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This paper presents an application of model predictive control to the attitude dynamics of an underactuated

spacecraft with two reaction wheels and zero angularmomentum. Such a system cannot be stabilized by any smooth or

continuous time-invariant feedback law.However,model predictive control has a remarkable ability togenerate control

laws that are discontinuous in the state and, as such, can be applied to this problem. The model predictive control

formulation is analyzed in depth and shown to produce an asymptotically stabilizing controller, which is discontinuous

and enforces constraints. Simulations on the full nonlinear model demonstrate that model predictive control can

successfully control the attitude of an underactuated spacecraft when the attitude maneuvers are sufficiently small.

Nomenclature

A = dynamics matrix of base variable linear model
B = input matrix of base variable linear model
B = spacecraft bus fixed frame
Fd = approximate attitude discrete dynamics
f0, f1, f2 = drift and control vector fields
H = inertial angular momentum vector expressed

in I
I = inertial frame corresponding to desired attitude
�J = total inertia matrix
JN = model predictive control objective function
Js1, Js2 = inertias of reaction wheels 1 and 2 about their

spin axes
�Jw1, �Jw2 = inertia matrices of reaction wheels 1 and

2 relative to center of mass of spacecraft
assembly and expressed in B

�J0 = inertia matrix of spacecraft bus relative
to center of mass of spacecraft
assembly and expressed in B

L = model predictive control incremental cost
Mext = external moment vector expressed in B
OB∕I = orientation matrix of B relative to I
Q = weighting matrix on state for incremental cost
r1, r2 = weights on control for incremental cost
T = sample period for discrete dynamics
u = mathematical vector of control inputs

corresponding to accelerations of reaction
wheels

umax = maximum limit on reaction wheel acceleration
u1, u2 = components of u
VN = model predictive control value function

W = matrix of reaction wheel spin axes
Ŵ = reaction wheel influence matrix
w1, w2 = unit vectors of reaction wheel spin axes

expressed in B
Xk = state constraint set at discrete-time instant k
x = vector of reduced variables ϕ, θ, ψ , ν1, ν2
y = vector of base variables ϕ, θ, ν1, ν2
ŷ = chosen base variable vector
α1, α2, β1, β2 = components of Ŵ
Δc = parameter for discrete change in ψ
Θ = mathematical vector of Euler angles
ν = mathematical vector of reaction wheels

velocities
ν1, ν2 = velocities of reaction wheels 1 and 2,

respectively
ω = angular velocity vector of B

relative to I expressed in B
�k = value of � at time kT

I. Introduction

M ODEL predictive control (MPC) is a popular control
technique due to its ability to generate feedback controllers

that enforce specified constraints. Its application to the spacecraft
attitude control problem began in the mid-1990s [1,2]. In [1], attitude
tracking was performed using a one-step-ahead prediction of the
states. On the other hand, [2] used a function-spaceMPC approach to
track a reference attitude and differs from standard MPC because it
does not recompute the optimization solution at every discrete-time
step. Since then, the topic of MPC for spacecraft attitude has been
approached in numerous other publications. In [3], a spacecraft with
multiple thrusters and one reactionwheel (RW) is controlled by using
explicit MPC. Gupta et al. [4] developed an MPC controller that acts
on the manifold SO(3) to avoid mappings with singularities (such as
Euler angles) and mappings that involve double covering (such as
quaternions). RobustMPC for attitude control was discussed in [5,6].
MPC laws developed specifically for the case of controlmoment gyro
and magnetic torque actuation are presented in [7–9], respectively.
AnMPCalgorithm suitable for fixed-point implementation is applied
to spacecraft attitude control with RWs in [10].
The existing references on applications ofMPChave not, however,

addressed the case of a spacecraft that is underactuated by design or
becomes underactuated as a result of onboard failures. It was shown
in [11] that the attitude of a spacecraft can be controlledwith less than
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three gas thrusters, whereas the spacecraft dynamics of a systemwith
fewer than three RWs is inaccessible. Later, Krishnan et al. [12]
proved that the attitude equations can be reduced for the case of zero
angular momentum. These reduced equations are small-time locally
controllable (STLC) from all orientations, which implies that
arbitrary rest-to-rest reorientation maneuvers are possible. But due to
Brockett’s condition, an at-rest equilibrium cannot be stabilized by
any time-invariant feedback law that is smooth or continuous in the
state [12–15]. Time-periodic laws can be used for stabilization, but
exponential convergence rates cannot be achieved if the feedback law
is smooth [16]. Thus, although it is possible to control underactuated
spacecraft attitude in an open-loop sense, there are inherent
challenges in developing effective feedback stabilization solutions.
This paper approaches the attitude stabilization problem of a

spacecraft with two RWs and zero angular momentum from anMPC
standpoint. Several references have proposed non-MPC-type
discontinuous control laws that successfully perform rest-to-rest
attitude maneuvers for such an underactuated spacecraft (see [12,
17–22]). However, MPC has the remarkable ability to generate a
stabilizing feedback law that is discontinuous as a function of the
state [23,24]. In particular, this ability can be taken advantage of for
nonholonomic system stabilization [25]. The use ofMPC has several
other advantages over other discontinuous feedback stabilization
approaches: The design process is systematic, state and control
constraints are handled, and a cost function reflecting performance
objectives is optimized in a receding horizon sense.
The major contributions of this paper that address the under-

actuated spacecraft problem with two RWs and zero angular
momentum are as follows: 1) the development of a set of reduced
approximate equations of motion for the attitude dynamics in
continuous-time and discrete-time; 2) a controllability analysis of the
continuous-time, reduced approximate attitude dynamics and both a
controllability and stabilizability analysis of the discrete-time,
reduced approximate dynamics; 3) the introduction and analysis of a
nonlinear MPC controller for the underactuated spacecraft problem,
including showing that the control law generated using the reduced
approximate dynamics is stabilizing. We also prove that the control
law must be a nonsmooth function of the state and our numerical
results indicate that the control law is actually a discontinuous
function of the state; 4) the implementation of the nonlinear MPC
controller on the full nonlinear underactuated spacecraft model, with
discussion on real-time implementation of the controller.
Contributions 1 and 2 are significant because they provide the

underlying framework of the nonlinear MPC controller presented.
Contribution 3 is the main point of the paper. The fact that MPC
generates a feedback law that is discontinuous in the state is interesting
because stabilizing, continuous time-invariant feedback laws do not
exist. Note that, in other problems, the MPC feedback law is typically
continuous in the state. For example, in linear-quadratic-typeMPC, the
control law is always piecewise affine and continuous [26].
Contribution 4 is a demonstration that the nonlinear MPC controller
presented has the potential to locally stabilize the attitude of the
underactuated spacecraft, while adhering to constraints, provided its
initial orientation is in the vicinity of the target orientation (which can
be guaranteed by less-accurate thruster-based attitude control).
The paper is organized as follows. In Sec. II, the equations of

motion for spacecraft attitude dynamics are introduced. Approximate

continuous-time and discrete-time dynamic models are derived in
Secs. II.B and II.C, respectively. The controllability properties and
stabilization obstructions for the approximate dynamics are
highlighted in Sec. III. In Sec. IV, the MPC formulation is presented
for these approximate dynamics, and asymptotic stability properties
are analyzed. Simulation results on the full nonlinear model (without
approximations) are given in Sec. V. Concluding remarks aremade in
Sec. VI. The appendix that follows reviews results that we rely on for
the use of Lie brackets to determine local controllability.

II. Spacecraft Modeling

In this paper, a spacecraft configuration consisting of a bus and two
RWs is considered.The equations ofmotion are definedwith thehelpof
two reference frames: 1) an inertial frame I with attached orthonormal
coordinate system andwith the origin at the center of mass (c.m.) of the
total spacecraft assembly (including the spacecraft bus and RWs); and
2) a spacecraft bus body-fixed frameBwith the origin at the c.m. of the
total spacecraft assembly.
We note that we do not assumeB is a principal frame.Without loss

of generality, we also assume that frame I is aligned to coincide with
the desired inertial pointing attitude. The angular velocity of B
relative to I and expressed in B is denoted by ω. The RWs spin with
velocities ν1 and ν2 about nonparallel axes defined by w1 and w2,
which are fixed and expressed in B.
The relevant spacecraft inertias are described as follows. The

matrices �J0, �Jw1, and �Jw2 denote the inertia matrices of the spacecraft
bus, RW 1, and RW 2, respectively, each relative to the c.m. of the
spacecraft assembly and expressed in B. Furthermore, we let Js1 and
Js2 denote the inertias of RW 1 and RW 2 about their respective spin
axes corresponding to unit vectors w1 and w2.

A. Equations of Motion

TheorientationofB relative toI is characterized by three successive
rotations, defined by 3-2-1 Euler angles yaw ψ, pitch θ, and rollϕ. It is
assumed that the maneuvers being performed involve relatively small
attitude adjustments near the desired pointing orientation, and
therefore the singularities in the Euler angle attitude representation are
not of concern. Let Θ � �ϕ θ ψ �T . The spacecraft kinematic
equations, following from the derivations in [27], are

_Θ � M�Θ�ω (1)

in which

M�Θ� � 1

cos�θ�

2
4 cos�θ� sin�ϕ� sin�θ� cos�ϕ� sin�θ�

0 cos�ϕ� cos�θ� − sin�ϕ� cos�θ�
0 sin�ϕ� cos�ϕ�

3
5
(2)

LetH be the (inertial) angular momentum vector of the spacecraft
resolved in I . Then,H is related to ω, ν1, and ν2 by

OB∕IH � �Jω� �Wν (3)

in which

�J � �J0 � �Jw1 � �Jw2;

�W � WJs;

W � �w1 w2 �;
Js � diag�Js1; Js2�;
ν � � ν1 ν2 �T;

OB∕I �

2
664

cos�θ� cos�ψ� cos�θ� sin�ψ� − sin�θ�
sin�ϕ� sin�θ� cos�ψ� − cos�ϕ� sin�ψ� sin�ϕ� sin�θ� sin�ψ� � cos�ϕ� cos�ψ� sin�ϕ� cos�θ�
cos�ϕ� sin�θ� cos�ψ� � sin�ϕ� sin�ψ� cos�ϕ� sin�θ� sin�ψ� − sin�ϕ� cos�ψ� cos�ϕ� cos�θ�

3
775 (4)
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Thematrix �J is the total inertia of the spacecraft assembly about its c.
m.ThematrixOB∕I specifies the orientation of frameB relative toI . It
follows from the angular momentum balance relation, as well as [12],
that the dynamic equations of motion are

�J _ω � −ω × �OB∕IH� − �W _ν�Mext (5)

in which Mext is the vector of external moments exerted on the
spacecraft about the c.m. of the spacecraft and expressed in B. In this
work, the RWaccelerations are treated as the control inputs

_ν � u (6)

We now make the assumption that there are no external moments
acting on the spacecraft (i.e.,Mext � 0), which implies that the inertial
angular momentumH remains constant for all time. Furthermore, we
assume thatH � 0 such that controllability results similar to [12] can
be obtained.
The set of Eqs. (1), (5), and (6) under the given assumptions are

uncontrollable (as stated in [27]). However, progress can be made
considering a reduced set of equations that are controllable, as in [12].
Specifically, exploiting the fact thatH � 0, Eq. (3) reduces to

ω � − �J−1 �Wν � Ŵν (7)

Thematrix Ŵ has two columns,which represent the influence each
RW has on the spacecraft bus assembly. It can be observed that the
columns of Ŵ are linearly independent because the columns of �W are
linearly independent and �J is full rank. We now assume that the
columns of Ŵ are orthogonal to the third axis of the coordinate
system attached to B. The matrix Ŵ then has the form

Ŵ �
2
4 α1 α2
β1 β2
0 0

3
5 (8)

in which α1, α2, β1, β2 ∈ R. Substituting Eq. (8) into Eq. (1) yields a
new set of kinematic equations that, together with Eq. (6), form the
reduced set of attitude equations

_ϕ � �α1ν1 � α2ν2� � �β1ν1 � β2ν2� sin�ϕ� tan�θ�;
_θ � �β1ν1 � β2ν2� cos�ϕ�;
_ψ � �β1ν1 � β2ν2� sin�ϕ� sec�θ�;
_ν1 � u1;

_ν2 � u2 (9)

in which u � � u1 u2 �T . We note that any equilibrium of Eq. (9)
must be unforced (i.e., u1 � u2 � 0). Furthermore, becauseM�Θ� is
invertible, ν1 � ν2 � 0 at an equilibrium. Thus, all attitudes with
zero RW velocity are equilibria of Eq. (9).

B. Approximation of the Equations of Motion

To simplify controller design, the dynamics in Eq. (9) are
approximated by a set of equations that do not contain any
trigonometric functions. This is done by first expanding the
trigonometric functions in Eq. (9) by a Taylor series, yielding

_ϕ � �α1ν1 � α2ν2� � �β1ν1 � β2ν2�
�
ϕ −

1

6
ϕ3 � 1

120
ϕ5� · · ·

�
�
θ� 1

3
θ3 � 2

15
θ5� · · ·

�
;

_θ � �β1ν1 � β2ν2�
�
1 −

1

2
ϕ2 � 1

24
ϕ4� · · ·

�
;

_ψ � �β1ν1 � β2ν2�
�
ϕ −

1

6
ϕ3 � 1

120
ϕ5� · · ·

�
�
1� 1

2
θ2 � 5

24
θ4� · · ·

�
;

_ν1 � u1;

_ν2 � u2 (10)

Equations (10) can be compactly written as

_ϕ � �α1ν1 � α2ν2� �O�kΘ�t�k2�;
_θ � �β1ν1 � β2ν2� �O�kΘ�t�k2�;
_ψ � �β1ν1 � β2ν2�ϕ�O�kΘ�t�k2�;
_ν1 � u1;

_ν2 � u2 (11)

in whichO�kΘ�t�k2� denotes the remaining terms, which are higher
order in Euler angles. Because the desired attitude maneuvers being
performed are small, in a neighborhood of the desired pointing
equilibriumΘ � 0, Eq. (9) can be approximated based onEq. (11) by

_ϕ � �α1ν1 � α2ν2�;
_θ � �β1ν1 � β2ν2�;
_ψ � �β1ν1 � β2ν2�ϕ;
_ν1 � u1;

_ν2 � u2 (12)

Remark 1:When α1 � β2 � 1 and α2 � β1 � 0, themodel (12) is
essentially the same as the exact transformed equations of motion of
the underactuated spacecraft with zero angular momentum given in
[12]. This implies that the MPC law presented in this paper can also
stabilize the transformed dynamics of [12], and hence the actual
spacecraft’s attitude. The advantage to using the transformed
dynamics is that errors due to approximations like small angles are
nonexistent. In this paper, the development of an MPC controller is
based on model (12), and the transformation is not used to preserve
the physical meaning and intuitive sense of state and control
variables, which, for instance, facilitates the imposition of
constraints. The controller is validated in simulations using the
exact model based on Eqs. (1), (5), and (6).
Remark 2: The reduced, simplified continuous dynamics in model

(12) are closely related to nonholonomic problems that have been
studied in [28]. Although this paper only considers and focuses on the
application of nonlinear MPC to the underactuated spacecraft
problem, the results may be extended to stabilize other systems with
similar characteristics. We leave such extensions to future work.

C. Discretization

To implement MPC, a discrete-time prediction model is needed.
We assume that the control input is generated by a zero-order hold
with a sampling period T so that

u1�t� � u1;k; ∀ t ∈ �kT; �k� 1�T�;
u2�t� � u2;k; ∀ t ∈ �kT; �k� 1�T� (13)

322 PETERSEN, LEVE, AND KOLMANOVSKY

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

5,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

03
20

 



in which k is a positive integer. In addition, we adopt the following
notations:

ϕk � ϕ�kT�; θk � θ�kT�; ψk � ψ�kT�;
ν1;k � ν1�kT�; ν2;k � ν2�kT�;
xk � �ϕk θk ψk ν1;k ν2;k �T (14)

The discrete-time dynamics for RW velocities are determined by
integrating the last two equations of Eqs. (11), yielding

ν1;k�1 � ν1;k � u1;kT; ν2;k�1 � ν2;k � u2;kT (15)

Based onmodel (12), the approximate discrete dynamics for Euler
angles ϕ and θ can be determined similarly as

ϕk�1 � ϕk � �α1ν1;k � α2ν2;k�T � �α1u1;k � α2u2;k�
T2

2
;

θk�1 � θk � �β1ν1;k � β2ν2;k�T � �β1u1;k � β2u2;k�
T2

2
(16)

To determine the approximate discrete dynamics for ψ, the
equation

_ψ�
�
ϕk��α1ν1;k�α2ν2;k�t��α1u1;k�α2u2;k�

t2

2

��
β1�ν1;k�u1;kt�

�

�
�
ϕk��α1ν1;k�α2ν2;k�t��α1u1;k�α2u2;k�

t2

2

��
β2�ν2;k�u2;kt�

�

(17)

must be integrated over the sampling period T, where Eq. (17) is
obtained from substituting Eqs. (15) and (16) into the kinematic
equation for ψ in model (12). Integrating Eq. (17) and collecting
Eqs. (15) and (16) gives the full set of approximate discrete dynamics

ϕk�1 � ϕk � �α1ν1;k � α2ν2;k�T � �α1u1;k � α2u2;k�
T2

2
;

θk�1 � θk � �β1ν1;k � β2ν2;k�T � �β1u1;k � β2u2;k�
T2

2
;

ψk�1 � ψk � ϕk�β1ν1;k � β2ν2;k�T
� �β1ϕku1;k � β2ϕku2;k � α1β1ν

2
1;k � α2β2ν

2
2;k

� α1β2ν1;kν2;k � α2β1ν1;kν2;k�
T2

2

� �3α1β1ν1;ku1;k � 3α2β2ν2;ku2;k � 2α1β2ν1;ku2;k

� 2α2β1ν2;ku1;k�
T3

6
� �α1β2ν2;ku1;k � α2β1ν1;ku2;k�

T3

6

� �α1β1u21;k � α2β2u
2
2;k � α1β2u1;ku2;k � α2β1u1;ku2;k�

T4

8
;

ν1;k�1 � ν1;k � u1;kT;

ν2;k�1 � ν2;k � u2;kT (18)

Thus, under the assumption that all attitude maneuvers are
relatively small, the discrete dynamics inmodel (18) approximate the
actual discrete dynamics of the underactuated spacecraft system. We
note that the approximate model (18) is nonlinear. The use of a
nonlinear predictionmodel rather than linearizedmodel is essential to
be able to achieve discontinuous stabilization with MPC. This is
because the linearized model is not controllable and thus a linear
controller cannot be designed for this problem. In contrast, the
simplified nonlinear model is locally controllable and stabilizable,
which is discussed in the next section.

III. Controllability and Stabilizability Analysis

In this section, controllability and stabilizability properties of the
approximate dynamics, given by the continuous-time equations in
model (12) and the discrete-time equations in model (18), are
analyzed and compared with the properties of the actual nonlinear
dynamics (9). This analysis indicates that model (12) retains similar
local controllability properties to Eq. (9), which are necessary to be
able to use model (12) as a basis for control design for an
underactuated spacecraft. Controllability and stabilizability proper-
ties of the discrete-time system (18) will subsequently be needed to
demonstrate closed-loop stability with MPC.

A. Controllability Analysis

The definition of STLC, as given by [29], is as follows: A system
_x � f�x; u� is STLC from x0 if there exists a time T > 0 such that, x0
for all time t > 0, t ≤ T is in the interior of the reachable set from x0,
R�x0; t�, at time instant t.
Intuitively, if x0 is STLC, the reachable set from x0 will remain an

open neighborhood of x0 as time becomes infinitesimally small. In
[12], the exact reduced underactuated attitude equations are proven
STLC from any at-rest attitude. This property also holds for Eq. (9)
(the proof of which is given in Appendix A). It is now demonstrated
by Theorem 1 that the approximate continuous-time dynamics in
model (12) remain STLC from any equilibrium. The proof of the
theorem uses the concept of Lie brackets, which are reviewed in
Appendix A.
Theorem 1: The approximate, underactuated spacecraft attitude

Eqs. in (12) are STLC from all equilibria.
Proof: Let x � �ϕ θ ψ ν1 ν2 �T . The drift vector field and

the control vector fields of model (12) are then given by

f0 � � α1ν1 � α2ν2 β1ν1 � β2ν2 �β1ν1 � β2ν2�ϕ 0 0 �T;
f1 � � 0 0 0 1 0 �T;
f2 � � 0 0 0 0 1 �T (19)

Using Eq. (A2) from Appendix A, three Lie brackets are generated:

B1 � � f1; f0 � � � α1 β1 β1ϕ 0 0 �T (20)

B2 � � f2; f0 � � � α2 β2 β2ϕ 0 0 �T (21)

B3 � �B1; B2 � � � 0 0 �α1β2 − α2β1� 0 0 �T (22)

Note the following:
1) The top two entries of B1 and B2 are equivalent to the top two

entries of the first and second columns of Ŵ, respectively. Because
the columns of Ŵ are linearly independent, B1 and B2 are linearly
independent for all ϕ.
2) The top three entries ofB3 are equivalent to the cross product of

the columns of Ŵ. Because the columns of Ŵ are linearly
independent, B3 is nonzero.
From the preceding, it can be seen that the vector fields f1, f2, B1,

B2, and B3, when evaluated at any equilibrium (i.e., any orientation
with zero RW velocity), span R5. By Theorem A1 in Appendix A,
model (12) is accessible from any equilibrium.
Now note that bracket B3 has a 1 degree of four, the largest out of

this set of brackets. The only bad brackets that can be generated byf0,
f1, and f2 with 1 degree less than four are � f1; B1 � and � f2; B2 �,
both of which have a 1 degree of three (other bad brackets of 1 degree
of three can be written as linear combinations of these two due to the
symmetric properties of the brackets themselves; see [30]). These
brackets are zero and thus can be constructed trivially with good
brackets of 1 degree of one or two. FromTheoremA2 inAppendixA,
the system is STLC from all equilibria. □

The preceding analysis demonstrates that the approximate
dynamics of model (12) retain the STLC property of the actual
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nonlinear dynamics (9). Thus, even though the system is
approximate, its nonlinear dynamics can be exploited by control
designs that depend on local controllability properties.
Remark 3: Consider now the discrete-time system (18). We note

that there are accessibility properties that can be obtained for discrete-
time systems through the use of Lie brackets [31,32], but to the
authors’ knowledge there is no Lie bracket analysis that can
demonstrate nonlinear local controllability properties for discrete-
time that are similar to that of STLC in continuous-time. Hence, we
present a direct construction of a control input that demonstrates the
needed local controllability property in discrete-time in Appendix B.
The open-loop control sequence that we construct brings any at-rest
equilibrium of model (18) to any state in six steps, regardless of
sample time. Thus, the reachable set from any attitude equilibrium in
six steps is an open neighborhood. Moreover, the elements of the
control sequence depend continuously on the initial state, a property
that will be used in the proof of the closed-loop stability of the MPC
controller.

B. Stabilizability Analysis

As stated previously, the actual continuous-time attitude dynamics
cannot be stabilized by any smooth or continuous time-invariant
feedback law due to Brockett’s condition. This was proven in [12]
and can be similarly shown for Eq. (9). To show that this obstruction
to stabilization is still retained bymodel (18), the exact discretization
of the reduced, approximate continuous-time dynamics in model
(12), the following discrete-time variant of Brockett’s condition from
[33] is used.
Lemma 1[33]: Consider a discrete-time, nonlinear control system

governed by

xk�1 � Fd�xk; uk� (23)

withFd�0; 0� � 0 andFd being smooth (i.e.,C∞) in a neighborhood
of (0, 0). A necessary condition for the existence of a smooth state
feedback control law uk � u�xk� that renders (0, 0) locally
asymptotically stable is that the mapping Φ: �x;u� → x − Fd�x; u�
be onto an open neighborhood of the origin. □

Lemma 1 is now used to prove the result of Theorem 2.
Theorem 2: There does not exist a smooth state feedback law that

locally asymptotically stabilizes the discrete-time dynamics inmodel
(18) to the origin.
Proof: If the map Φ is open, the equation

z � x − Fd�x;u� (24)

is solvable for all z sufficiently small. Let Fd represent the discrete
dynamics in model (18) and z � � 0 0 �z 0 0 �T for �z ∈ R. For
Eq. (24) to be satisfied, u1, u2, ν1, and ν2 must be zero, which results
in x − Fd�x; u� � 0. Given that �W in Eq. (8) is rank 2, Eq. (24) is not
solvable for all j�zj > 0 and implies that the mapping Φ is not open.
The conclusion of the theorem follows from Lemma 1. □

Theorem 2 demonstrates that, even though the dynamics are
approximated and discretized, the obstruction to stabilizability
present in Eq. (9) is retained by model (18). However, because the
approximate nonlinear system is locally controllable, a nonlinear
MPC controller can be used to generate a discontinuous feedback law
to stabilize the system to the desired equilibrium.

IV. Model Predictive Control

Model predictive control optimizes a control sequence over a finite
horizon into the future tominimize a specified cost function subject to
constraints [34]. Then, the first element of the optimal sequence is
applied over the first discrete-time interval. The optimization horizon
afterward recedes by one step and the process is repeated, starting
with the current state as the initial condition.
Subsequently, we consider an MPC objective function for the

spacecraft underactuated attitude problem of the form

JN�x0; u1;0; : : : ; u1;N−1; u2;0; : : : ; u2;N−1� �
XN−1

i�0

L�xi; �u1;i; u2;i�T�

(25)

in which N is the optimization horizon and L�x; �u1; u2�T� is the
incremental cost function given by

L�x; �u1; u2�T� � xTQx� r1u
2
1 � r2u

2
2 (26)

inwhichQ � QT > 0 and r1, r2 > 0. The optimal control problem is
given by

min
ui;j;i�1;2;j�0;1; : : : ;N−1

JN�x0; u1;0; : : : ; u1;N−1; u2;0; : : : ; u2;N−1� (27)

subject to

xk�1 � Fd�xk; �u1;k; u2;k�T�; ∀ k � 0; 1; : : : ; N − 1;

x0 � x�t�;
maxfju1;kj; ju2;kjg ≤ umax; k � 0; 1; : : : ; N − 1;

xk ∈ Xk; k � 0; 1; : : : ; N − 1;

xN � 0 (28)

in which x�t� is the current state, umax is the maximum bound on
control, Xk is the state constraint set at a discrete-time instant k
assumed to be compact, and Fd are the approximate discrete
dynamics in model (18). The value function of this optimization at x0
is defined as

VN�x0�� min
ui;j ;i�1;2;j�0;1;:: :;N−1

JN�x0;u1;0; : : : ;u1;N−1;u2;0; : : : ;u2;N−1�
(29)

A. Asymptotically Stabilizing Control Generated by MPC

To demonstrate that MPC generates an asymptotic stabilizing
control law for the approximate discrete dynamics in model (18), the
following theorem from [24] is used.
Theorem 3 [24]: For a discrete-time MPC problem with

a terminal state condition xN � 0, if VN is continuous at x0 � 0 and
L satisfies Requirements 3.1 and 3.2, then the origin is an
asymptotically stable equilibrium of the discrete-time system.
Requirement 3.1: L�0; 0� � 0
Requirement 3.2: There exists a nondecreasing function

γ: �0;∞� → �0;∞� such that γ�0� � 0 and 0 < γ�k�x; u�k� ≤
L�x; u� for all �x; u� ≠ 0, in which k��;��k is a norm on the pair
�x; u�. □

Note that Theorem 3 only requires continuity of the value function
at x0 � 0. Theorem 3 is now used to prove that the nonlinear MPC
problem generates an asymptotically stabilizing control law for
when the input is unconstrained (Theorem 4) and constrained
(Corollary 4.1).
Theorem 4: For the MPC problem in Eqs. (18), (27), and (28), let

Xk � R5 for k � 0; 1; : : : ; N − 1 and umax � 	∞. Then, MPC
generates an asymptotically stabilizing control law to the originwhen
the horizon length satisfies N ≥ 6.
Proof: Requirements 3.1 and 3.2 are satisfied from the

construction of L in Eq. (26). It is now only necessary to show that
VN is continuous at x0 � 0 to apply Theorem 3. A sufficient
condition for the continuity ofVN at x0 � 0 is that it is bounded from
below and above by continuous functions that are zero at x0 � 0 [24].
The value function is bounded from below by a function because
xTQx. To show thatVN is bounded fromabove, it is sufficient to show
that an open-loop trajectory exists, is feasible under control
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constraints, and has a maneuver cost that is continuous in the initial
state x0 and is zero at x0 � 0.
Such an open-loop control sequence can be constructed as follows.

Let the states ϕ, θ, ν1, ν2 be called base variables, because the linear
system consisting of these states is completely controllable in two
discrete-time steps. Define x0 � �ϕ0 θ0 ψ0 ν1;0 ν2;0 �T as the

initial state vector, y0 � �ϕ0 θ0 ν1;0 ν2;0 �T as the initial base

variable vector, and ŷ � � ϕ̂ θ̂ ν̂1 ν̂2 �T as a chosen base variable
vector. Then, the control sequence fui;j; i � 1; 2; j � 0; 1; : : : ; 5g,
defined by

� u1;0 u2;0 u1;1 u2;1 �T � −��AB B ��−1A2y0 (30)

� u1;2 u2;2 u1;3 u2;3 �T � ��AB B ��−1ŷ (31)

� u1;4 u2;4 u1;5 u2;5 �T � −��AB B ��−1A2ŷ (32)

and

A �

2
664
1 0 α1T α2T
0 1 β1T β2T
0 0 1 0

0 0 0 1

3
775; B �

2
664
α1

T2

2
α2

T2

2

β1
T2

2
β2

T2

2

T 0

0 T

3
775 (33)

will drive any x0 to zero as long as

Δc � −
12

5T
ψ2 (34)

in which

Δc � ϕ̂�β1ν̂1 � β2ν̂2� − θ̂�α1ν̂1 � α2ν̂2� (35)

and

ψ2 � ψ0 �
5T

24
�ϕ0�β1ν1;0 � β2ν2;0� − θ0�α1ν1;0 � α2ν2;0��

−
1

2
θ0ϕ0 (36)

Note that, since umax � 	∞, the control in Eqs. (30–32) will
always satisfy constraints, and therefore the trajectory generated by
such a control sequence is feasible.
The logic of the open-loop maneuver as follows. The control

sequence in Eq. (30) drives y0 to zero and ψ0 to ψ2. The remaining
control sequences in Eqs. (31) and (32) guide the base variables in a
closed trajectory that travels from zero to ŷ and back to zero. The
influence of this closed trajectory on ψ is reflected by ψ3, ψ4, ψ5, and
ψ6:

ψ3 � ψ2 � Δc

T

16
� θ̂ ϕ̂

1

8
� �α1ν̂1 � α2ν̂2��β1ν̂1 � β2ν̂2�

T2

32

− ϕ̂�β1ν̂1 � β2ν̂2�
T

8
(37)

ψ4 � ψ2 � Δc

5T

24
� 1

2
θ̂ ϕ̂ (38)

ψ5 � ψ2 � Δc

17T

48
� θ̂ ϕ̂

1

8
� �α1ν̂1 � α2ν̂2��β1ν̂1 � β2ν̂2�

T2

32

� ϕ̂�β1ν̂1 � β2ν̂2�
T

8
(39)

ψ6 � ψ2 � Δc

5T

12
(40)

As can be seen, if Eq. (34) is satisfied, ψ6 � 0, and thus x0 reaches
zero in six steps. Let ŷ be chosen as

ϕ̂ � jψ2j2∕3;
θ̂ � −jψ2j2∕3;

ν̂1 � −
6

5T�α1 � β1�
�ψ2�1∕3;

ν̂2 � −
6

5T�α2 � β2�
�ψ2�1∕3 (41)

Then condition (34) is satisfied assuming that α1 � β1 ≠ 0 and
α2 � β2 ≠ 0. Note if α1 � β1 � 0 or α2 � β2 � 0, another ŷ that
satisfies condition (34) can be chosen. Also note that α1 � β1 � 0
and α2 � β2 � 0 will never occur at the same time because the

columns of Ŵ are linearly independent. Using Eq. (41), the control
sequences in Eqs. (31) and (32) become continuous functions of ψ2,
which is consequently a continuous function of x0.
Because the control sequence (30–32) steers the state to the origin

and is continuous as a function of the initial state x0, it follows thatVN

is upper bounded by the cost of this feasible control sequence, which
is a continuous function of x0 and is zero at x0 � 0. Because VN is
upper and lower bounded by continuous functions of x0 that are zero
at x0 � 0,VN is continuous at x0 � 0. By Theorem 3, the control law
is asymptotically stabilizing for all horizon lengths satisfying
N ≥ 6. □

The argument of Theorem 4 can be extended to demonstrate the
following result under control constraints.
Corollary 4.1: For the MPC problem in Eqs. (18), (27), and (28),

let Xk � R5 for k � 0; 1; : : : ; N − 1. Then, for any umax > 0, there
exists a sufficiently large horizon length N� ≥ 6 such that MPC
generates a locally asymptotic stabilizing control to the origin when
the horizon length satisfies N ≥ N�.
Proof: Define the following quantities:

~umax;1 � maxfju1;0j; ju1;1j; ju2;0j; ju2;1jg (42)

~umax;2 � maxfjui;jj; i � 1; 2; j � 2; 3; 4; 5g (43)

and the following set

G�ρ� � fx0 ∈ R5: ∀ kx0k ≤ ρ; ~umax;1 ≤ umaxg (44)

Because the base variable system is linear [defined by matrices A
and B from Eq. (33)] and umax > 0, there exists a ρ� > 0 such that
∀ ρ ∈ �0; ρ��, G�ρ� ≠ f∅g (i.e., there exists a ball of radius ρ�
centered at the origin where, for all x0 in the ball, ~u1;max ≤ umax).
Now define Nψ ≥ 1 as a positive integer and let ŷ be chosen as

ϕ̂ � jψ2j2∕3∕
�������
Nψ

p
;

θ̂ � −jψ2j2∕3∕
�������
Nψ

p
;

ν̂1 � −
6

5T�α1 � β1�
�������
Nψ

p �ψ2�1∕3;

ν̂2 � −
6

5T�α2 � β2�
�������
Nψ

p �ψ2�1∕3 (45)
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From the logic used in Theorem 4, if Eq. (45) holds, ψ6 becomes

ψ6 � ψ2 −
ψ2

Nψ
(46)

The control sequence fui;j; i � 1; 2; j � 2; 3; 4; 5g can be
repeated n times, which gives the following discrete evolution of ψ :

ψ2�4n � ψ2 −
ψ2

Nψ
n (47)

Ifn � Nψ ,ψ and the basevariables reach zero in finite time.AsNψ

increases, kŷk decreases, which consequently decreases ~umax;2.

Therefore, there exists an N�
ψ ≥ 1 such that, for all Nψ ≥ N�

ψ ,

~umax;2 ≤ umax.
From the preceding, it can be seen that, for all x0 in a neighborhood

of the origin defined by G�ρ��, the MPC problem with control
constraints is feasible for any horizon lengths satisfying N ≥
2� 4N�

ψ � N�. The control sequence for this maneuver is
continuous in the initial condition x0, and therefore the cost of
such a maneuver is continuous in x0 and zero at x0 � 0. The cost
of this maneuver constitutes an upper bound on the value function,
and hence the conclusions of this corollary follow similar to
Theorem 4, but only apply in a neighborhood of the origin defined
by G�ρ��. □

Remark 4: It may be possible to increase ρ� if the control sequence
that drives y0 to zero is allowed to take longer than two discrete-time

steps. Therefore, by increasing N further, it may be possible to
expand the local region of attraction G�ρ�� for the MPC law defined
in Eqs. (18), (27), and (28).
Theorem 4 only approaches the subject of control constraints.

MPC, however, also has the ability to enforce state constraints.
Though no formal proof in this work is given for stabilization in the
presence of state constraints, simulations in Sec. V show that MPC
can indeed generate stabilizing feedback laws when some state
constraints are included.
Recall that the discrete dynamics used in theMPC formulation are

only approximate. It is surmised that the MPC controller using the
approximate dynamics is able to stabilize the actual orientation of the
underactuated spacecraft in a region where the model mismatch is
small. Simulation results on the full nonlinear model (1), (5), and (6)
in Sec. V demonstrate successful convergence in a neighborhood of
the origin where Euler angles, and thus model mismatch between the
exact and approximate models, is sufficiently small.

B. Discontinuous Control Law

To illustrate thatMPCgenerates a control law that is discontinuous
in terms of state, the optimization problem in Eqs. (18), (27), and (28)
is solved for various initial attitudes ranging between−0.1 and 0.1 rad
and initial RWvelocities of 0 rad∕s. The spacecraft and the controller
in these tests have the same parameters as those in Sec. V.
Figure 1a shows the control action u1;0 when θ � 0 and ϕ and ψ

are sampled on a circle of radius 0.05 rad (for a given λ, ϕ �
0.05 cos�λ� and ψ � 0.05 sin�λ�). Likewise, Fig. 1b shows the
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Fig. 1 Discontinuous feedback law generated by MPC for a circle of initial conditions.
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Fig. 2 Discontinuous feedback law generated by MPC for a grid of initial conditions.
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control action u1;0 when ϕ � 0 and θ and ψ are sampled on a circle
of radius 0.05 rad, (for a given λ, θ � 0.05 cos�λ� and
ψ � 0.05 sin�λ�). In both figures, the discontinuity, represented by
the dashed line, occurs at ϕ � θ � 0.
To demonstrate the discontinuity further, Fig. 2a shows the control

action u1;0 when θ � 0 and ϕ and ψ are varied across a grid of initial
conditions. Figure 2b likewise shows the control action u1;0 when
ϕ � 0 and θ and ψ are varied across a grid. The discontinuity is
present and, in addition, passes through the origin. This can be
reasoned fromFig. 1 aswell, because as the radius of the sampled unit
circle decreases, the discontinuity still remains atϕ � θ � 0, whileψ
decreases in magnitude.

V. Simulation Results

In this section, theMPCproblemdefined in Eqs. (18), (27), and (28)
is applied to the actual nonlinearmodel (1), (5), and (6). The spacecraft
bus in these simulations is assumed to have principal moments of
inertia equal to 430, 1210, and 1300 kg · m2, respectively. The
reactionwheels are assumed symmetric and thin, and they aremounted

such that the c.m. of the spacecraft bus and total spacecraft assembly
coincide. The inertias of the RWs about their spin axes are
Js1 � Js2 � 0.043 kg · m2. The two RWs are aligned with the minor
and intermediate principal axes of the spacecraft bus, yielding

�J �
2
4 430.043 0 0

0 1210.043 0

0 0 1300

3
5; �W �

2
4 0.043 0

0 0.043

0 0

3
5

(48)

The model and control parameters used in all the simulations are
listed in Table 1.

A. Beginning Simulations

For the first simulation, the initial conditions of the spacecraft
are Θ�0� � �−0.05 0.03 0.1 �T rad, ω�0� � � 0 0 0 �T rad∕s,
and ν�0� � � 0 0 �T rad∕s. In this simulation, only RW control
constraints are enforced. The results are given in Fig. 3. In
the second simulation, the initial conditions of the spacecraft
are Θ�0� � � 0 0 −0.1 �T rad, ω�0� � � 0 0 0 �T rad∕s, and
ν�0� � � 0 0 �T rad∕s. In this simulation, we impose an additional
RW speed constraint of kνk∞ ≤ 100 rad∕s. The results are given in
Fig. 4. Both simulations demonstrate that the MPC formulation (27)
and (28), which uses model (18) as an approximate model for
prediction, is able to stabilize the attitude of the underactuated
spacecraft to the desired pointing orientation, while enforcing control
constraints on the exact model of the spacecraft. Moreover, the
convergence rates in both simulations appear to be exponential.

Table 1 Simulation parameters

Parameter Units Value

umax rad∕s2 5
T s 10
N — — 30
Q — — diag�1 × 105; 1 × 105; 1 × 105; 0.01; 0.01�
r1, r2 — — 10, 10
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Fig. 3 MPC response of underactuated spacecraft, simulation 1: a) Euler angles, b) angular velocities, c) wheel velocities, and d) wheel accelerations.
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Observe that, in both Figs. 3 and 4, the Euler angles ϕ and θ (roll
and pitch) oscillate while ψ (yaw) converges to equilibrium. For
problems related to nonholonomic systems, such as the under-
actuated spacecraft problem, a controlled drift in the underactuated
axis can be induced byperforming oscillatorymotion in the states that
are controllable. This phenomenon is related to geometric phase,
which is closely connected to the controllability analysis given byLie
brackets. Thus, it appears that MPC uses this effect to stabilize the
underactuated spacecraft to equilibrium. An in-depth analysis of
using geometric phase for the underactuated attitude problem can be
found in [35,36].

B. Simulations with Various Sampling Times

To demonstrate that the nonlinear MPC controller can handle
different sampling periods, two simulations are now performed using
the same initial conditions, control parameters, and constraints as the
first simulation (results in Fig. 3), but the sampling period T is
changed from 10 to 6 s and 40 s, respectively. The results are shown in
Fig. 5. In both cases, the nonlinear MPC controller stabilizes the
attitude,while satisfying constraints. Although this has not been done
in simulations shown, the design parameters in Table 1, in particular,
the prediction horizon,may need to be adjusted if the sampling period
changes to improve closed-loop performance.

C. Large Angle Maneuver Simulations

As mentioned in the previous section, the nonlinear MPC
controller is able to stabilize the attitude of the underactuated
spacecraft in a neighborhood where model mismatch is small. This
neighborhood can be easily reached by external thrusters or cold

gas jets, types of actuation that can be used for large maneuvers but
not for precise pointing. However, it can be demonstrated that
the nonlinear MPC controller can also stabilize an at-rest spacecraft
with initially large Euler angles. An example is given in Fig. 6, the
control parameters used are in Table 1, the initial conditions
are Θ�0� � � 0.6 −0.89 1 �T rad, ω�0� � � 0 0 0 �T rad∕s,
and ν�0� � � 0 0 �T rad∕s, and the only constraint being enforced
is the control constraint. The figure demonstrates successful
convergence while satisfying constraints, even though the small-
angle assumption is clearly violated.
To further demonstrate the range of at-rest initial conditions the

nonlinearMPCcontroller can stabilize, 1000 random test simulations
were run with initial Euler angles belonging to the interval of
�−180; 180� deg, initial zero angular velocity, andRWspeeds initially
at 0 rad∕s. Figure 7 gives an approximation of the region of attraction
based on if the controller was able to converge to a 0.01 rad
(0.573 deg) Euler angle box and a 0.001 rad∕s angular velocity box.
As can be seen, the region of attraction is quite large, despite the
small-angle assumption being used in the controller design.
Furthermore, the domain of attraction of the controller may be
extended by exploiting reference governor strategies [37].

D. Discussion on Real-Time Applications

The MPC optimization problem in all simulations was solved
using an interior-point method with MATLAB’s fmincon function.
The average and worst-case computation times needed to solve the
optimization problem in Sec. V.A, using a standard computer with
2.4 GHz clock speed, were 1.2 and 2.4 s, respectively. Both times are
less than the sample time T in these simulations, which is 10 s (found
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Fig. 4 MPC response of underactuated spacecraft, simulation 2: a) Euler angles, b) angular velocities, c) wheel velocities, and d) wheel accelerations.
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in Table 1). Using custom solvers optimized for real-time
implementation as a C code will clearly reduce computation time.
For instance, see [38], which shows that symbolic computations and
code optimization can drastically improve the computation time.
Though common spaceflight hardware have processing power
typically in the MHz range, the general trend has been toward
growing computing power. In fact, there are now more powerful

spaceflight processors available, such as the 1 GHz PROTON-200k,
the 1.5 GHz PROTON-400k-3X, and the 3 GHz PROTON-200k-
3X.§ Reconfigurable field programmable gate arrays can also be used
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Fig. 6 MPC response of underactuated spacecraft for large initial Euler angles: a) Euler angles and b) wheel accelerations.
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Fig. 5 MPCresponse of underactuated spacecraftwith various sample periods: Euler angleswhen a)T � 6 s and b)T � 40 s; wheel accelerationswhen
c) T � 6 s and d) T � 40 s.

§Data available online at http://www.ati-space.com/ATI.files/11_index.
files/utyuu_aboute.htm [retrieved 16 October 2014].
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for spacecraft missionswith large processing demands [39]. It should
finally be noted that RWs are used for nonagile maneuvers [40]. As
such, the closed-loop bandwidth for actuation is in the range 0.01–
1 Hz [41], hence control solutions do not need to be computed as
rapidly as for other real-time systems. Thus, our application may not
be dissimilar from other applications for which successful real-world
implementations of nonlinear MPC have been reported [42,43].¶,**

For spacecraft with limited onboard computational ability, an explicit
implementation may be used in which the nonlinear MPC is
precomputed offline and approximately function fitted; the fitted
function is then used online [26,44–47]. Such an implementation is
still fundamentally based on computational optimization.
Remark 5: Note that the underlying optimization problem is

nonlinear and nonconvex. Thus, there are no a priori guarantees,
other than offline testing by running multiple simulations, that the
solver used will converge to a solution. Continuation and warm
starting strategies can mitigate the risk of the solver not converging
[47–49]. For some implementations, convergence is not required,
only feasibility and cost decrease.

VI. Conclusions

This paper analyzed the application ofMPC to stabilize the attitude
of an underactuated spacecraft with two RWs and zero angular
momentum. It was shown that MPC based on an approximate model
is able to generate a feedback law that is discontinuous in terms of
state, which locally stabilizes the system to the desired pointing
equilibrium. Simulations on the full nonlinear model demonstrate
successful inertial pointing maneuvers with fast exponential
convergence rates and with constraints being satisfied. The domain
of attraction of the controller is an open neighborhood of the origin
and it may be extended by exploiting reference governor
strategies [37].

Appendix A: Lie Brackets and Controllability

Let a general control system for x ∈ Rn that is affine in control be
given by

_x � f0�x� �
Xm
i�1

fi�x�ui (A1)

in which ui are the control inputs,m is the number of control inputs,
f0 is the drift vector field, and fi, i � 1; : : : ; m are the control vector
fields. By studying the vector fields of Eq. (A1), as well as the vector

fields generated by Lie brackets, certain controllability properties of
Eq. (A1) can be obtained.
To begin, a Lie bracket of system (A1) is a bilinear skew-

symmetric map that takes any two vector fields fj�x� and fk�x�, j,
k ∈ f0; 1; : : : ; mg, and generates a third vector field on Rn in the
following way [12,29]:

�fj; fk� �
∂fk�x�
∂x

fj�x� −
∂fj�x�
∂x

fk�x� (A2)

Let B denote any arbitrary Lie bracket of system (A1). Define the
operator jBja as the number of times the vector field fa appears in the
bracket, for any a ∈ f0; 1; : : : ; mg. A bracket B is bad if jBj0 is odd
and jBja is even∀ a ∈ 1; 2; : : : ; m. Otherwise, the bracketB is good.
Lastly, define the 1 degree operator of bracket B as follows

deg1�B� �
Xm
i�0

jBji (A3)

The 1 degree operator is hence the total number of vector fields of
Eq. (A1) used to generate Lie bracket B.
The following theorems summarize accessibility and controllabil-

ity results found in [29,30] and specializes them to the case of the
system (A1). Refer to [29,30] for more general definitions.
Theorem A1: Let (x�, u�) be an equilibrium of Eq. (A1). Define

D∞ as the set of all vector fields in Eq. (A1) and all vector fields
constructed from Lie brackets. The system Eq. (A1) is accessible
from (x�,u�) if and only if theD∞ spansRn when thevector fields are
evaluated at (x�, u�). This is known as the Lie Algebra Rank
Condition. □

Theorem A2: Let (x�, u�) be an equilibrium of Eq. (A1). Define
D∞ as the set of all vector fields in Eq. (A1) and all vector fields

constructed from Lie brackets. In addition, let D̂ ⊂ D∞ and p be the

largest 1 degree of all vector fields in D̂ generated by Lie brackets.

The system (A1) is STLC from (x�, u�) if there exists a D̂ such that
the following conditions are met:
1) D̂ satisfies the Lie Algebra Rank Condition when evaluated at

(x�, u�).
2) All bad brackets inD∞ of 1 degree less thanpwhen evaluated at

(x�, u�) are linear combinations of good brackets in D̂ of lower order,
when evaluated at (x�, u�). □

Note that Theorem A1 is sufficient and necessary, whereas
Theorem A2 is only sufficient. To demonstrate these two theorems,
the dynamics of Eq. (9) are analyzed using Lie brackets.
Theorem A3: The dynamics in Eq. (9) are STLC from any

equilibria.
Proof: The drift vector field and the control vector fields of model

(12) are

f0 �

2
66666664

�α1ν1 � α2ν2� � �β1ν1 � β2ν2� sin�ϕ� tan�θ�;
�β1ν1 � β2ν2� cos�ϕ�

�β1ν1 � β2ν2� sin�ϕ� sec�θ�
0

0

3
77777775
;

f1 � � 0 0 0 1 0 �T;
f2 � � 0 0 0 0 1 �T

(A4)

Using Eq. (A2), three Lie brackets are generated:

B1 � �f1; f0� �

2
6664

α1 � β1 sin�ϕ� tan�θ�
β1 cos�ϕ�

β1 sin�ϕ� sec�θ�
0

0

3
7775 (A5)

Fig. 7 Approximation of nonlinearMPC region of attraction for at-rest
maneuvers.

¶Data available online at http://www02.abb.com/global/gbabb/gbabb905.
nsf/bf177942f19f4a98c1257148003b7a0a/4951ad3b82277aaec12579210051
feda/$FILE/FFWD+Power+Generation+Special+Issue.pdf [retrieved
10 March 2016].

**Data available online at https://www.honeywellprocess.com [retrieved
10 March 2016].
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B2 � �f2; f0� �

2
6664

α2 � β2 sin�ϕ� tan�θ�
β2 cos�ϕ�

β2 sin�ϕ� sec�θ�
0

0

3
7775 (A6)

B3 � �B1; B2� �

2
6664

cos�ϕ� sin�θ� sec�θ��α1β2 − α2β1�
− sin�ϕ��α1β2 − α2β1�

cos�ϕ� sec�θ��α1β2 − α2β1�
0

0

3
7775 (A7)

Let D̂ � ff1; f2; B1; B2; B3g. Note that D̂ spans R5 when
evaluated at any equilibrium, which implies D∞ spans R5 when
evaluated at any equilibrium. By Theorem A1, the system is
accessible from all equilibria.
It now is necessary to determine if the system is STLC from all

equilibria. Note that, in D̂, B3 is constructed by using the drift vector
f0 twice and the control vectors f1 and f2 each once. Thus, the
bracket is good and has a 1 degree of four, the largest of any other

brackets in D̂. The only bad brackets that can be constructed with a 1
degree less than four in D∞ are �f1; B1� and �f2; B2� (in the
construction of each of these brackets, f0 is used once and either f1 or
f2 is used twice, and hence they are bad). These brackets are zero and
thus are linear combinations of those brackets of 1 degree of two or
less. By Theorem A2, the system is STLC from any equilibrium. □
Note that the preceding proof is similar to the STLC analysis for

the dynamics in model (12).

Appendix B: Open-Loop Control Law for Approximate
Attitude Dynamics

Let x0 � �ϕ0 θ0 ψ0 0 0 �T be any equilibrium of model
(18) and x� � �ϕ� θ� ψ� ν�1 ν�2 �T be the desired state.
Furthermore, define y0 � �ϕ0 θ0 0 0 �T as the initial base
variable vector, y� � �ϕ� θ� ν�1 ν�2 �T as the desired base

variable vector, and ŷ � � ϕ̂ θ̂ ν̂1 ν̂2 �T as an arbitrary base

variable vector. Then, the control sequence

� u1;0 u2;0 u1;1 u2;1 �T � ��AB B ��−1�y� − A2y0� (B1)

� u1;2 u2;2 u1;3 u2;3 �T � ��AB B ��−1�ŷ − A2y�� (B2)

� u1;4 u2;4 u1;5 u2;5 �T � ��AB B ��−1�y� − A2ŷ� (B3)

in which

A �

2
664
1 0 α1T α2T
0 1 β1T β2T
0 0 1 0

0 0 0 1

3
775; B �

2
664
α1

T2

2
α2

T2

2

β1
T2

2
β2

T2

2

T 0

0 T

3
775 (B4)

will guide any x0 to x� as long as

ψ2 �
5T

12
Δc � ψ� (B5)

in which

Δc � �ϕ̂ − ϕ���β1�ν̂1 − ν�1� � β2�ν̂2 − ν�2��
− �θ̂ − θ���α1�ν̂1 − ν�1� � α2�ν̂2 − ν�2�� (B6)

and

ψ2 � ψ0 �
5T

24
��ϕ� − ϕ0��β1ν�1 � β2ν

�
2�

− �θ� − θ0��α1ν�1 � α2ν
�
2�� �

1

2
�θ� − θ0��ϕ� � ϕ0� (B7)

Note that Eq. (B7) is the drift in the uncontrollable angle ψ due to
the control input (B1). If Eq. (B5) is satisfied, x � x� in six steps.
Now let

ϕ̂ � ϕ� �
��������������������
jψ� − ψ2j

p
;

θ̂ � θ� −
��������������������
jψ� − ψ2j

p
;

ν̂1 �
6

5T�α1 � β1�
sign�ψ� − ψ2�

��������������������
jψ� − ψ2j

p
� ν�1 ;

ν̂2 �
6

5T�α2 � β2�
sign�ψ� − ψ2�

��������������������
jψ� − ψ2j

p
� ν�2 (B8)

It can be seen that condition (34) is satisfied, assuming that
α1 � β2 ≠ 0 and α2 � β2 ≠ 0 (this will not occur if the two RWs are
not parallel, as mentioned in the proof of Theorem 4). If either
α1 � β2 ≠ 0 or α2 � β2 ≠ 0, then other choices for ŷ do exist. Also
note that this maneuver is possible for all sample times T > 0 and
only relies on the maneuvering being performed in six steps.
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