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The application of gradient-based optimization to wing design could potentially reveal revolutionary
new wing concepts. Giving the optimizer the freedom to discover novel wing designs may increase
the likelihood of multimodality in the design space. To address this issue, we investigate the existence
and possible sources of multimodality in the aerodynamic shape optimization of a rectangular wing.
Our test case, specified by the ADODG Case 6, has a high dimensionality design space and a large
degree of flexibility within that design space. We study several subproblems of this benchmark test
case and analyze the multimodality introduced by each set of variables. We find evidence of mul-
timodality with both inviscid and viscous analysis. In the full case we find that optimization with
inviscid analysis yields multiple non-intuitive local minima. Adding consideration of viscous effects
does not remove the multimodality, but allows the multiple local minima to be explained with physi-
cal reasoning. Additionally, we find that the shape of the optimized wing is highly dependent on the
interplay between induced and viscous drag, providing more incentive to consider viscous effects in
the analysis. The best result found by the optimizer reduces the total drag of the baseline wing by
22%.

Nomenclature
b span
c chord
CD drag coefficient
CL lift coefficient
M Mach number
Re Reynolds number
S planform area
t thickness
V volume
α angle of attack
γ twist

1. Introduction
In 1799, Sir George Cayley first conceived of the fixed-wing airplane [1]. Despite its long history, the airplane

wing is still the subject of active research and design efforts. In recent years, the environmental impact of air traffic and
rising fuel prices have driven continuing improvement in wing and more broadly, aircraft performance. One of the most
notable transformations in the field of aeronautical engineering is due to advances in computational fluid dynamics
(CFD). The burden of preliminary design and analysis has largely shifted from the laboratory to the computer thanks to
the accessibility and efficiency of CFD. Although CFD is an invaluable tool for aerodynamic analysis, wing design is a
highly multidisciplinary undertaking. As such, the development of multidisciplinary design optimization (MDO) has
been an equally important addition to the designer’s toolkit [2]. MDO is concerned with considering multiple facets
of the design problem simultaneously, as opposed to sequentially [3]. This paradigm change in the design process
enables the accurate representation of coupling between physical disciplines and the precise balancing of systematic
trade-offs to achieve an optimal result.
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Many of the applications of MDO to aircraft design have been targeted at optimizing specific configurations or
features. In one of the first demonstrations of numerical optimization in wing design, Hicks and Henne [4] modified the
design of a swept wing with airfoil shape and twist variables to reduce wave drag and increase L/D. Jameson et al. [5]
optimized a wide-body wing and wing-fuselage configuration and recovered a shock-free surface. Several studies
have investigated the optimization of winglets [6–8]. Martins et al. [9] accomplished a CFD-based aerostructural
optimization of a supersonic business jet. More recently, a number of studies have been published on the high-fidelity
design optimization of the Common Research Model (CRM) benchmark wing [10–13]. Application of MDO to future
aircraft concepts like the blended wing-body [14] and D8 [15] has also been a fruitful area of research.

These results have strengthened the credibility of MDO and its applicability to practical aircraft design problems.
However, these studies focused on the refinement of existing technologies, or making good aircraft better. There are
sound reasons for starting an optimization problem from a design that already employs state-of-the-art knowledge
and techniques. In high-fidelity aerostructural optimizations for example, starting the optimization with a poor initial
design can prevent the optimizer from finding a feasible solution. However, in the long term, we want to make MDO
robust enough that it can be used to explore the full design space and discover novel designs. Ideally we would
be able to start an optimization from a sphere and recover an airplane that would be optimally suited to its mission
requirements. Gagnon and Zingg [16] tested the plausibility of this endeavor and succeeded in transforming a half-
sphere into a blended wing-body shape by maximizing L/D. There is a growing body of research that seeks to improve
the methods for exploratory wing design optimization. For example, Jansen et al. [8] used a panel aerodynamic model
coupled with a beam finite-element model to optimize a nonplanar wing composed of four connected wing panels
that could assume any shape. They were able to recover, in order of increasing design constraints the following
configurations: box-wing, C-wing, raked wingtip, and winglet. Hicken and Zingg [17] demonstrated the use of a
B-spline geometry parametrization to enable the large shape changes expected in an exploratory optimization study.
They minimized the induced drag of a generic rectangular wing and produced a wing with increased span and vertical
extent. Kenway et al. [18] developed a robust parametrization scheme and mesh warping algorithm that enabled the
aerostructural planform optimization of a turbo-prop transport aircraft wing.

One of the difficulties associated with exploratory optimization is the possibility of multimodality in the design
space. Generally, gradient-based optimization algorithms are used in aerodynamic shape optimization due to the
need to reduce the number of computationally expensive function evaluations. However, gradient-based algorithms
converge to a single local optimum, and require multiple starting points to find out if there are multiple local minima.
Chernukhin and Zingg [19] conducted a lift-constrained induced drag minimization of a rectangular wing with respect
to planform variables. They reported finding seven local minima when starting from 192 random perturbations of the
baseline geometry. Two explanations arise for this apparent multimodality. The first, at the suggestion of the authors
of that study, is that such local minima do exist in reality, but that design constraints render most of them infeasible in
practical design problems. The alternative explanation is that the multimodality is an artifact of modeling inaccuracies
or a restrictive parametrization. For example, the study in question was conducted with Euler CFD and it might be
the case that considering the effects of viscosity would eliminate the multimodality in the design space. There is
evidence that high-fidelity analysis may be the key to attenuating the multimodality in the design space. Lyu et al. [10]
were able to recover very similar solutions in the shape optimization of the CRM even when starting from wings with
randomly perturbed shapes. Although the solutions were not identical, there was no meaningful difference between
them. While this result seems like strong evidence against multimodality in the case of local shape variables given
sufficient modeling fidelity, we are interested to see if the same holds true for optimization involving large changes in
the wing planform shape.

Motivated by this lack of understanding, the AIAA Aerodynamic Design Optimization Discussion Group (ADODG)
created Case 6 to analyze the existence of multimodality in the exploratory optimization of a wing a. This test case
gives the optimizer significant freedom to transform a generic rectangular wing into an optimal wing. Using the
rectangular wing baseline configuration from this test case, we first investigate the implications of each design vari-
able included in the case. We then analyze the full case and provide discussion of the physical reasoning behind the
optimization results.

2. Methodology
2.1. Multi-Fidelity Approach
The main goal of the ADODG Case 6 optimization problem is to study the existence of multiple local minima in the
design space. In addition to this primary goal, we seek to understand whether such local minima reflect the real physics

ahttps://info.aiaa.org/tac/ASG/APATC/AeroDesignOpt-DG/default.aspx
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involved, or are merely artifacts of the modeling and discretization errors. In addressing these two goals, we found
it useful to combine results from multiple sources of information. All told, we use three different physics models to
analyze the aerodynamic performance of the wing: the Reynolds-Averaged Navier-Stokes (RANS) equations with a
Spallart–Allmaras (SA) turbulence model, the compressible Euler equations, and a vortex-lattice method (VLM). The
RANS and Euler equations are solved using ADflow [20, 21] and the VLM is implemented in OpenAeroStruct b. The
details of these solvers and their respective workflows are described in the following two sections.

2.2. High-fidelity Optimization: MACH
The MDO of aircraft configurations with high fidelity (MACH) framework offers a powerful, automated approach to
aircraft design [22]. For aerodynamic shape optimization, MACH provides a hyperbolic mesh generator (pyHyp), a
free-form deformation geometry parametrization scheme (pyGeo) [18], an unstructured mesh warping module (py-
WarpUstruct) [18], and ADflow, a finite-volume CFD solver for cell-centered multiblock and overset meshes. ADflow
solves the compressible Euler, laminar Navier–Stokes, and RANS equations with a second-order accurate spatial dis-
cretization. For the Euler-based optimizations conducted in this study, we use the diagonalized alternating direction
implicit (DADI) algorithm for the initial multigrid iterations and then switch to a Newton–Krylov (NK) solver to
tightly converge the residual for each solution. For the RANS analysis, we use a Runge–Kutta algorithm for the multi-
grid and the same approach with the NK solver. The greatest benefit of the MACH framework for optimization is that
each of the modules embedded in the optimization loop provides efficient, accurate gradient computation in addition
to its primary function.

The baseline wing geometry for the Euler and RANS analyses is planar with a chord of 1.0 m and a NACA 0012
airfoil cross-section. The wingtip cap is a perfect revolution about the airfoil chord line and adds 0.06 m to the 3.0 m
rectangular portion of the wing, bringing the total semispan to 3.06 m. The Euler geometry has a sharp trailing edge,
while the RANS geometry has a blunt trailing edge with a thickness of 2.52 mm. We generate the surface meshes using
Ansys ICEM CFD and employ pyHyp to create hyperbolically smoothed volume meshes. The meshes are oriented
with the x-axis in the streamwise direction, the z-axis out the wing, and the y-axis in the vertical direction. The
quality of these meshes is tested in a grid convergence study at the nominal baseline condition (M = 0.5, Re = 5×106,
CL = 0.2625), the results of which are plotted in Figure 1. Table 1 lists the data for the baseline grids that are used in
the optimization studies.
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Figure 1. Grid convergence study at M = 0.5, Re = 5×106 and CL = 0.2625. The zero-spacing grid, computed with Richardson extrapola-
tion, is marked with RE for each set of grids.

We use a free-form deformation (FFD) volume method to manipulate the geometry. In this approach, the design
variables are linked to the control points of a B-spline volume. The surface nodes of the mesh are embedded inside
this B-spline volume and any displacements of the control points are interpolated to the surface mesh. These manip-
ulations to the surface mesh are then propagated out to the volume mesh by way of an unstructured mesh-warping
algorithm [18]. Our method allows the definition of global and local design variables. The global design variables
act on a group of the FFD control points, facilitating large-scale deformations, while the local shape design variables

bhttps://github.com/mdolab/OpenAeroStruct
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Table 1. Baseline geometry performance at CCCLLL === 000...222666222555

Grid Cells α CD (counts)

Euler L3 180,992 3.023 42.694
Euler L2 1,447,936 3.030 38.997
RANS L2 306,432 3.206 146.274
RANS L1 2,451,456 3.205 132.195

allow individual displacement of each control point. Figure 2 depicts the FFD volume, control points, and the design
variables definitions for this case. The nominal FFD volume has nine spanwise control sections and 12 chordwise
control points per section with half of the points on the upper surface and the other half on the lower surface. The
global variables are linked to the displacement and rotation of axial control points along the reference axis. Each of
these axial control points dictates the global movement of an entire FFD control section. The local shape variable
definition requires some explanation. Each spanwise control section is assigned a unique reference frame with the
section plane normal as the êk axis, the êi axis aligned with the streamwise direction, and ê j = êk × êi. The local
shape variables control the movement of the control points along their respective ê j axes. When the reference axis
is displaced vertically, the control sections and their respective reference frames are automatically rotated to remain
perpendicular to it. This behavior is depicted in the formation of the winglet on the wing in Fig. 2. The displacement
vectors of the local shape variables in the wingtip control section are rotated as the winglet forms to allow sectional
control of the airfoil section of the winglet. This functionality ensures that the wing surface does not shear, causing
negative volumes, when large changes in dihedral are introduced.

In some cases, the large geometric deformations allowed in the present study cause negative volumes to form in
the warped mesh. When this happens the optimizer is notified of the failure and usually it can backtrack and find
a feasible point from which to continue the optimization. However, in some cases, the optimizer is unable to find a
satisfactory point because the negative volumes occur in the region of the optimum. The remedy for this situation is
to re-extrude the volume mesh from the deformed surface mesh. In many of the results presented herein, we use this
approach to allow the optimizer to converge to the optimal wing shape.

Figure 2. Wing embedded in the FFD volume. The black dots represent the control points. The nominal FFD has nine sections of control
points along the span of the wing, with tighter clustering toward the wingtip. Each section has six control point pairs along the chord. The
shape variables are defined as the out-of-wing displacements of the control points within their respective control section planes. The global
design variables are defined with respect to the axial control points, depicted with red cubes. The reference axis is shown at the quarter
chord location, but in some cases it is placed along the trailing edge.

2.3. Low-fidelity Optimization: OpenAeroStruct
OpenAeroStruct [23] is an open-source low-fidelity aerostructural optimization suite developed using the OpenMDAO
framework [24]. The aerodynamic analysis in OpenAeroStruct is performed using a vortex lattice method (VLM) to
compute induced drag and a modified flat-plate skin-friction drag approximation to estimate viscous drag. These low-
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fidelity models provide reasonable estimates at a low computational cost. A single analysis takes less than one second
and a full optimization takes on the order of 10 seconds on a single processor. For the analyses in this study, the
baseline geometry consists of a 1m× 3.06m rectangular half-wing discretized by 50 spanwise panels and mirrored
across the symmetry plane. The thickness-to-chord ratio and location of maximum thickness from the NACA 0012
airfoil are used in the computation of viscous drag. The geometry is parametrized using B-splines to interpolate
variable changes to the geometry. Using B-splines allows a reduction in the number of design variables so that 50
panels can be manipulated with only 9 spanwise control points.

2.4. Optimizer
Both MACH and OpenAeroStruct are optimizer-independent, but for this study we use SNOPT [25] exclusively.
SNOPT is a sequential quadratic programming, gradient-based optimizer which has been thoroughly vetted for aero-
dynamic shape optimization and aerostructural design optimization [10–13].

2.5. Optimization Problem
The complete optimization problem of ADODG Case 6 is defined in Table 2. Twist variables are defined at every
axial control point except at the root and α is used to match the CL constraint. The chord variables affect all nine
axial control points. In the Euler cases, when local shape variables are inactive, the chord scales while maintaining
constant t/c. Dihedral is defined as the vertical displacement of each axial control point. Additionally, the FFD section
corresponding to each axial control point rotates to align the twist rotation and any shape variable displacements to
be perpendicular to the wing surface. Sweep is defined as the streamwise displacement of each axial control point.
Both dihedral and sweep are fixed at the root. As explained previously, the local shape variables perturb the wing
cross-section perpendicular to the wing surface, such that they have some dependence on the dihedral variable. All
control points in a given section are perturbed in a uniform direction, as indicated in Fig. 2. The planform area, S,
is computed as the area of the wing projected onto the x-z plane. Constraints for volume (V ) and thickness (t) are
handled by first setting up a 2D grid of points inside the surface of the wing. Then these points are projected to the
surface of the wing to create a 3D grid confined within the wing. We compute V as the sum of the cell volumes and t
as the difference between the projected points on the upper and lower surface. The thickness constraints are evaluated
at ten uniformly-spaced chord-wise locations ranging from 0.005c to 0.99c for ten sections along the span. There are
an additional eight thickness constraints added in the wingtip cap, making a total of 108 thickness constraints. The
optimization cases treated in Section 3 are subproblems of this full problem, and the variables and constraints are
defined as stipulated in this full problem description unless otherwise stated.

Table 2. ADODG Case 6 Optimization Problem Statement

Category Name Quantity Lower Upper Units

Objective CD 1 – – –
Variables α 1 −3.0 6.0 degrees

γ 8 −3.12 3.12 degrees
c 9 0.45 1.55 m
dihedral 8 −0.45 0.45 m
b 1 2.46 3.67 m
sweep 8 −1.0 1.0 m
shape 108 −0.5 0.5 m
Total 143

Constraints CL 1 0.2625 0.2625 –
S 1 3.06 3.06 m2

V 1 V0 – m3

CM,x 1 – 0.1069 –
t 108 0.5t0 1.5t0 m
Total 104
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3. Results
3.1. Twist Optimization
We begin with a simple twist optimization problem as a means of verification for our optimization framework. The
twist optimization case has a long theoretical history and has also been extensively studied as a numerical optimization
problem in ADODG Case 3 [26–28]. The elliptical twist distribution is well known as the theoretical optimum for this
case because it generates the constant spanwise downwash required to minimize induced drag [29]. This theoretical
result is a useful metric with which to gauge the performance of our optimization framework. Figure 3 shows the
optimal twist and lift distributions for the three levels of fidelity. We see very similar trends from each of the analyses,
but there is a noticeable offset between the lift distributions from ADflow and the VLM results. This discrepancy is
due to the rounded wingtip cap used for the Euler and RANS geometries. In the lifting-line model, the entire span
is used to generate lift, whereas with the wingtip cap, the leading and trailing edges are truncated at 3 m of span and
the last 0.06 m of span is incapable of generating the lift required to complete the elliptical distribution. As a result,
the optimizer converges to a wing that generates an elliptical lift distribution extending from the root to the edge of
the wingtip cap. Table 3 lists the drag counts of the optimized wings and the percent difference from the baseline
drag value, %∆CD,base. As an added verification, we experimented with varying the number and spacing of the twist
variables along the span and also started the optimization from ten random starting points. All of these variations
yielded consistent results, which leads us to confirm the theoretical assertion that there is a single twist distribution
that produces the lowest drag.
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Figure 3. In both Euler and RANS optimizations, the optimal twist distribution generates a lift distribution that matches the elliptical
profile predicted by Prandtl’s classical lifting line theory. Due to the rounded wingtip cap that begins at 3.0 m, the lift distribution matches
an elliptical distribution that extends from the root to the beginning of the cap. The RANS twist distribution appears discontinuous due to
the twist angle being computed with reference to the top and bottom of the blunt trailing edge at different points along the span.

Table 3. Twist optimization results

Case Grid CL Drag counts %∆CD,base

Euler L3 0.2625 42.105 −1.38
RANS L2 0.2625 143.377 −1.98
VLM – 0.2625 128.779 −0.42

3.2. Chord Optimization
Different behaviors arise when drag is minimized by varying the chord distribution while keeping the twist constant.
Theoretically, the elliptical chord distribution should be optimal for minimizing induced drag, and historically, this
concept has been put to the test in the design of actual aircraft, most notably the Supermarine Spitfire. The optimization
problem is to minimize drag with respect to the chord distribution, subject to the constraint that CL = 0.2625. Since the
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lift coefficient is normalized by S, which may vary with changes in the chord, we must also constrain S to be constant.
The inviscid and viscous results are henceforth discussed separately for each case to better explore and highlight the
unique characteristics of each.

3.2.1. Euler

For the Euler chord optimizations we use the L3 mesh and change the bounds on the chord variables to (0.1, 2.0) to
allow the planform to match an ellipse as close as possible. As in the twist optimization, the inviscid chord optimization
yields predictable results. We take this predictability as an opportunity to test the sensitivity of the result to the chosen
parameterization. We vary the number of spanwise FFD sections and corresponding chord variables and also compare
the difference between scaling about the trailing edge and the quarter-chord. As shown in Fig. 4, regardless of these
modifications, each optimization converges to an elliptical lift distribution.

To test the multimodality of this problem, we started the optimization from ten random starting points. Nine of
the starting points converged to the elliptical planform and one failed prematurely due to mesh warping errors. These
results indicate that there is no multimodality in chord optimization for inviscid flow.
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Figure 4. Elliptical planform and lift distribution can be achieved by scaling the chord distribution about the quarter chord or the trailing
edge. The effect of varying the number of FFD control sections is marginal.

Table 4. Chord optimization results

Case Grid CL Drag Counts %∆CD,base

Euler 1/4 chord L3 0.2625 41.726 −2.27
Euler 6 trailing edge L3 0.2625 40.439 −5.28
Euler 9 trailing edge L3 0.2625 40.412 −5.35
Euler 17 trailing edge L3 0.2625 40.356 −5.48
RANS L2 0.2625 142.544 −2.55
RANS mode 1 L1 0.2625 129.214 −2.26
RANS mode 2 L1 0.2625 129.178 −2.28
RANS monotonic L1 0.2625 129.296 −2.19
RANS L1 0.5 234.663 −1.23
RANS L1 0.8 503.049 −3.85

3.2.2. RANS

When adding viscous effects to the chord optimization, it is important to consider the trade-off between induced drag
and viscous drag, and its relationship to chord length. While induced drag is sensitive to the spanwise distribution of
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lift, viscous drag is highly dependent on the local chord length. The shear stress at the wall is directly related to the
velocity gradient normal to the wall. For 2D laminar flow over a flat plate,

τw = µ
du
dy

(1)

This equation provides an approximation to the shear stress on an airfoil. At the leading edge, the boundary layer is
very small and the velocity changes rapidly over a small distance, resulting in a large shear stress. As x/c increases,
the boundary layer (BL) fills out and the velocity gradient at the wall becomes much more mild. The result is that
extending the chord reduces the average drag per unit length. This relationship is well known and Blasius [30] provided
the following analytic solution for the flat plate case,

cd =
1.328√

Re
, (2)

where the Reynolds number is based on the local chord. Multiplying by the local chord length we find that for constant
flow conditions, the viscous drag per unit span is proportional to the square root of the local chord length, i.e.,

d ∝
√

c (3)

To illustrate this point, imagine we want to minimize the drag of a flat plate in laminar flow at zero angle of attack
with a fixed planform area. If the chord distribution and span are variables, the chord distribution will grow to its
upper limit and the span will adjust to satisfy the area constraint. However, if span is fixed, or has a hard lower limit,
an interesting compromise takes place. The optimal chord distribution will have the maximum possible extent of the
span at the upper limit of the chord variable. For example, if we split our plate into two independent sections and
incrementally add ∆c to the chord of one section while subtracting the same ∆c from the other, we get a decrease
in skin friction drag as shown in Figure 5. In the absence of other constraints, lower skin friction drag can always
be achieved by transplanting wing area from a thin-BL region to a thick-BL region. The spanwise location of the
maximum chord region is irrelevant, and as such, a purely skin friction drag minimization problem theoretically has
an infinite number of local minima.
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Figure 5. The viscous drag on a flat plate in laminar flow can be reduced by increasing the average BL thickness over the plate. In the
left-hand plot, we reduce the chord on one half of the plate by ∆∆∆ccc while simultaneously increasing the chord on the other half to preserve
the total planform area. The resulting decrease in viscous drag, as a function of ∆∆∆ccc is shown in the plot on the right. (Re = 106)

The problem becomes more complex when the objective function is a combination of both skin friction and induced
drag. Minimum skin friction drag favors radical changes in the chord distribution to maximize thick-BL coverage, but
optimal inviscid drag calls for an elliptically tapered wing. The optimal planform shape will balance these considera-
tions taking into account the relative weights of each drag component. For instance, if drag is mostly induced (i.e., at
high CL), the planform will take on a nearly elliptical profile. However, if we make some slight modifications to the
planform, we may get some improvement in the viscous drag while not straying too far from the elliptical lift distribu-
tion. This line of reasoning helps to explain the results we get from the RANS chord optimization, shown in Figure 6.
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These results are obtained using the RANS L1 mesh. For a given CL, we can estimate the minimum possible contribu-
tion of induced drag to the total drag using Prandtl’s induced drag approximation CD,i = CL/πAR. For CL = 0.2625,
viscous drag makes up roughly 70% of the total drag, and the optimal planform shape is far from elliptical. As CL
increases and induced drag increases relative to viscous drag, the optimal design more closely approaches the elliptical
planform. Interestingly, even for the low-CL cases, the lift distribution oscillates close to the elliptical profile.
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Figure 6. At low CL, the planform develops a wavy profile to maximize the chord length and reduce viscous drag. As CL increases, the
waves collapse to match the elliptical lift distribution more closely.

To address whether this trade-off between viscous and induced drag leads to multimodality at low CL values, we
first turn to a simpler aerodynamics model. Figure 7 shows the results of optimizing 20 random initial planforms at
different CL values with OpenAeroStruct. As expected, based on our previous discussion, the deviations from the
elliptical lift distribution increase dramatically as CL drops to zero. A corresponding decrease in viscous drag is small
but noticeable. In the high-fidelity case we see similar trends. We optimize three randomly generated planforms at
CL = 0.2625 with the RANS L1 mesh and the optimizer converges to two different planform modes. Wary of this
result, we vary the number of control points used as design variables to rule out the possibility that our parametrization
is biasing the results. We optimize the baseline geometry with 6 and 17 spanwise variables and compare the result
with the baseline optimization with 9 spanwise variables. Despite the variance in flexibility allowed by the number
of spanwise control points, the optimizer converges on a very similar, albeit not identical, planform shape in all three
cases. These experiments suggest that there are a limited number of modes with which the optimizer can minimize
viscous drag while still maintaining a sufficiently elliptical lift distribution so that the total drag decreases. The results
for both of these tests are shown in Fig. 8. Incidentally, we began the chord optimization tests with the RANS L2
mesh, but found a lack of multimodality in the low CL cases. Since this did not agree with our hypothesis, we refined
the mesh and found that the finer mesh yielded sharper spanwise curvature due to the refinement of the spanwise grid
spacing. The difference in the optimized result due to the mesh refinement can be seen in Fig. 9. We surmise that
the coarseness of the L2 mesh causes an increase in drag when the optimizer attempts to create the large-amplitude
spanwise variations seen in Fig. 8 and thus artificially limits the design space. However, it should be noted that the
same physical phenomenon is apparent in both meshes, although its effect is dampened due to the coarseness of the
mesh.

While these results are intriguing, we are ultimately interested to see how much of a benefit these spanwise os-
cillations really provide. The VLM results suggest a drag decrease on the order of one to two counts. We add a
monotonic constraint to the optimization of the L1 grid as a crude substitute for a more meaningful constraint, such as
manufacturing cost and structural considerations. This constraint forces the chord distribution to decrease monotoni-
cally from root to tip. The result is plotted in Figure 9 and detailed in Table 4. Adding the monotonic constraint only
increases the drag by a fraction of a drag count. This difference is not meaningful because it is within the modeling
error. Furthermore, even if this difference were meaningful, it would be hard to justify the added manufacturing costs
and structural penalties that would accompany building a wing with such spanwise curvature.
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Planform
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Figure 7. Twenty unique planform shapes are used to initialize an OpenAeroStruct chord optimization at 5 different CL values. A trade-off
exists between minimizing viscous drag by maximizing chord and forming an elliptic planform to minimize induced drag. As CL increases,
induced drag makes up a greater portion of the total drag, and thus the planform approaches an elliptical shape and multimodality
decreases.
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Figure 8. (a) Starting the optimization from three random chord distributions reveals at least two local minima. These optimal planforms
allow the chord to be maximized in some places while still generating a roughly elliptical lift distribution. (b) We experiment with varying
the number of spanwise FFD sections and find that each parametrization yields a slightly different optimum when starting from the
baseline. The general shape of the oscillating lift distribution remains the same.
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Figure 9. Forcing the chord distribution to decrease monotonically from root to tip results in a more practical planform and sacrifices less
than one count of the drag savings due to the spanwise oscillations.

3.3. Chord and Twist Optimization
Since we can reach an elliptical distribution with only chord design variables or only twist design variables, one may
assume that a combination of both twist and chord variables would be redundant and lead to multimodality. We explore
this possibility in this section.

3.3.1. Euler

For the chord and twist optimization with Euler analysis we use the Euler L3 mesh and nine axial control points,
corresponding to nine chord variables and eight twist variables. Once again, the limits on the chord variables are
relaxed to 0.1 ≤ c ≥ 2.0 for the Euler cases. When initialized with ten different geometries, each generated with
random chord and twist distributions, the optimizer converges to a single optimal solution. The optimal chord and
twist distributions are superimposed over the randomly generated seeds in Fig. 10. The uniformity of these results
suggest that the chord and twist variables are not necessarily interchangeable. In Table 5, we see that the addition of
twist variables makes a negligible improvement in drag compared with the chord-only optimization (Table 4).

3.3.2. RANS

The RANS optimizations are run using the RANS L1 mesh and the nominal 9-section FFD. The results are displayed
in Figure 11. We expect to see the oscillatory behavior observed at low CL in the chord optimization to be exaggerated
in this case because the twist can compensate for the deviations from the elliptical lift distribution that oscillations
in the chord distribution would otherwise cause. The higher CL results, like the Euler results, show little evidence of
multimodality due to redundancy in the variables. For CL = 0.2625, the oscillations in the chord distribution are more
prominent, which implies that the addition of twist variables grants more freedom to the chord variables to minimize
viscous drag.

Table 5. Chord and twist optimization results

Case Grid CL Drag Counts %∆CD,base

Euler 1/4 chord L3 0.2625 41.517 −2.76
Euler L3 0.2625 40.408 −5.35
RANS L1 0.2625 128.802 −2.57
RANS L1 0.5 233.591 −1.68
RANS L1 0.8 480.496 −8.16
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Figure 10. The wing optimization with respect to chord and twist variables using Euler analysis yields a single optimum when started from
10 random seeds.
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Figure 11. An optimization with both twist and chord variables tolerates more variation in the chord distribution at a lower CL. As CL
increases, the planform shape oscillations disappear.
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3.4. Dihedral and Twist Optimization
Nonplanar wings have the potential to reduce induced drag beyond what is attainable with a planar wing and an ellip-
tical lift distribution. Previous optimization studies have verified this result [8, 31]. We include twist variables in this
subproblem because we want to allow the optimizer to converge to an elliptically loaded planar wing if that is the opti-
mal design. However, we first assess the parametrization of the dihedral variables by conducting an optimization with
just dihedral. Since we expect the most variation in dihedral to occur toward the wingtip, we want to make sure that our
parametrization allows enough flexibility to capture the optimal shape. We vary the number of control points and ex-
periment with spacing them uniformly along the span and clustering them more heavily toward the wingtip. In Fig. 12
we compare the winglet-down optimized results for six different possible parametrizations. All six parametrizations
achieved an elliptical lift distribution, but the cases with only six variables prevented the optimizer from converging to
the optimal winglet cant angle. We chose to use the FFD with nine control points clustered toward the wingtip as the
nominal FFD because it gives a sufficient degree of freedom to the optimizer for the kind of design space exploration
we seek to do. Note that we recovered two local minima in the dihedral-only optimizations: an upturned winglet and a
downturned winglet. The upturned winglet shapes were achieved when starting the optimization from random starting
points; Figure 12 shows only the optima found when starting from the baseline geometry.

a) Front view
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Figure 12. Comparison of different quantities and spanwise distributions of control points for an optimization with dihedral variables.

3.4.1. Euler

In the dihedral-only Euler case, there are two local minima: winglet-down and winglet-up wings. Here we combine
twist and dihedral to see if the coupling between these two sets of variables affect the number of optima. We start the
optimizations using the Euler L3 mesh (180k cells). Starting from 15 random variable sets the optimizer converges on
more than two optima. Five of the optimizations converge to a winglet-up shape and the rest converge to a downturned
winglet. Those that converge to the winglet-down shape share a very similar wingtip design, but vary in the vertical
displacement of the main wing. These differences can be seen in Fig. 13. To investigate the cause of these local
minima, we take the uppermost (UWD) and lowest (LWD) optima in the winglet-down group and re-optimize them
using the L2 mesh (1.45M cells). With the finer mesh, the optimizer converges to the same result for both of the coarse
mesh local minima. Interestingly, this new result does not fall between the two starting seeds as we might expect.
Instead, the optimizer pushes the wing down from the root to the midspan, at which point it slopes upward to merge
with the downturned winglet of the coarse mesh results. When we start the optimization from the baseline rectangular
wing with the L2 mesh, the optimizer converges on this same spoon-like shape. Re-optimizing the upturned winglet
with the L2 mesh yields the same upturned winglet. We conclude that this case only has two physical optima and
numerical noise causes additional optima when using the L3 mesh optimization results. When the mesh is coarse it
loses resolution in critical areas, which leads to small changes in the objective function and creates more local minima.

We extracted a design space slice between UWD and LWD for further analysis. Assume UWD and LWD have
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design variable vectors X0 and X1. The set of all points on the line between UWD and LWD can be defined as
Xη = ηX0 +(1−η)X1, where η ∈ [0,1]. We take 19 intermediary points along this line for the design space slice and
compute CD at each point, taking care to adjust α to meet the CL constraint. Figure 14 shows the slices in CD and
CL-space. Due to our settings of feasibility and optimality tolerance, the optimizer converged to UWD even though
LWD has lower drag than UWD. The drag difference between UWD and LWD is on the order of 0.01 count, which is
within the discretization error, and therefore not physically significant.

Figure 13. Euler dihedral and twist optimization results. Optimization with the L3 mesh (185k cells) produces an upturned winglet and a
series of downturned winglets with variations in the midspan dihedral. We take the winglet-up optimum and the two outermost winglet-
down optima (designated UWD and LWD) and re-optimize with the L2 mesh (1.45M cells). The winglet-up optima remains consistent,
while both UWD and LWD converge to an entirely new spoon-like shape. When we run the L2 optimization from the baseline wing, the
optimizer converges on the inverted spoon. The upturned winglet has lower drag than the downturned winglet for both the coarse and fine
mesh optimizations.

Table 6. Dihedral and twist optimization results. The CL = 0.8 result was obtained by regenerating the volume mesh to fix problems with
the formation of negative volumes.

Case Grid CL Drag Counts %∆CD,base

Euler L3 0.2625 39.909 −6.52
RANS L2 0.2625 143.327 −2.01
RANS L2 0.5 244.969 −2.79
RANS L2 0.8 455.178 −15.91∗

3.4.2. RANS

The addition of viscosity to the model activates a trade-off between the induced drag improvement from winglet
formation and the rise in viscous drag due to an increase in wetted area. Before running the RANS analyses, we
explore the design space using OpenAeroStruct to better understand the implications of this trade-off. Figure 15
compares the optimization results for three general cases: inviscid analysis, viscous analysis, and viscous analysis
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Figure 14. Design space slice with the L3 and L2 Euler meshes between two optima, UWD and LWD, showing the monotonic trend between
them. Both coarse mesh optimizations converged optimality to the order of 1E-6, despite the decreasing slope between them. We surmise
that numerical noise kept the optimizer from converging both results to the LWD point. It should be noted that these post-processed results
matched CL within a tolerance of 10−9 for each point, so the CD values for UWD and LWD are slightly different from their values in the
optimization result.

with a monotonic constraint. The monotonic constraint forces the optimizer to form a downturned winglet, but the
results are of interest because they give a metric with which to compare the unconstrained results. The three cases are
optimized with 5 different starting points, displayed in the left-most column, and 5 different lift conditions ranging
from CL = 0.1 to CL = 0.8. The front views of each optimized wing profile are shown in each cell of the grid. Below
and to the right of each wing profile, slider bars show the relative drag differences between the viscous-optimized
results and the inviscid-optimized result. The horizontal bar shows the percent difference in inviscid drag, while the
vertical bar indicates the percent difference in viscous drag compared with a viscous analysis of the inviscid-optimized
result. Moving from the left to the right of the grid, the trend is an increase in nonplanarity for the viscous results.
At low CL values, when the viscous drag dominates, the optimizer has an incentive to reduce the arc length of the
front view and thus reduce the effective wetted area. Since only small changes to the dihedral variables are possible
without increasing the wetted area, the optimizer converges to the same optimum regardless of the starting point. As
CL increases, this incentive diminishes and the optimizer tends toward more nonplanar wing shapes where the induced
drag can be minimized. The increased freedom to vary the wing dihedral opens up the design space to multiple
local minima. The inviscid optimization converges to three local minima and the viscous optimization for CL = 0.8
converges to two optima: an upturned and a downturned winglet. The downturned winglet appears to offer better drag
performance compared with the upturned winglet.

Taking the information from OpenAeroStruct as a reference, we optimize the RANS L2 baseline planform with
respect to eight dihedral and twist variables for CL = 0.2625, 0.5, and 0.8. The results once again demonstrate a
strong dependence of the results on CL. As seen in left-hand side of Fig. 16, the low CL case deflects only slightly
from the baseline geometry. As CL increases, the vertical extent of the wing expands. Interestingly, when chord
variables are added into the optimization, the trends seen in the separate chord and dihedral optimizations seem to
be linearly combined with no recognizable coupling between dihedral and chord. This combined dihedral, twist, and
chord optimization is presented on the right-hand side of Fig. 16. In both of these cases, the CL = 0.5 result converges
to a down-turned winglet, while the CL = 0.8 result converges to an upturned winglet. We run a dihedral and twist
optimization for three wings with randomly distributed dihedral and twist at CL = 0.5 to investigate the possibility of
multiple local minima (Fig. 17). Surprisingly, the optimizer converges to an upturned winglet for all three of these
randomly generated wings, despite the fact that a comparison of drag values reveals a preference for the downturned
winglet. We conclude that in an optimization where the parametrization allows for winglet formation, a gradient-based
optimizer can converge to either an upturned or downturned winglet, depending on the starting position.

15 of 23

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

5,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

7-
37

53
 



Inviscid optimum

Free planform

Monotonic constraint

% CD, v (compared to viscous analysis of inviscid optimum)

-30.0 (better)

30.0 (worse)

0

-30.0 30.0
% CD, i

Initial CL = 0.1 CL = 0.2 CL = 0.4 CL = 0.6 CL = 0.8

Figure 15. We use OpenAeroStruct to quickly explore the design space of the dihedral and twist optimization. The results in each column
were constrained to the same CL value and each row corresponds to the initial dihedral distribution in its left-most cell. The profiles
in each cell represent the front profile of the half-wing. The key in the upper left corner provides labels for the different colors. Each
optimization including viscous drag (blue or green) is compared with the same problem optimized with only inviscid drag (grey) by way
of the accompanying horizontal and vertical bars. The horizontal bar indicates the percent difference in inviscid drag, while the vertical
bar represents the percent difference in viscous drag. For this latter computation, the inviscid-optimized result was re-analyzed with
consideration of viscosity. There are three local minima for the inviscid optimizations and two local minima for the high-CL viscous
optimizations.
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a) Dihedral and twist b) Dihedral, twist, and chord

Figure 16. (a) Adding dihedral to the RANS optimizations shows a preference toward a nonplanar wing as CL increases. (b) When dihedral
and chord variables are combined, we see a combination of the trends observed for each considered separately: the chord varies at low CL
and the winglet forms at a high CL.

Figure 17. Starting the dihedral and twist optimization from randomly generated starting points reveals two local minima, as expected.
There is a slight preference towards the downturned winglet. These cases were constrained to CL = 0.5.
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3.5. Adding span and sweep variables
As a final step before considering the full case, we investigate the effects of adding span and sweep variables to the
RANS optimization. Figure 18 shows the results of two distinct optimization problems. The left-hand side shows a
comparison between optimizing with respect to twist, chord, dihedral, and span at CL = 0.2625 and CL = 0.5. The
only geometric constraint is planform area. For CL = 0.2625, the optimizer finds greater benefit in maximizing the
chord and does not increase span to reach the upper bound. The span does increase from the baseline case though, and
the optimizer adds a slight anhedral to the wing. On the other hand, for CL = 0.5, the span reaches the upper bound
and an upturned winglet is formed.

When sweep is added to the optimization, we find the optimizer tends to sweep the wingtip back sharply, creating a
raked wingtip. When the full bounds recommended in the ADODG case description are used, this sharply swept wing
tends to cause mesh warping errors, resulting in negative volumes. To avoid this problem, we reduced the bounds to
allow sweep to vary from−0.25 m to 0.25 m. The right-hand side of Fig. 18 shows the results of this optimization. The
most noticeable feature of these results is the formation of the raked wingtip. Once again we notice that the optimizer
does not extend to the full bounds of the span variable for the lower lift case. This time, for CL = 0.5, the optimizer
converges on a downturned winglet. When we run the CL = 0.5 case starting from four random initial points with the
L2 mesh, we find evidence of at least three local minima. Each of these local minima shares the distinct swept-back
wingtip. The differences between them are due to the multimodality inherent to the other variables. One of the local
minima has an upturned winglet while the others have a downturned winglet. Additionally, the chord distributions
are unique between the local minima. The appearance of the same swept-back wingtip in all local minima, despite
the differences in chord, dihedral, and sweep distribution on the main part of the wing, suggests that the sweep at the
wingtip is highly beneficial to drag minimization.

a) Dihedral, twist, chord, and span b) Dihedral, twist, chord, span, and sweep

Figure 18. RANS optimization results starting from the baseline rectangular wing at different CL values. The variables included in each
case are listed.

3.6. Full Case Optimization
We now address the full ADODG case. All variables and constraints listed in Table 2 are included, except that sweep
is limited to vary between −0.25 and 0.25 to avoid the negative volumes caused by extreme tip sweep.

3.6.1. Euler

Unfortunately, the results for the full Euler case are not as useful as we would hope. The full case includes a root
bending moment constraint as a proxy for structural considerations, but the upper bound for this constraint does not
allow the wing to support an elliptical lift distribution without decreasing the span. Rather than reduce the span to
maintain the elliptical lift distribution the optimizer chooses to shift the lift distribution inboard, maintaining the span,
but making the lift distribution less efficient. This results in a 300% increase in drag relative to the baseline mesh.
From three random starting points, the optimizer converges on three separate local minima, all characterized by large
spanwise oscillations in vertical displacement. From the lift distribution in Fig. 19 we can see that the outer wing is
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generating negative lift to rein the root bending moment back beneath the upper limit of the constraint. To compensate
for the negative outboard lift, the inboard section of the wing must produce even more lift to satisfy the CL constraint,
causing the increase in drag.

Since we are concerned with understanding the design space of the aerodynamic performance of the wing, we
remove the root bending moment constraint to reduce the problem to pure aerodynamics. In total we found eight
optima in the full case without the root bending moment constraint, and it is possible that there may be more local
minima. We attempted five more optimizations, but these failed to converge to the desired tolerance. Figure 20 shows
the eight successfully converged optima, which mainly form one winglet-up mode and one winglet-down mode. There
is a great deal of variation in the spanwise chord distribution between the different optima. Most of the optima converge
to a paddle-like shape with the maximum chord at the tip.

Figure 19. Results for the full ADODG Case 6 with Euler analysis at CL = 0.2625. Negative lift is generated at the wingtip to satisfy the
root bending moment constraint.

Figure 20. Removing the root bending moment constraint reveals the purely aerodynamics-based optimized result. These results are
obtained with Euler analysis at CL = 0.2625. Although some of the optimized shapes are similar, none of them converged to the same result.
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3.6.2. RANS

Transitioning to RANS analysis, we again consider the full case with the root bending moment constraint included.
At CL = 0.5, the stipulated upper bound of the bending moment constraint is too restrictive. To remedy this, we adjust
the constraint such that the ratio of CM,x in the baseline configuration to the value of the CM,x constraint is the same for
CL = 0.2625 and CL = 0.5. This yields an upper bound of CM,x = 0.2046 for the root bending moment in the higher
lift case (compared with 0.1069 at CL = 0.2625). We run five optimizations for the CL = 0.2625 condition and one
optimization for CL = 0.5. In Figure 21, we show the two local minima found for CL = 0.2625 and the single result for
CL = 0.5. The effect of the root bending moment constraint on these optimizations is similar to the Euler results. The
optimizer chooses to generate negative lift on the outboard section of the wing, as seen in the lift distribution plots.
Notably, in the RANS optimizations the wing is tapered from root to tip, as opposed to the paddle-like planforms
seen in the Euler results. In the low-CL results, we see the formation of an upturned and downturned winglet, as
expected from our previous analysis of the dihedral variable. Additionally, the optimizer creates a swept-back wingtip
for both CL conditions. As CL increases, the wing shape starts to the develop the spanwise oscillations in the dihedral
distribution that are produced in the Euler optimization.

a) CL = 0.2625 b) CL = 0.5

Figure 21. These are the results of the full ADODG case optimized with RANS analysis. For the low CL case, two local minima are found
out of five cases run: one with dihedral and the other with anhedral. At CL = 0.5, the high-amplitude spanwise oscillations in vertical
displacement seen in the Euler optimized results start to appear. In both cases, the outboard section of the wing generates negative lift to
satisfy the root bending moment constraint.

Removing the root bending moment constraint facilitates a better understanding of the purely aerodynamic design
space. We perform another round of RANS optimizations at CL = 0.5 for the full case with no root bending moment
constraint. Of four randomly-started optimizations, the optimizer recovers three local minima. The four results are
shown in Figure 22. The swept-back wingtip is common to all three local minima. Most of the variation between
the local minima appears to be related to the multimodality inherent to the chord and dihedral variables which we
discuss in detail in the respective subproblems. Where previously the chord tapered monotonically from root to tip
for CL = 0.5, we now see another mode of planform variation appear in two of the local minima. This new mode
is characterized by a small root chord that expands into a large bulge at midspan and then tapers back down at the
wingtip. The emergence of another planform mode indicates that the optimizer is granted more freedom in the chord
variables because of the addition of other variables. A drag comparison between the two modes reveals that the
midspan chord bulge is detrimental to the performance of the wing, resulting in a drag rise of approximately five
counts. The variation in dihedral between the local minima reveals nothing new; two have an upturned winglet and
the other has a downturned winglet. Of the two optima with the midspan chord bulge, the one with the downturned
winglet generates significantly less drag, corroborating previous findings. The best-performing wing of the four results
reduces the drag 22.5% from the baseline rectangular wing to 195.21 drag counts.
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Due to the impractical bulge in the chord distribution found in two of the local minima for the RANS full case with
no root bending moment, we run a similar case with the addition of a monotonic constraint on the chord distribution.
Two results of this optimization problem are displayed in Figure 22. The optimizer produces one upturned winglet
and one downturned winglet. Once again, the downturned winglet outperforms the upturned winglet. The downturned
winglet follows the same sweep trend seen in previous results, but the upturned winglet is swept forward at the wingtip,
giving the first indication of a possible local minima in the sweep distribution. The drag performance of the monotonic
downturned wing is better than any previous results, providing a 22% decrease relative to the baseline rectangular
wing. This suggests that the addition of practical design constraints may actually help the optimization.

a) Full case with no root bending moment constraint b) Full case with a monotonic constraint on the chord distribution
and no root bending moment constraint

Figure 22. RANS optimizations with no root bending moment constraint at CL = 0.5. (a) Three local minima are found when starting the
optimization from four random initial shapes. The multimodality appears to be mainly a function of the chord and dihedral variables.
All results share the swept-back wingtip. (b) We add a monotonic constraint to the chord distribution to filter out impractical planform
shapes. Each of the two cases run converges to a different result. The downturned winglet is characterized by the same forward swept main
wing and backward swept wingtip seen in previous results. The upturned winglet is swept forward at the wingtip, which contradicts the
observed trend and appears to increase drag by several counts.

4. Conclusion
Wing aerodynamic optimization with respect to planform variables involves a strong trade-off between induced

and viscous drag. The inclusion of a viscous drag model in the optimization is necessary to fully account for this
trade-off and obtain physically meaningful results. In a chord optimization, at low CL values, this trade-off causes the
optimizer to form nonintuitive wavy chord distributions that minimize viscous drag at the cost of a perfectly elliptical
lift distribution. This trade-off introduces multimodality into the design space, which we explained by analyzing a
canonical flat plate with zero lift. In this extreme case, the optimal chord distribution is governed by the motivation
to increase the chord as much as possible to reduce the skin friction drag per unit area while meeting the wing area
constraint, but multiple chord distributions yield the minimum drag solution. As CL increases, this multimodality is
eliminated by the increasing relative importance of induced drag because the induced drag is also coupled with the
chord distribution.

The benefit of nonplanarity is strongly correlated with the drag trade-off as well. When optimizing with respect
to dihedral variables, the optimizer forms a winglet, for both CL = 0.5 and CL = 0.8. The optimizer also displaces
the main wing vertically in the opposite direction of the winglet to maximize the vertical extent of the wing and thus
the vorticity sheet. This trend is amplified for CL = 0.8 compared with CL = 0.5. On the other hand, for a low CL
condition, the decrease in induced drag due to nonplanarity does not outweigh the increase in viscous drag due to the
additional wetted area. Thus, for high CL conditions, dihedral variables add multimodality to the design space.
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We find that a down-turned winglet reduces drag more than an upturned winglet, but both are local minima. A
wing optimized with respect to both chord and dihedral variables appears to linearly combine the trends found in the
separate cases: at low CL the planform is wavy with indiscernible dihedral, and at high CL the wing tapers to a winglet.

For each lift condition there is an optimal aspect ratio. When induced drag is the principal drag component, this
optimal aspect ratio may not be possible due to span restrictions. However, we find that at CL = 0.2625, the optimal
aspect ratio is attainable within the bounds of the span variable, such that the optimizer does not extend the wing to
the maximum possible span. Finally, when the optimizer has freedom to control sweep, it almost always converges
to a wing with a sharply swept wingtip. Additionally, for the higher lift case, we see a tendency for the optimizer to
sweep the wing forward slightly as if to amplify the effect of the swept-back wingtip.

We do find evidence of multimodality in the design space for both Euler and RANS analyses. In at least one
case, the consideration of viscosity adds multimodality to the problem. However, in a problem with a highly flexible
geometric parametrization, a comparison of Euler and RANS optimization results reveals the necessity of considering
viscous effects. Although multimodality still exists with viscous analysis included, the results can be explained by the
real physics, whereas with Euler analysis the explanation is not as readily apparent.

There are a few avenues for future work to build on these results. Since the optimal wing design is strongly
dependent on CL, it would interesting to run an optimization considering multiple flight conditions. This would give a
more realistic representation of real-world wing performance. Additionally, a structural model should be considered,
since real-world wing design requires aerostructural analysis and design trade-offs.
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