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ABSTRACT

This paper examines how neural network methods may be used to represent driver manual
control of throttle position during headway-keeping tasks. The findings of the study indicate that
the neural network methodology employed here can be used to characterize a variety of driver
longitudinal control behaviors, provided that the input data exhibit strong similarities to the data
used to train the network. Otherwise, the network architecture and methodology utilized here is
not considered adequate to predict driver control responses for unseen data not represented by the
training set. Shortcomings in extending the trained network to predict accurate driver control
responses for unseen data can stem from a variety of reasons, including the intermittent nature of
driver longitudinal control behavior. While neural networks can be used to represent adaptive
longitudinal control behavior of drivers and their associated variability during active control
engagements, determining when active driver control engagements are actually occurring and
selecting that data for training purposes is a confounding factor.
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1. INTRODUCTION

This paper examines how neural network methods
may be used ‘to represent driver manual control of
throttle position during headway-keeping tasks. Recent
studies [1-4] of passenger car headway control systems
have increased interest in the longitudinal control
behavior of actual drivers. Much of this interest is
focused on understanding the range of driving behavior
present in the highway traffic population in order to
better match the control characteristics of new
headway-keeping technologies to the preferences of
drivers when such systems are activated. The neural
net approach examined here offers one possible
approach for identifying and modelling adaptive
longitudinal control behavior of drivers engaged in
headway-keeping or related tasks. The resulting control
model characterization(s) might then be used as a basis
for control algorithm development in ITS headway
control systems. It can also have utility within the
context of ITS warning/control packages that require a
continuously updated characterization of driver control
behavior.

A previous paper [4] demonstrated the capability
to represent driver throttle control behavior as a
function of range and range rate using a fairly simple
two-layer neural network architecture for specific
instances of tracking control behavior. An example
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result from that paper is seen in Figure 1 showing the
level of agreement achieved between the neural net
representation and an actual measurement of driver
throttle control during normal highway driving.
Although the type of result seen in Figure 1 was typical
of modelling specific instances of driver control
behavior with a neural net, further analysis indicated
that the same model was not capable of predicting
driver throttle control activity with the same degree of
accuracy at other encounter times (unseen data not
included in the network training). It was hypothesized
that additional training data for each driver and
additional vehicle information such as speed, and road
grade information, would likely improve the network's
ability to predict throttle control behavior with unseen
data not contained in the initial training set.

This paper now extends that initial work to include
additional sequences of data with which to train the
neural network and also adds forward speed as an
additional network input.  Alternate network
architectures were also considered within the study as
additional methods for improving the prediction
capabilities with unseen data. It was hoped that these
modifications would further enhance the adaptive
capabilities of the network.
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2. METHODOLOGY
2.1 Driver Data

Experimental data were collected from a group of
36 drivers taking part in a research program on
headway control systems [1, 4]. A subset of these data
was then used to train candidate neural network
architectures. The network inputs were range, range-
rate, and speed of the test vehicle sampled at 5 Hz. The
network output was driver throttle control position. The
experimental data corresponded to normal highway
driving in the U.S. under moderate traffic conditions. A
test vehicle equipped with an infrared range sensor and
on-board instrumentation package collected an hour of
manual (headway control system inactivated) driving
data for each of the drivers over the same highway
route. .

Selected portions of these data from three
different drivers were used in this study. The three

selected drivers exhibited driving styles that could b
categorized as "aggressive," average," and "passive" -

reflective of their willingness to pass and overtake othc:
vehicles during their respective driving sessions. Fui
each of the three selected drivers (A, B, and C).
representative data for “closing-in” and “tracking”
maneuvers were used to train the neural network. I
was not known, but suspected, that the drivers werc
actually engaged in some form of control activity for
these selected data. Each training set ranged from
about 4 to 8 minutes of such data, depending on the
driver. Each training set included six separalc
encounters with different target vehicles, ranging in
duration from about 30 to 90 seconds. The training
“clips" were then combined into one large record thal
was used to train the network in a single session (pe!
driver).
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Fig. 1. Representing Driver Longitudinal Control Behavior with a Neural Net, from [4].

Once trained, the resulting model for each driver
was then challenged by comparing its predicted throttle
control behavior against similar unseen data at other
encounter times. This procedure was repeated for each
of the three drivers.

2.2 Network Architecture

Figure 2 shows a diagram depicting the basic
network architecture used in this study. It contains 15
first-layer neurons with sigmoid activation functions.
These are then combined into a single linear output-
layer neuron representing the driver throttle control
activity. Several other architectures involving fewer
and greater numbers of neurons were initially examined
before selecting this particular network which provided
a reasonable compromise between accuracy and
training speed. The inputs to the networks are range,
range-rate, vehicle speed, and two lagged counterparts
of each respective input, making a combined total
number of inputs equal to nine. The lagged inputs can

help provide time derivative information to the
network. The lag value used in these calculations was 2
seconds. An example set of network inputs (range,
range-rate, and velocity) and the corresponding target
output (accelerator / throttle position) is seen in Figure
3. (The range and speed units are feet and feet / second,
respectively.)  This particular time history set
corresponds to a closing-in and tracking maneuver. As
noted above, six of these types of time history data
streams were combined into one contiguous data set for
training purposes for each of the three drivers. MatLab
[5] was used to conduct the calculations. The
Levenberg-Marquardt back-propagation algorithm was
selected for training and required about 150-200 epochs
to achieve satisfactory matching. Figure 4a shows an
example result comparing the predicted network output
of throttle control and the corresponding training data
for driver A (sum squared output error level of about 10



after 200 epochs). Figure 4b shows a portion of the
same data on an enlarged time scale.

Time History First Layer Neurons
Inputs (sigmoid) .
Range (t) W11 Linear
Range Rate (t) N ﬁé’fﬁgﬁ
Velocity (1) 11 1
Range (t-1)—>=0O N accelgl_'ator
Range Rate (t-t)—>0 2 \ position
Velocity (t-1)—>0 . M1
Range (t-271)—>0
Range Rate (t-21)—>0 /"y )
Velocity (t-27) 9,2 ) Ve
(9 inputs) Wg,15 N15

w and v are network weights calculated during network training

Fig. 2. Neural Net Architecture Used in Study.
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Fig. 3. Example Network Inputs and Target Output Training Signals.
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Fig. 4a. Example Comparison of Neural Net Prediction vs. Training Data (Driver A).
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Fig. 4b. Enlarged Time Scale.
3. RESULTS FOR THREE DRIVERS network. In contrast, Figure 6 shows sample results for

the same network configuration and weight values, but
now comparing driver accelerator control responses
predicted by the trained network with data not used in
the training session (unseen data). As indicated here,
the level of agreement is considerably less using the

Corresponding sample results for each of the three
drivers (A, B, and C) are seen in Figure 5. This figure
shows a typical comparison between the neural net
prediction and portions of the data used to train the



unseen data as input to the network.
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Fig. 5. Example Comparisons Between Network Predictions and Portions of Training Data. Drivers A, B, and C.
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Fig. 6. Example Comparisons Between Network Predictions and Unseen Data. Drivers A, B, and C.

4. DISCUSSION

The training data results seen in Figure 5 indicate
that a neural net approach can be used to identify
different driver control responses under a variety of
similar highway driving conditions. However, as
indicated by the results of Figure 6, a broader
application to unseen data, that attempts to capture an
even wider range of longitudinal control behavior of
drivers, still presents a challenge. Although certain
portions of the unseen data comparisons in Figure 6
demonstrate some agreement with the corresponding
measurements, many other portions are clearly lacking.
Explanations for some of these results may be related to
the variety of activities drivers normally engage in

during driving, many of which are not necessarily
control-related.
4.1 Intermittent Control Activity

Numerous longitudinal control situations that
occur during potential headway-keeping activities come
and go and can be fairly intermittent in nature. (An
exception to this may be driver control responses under
very close following conditions.) Significant leeway is
present in many longitudinal control situations thereby
providing opportunities for intermittent (or even
unrelated) control behavior by drivers. The issue of
intermittency can present difficulty to control
identification procedures because of the associated
variability and inconsistencies in assumed relationships
between driver control activity and dependent variables.



If certain basic control relationships exist but are only
being exercised occasionally by a driver, the
identification of those basic rules or tendencies
‘becomes more difficult. Sometimes, no driver control
activity may be present, even though the data may
reflect time history traits similar to those exhibited by
intentional control engagements by a driver. For
example, determining how fast to close in on a target
vehicle, or when to pull out and pass, can often be
dictated more by the preferred operating speeds of the
respective drivers and adjoining traffic conditions than
by some continuous longitudinal control processing
activity on the part of the driver. In other cases, the
driver may be more fully engaged in tracking the lead
vehicle. In both cases the range data may appear to
exhibit similar basic traits even though the driver
control activities are unalike.

Interestingly, these results also contrast with some
recent lateral control applications for which neural net
approaches have demonstrated reasonable consistency
in identifying driver steering control behavior during
path-keeping tasks 6, 7, 8. When considering the
differences in these two types of driving tasks and their
attendant driver control requirements, some explanation
may be related to the continuity of the control task. For
example, the lateral path-keeping task, even for simple
straight-line driving, does seem to require fairly
continuous monitoring and attention by a driver, given
the consequences of straying out of a lane or off the
road. The roadside and lane markers also provide a
type of continuous reminder to the driver in this regard.
In a collision avoidance sense, the roadside or lane edge
acts as a persistent obstacle to be avoided. In contrast,
the nature of target vehicles in one's forward view
during longitudinal engagements, act as intermittent
moving obstacles that are encountered with varying
frequency depending on one's driving style and the
traffic density. In this regard, the more permanent
stimulus of control activity for the driver (and perhaps
conditioner of attentiveness) arises from lateral control
requirements. These differential or asymmetric stimuli
to the driver between lateral and longitudinal control
requirements may contribute in some way to differences
in time-on-task that drivers elect to allocate.

4.2 Looking Through a Straw

Understanding and modelling the longitudinal
control behavior of drivers is further constrained by the
limited information available from a range sensor alone.
Adjacent or following vehicles can often temporarily
influence how a driver modulates the throttle,
independent of the target vehicle ahead, thereby
bypassing any assumed relationship or dependency
between driver throttle modulation activity and range
information assumed in many longitudinal control
formulations. Consequently, use of additional
information relating to vehicles located adjacent to and
behind a subject vehicle would likely be useful in
developing more robust and realistic models of driver
longitudinal control behavior.

In light of the above discussion, use of additional
sensor data would seem (0 help achieve a more

generalized neural nct (or alternate) model of ditve
longitudinal behavior, particularly for improving
predictions of driver control behavior with unseen dats
Its success would likely depend on the ability to
incorporate additional nearby vehicle information into
the formulation, somewhat akin to a collision avoidance
system that monitors target threats from multiple
directions. Human factors information relating to
driver attention and the likelihood of active driver
control involvement would also seem helpful in this

regard.

5. CONCLUSIONS

The findings of this study indicate that the neural
network methodology employed here (utilizing range
information and vehicle speed as network inputs) can
be used to represent a variety of driver longitudinal
control behaviors, provided that the input data exhibit
strong similarities to the data used to train the network.
Otherwise, the network architecture and methodology
utilized here is not considered adequate to predict driver
control responses for unseen data not represented by the
training set.

Shortcomings in extending the trained network to
accurate control predictions on unseen data in this
application can stem from a variety of reasons. One
important reason is the intermittent nature of driver
longitudinal control behavior. Unless data selected for
the network training calculations are known to involve
active control engagements by drivers, the resulting
network characterizations will be diminished.
Information or indicators about the degree of control
engagement by drivers would clearly help determine
what data should be used for training purposes. While
neural networks can be used to represent adaptive
control behavior of drivers and their associated
variability during active control engagements,
determining when active control engagements are
actually occurring and selecting that data for training
purposes is a confounding factor.

Incorporation of additional sensor data that
provide information about surrounding vehicle
movements relative to the subject vehicle would likely
improve a network's predictive capability using the
same or similar approach described here. Forward
range information alone appears to be insufficient for
adequately representing a broad range of control
behaviors routinely observed in actual drivers. Driver
longitudinal control behavior is likely dependent upon a
variety of factors and sensory inputs, beyond those just
involving range information to 2 leading vehicle. The
data analyses obtained here are also consistent with that
view.

Lastly, adaptive control applications often assume
a largely fixed structure for the plant/controller which
contains an associated set of parameters that vary
slowly over time. A broader reality is likely at work in
this particular problem in the sense that the nature of
the human plant/controller is generally recognized to be
variable, intermittent, and time-varying.
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