controller assumes that it does not have an
available HPC surge margin because of inaccurate surge margin
estimation due to being far from the operating point. Thus, it does not
track the thrust setpoint aggressively, whereas the MMPC and offset
MPC controllers are able to correctly account for the available HPC
surge margin; hence, they track the thrust setpoint faster than the
MPC controller. In the time interval between 70 and 80 s, the MPC
and MMPC controllers incorrectly assess that there is an available
HPC surgemargin, so they track the thrust setpoint aggressively; but,
the offset MPC assesses that there is no available surge margin, so it
tracks the thrust setpoint slowly to satisfy the HPC surge margin

constraint and uses the available LPC surge margin. Thus, the offset

MPC performs best in this simulation.
To confirm that the offset MPC is a good design choice, an energy

storage element (the battery–ultracapacitor pack) is added to the offset

MPC controller, and the cases without and with the energy storage

element are compared to each other. The controller parameters and the

constraints can be found in Tables 2, 7, and 9. The performance

comparison is shown in Table 11.
As shown in Table 11, both the thrust and the total electrical power

tracking performance are improved with the addition of the energy

storage, especially in terms of the total electrical power tracking

performance. The fuel consumption is increased as a penalty for

better tracking performance, but the increased amount is relatively

small. The surge margin constraints are perfectly satisfied for both

controllers. The simulation results of offsetMPC controllers with and

without energy storage elements are shown in Fig. 16.
As the left subfigures in Fig. 16 show, the offset MPC with energy

storage elements shows better thrust and total electrical power

tracking. Both SOCs, especially for the ultracapacitor pack, violate

the SOC constraint a small number of times to deal with transient

thrust and electrical power changes, but they quickly recover to their

constrained levels. As shown in the right subfigures, for both

controllers, the power difference between the two generators stays

within the optimal power split ranges for most of the time, which

corresponds to safe and efficient operation.

E. Simulation Results for Offset MPC with and Without Sensor Noise

In this section, sensor noise is added to the measurements to verify

the robustness of the offset MPC controller, and the responses with

and without sensor noise are compared. Specifically, a zero mean
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Fig. 15 Comparison of single MPC, MMPC, and single MPC with offset state controllers.

Table 11 Performance comparison of offset
MPCwith and without energy storage elements

Offset MPC

Without With BAT–UCAP pack

Wf , kg 74.28 74.41
FgAvgDev, lbf 718.93 672.91
PTAvgDev

, kW 101.14 71.35
nsmv, times 0 0
tdsmv

, s 0 0
SMMaxV , % 0 0
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standard deviation Gaussian noise of 0.1% is added to the thrust, as
well as the LPC and HPC surge margins measurements. The
simulation results of offsetMPCwith andwithout sensor noise for the
system configuration with the battery–ultracapacitor are shown
in Fig. 17.
The simulation results show that the offset MPC controller is able

to handle the sensor noise. In the time interval between 70 to 80 s,

when high electrical power is required and the thrust increment is

requested near the HPC surge margin limit, some oscillations are

observed because of the sensor noise, but the controller is able to

handle the situation without having surge margin violations. Note

that the computational delay can be accommodated by using the

advanced-step MPC [40]; other delays, if they exist, can be handled

by augmenting the discrete-time model with extra delay states.

V. Conclusions

In this paper, the development of a coordinated control strategy for
a gas turbine engine, an advanced dual-generator subsystem, and
energy storage elements for more-electrical aircraft and all-electrical
aircraft in the presence of large transient thrust and electrical loads
has been pursued. The control design exploited rate-based model
predictive control, for which various enhancements and design
options have been considered and analyzed. Specifically, single
MPC, multiple MPC, and offset MPC strategies were applied and
compared to uncoordinated linear quadratic regulator and integrated
LQR strategies in full nonlinear model simulations.
The comparison of closed-loop responses for the cases of the

uncoordinated LQR and integrated LQR indicated that the integrated
control was capable of outperforming uncoordinated control in terms

2

2.5

3

3.5

F
g 

[lb
f]

× 104 Thrust

0

1

2

P T   
[M

W
]

Total Electrical Power

Reference
Constraint
Without Energy Storage
With Energy Storage

0

20

40

60

80

S
O

C
 [%

]

SOCConstraints
Battery
Ultracapacitor

-0.5

0

0.5

1

1.5
Electrical Power Difference between HPC & LPC Gens

PH - PL:Without Energy Storage

PH - PL:With Energy Storage

-1

0

1

2 Reference
PH - PL:Without Energy Storage

-2

-1

0

1

2

P D
 [M

W
]

P D
 [M

W
]

P D
 [M

W
]

Reference
PH - PL:With Energy Storage

0 10 20 30 40 50 60 70 80 90
Time [s]

0 10 20 30 40 50 60 70 80 90

-2
0 10 20 30 40 50 60 70 80 900 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 9040 50 60 70 80 90

Time [s]

Fig. 16 Comparison of offset MPC with and without energy storage elements.

2

2.2

2.4

2.6

2.8

3

3.2

F
g 

[lb
f]

104 Thrust

-0.5

0

0.5

1

1.5

2

2.5

P T   
[M

W
]

Total Electrical Power

Reference
Constraint
With Noise
Without Noise

20

25

30

35

40

45

50

S
ur

ge
 M

ar
gi

n 
[%

]

LPC Surge Margin

12

14

16

18

20

22

S
ur

ge
 M

ar
gi

n 
[%

]

HPC Surge Margin

Constraint
With Noise
Without Noise

0 10 20 30 40 50 60 70 80 90
Time [s]

0 10 20 30 40 50 60 70 80 90
Time [s]

0 10 20 30 40 50 60 70 80 90
Time [s]

0 10 20 30 40 50 60 70 80 90

Fig. 17 Comparison of offset MPC controllers with and without sensor noise.

SEOK, KOLMANOVSKY, AND GIRARD 2553

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

5,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

25
62

 



of tracking performance. The integrated LQR controller yielded
better thrust and total electrical power tracking than the integrated
MPC controller: however, with more surge margin constraint
violations and without granting any protection against violation of
other constraints.
To improve prediction model accuracy, MMPC and offset MPC

design approaches were pursued. In the latter case, auxiliary offset
stateswere used to represent the error between the linearmodel-based
estimates of the constrained outputs and their actual value from the
nonlinear model. The simulation results showed that a single MPC
with offset states was able to satisfy the surge margin constraints,
whereas MMPC, which is a more complex controller, had some
constraint violations. Thus, the single rate-based offset MPC
controller appeared to be the best strategy to control the system. The
closed-loop system performance with different types of energy
storage elements was also analyzed, with the combined battery and
the ultracapacitor pack providing the best solution; however, the
weight and size impact of such an approach need to be carefully
analyzed. Including energy storage elements into the system
improved performance. For instance, in the current simulations, the
offset MPC controller with the battery–ultracapacitor pack improved
the average thrust deviation by 6.4%, the settling time of thrust by
3.47%, the average total electrical power tracking by 29.45%, and the
settling time of the total electrical power by 8.65% as compared to an
offset MPC controller applied to the system without energy storage
and without any constraint violations. In addition, the offset MPC
controller was able to handle sensor noise. The current results support
the perspective that the aircraft architecture with dual generators
attached to different gas turbine engine shafts and a battery–
ultracapacitor pack, controlled by a single offset MPC controller, is
appealing in terms of fast, safe, and efficient thrust and electrical load
delivery for future MEA and AEA.
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