
Machine-Learning-Augmented Predictive Modeling of Turbulent
Separated Flows over Airfoils

Anand Pratap Singh∗

University of Michigan, Ann Arbor, Michigan 48104

Shivaji Medida†

Altair Engineering, Inc., Sunnyvale, California 94086

and

Karthik Duraisamy‡

University of Michigan, Ann Arbor, Michigan 48104

DOI: 10.2514/1.J055595

A modeling paradigm is developed to augment predictive models of turbulence by effectively using limited data

generated from physical experiments. The key components of the current approach involve inverse modeling to infer

the spatial distribution of model discrepancies and machine learning to reconstruct discrepancy information from a

large number of inverse problems into corrective model forms. The methodology is applied to turbulent flows over

airfoils involving flow separation.Model augmentations are developed for the Spalart–Allmarasmodel using adjoint-

based full-field inference on experimentallymeasured lift coefficient data.When thesemodel forms are reconstructed

using neural networks and embeddedwithin a standard solver, it is shown that much improved predictions in lift can

be obtained for geometries and flow conditions that were not used to train themodel. The neural-network-augmented

Spalart–Allmarasmodel also predicts surface pressures extremely well. Portability of this approach is demonstrated

by confirming that predictive improvements are preserved when the augmentation is embedded in a different

commercial, finite element solver. The broader vision is that, by incorporating data that can reveal the form of the

innate model discrepancy, the applicability of data-driven turbulence models can be extended to more general flows.

I. Introduction

T HE accurate modeling and simulation of turbulent flows are
critical to several applications in engineering and physics. From

the viewpoint of affordability, turbulence closure models [either in
Reynolds-averaged Navier–Stokes (RANS) form or in a near-wall
context in an eddy-resolvingmodel]will continue to be indispensable
for the foreseeable future [1]. Existing turbulence closures have
proven to be quite useful in many contexts, but it is well-recognized
that complex effects such as flow separation, secondary flows, etc.,
are poorly modeled.
Although new and increasingly complex models are being

developed [2–4] and demonstrated to be accurate in some problems,
it can be argued that there has not been a significant improvement in
predictive accuracy over the past 15 years. As a result, the majority of
the RANS models that are used in both industrial and academic
computational fluid dynamics (CFD) solvers were initially
developed and published in the 1990s. A critical issue in turbulence
model development is that even themost sophisticatedmodel invokes
radically simplifying assumptions about the structure of the
underlying turbulence. Thus, the process of developing a practical
turbulence model combines physical intuition, empiricism, and
engineering judgment while constrained by robustness and cost
considerations. As a result, even if a model is based on a physically
and mathematically appealing idea (for example, elliptic relaxation
[5,6]), the model formulation typically devolves into the calibration
of a large number of free parameters or functions using a small set of
canonical problems.
Against this scenario, our ability to perform detailed high-fidelity

computations and resolvedmeasurements has improved dramatically

over the past decade. At the same time, data science is on the rise
because of improvements in computational power and the increased
availability of large datasets. This has been accompanied by
significant improvements in the effectiveness and scalability of data
analytics and machine-learning techniques. Given these advances,
we believe that data-driven modeling and machine learning will play
a critical role in improving the understanding and modeling of
turbulence.
In the study of turbulent flows, machine-learning techniques

appear to have first been used to recreate the behavior of near-wall
structures in a turbulent channel flow [7] and to extract coherent
spatiotemporal structures [8]. With a view toward quantifying model
errors, several researchers [9–12] have used experimental data to
infer model parameters. Cheung et al. [13,14] employed Bayesian
model averaging [15] to calibrate model coefficients. Edeling et al.
[11] used statistical inference on skin-friction and velocity data from
a number of boundary-layer experiments to quantify the parametric
model error. These methods provide insight into parametric
uncertainties and address some of the deficiencies of a priori
processing of data.
Dow and Wang [16,17] made progress toward addressing

nonparametric uncertainties by inferring the spatial structure of the
discrepancy in the eddy viscosity coefficient based on a library of
direct numerical simulation (DNS) datasets. The discrepancy
between the inferred and modeled eddy viscosity was represented as
aGaussian random field and propagated to obtain uncertainty bounds
on the mean flow velocities.
Emory et al. [18],Gorle et al. [19], andEmory et al. [20] introduced

ad hoc but realizable perturbations to the nondimensional Reynolds
stress anisotropy tensor aij to quantify structural errors in eddy
viscosity models. Tracey et al. [21] applied neural networks to large-
eddy simulation data to learn the functional form of the discrepancy
in the eigenvalues of aij and injected these functional forms in a
predictive simulation in an attempt to obtain improved predictions.
Xiao et al. [22] inferred the spatial distribution of the perturbations in
aij and turbulent kinetic energy by assimilatingDNS data.Weatheritt
[23] used evolutionary algorithms on DNS data to construct
nonlinear stress–strain relationships for RANS models.
Ling and Templeton [24] used machine-learning-based classifiers

to ascertain regions of the flow inwhich commonly used assumptions
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break down. King et al. [25] formulated a damped least-squares
problem at the test-filter scale to obtain coefficients of a subgrid-scale
model. In both of these works, results were demonstrated in an a
priori setting.
Duraisamy et al. [26], Tracey et al. [27], Parish et al. [28], and

Singh and Duraisamy [29] took the first steps toward improving
predictivemodel forms by defining a data-drivenmodeling paradigm
based on field inversion and machine learning (FIML). The FIML
approach consists of three key steps: 1) inferring the spatial
(nonparametric) distribution of themodel discrepancy in a number of
problems using Bayesian inversion, 2) transforming the spatial
distribution into a functional form (of model variables) using
machine learning, and 3) embedding the functional form in a
predictive setting. Predictions were demonstrated in turbulent
channel flows and transitional flows with imposed pressure
gradients. Note that steps 1 and 2 involve offline (training)
computations, whereas step 3 is online (prediction). Ling et al.
[30,31] and Wang et al. [32] bypassed the inference step and used
machine learning directly on DNS data to obtain a more
comprehensive model (compared to Tracey et al. [21]) for the
anisotropy tensor aij. Ling et al. [30] used neural networks to
reconstruct aij and propagate the model to velocity field predictions.
Wang et al. [32] used random forests to inject the model correction as
a one-time postprocessing step to a computed baseline solution.
In this work, we extend the paradigm of data-driven modeling to

assist in the development of turbulence models and predictive
simulation of turbulent flow over airfoils. In particular, we
demonstrate the ability of inverse modeling to provide quantitative
modeling information based on very limited experimental data and
the use of machine learning to reconstruct this information into
corrective model forms. When these model forms are embedded
within a standard solver setting, it is shown that significantly
improved predictions can be achieved.

II. Problem and Approach

Turbulent flow separation over lifting surfaces is critical to many
applications, including high-lift systems, offdesign operating
envelope of new vehicles, airframe noise, wind turbines,
turbomachinery flows, and combustors. A RANS turbulence
modeling capability that can confidently predict separated flows in
these various contexts would be a key enabling factor in the
development of aerospace and energy systems of the future. The
ability to accurately model the effects of strong adverse pressure
gradients (APGs) is crucial to the prediction of boundary-layer
separation in wall-bounded flows; however, most one- and two-
equation RANS turbulence models fail to accurately predict stall
onset for airfoils at high angles of attack, where strong APGs are
encountered. Consequently, they tend to overpredict the maximum
lift and stall onset angle for a given set of flow conditions.
Celic and Hirschel [33] compared the performance of 11 eddy-

viscosity-based turbulencemodels for aerodynamic flowswithAPGs
and concluded that none of the models performed satisfactorily for
flow past airfoils near maximum lift conditions. This deficiency can
be attributed to the underlying assumptions and simplifications that
are part of all eddy-viscosity-based turbulence models. One such
assumption implies a balance between the production and dissipation
of turbulent kinetic energy. This assumption allows for the scaling of
velocity profiles in the defect layer, and it is instrumental in the
formulation of many turbulence models. However, it is well known
that practical boundary layers under strong APGs are not in
equilibrium. In addition, the outer layer scaling is affected by the
APG, whereas the viscous sublayer and log layer are relatively
unchanged. Many turbulence models that assume equilibrium
conditions fail to produce satisfactory behavior for strong APG
flows. Certain models with stress limiters, such as the shear-stress
transport version of the k–ω turbulence model [34], Wilcox’s
modified k–ω [35] model, and the strain-adaptive formulation of the
Spalart–Allmaras turbulence model [36,37], are known to perform
slightly better than the other models. Although using more
sophisticated turbulence models (nonlinear eddy viscosity models,

second moment closure models, etc.) might produce better results,
poor robustness and higher computational costs associated with the
usage of these methods are major deterrents to their wider
applicability for practical flows. These models are still calibrated
using information from canonical configurations and applied in
situations dissimilar to those in which calibrations were made. In the
present work, more realistic flows are used to guide model
development.
As proof of concept for the feasibility of data-assisted modeling,

Tracey et al. [27] applied machine learning to a database of solutions
of a known turbulence model. The known turbulence model was
considered to be the surrogate truth. These solutions primarily
involved flat plates and airfoils. A deficient turbulent model (with
deliberately removed source terms) was then augmented with these
machine-learned functional forms. This augmented turbulence
model was able to accurately reproduce radically different flows such
as transonic flow over awing. Although it was relatively easy tomake
a priori (and one-time) evaluations of the trained model, key lessons
were learned about the formulation of the learning problem because
the neural network (NN) (artificial neural network) had to be
evaluated and injected during every iteration of a converging partial
differential equation solver.
The aforementioned work demonstrated that, if the

underlying model form was discoverable and the data were
comprehensive enough, a machine-learning technique such as
an artificial neural network could adequately describe it. The
challenge in predictive modeling, however, is to extract an
optimal model form that is sufficiently accurate. Constructing
such a model and demonstrating its predictive capabilities for a
class of problems is the objective of this work. This data-driven
framework is specifically demonstrated in predictions of
turbulent, separated flows over airfoils.
A schematic of the approach is provided in Fig. 1. Various aspects

of the schematic are organized in the paper as follows: Section III
introduces the inversion framework that uses limited experimental
data Gexp to generate fields of modeling information β�x� that
account for the model discrepancy. Section IV introduces the role of
machine learning in transforming information from a number of
inverse problems βj�x� into model forms β�η�, where η represents
local field variables available in the model. Section V demonstrates
that embedding model corrections β during the simulation process
can improve predictive capabilities. Section VI presents a summary
of this work and perspectives on the extension of these techniques to
general turbulence modeling.
Discretization: The flow solver ADTURNS [38–40] is based on a

cell-centered finite volume formulation of the compressible RANS
equations on structured grids. The inviscid fluxes are discretized
using the third-order MUSCL scheme [41] in combination with the

Fig. 1 Schematic of field inversion and machine-learning framework
for data-augmented turbulence modeling.
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approximate Riemann solver of Roe [42]. The diffusive contributions
are evaluated using a second-order-accurate central differencing
scheme. Implicit operators are constructed using the diagonalized
alternating direction implicit scheme [43].
For the computations, the flow domain over airfoils is discretized

using a C grid with 291 points in the wraparound direction and 111
points in the wall-normal direction. At this resolution, which
corresponds to 200 grid points on the airfoil surface, numerical errors
are low enough to not obscure the treatment of turbulence modeling
errors. This was verified by performing a grid-convergence study.
The far-field boundaries are located 35 chord lengths from the airfoil
surface. Characteristic freestream boundary conditions are used for
the flow variables at the far field, and the eddy viscosity is set to the
fully turbulent value.
The field inversion procedure requires gradients with respect to

every grid point. These gradients are most effectively determined
using a discrete adjoint approach [44]. The required derivatives are
computed as detailed in Appendix A.

III. Field Inversion

Our philosophy of inferring and reconstructing one or more
corrective functional forms is generally in scope with regard to data-
driven modeling [28,29]. Although the methodology is applicable to
both eddy viscosity and Reynolds stress models, the focus of the
present work is restricted to the Spalart–Allmaras (SA) model [37]
(refer to Appendix B for detailed formulation). The baseline SA
model can be written as

D~ν

Dt
� P�~ν;U� −D�~ν;U� � T�~ν;U� (1)

whereU represents the Reynolds averaged conserved flow variables;
and P�~ν;U�, D�~ν;U�, and T�~ν;U� represent the production,
destruction, and transport terms, respectively. The preceding
equation is used with a nonlinear functional relationship to derive an
eddy viscosity νt from ~ν, which is then used in a Boussinesq
formulation to close the RANS equations. The major source of
modeling deficiency is the structural form of the model rather than
parameters within the imposed model form. Thus, benefits from
classical parameter estimation will be limited. In other words, the
functional forms of the terms inEq. (1) are themselves inaccurate, and
they require a reformulation.
The goal, then, is to construct generalizable functional corrections

to the model form in Eq. (1). Accordingly, a spatially varying term
β�x� is introduced as a multiplier of the production term P�~ν;U�:

D~ν

Dt
� β�x�P�~ν;U� −D�~ν;U� � T�~ν;U� (2)

It must be recognized that the introduction of β�x� changes the
entire balance of the model (and need not be interpreted as merely a
modification of the production term). It is equivalent to adding a
source term δ�x� � �β�x� − 1�P�x�. Inferring β, however, leads to a
better conditioned inverse problem, as β is nondimensional and has a
simple initial value of unity.
Assume a flow configuration (with a particular geometry, angle of

attack, Reynolds number, etc.) consisting of Nm control volumes.
GivenNd data points (such as wall pressure, skin friction, etc.)Gj;exp,
we define the following inverse problem to extract the optimal field
β ≡ β�xn�: 1 ≤ n ≤ Nm:

min
β

XNd

j�1

�Gj;exp −Gj�β��2 � λ
XNm

n�1

�β�xn� − 1�2 (3)

whereGj�β� is the output of the RANSmodel. This inverse problem is
most straightforwardly interpreted in a classical frequentist sense with
Tikhonov regularization [45], or loosely as the maximum a posteriori
estimate in a Bayesian setting assuming Gaussian distributions and a
prior of unity. In the former setting, λ is a regularization constant; in the

latter, it represents the ratio of the observational covariance to the prior

covariance.§ It is to be noted that, in the context of this work, the

solution of a large number of inverse problems is used as a means to

define corrective functions. Thus, finer-grained interpretations or

formulations of the inverse problem and treatment of uncertainties,

although important, are not of a primary concern in this work. A more

formal treatment of observational errors and prior confidence has been

pursued inpreviouswork [28], but applicationwas restricted to simpler

problems.
Nevertheless, anoptimal value ofβ is sought at every discrete location

in the computational domain and used in Eq. (2), conjoined with the

conservation equations for the ensemble-averaged mass, momentum,

and energy. The resulting inverse problem is extremely high-

dimensional, and an efficient adjoint-based optimization framework is

employed. For further details, please refer to Appendix A.
If experimental surface pressure coefficients Cp are used as data

points [29], the following minimization problem is formulated:

min
β

"XNd

j�1

h
Cpj;exp

− Cpj
�β�

i
2 � λ

XNm

n�1

�β�xn� − 1�2
#

(4)

However, in themajority of experimental tests of flowover airfoils,

the surface pressure is not measured. Therefore, we use the lift

coefficient Cl as the observational data. Thus, the following

optimization problem is formulated:

min
β

�
�Cl;exp − Cl�β��2 � λ

XNm

n�1

�β�xn� − 1�2
�

(5)

The two objective functions [Eqs. (4) and (5)] were confirmed to

lead to a similar solution to the inverse problem (Fig. 2). Although

there are discrepancies in the poststall region, the near-wall features

in β�x� are almost identical, resulting in indistinguishable surface

pressures. The entire set of inverse problems in this work is solved for

the lift-based objective function [Eq. (5)] with λ � 4 × 10−4. This
implies a much higher level of confidence in the experimentally

measured lift compared to the variability of β. The optimal solution

was indeed confirmed to be insensitive to order-of-magnitude

variations in λ.
To further probe the validity of using pressure-based information

for field inversion, Appendix C presents an example in which the

Reynolds stress field is available. Additional information on the

characteristics of the inversion procedure can be found in [29].
In Sec.V, the ability of the lift-basedmodel correction to accurately

predict surface pressures will be further demonstrated. The ability to

use only the lift coefficient to generate modeling information greatly

enhances the applicability of the current framework to assimilate a

vast amount of available data.
The inverse solution serves as an input to the machine-learning

algorithm while providing qualitative and quantitative insight to the

modeler. It is known that eddy-viscosity-based turbulence models

generate very high levels of turbulence at high angles of attack,

resulting in delayed separation and stall [46]. The inverse solution

adjusts for this deficiency by reducing the generation of turbulence in

the near-wall preseparation region, i.e., the β�x� < 1 region in Fig. 3.
This reduced production results in early flow separation, which can

be observed in the wall shear stress (Fig. 4a). Furthermore, Fig. 4b

reinforces the fact that a complex relationship exists between the

model corrections and the pressure gradient parameter¶:

Π � δ�

τw

dP

ds

§This assumes that the covariance matrices are Gaussian and diagonal.
¶Note that δ is the displacement thickness of the boundary layer and dP∕ds

is the pressure gradient.
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IV. Machine Learning

The inverse approach presented in the previous section results in an
optimal correction field for a given flow condition and geometry. To
be useful in predictive modeling, the problem-specific information
encoded in β�x�must be transformed into modeling knowledge [28].
This is done by extracting the functional relationship β�x� ≈ β�η�,
where η � �η1; η2; : : : ; ηM�T are input features derived from mean-
field variables that will be available during the predictive solution
process. The functional relationship must be developed by
considering the output of a number of inverse problems
representative of the modeling deficiencies relevant to the predictive

problem. Furthermore, as will be explained in the following,

elements of the feature vector η are chosen to be locally

nondimensional quantities such that the functional relationship β�η�
is useful for different problems inwhich the ηvariables are realizable.

A. Features

To build a set of features η upon which the functional relationship
β�η� will be based, a logical place to start would be to identify the

independent variables in the baseline SA model. The source terms in

the SA model are a function of four local flow quantities ν, ν̂,Ω, and
d, which represent the kinematic viscosity, the SAworking variable,

the vorticity magnitude, and the distance from the wall, respectively.

As discussed in [27], these quantities do not constitute an appropriate

choice for the input feature vector to the machine-learning algorithm.

They are dimensional quantities that may have different numeric

values evenwhen two flows are dynamically similar. Thus, the inputs

are rescaled [27] by relevant local quantities that are representative of

the state of turbulence. An obvious locally nondimensional quantity

in the baseline SA model is χ � ν̂∕ν. We define local scales, ν� ν̂
and d, and introduce an additional variable:

�Ω � d2

ν̂� ν
Ω (6)

With these definitions, the nondimensional versions ( �P; �D) of the

existing production and destruction terms (P, D) are given by the

following:

�P � d2

�ν̂� ν�2 sp � cb1�1 − ft2�
�

χ

χ � 1

��
�Ω� 1

κ2
χ

χ � 1
ft2

�

�D � d2

�ν̂� ν�2 sd �
�

χ

χ � 1

�
2

cw1fw

Fig. 3 βinverse for a representative airfoil.n∕c is the normalized distance

from the airfoil surface.

a) β(x) field using objective function based on Cl b) β(x) field using objective function based on Cp

c) Cp

Fig. 2 Inverse solutions using objective function based on lift and surface pressure coefficients.
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where cb1 and cw1 are constants, ft2 is a function of χ, and fw is a

function of �Ω and χ. Thus, the locally nondimensionalized source

terms in the baseline SA model are dependent only on �Ω and χ.
The set of features that was evaluated includes

n
�Ω; χ; S∕Ω; τ∕τwall; P∕D; fd

o

where S, τ, τwall, and fd represent the strain-rate magnitude, the

magnitude of the Reynolds stress, the wall shear stress, and a

shielding function used in detached-eddy simulation [47],

respectively.

B. Neural Networks

In previous work, supervised learning techniques were

experimentedwith [48], including single-/multiscaleGaussian process

regression [49] and artificial neural networks [50]. In this work, we

pursue NNs because of their efficiency because they can be evaluated

at a computational cost that is independent of the size of the training

data. (We also appreciate that other techniques such as support vector

and polynomial regressors can be as scalable as NNs; thus, the choice

of NNs is based on prior experience rather than on objective

considerations.)
The standard NN algorithm operates by constructing linear

combinations of inputs and transforming them through nonlinear

activation functions. The process is repeated once for each hidden

layer (marked in blue in Fig. 5) in the network until the output layer is

reached. Figure 5 presents a sample NN. For this sample network, the

values of hidden nodes z1;1 through z1;H1
would be constructed as

z1;j � a�1�

�X3
i�1

w�1�
ij ηi

�
(7)

wherea�1� andw
�1�
ij are the activation function andweights associated

with the first hidden layer, respectively. Similarly, the second layer of

hidden nodes is constructed as

z2;j � a�2�

�XH1

i�1

w�2�
ij z1;i

�
(8)

Finally, the output is

y ≈ f�η� � a�3�

�XH2

i�1

w�3�
ij z2;i

�
(9)

Given training data, error backpropagation algorithms [50] are

used to find w�n�
ij .

Once theweights are found, computing the output depends only on

the number of hidden nodes and not on the volume of the training

data. Hyperparameters of the NN method include the number of

hidden layers, the number of nodes in each hidden layer, and the

forms of the activation functions.
The Fast Artificial Neural Network Library [51] is used for this

work. This library uses resilient backpropagation (RPROP; [52]).

Fig. 5 Network diagram for a feedforward NN with three inputs, two
hidden layers, and one output.

Fig. 6 Three different airfoils used for training and testing the neural
network model. Note that axes are scaled differently.

Table 1 Results of fivefold cross
validationa

Fold Training error Validation error

1 0.9403 0.8832
2 0.9272 0.8665
2 0.9293 0.8572
2 0.9404 0.8847
2 0.9401 0.9033

aThe error metric is the coefficients of

determination R2.

a) Skin-friction coefficient b) Pressure gradient parameter

Fig. 4 Prior and posterior quantities for the case in Fig. 3.
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Typically, four layers (including the input and output layers) and 128
neurons (total) were employed with a sigmoid activation function.
During the training stage, a reduction in loss function by a factor of
0.0001 was used as an early stopping criterion.
To train the neural network, fivefold cross validation is performed.

The data are randomly partitioned into five equally sized groups. One
of those groups is used as a validation group, and the rest are used for
training, thus resulting in a total of five test sets (Table 1). In the
following section, the results of the cross-validation procedurewill be
presented.

V. Results

The utility of the data-driven framework is demonstrated in three
wind turbine airfoilswith varying thicknesses: 1) S805, 2)S809, and 3)

S814 (Fig. 6). This specific set was chosen for this work because of the

availability (in the open literature, [53–55]) of the lift and drag polar

from low angles of attack through incipient andmassive separation and

for multiple Reynolds numbers: Re ∈ f1 × 106; 2 × 106; 3 × 106g.
Additionally, detailed pressuremeasurements are available at some test

points.
Full-field inversion was performed for each airfoil at different

combinations of angles of attack and Reynolds number. In all the

cases, inversion was based on just the lift coefficient. For the S809

airfoil atRe � 2 × 106, the lift-based inversionwas compared to the

pressure-based inversion as shown in Fig. 2. Inversionwas followed

by employing the neural network to reconstruct model corrections.

Neural network training was based on the S814 airfoil data at

Reynolds number of 1 and 2 million, which we will refer to as

dataset P. This dataset was chosen because adverse pressure

a) Fold 1 : training b) Fold 2 : training c) Fold 3 : training d) Fold 4 : training e) Fold 5 : training

f) Fold 1 : testing g) Fold 2 : testing h) Fold 3 : testing i) Fold 4 : testing j) Fold 5 : testing

Fig. 7 Neural network training on dataset P, where the x and y axes correspond to the true and predicted values, respectively.

a) β (x) from inverse SA b) β (U) from NN-augmented SA (prediction) c) Pressure coefficient

Fig. 8 Comparison of inverse and NN-augmented predictions (using dataset P) for S809 airfoil at α � 14 deg and Re � 2 × 106.

a) Base SA b) Inverse SA c) NN-augmented SA (prediction)
Fig. 9 Streamlines and X-velocity contour for S809 airfoil at Re � 2 × 106 and α � 14 deg.
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a) Re = 1 ×106 b) Re = 2 ×106 c) Re = 3 ×106

d) Re = 1 ×106 e) Re = 2 ×106 f) Re = 3 ×106

Fig. 11 NN-augmented SA prediction for S805 airfoil using dataset P: experiment (blue), base SA (green), and neural network (red).

a) Re = 1 ×106 b) Re = 2 ×106 c) Re = 3 ×106

d) Re = 1 ×106 e) Re = 2 ×106 f) Re = 3 ×106

Fig. 12 NN-augmented SA prediction for S809 airfoil using dataset P: experiment (blue), base SA (green), and neural network (red).

a) Re = 1 ×106 b) Re = 2 ×106 c) Re = 3 ×106

d) Re = 1 ×106 e) Re = 2 ×106 f) Re = 3 ×106

Fig. 10 Pressure and skin friction for a representative case using grids of different spatial resolutions.
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gradients are the largest. Figure 7 shows the testing and training

results on dataset P.
As schematized in Fig. 1, the mapping β�η� built during the

training process is queried for input features η̂ at every iteration of the
flow solver to obtain outputs β̂ that are embedded into the predictive

model. This process is repeated until convergence. Thus, consistency

is enforced between the underlying flowfield and the model

augmentations. Later in this section, ensemble comparisons based on
different training datasets will also be shown.

A. Predictions

The effectiveness of the inversion and learning is apparent in
Figs. 8 and 9,where the predictions based onmodel P are compared to
the ideal scenario of direct inference on the S809 airfoil based on
experimental data. It has to bementioned that the training dataset was
based on assimilating lift information only.
Figure 10 shows the lift and drag coefficients for all Reynolds

numbers for the S814 airfoil, includingRe � 3 × 106, whichwas not
used in the training set. Clearly, significant improvement in stall
prediction is evident in the lift prediction. As a consequence, the drag
rise is predicted to occur at lower angles of attack than in the baseline
model, which is a trend that is qualitatively correct. Furthermore,
there is no evidence of deterioration of accuracy in the low angle-of-
attack regions, where the original model is already accurate. The
model performs equallywell for airfoil shapes not used in the training
set, i.e., S805 and S809 (Figs. 11 and 12).
The improvement in the quality of the predictions is further

emphasized in Figs. 13–15, in which pressure predictions are shown
for the S809, S805, and S814 airfoils. These results confirm that the
NN-augmented model offers considerable predictive improvements
in surface pressure distributions.
Figure 16 shows the base SA and the NN augmented SA solutions

for two different grid resolutions. The solutions using both the
models suggest that the variability in the solution between the two
grids is much smaller than the corrections introduced by the data
augmentation.

B. Predictive Variability

It is desirable that any new modifications introduced into a
turbulence model do not affect the solution to problems for which the
basemodel is accurate. The results suggest that theNN-augmented SA
model satisfies this requirement. Figure 17 showcases this feature for
the S809 airfoil at a Reynolds number of 2 × 106. The predicted
surface pressure using neural networks trained on different datasets
listed in Table 2 is shown in red lines. Clearly, model augmentations
showvariability, as is apparent inFigs. 17b and17c.Overall, the neural
network-augmentedmodels aremore accurate than the base SAmodel
for all the cases; more important, none of the NN-augmented
predictions diverge from the base SA model at α � 0 deg. Although
this ensemble approach does not qualify as a formal uncertainty
quantification technique, it is nevertheless a useful test to ascertain the
sensitivity of the model output to the training set. If significant
variabilities are revealed in themodel predictions, it serves as awarning
to the user that models may be operating far from conditions in which
they were trained.
Furthermore, Fig. 17 shows that the quality of the NN-augmented

model is sensitive to the selection of the training data. In thiswork, the
best model, which is model “P”, is selected by exploring several
combinations of the datasets. This observation is subjected to the

Fig. 14 Surface pressure coefficient for S805 airfoil atRe � 1 × 106 and
α � f12 deg; 14 degg. Refer to Fig. 8c for the legend.

Fig. 15 Surface pressure coefficient for S814 airfoil at Re � 1.5 × 106

and α � f16 deg; 18 deg; 20 degg. Refer to Fig. 8c for the legend.

a) Cp b) Cf

Fig. 16 Pressure and skin friction (using dataset P) for S809 airfoil atRe � 2 × 106 andα � 14 deg using grids of different spatial resolutions. Solutions
of both the base SA model and the neural-network-augmented SA are grid converged.

Fig. 13 Surface pressure coefficient for S809 airfoil atRe � 2 × 106 and
α � f16 deg; 18 deg; 20 degg. Refer to Fig. 8c for legend. (Not to scale.).
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uncertainty involved with the intermediate steps (feature selection,

machine-learning algorithm, etc.).

C. Portability and Convergence

The entire modeling framework was developed and tested on

ADTURNS, which is a structured finite volume flow solver

augmented with adjoint optimization and neural networks. To

demonstrate the portability of this approach, the NN-augmented SA

model based on dataset P is implemented into AcuSolve, which is a

commercially available unstructured flow solver based on the

Galerkin/least-squares (GLS) stabilized finite element method

[56,57]. Although ADTURNS implements nondimensionalized

RANS equations, AcuSolve implements the dimensional form of

RANS equations. Therefore, developing the neural network model

based on a feature set consisting of locally nondimensional flow

variables, as presented in this work, is essential for portability across

flow solvers.

AcuSolve is a general-purpose solver that is used in a wide variety

of applications such as wind power, automotive, offshore

engineering, electronics cooling, chemical mixing, biomedical,

consumer products, national laboratories, and academic research

[58–62]. The GLS formulation with linear shape functions provides

second-order accuracy for spatial discretization of all variables and

uses tightly controlled numerical diffusion operators to obtain

stability and maintain accuracy. The semidiscrete generalized-alpha

method is used to integrate the equations implicitly in time for steady-

state and transient simulations [63]. The resulting system of

equations is solved as a fully coupled pressure/velocitymatrix system

using a preconditioned iterative linear solver.

Figure 18 shows lift and drag coefficient predictions from

AcuSolve for the S809 airfoil at three Reynolds numbers. The NN

augmentation shows significant improvement in predictions, and its

effectiveness is comparable to that observed in theADTURNS solver

framework. It should be noted that AcuSolve uses a variation of the

SA model that corrects for the rotation and the curvature effects.

These corrections are not used in the ADTURNS code; therefore, the

solutions from these two codes are not expected to be identical, even

for the baseline model.

Figure 19 shows the rate of convergence for the base SA and the

NN-augmented SA for the sample problem. The initial conditionwas

taken to be uniform freestream for all the runs. The NN-augmented

model displays comparable convergence characteristics to the

baseline model, thus demonstrating the portability of the approach.

Additional overhead exists in passing the features η to the NN and

obtaining β at grid locations. Thiswas confirmed to add less than 10%

of the additional compute time compared to the baseline calculation.

a) α = 0 b) α = 14 c) α = 20
Fig. 17 Predicted pressure coefficients for S809 at Re � 2 × 106 using eight different NN-based models, listed in Table 2.

a) Re = 1 ×106 b) Re = 2 ×106 c) Re = 3 ×106

d) Re = 1 ×106 e) Re = 2 ×106 f) Re = 3 ×106

Fig. 18 NN-augmented SA prediction using AcuSolve for S809 airfoil using dataset P: experiment (blue), base SA (green), and neural network (red).

Table 2 List of datasets used to study the impact of
variability of the traininga

Model label Training data

P S814 at Re � 1 × 106, 2 × 106

1 S805 at Re � 1 × 106

2 S805 at Re � 2 × 106

3 S809 at Re � 1 × 106

4 S809 at Re � 2 × 106

5 S805 at Re � 1 × 106, 2 × 106

6 S809 at Re � 1 × 106, 2 × 106

7 S805, S809, and S814 at Re � 1 × 106, 2 × 106

aThe main predictive model is constructed based on dataset P. Note that

Re � 3 × 106 is not included in any of the datasets.
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VI. Conclusions

A data-driven framework comprising full-field inversion and
machine learning was used to develop predictive capabilities for the

modeling of turbulent separated flows over airfoils. This framework
was embedded in a traditional RANS solver to improve the

applicability of the Spalart–Allmaras turbulence model to strong

adverse pressure gradients present in flow past airfoils prestall and
poststall. With a view toward assimilating sparse data from a wide

range of flows, the inversion process was formulated as an
optimization problem to minimize the difference between the

experimentally measured lift coefficient and the model output. In

contrast to parametric inversion, the turbulence model discrepancy
was inferred as a field (i.e., at every grid point in the solution domain).

The resulting model-correction function was then reconstructed
using an artificial neural network as a function of locally

nondimensional flow quantities such as the ratio of eddy to kinematic

viscosity and the vorticity to strain-rate magnitude.
During the predictive process, the neural network (NN) was

queried at every iteration of the flow solver to obtain model
corrections that are embedded into the predictive model. The

resulting data-augmented turbulence model was then used for

predictive simulations of airfoils and flow conditions that were not
part of the neural network training. Extensive tests were made, and

the following conclusions were observed:
1) The data-assisted Spalart–Allmaras model showed significant

improvement over the baseline model in predicting lift and drag
coefficients, and stall onset angles.
2) The model predictions were confirmed to be significantly

improved for airfoil shapes and flow conditions that were not part of
the training set.
3) No deterioration of accuracy was noticed in situations (low

angles of attack) in which the original model was accurate.
4) Though the inference process used only the lift-coefficient data,

the NN-augmented model was demonstrated to provide considerable
predictive improvements of surface pressure distributions. This
reinforced confidence that the procedure did not overfit the model to
the lift data and that predictive improvements were realized for the
right reasons.
5) An ensemble of predictions based on different training sets was

used to assess the sensitivity of themodel outputs to the training data.
Although there was expected variability in the results, the model
augmentations brought predictions closer to the experimental results
for all training sets.
6) Solver convergence was assessed, and the cost overhead for the

NN augmentations was observed to be minimal.
7) Portability of the approach was demonstrated by generating the

data-assisted SA model using a structured finite volume solver and
then using it in AcuSolve, which is a a commercial, unstructured
finite element solver. The predictive improvements were confirmed
to be preserved across both solvers.
Although the present work was focused on demonstrating the

potential of data-driven approaches based on field inference and

learning, much work remains to be done in developing turbulence

models for application inmoregeneral settings. In such situations, the
ensemble of datasets (as in Fig. 17) may be used as a rule of thumb to
indicate the variability of the machine-learning-augmented model.

However, a more formal uncertainty quantification approach that
takes into account the uncertainty in the data, variability of the
training process, and confidence in the baseline model may be
desirable. A simplified form of such an approach has been proposed

(and demonstrated for much simpler problems) in [28].
One immediate avenue to extend this effort is to target specific

engineering applications where current computational fluid
dynamics predictions are unsatisfactory. In this situation, customized

modeling augmentations can be generated to improve predictions.
Furthermore, industrial applications tend to be focused on a class of
problems (for example, wind turbine rotors or turbomachinery
blades) inwhich experimental datamay be available in some regimes.

These types of problems are most amenable to data-augmented
modeling.
The philosophy and formalisms employed in this work are of a

general nature and are not restricted to the type ofmodel or the type of
model discrepancy that is addressed. The inversion/learning/

embedding procedure can be applied, for instance, to address
discrepancies in the Reynolds stress anisotropy [21,32]. In such
endeavors, it would be critical to ensure that themodel augmentations

1) include available experimental data (as one will always be hard
pressed to obtain large-eddy simulation and direct numerical
simulation data in regimes of interest), 2) do not influence regions of

the flow that are adequately represented by the baseline model (near-
wall region in thin boundary layers), and 3) do not degrade the
convergence properties of the solver. There is much to be gained by

carefully exploring a broader set of input features [24,32] and
alternative machine-learning methods [23,49]. Finally, respecting
realizability limits [18,32] and invariance properties [31] will be

necessary to constrain the model, especially when the model is
operating in an extrapolatory mode.

Appendix A: Discrete Adjoint Method for Field Inversion

The formulation and application of field inversion techniques to
turbulence modeling problems was provided in [28,29]. A brief

description is presented herein for completeness. The optimization
procedure to minimize Eq. (4) or Eq. (5) uses a gradient-based quasi-
Newton method employing the limited memory Broyden–Fletcher–

Goldfarb–Shanno algorithm [64]. Because the optimization problem
is extremely high-dimensional (as the number of parameters equals
the number of control volumes Nm), an adjoint approach is required

to efficiently compute gradients. In the adjoint technique, given an
objective function J that we wish to minimize, the total derivative
with respect to the parameter vector

β � fβ�x1�; β�x2�; : : : ; β�xNm
�gT

is given by

a) Lift coefficient b) L2 norm of solver residual
Fig. 19 AcuSolve’s convergence history for S809 airfoil at Re � 2 × 106, α � 12 deg (dashed lines), and α � 14 deg (solid lines).
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dJ
dβ

� ∂J
∂β

� ψT ∂R
∂β

(A1)

In the preceding equation,** R represents the governing equations
and ψ is the vector of adjoint variables, which is determined by�

∂R
∂U

�
T

ψ � −
�
∂J
∂U

�
T

(A2)

The partial derivatives in Eq. (A2) are calculated using the
tapenade [65] tool for automatic differentiation, and the system is
solved using pseudotime stepping. Because β is explicitly present
only as a multiplier to the production term P, the expression for the
gradient is given by

dJ
dβ

� ∂J
∂β

− ψT
~νP (A3)

where ψ ~ν represents the adjoint variable corresponding to the
working variable of the SA model.

Appendix B: Spalart–Allmaras Model

The one-equation Spalart–Allmaras turbulence model [37] is used
for the work presented in this paper. The S-A model solves for the
modified eddy viscosity ~ν, which relates to the kinematic eddy
viscosity νt as follows:

νt � ~νfv1; fv1 �
χ3

χ3 � c3v1
; χ � ~ν

ν
(B1)

The governing equation of the S-A model without the trip terms is
given by the following:

D~ν

Dt
� P −D� 1

σ
�∇ ⋅ ��ν� ~ν�∇~ν� � cb2�∇~ν�2�; (B2)

whereP andD are the production and destruction terms of ~ν given by
the following:

P � cb1 ~Ω ~ν and D � cw1fw

�
~ν

d

�
2

(B3)

~Ω is a function of the vorticity magnitudeΩ and is defined as follows:

~Ω � Ω� ~ν

κ2d2
fv2; fv2 � 1 −

χ

1� χfv1
(B4)

The function fw is defined as follows:

fw � g

�
1� c6w3
g6 � c6w3

�
1∕6

; g � r� cw2�r6 − r�;

r � ~ν
~Ωκ2d2

(B5)

The model constants are cb1 � 0.1355, σ � 2∕3, cb2 � 0.622,
κ � 0.41, cw1 � cb1∕κ2 � �1� cb2�∕σ, cw2 � 0.622, cw3 � 2.0,
and cv1 � 7.1. Freestream boundary is set to fully turbulent with
~ν∕ν∞ � 3, and, ~ν is set to zero at no-slip walls.

Appendix C: Inverse Modeling for Separated Flows

As mentioned in Sec. III, inverse modeling was used to provide
quantitative information about the model discrepancy. Machine-
learning-based augmentations are based on inverse fields that were
generated using lift data. This was confirmed to also result in good
surface pressure predictions. To assess the generality of the procedure
and its impact on other field quantities, the inverse problem was
applied to a NASA benchmark test [66] (Fig. C1), which involved
separated flow over a smooth hump. In this problem, β�x; y� was
inferred with the objective of matching the wall pressure distribution
in the region 0.5 ≤ x∕c ≤ 1.5. Even though the objective function
was only taken to be the surface pressure, improvement was seen in
the Reynolds stress predictions (Fig. C1c). As a consequence of the
overall improvement in the field solution, the predicted length of the
separation bubble was found be 15% more accurate as compared to
the baseline solution. Results could be improved by consideringmore
information from the experiment [29], but this exercise offered
further evidence that, for separated flows, pressure datawerevaluable
in inferring model discrepancy.
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