FREQUENCY DOMAIN METHODS FOR ANALYZING THE CLOSED-LOOP
DIRECTIONAL STABILITY AND MANEUVERABILITY
OF DRIVER/VEHICLE SYSTEMS

Charles C. MacAdam
The University of lMichigan
Transportation Research Institute
Ann Arbor, Michigan 48109, USA

Proceedings of the International Conference on Modern Vehicle
Design Analysis, London UK, June 1983.

ABSTRACT

Several frequency domain methods useful for describing and analyz-
ing the directional stability and maneuverability of the closed-loop
system comprised of the driver and vehicle are examined. In particular,
Bode plots, Nyquist diagrams, and Nichols charts are illustrated and
compared. The utility and specific features of each method for analyzing
driver/vehicle responses are demonstrated through examples using experi-
mental measurements of driver/vehicle interactions and mathematical simu-
lation. A principal conclusion, based upon the analysis techniques and
example calculations, is that preview-based steering control strategies
typically employed by drivers of automobiles may produce a tradeoff of
closed-loop directional stability in exchange for path maneuverability.

INTRODUCTION

This paper presents and illustrates several frequency domain
methods useful for describing and analyzing the directional stability and
maneuverability of the closed-loop system comprised of the driver and
vehicle. Three particular methods commonly employed in control system
analyses are discussed and compared. The three analysis techniques
examined are: a) Bode plots, b) Nyquist diagrams, and c¢) Nichols charts.
The advantages/disadvantages and particular utility of each method for
analyzing driver/vehicle responses are illustrated through examples based
on experimental measurements of driver/vehicle interactions and mathe-
matical simulation.

The paper begins with a brief introductory review of each method.
Driver/vehicle experimental measurements are then presented to illustrate
the appearance or locus of such measurements on plots/diagrams corres-—
ponding to each of the above techniques. Following an interpretation
and discussion of the experimental data presented on these plots, analo-
gous "data" derived from a mathematical model to illustrate more extreme
variations in vehicle and driver characteristics are presented and dis-
cussed in similar fashion. Finally, the topic of driver/vehicle
maneuverability, as it is influenced by driver control characteristics
and vehicle directional dynamics, is examined and discussed. The trade-
off or compromise between closed-loop system stability and maneuver-
ability is demonstrated through frequency domain analysis and computer
simulation calculations.
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REVIEW OF THREE FREQUENCY DOMAIN ANALYSIS TECHNIQUES

A summary of three particular methods applicable to analyzing
driver/vehicle data within the frequency domain is briefly introduced in
this section. Specific examples of how these techniques may be applied
to driver/vehicle frequency response measurements and computer simulation
calculations are presented in the remainder of the paper.

Bode Method

The Bode plot, or frequency response plot as it is commonly re-
ferred to, simply consists of the gain and phase of a transfer function
plotted as a function of sinusoidal input frequency. This type of plot
is by far the most common form used for representing data in the fre-
quency domain. Several 'rules of thumb" exist for interpreting data pre-
sented in this format, particularly with regard to determining stability
of closed-loop control systems. As will be shown for some of the
driver/vehicle data presented in this paper, application of such
of thumb" for determining the stability of the closed-loop driver/
vehicle system can sometimes be misleading and should be employed with
caution. A more rigorous and precise method for determining the
stability of such systems is available through the use of Nyquist dia-
grams.

Figure 1 shows an example Bode plot for a set of driver/vehicle
measurements as might be obtained from a certain type of closed-loop
disturbance test. The frequency response seen here would typically
represent the transfer function of the combined driver/vehicle system
identified by an experimental procedure in which a disturbance input is
applied to the steering system during straight-line regulatory driving.
This type of experimental test is the basis for much of the frequency
response data presented in this paper and is described more fully in the
next sectiom.

The two most common descriptors of driver/vehicle frequency
response characteristics (and Bode plots in general) are: 1) crossover
frequency and 2) phase margin. Crossover frequency is defined as that
frequency at which the transfer function gain is equal to unity (0 db).
Phase margin is defined as the difference between the phase angle occur-
ring at the crossover frequency and 180 degrees. (See Figure 1.) For
typical driver/vehicle data presented in this form, the crossover fre-
quency is often used as an approximate measure of the system bandwidth.
The amount of phase margin generally reflects the degree of closed-loop
system damping and hence stability (e.g., zero phase margin implies a
neutrally stable system). In fact, the primary "rule of thumb" for
interpreting the stability of driver/vehicle data displayed on a Bode
plot is to equate increased phase margin with increased stability.

While this "rule of thumb'" succeeds far more often than it fails, an
example of how it can fail to accurately portray the stability of a
closed-loop system is illustrated in a later sectiom.

"rules

Nyquist Method

The simple block diagram of Figure 2 depicts a closed-loop system
achieved by a single-loop closure about the open-loop transfer function,
y/e = Y,. Such a diagram could be used to represent, in a very elemen-
tary form, a driver/vehicle directional control system. The closed-loop
transfer function relating y to x is given by

y/x = Y /(1 +7) (1)



Figure 1. Example Bode Plot
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Figure 2. Simple Closed-Loop Control System

Stability of the closed-loop system is, of course, determined by the
roots of 1 + Y,. The Nyquist stability criterion (James, Nichols, and
Phillips, 1947) provides an alternate graphical method for determining
closed-loop stability by examination of the complex-plane plot of

1 + Y,. Stated concisely, the system is stable if the number of counter-
clockwise rotations of Il + YO] about the origin is equal to the number
of poles of (1 + Y,) with positive real parts minus the number of zeroes
of (1 + Y,) with positive real parts.

Application of the Nyquist diagram here is not primarily of
interest for determining whether or not a driver/vehicle system is
stable, but rather, for determining the degree of stability (or reso-
nance) present. That is, it is assumed here that the closed-loop system
is stable and the basic intent is to evaluate its degree of stability,
possibly contrasting/comparing it with another system.

The Nyquist diagram, or complex-plane plot of 1 + Y,, can be ob-
tained by simply plotting Y, and then displacing the plot one unit to the
right, or, more simply, plotting Y, and displacing the origin one unit
to the left (see Figure 3). The (-1,0) point then becomes the so-called
critical point, rather than the origin. Most Nyquist diagrams (and
those appearing in later sections of this paper) are displayed in polar
coordinate form, the polar radius equated with [YO!, and polar angle
equated with the phase angle of Y,. Hence the critical point becomes
(1,180 degrees) in polar form.

Examination of the above equation and Figure 3 reveals that the
degree of resonance of the closed-loop system is given by

M = [YO[ /1+y | (2)

or, the ratio of the magnitudes of the two vectors shown in Figure 3.

The degree of resonance increases as the Y, plot approaches more closely
to the (1,180 degree) critical point. A locus of Y, which passes through
the (1,180 degree) point of course exhibits infinite resomance and re-
flects neutral stability for the closed-loop system. The value of
maximum resonance is commonly used as a direct measure of the stability
of the closed-loop system. The topic of M-circles, contained in most
control system textbooks, provides a convenient means of identifying the
closed-loop system resonance from Nyquist diagrams.




Figure 3. Example Nyquist Diagram
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Nichols Chart

The Nichols chart (James, Nichols, and Phillips, 1947; D'Azzo and
Houpis, 1981) is simply a graphical "mapping" technique which relates
the gain and phase of the open-loop tramsfer function, Yo, to the gain
and phase of the closed-lcop transfer function, Yo/ (1 + Y,), at any fre-
quency. The equations describing the above variable relationships are
relatively straightforward and may be found in most control system
reference books (D'Azzo and Houpis, 1981). The net result is a chart of
the form shown in Figure 4. The x~ and y-axis variables are the open-
loop phase and gain, respectively. The M-contours represent the gain
of the closed-loop transfer function. The p-contours represent the cor-
responding phase angle of the closed-loop transfer function. By plotting
the gain and phase of an arbitrary open—loop transfer function on such a
chart, the result of closing the loop about the open-loop transfer func-
tion can be immediately determined by simply reading off M and p values
for the closed-loop frequency response. This technique is closely
related to the M—~circle concept used for Nyquist diagrams.
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The utility of such a graphical device is that the resonance/
attenuation of the closed-loop system, implicitly revealed as the ratio
of the two vectors, Y, and 1 + Y5, on a Nyquist diagram, is explicitly
presented on a Nichols chart in the form of M-contours. Similarly, the
closed-loop phase angle, represented on a Nyquist diagram as the phase
angle difference between the Y5 and 1 + Y5 vectors, is available directly
from the p-contours on a Nichols chart. When typical driver/vehicle
open-loop frequency response characteristics (as measured from experi-
mental tests) are plotted on a Nichols chart, far more information con-
cerning the closed-loop system response is available than if displayed in
a Bode plot form.

The next few sections serve to illustrate and compare each of these
same methods for frequency response data obtained from both driver/
vehicle experimental measurements and a mathematical model of the driver/
vehicle system.

EXPERIMENTAL MEASUREMENTS OF DRIVER/VEHICLE FREQUENCY RESPONSE

Relatively few frequency response measurements of driver/vehicle
directional control appear in the literature. The work of McRuer and
Weir (McRuer, et al., 1975(b); Weir, et al., 1977) stands nearly alone
in this particular area, only by virtue of so few other examples. Before
presenting such measurements, the nature of the experimental driver/
vehicle tests from which such measurements are derived will first be
explained. It should be noted that the goal of such tests is to experi-
mentally identify the combined driver/vehicle describing (transfer)
function during straight-line regulatory driving.

Reference to Figure 5 shows a block diagram of a driver/vehicle
closed-loop system with a disturbance input, d, applied at a summing

Figure 5. Disturbance Test Block Diagram
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junction located at the output of the driver steering control block, H.
The task for the driver during such a test is to provide a compensating
steering control, dh, so as to offset the disturbance imput, thereby
maintaining the vehicle along a straight-line path. The sum of the
driver's steering control, dh, and disturbance, d, form the front-wheel
angle, dw, applied to the vehicle. The errox signal between the driver
steering response and the known external disturbance represents the input
variable to the combined driver/vehicle (open-loop) system. The driver
steering response constitutes the output variable. It can be shown
(McRuer, et al., 1975(b)) that the combined driver/vehicle, open-loop
transfer function (ignoring any driver remmant noise) is given by the
Fourier transform of the quantity:

d/dw - 1 (3)

Since the disturbance input, d, is known (e.g., a random appearing sum of
several sinusoids, or low-pass, filtered white noise) and dh or dw is
measured, the (d/dw - 1) time history quantity is readily determined. By
calculating the Fourier transform of the above-measured time history, the
frequency response (gain and phase) of the combined driver/vehicle (HG),
open-loop transfer function can be identified. A servomechanism con-
troller which accepts the sum of the programmed disturbance signal and
the driver steering output is typically used to generate the front-wheel
steer angle, dw, in such a test arrangement.

Figure 6 shows a typical set of experimental measurements pre-
sented in a Bode plot form for four different vehicles labeled A, B, C,
and D, and a single group of sixteen drivers (Weir, et al., 1977). Each
of the four plots corresponds to one vehicle and the average group re-
sponse of the sixteen drivers. The data were collected by means of the
same test procedure described above during straight-line driving using an
applied steering disturbance of five sinusoids. The four vehicles
differed only in the level of understeer (2-7 degrees/g) and steering
gear ratio (9:1 - 25:1). Each of these vehicle characteristics were
achieved through use of a special, variable steering servo apparatus that
permitted control and definition of the vehicle directional dynamics and
steering ratio (McRuer, et al., 1975(a)). Table 1 summarizes the four
vehicle configurations.

Table 1. Summary of Vehicle Characteristics

Vehicle Understeer (K) Steering Gear Ratio
A 2.4 degl/g 2512,
B 2.5 deg/g 1731
C 5.6 deg/g 9:1
D 6.8 deg/g 11:1

Weight of all vehicles: 2013 kg (4440 1b)
Wheelbase of all vehicles: 2.79 m (110 inches)
Test speed: 22.4 m/s (50 mph)

The experimental measurements of the open-loop, driver/vehicle
transfer function (HG) appearing in Figure 6 display an approximate
-6 db/octave slope for the gain characteristic with crossover frequencies
ranging between 3.5 to 4.0 radians/second. The phase angle measurements
display the familiar "peaking" characteristic observed very often in
data of this kind within the frequency range of 1 to 4 radians/second.



Figure 6. Bode Plot of Driver/Vehicle Experimental Measurements
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The relative vehicle rankings of closed-loop system stability based on
the phase margin "rule of thumb" is seen to be: D,A,C,B -—- D being the
most stable. The least stable driver/vehicle system is B, having a phase
margin of about 10 degrees.

Figure 7 shows these same data displayed (using two different
scales) on a Nyquist diagram. Recalling that the critical point is
located at (1,180 degrees) on this plot, the driver/vehicle systems are
ranked in the same order as suggested by the Bode plot. That is, vehicle
D exhibits a peak resonance (]YOI/Il + YO}) in the vicinity of crossover
(unity magnitude) equal to about 1.3, while vehicle B has a corresponding
value of about 5.0 in the same frequency range. Hence we see that for
these data, the phase margin 'rule of thumb" associated with the Bode
plot provides a good measure of the relative stability of the closed-loop
systems when verified and checked against the more complete analysis
offered by the Nyquist diagram. The Nyquist analysis confirms that the
actual peak resonance values for each of these data sets, though not
occurring at crossover, do occur at frequencies in the vicinity of
crossover.

Lastly, Figure 8 shows these same experimental data presented on a
Nichols chart. It now becomes very clear what the maximum resonance
value (stability measure) is for each driver/vehicle combination and in
what frequency range it occurs. For example, B, C, and A each reach
maximum resonances (largest M-contour values) just above crossover
(negative db values for [Y | . The maximum resonance values read from
this chart are approximately 14 db (5.0), 10 db (3.2), and 6 db (2.0),
respectively. Driver/vehicle combination D, the most stable configura-
tion, reaches its maximum resonance significantly below crossover (posi-
tive db wvalues for ]Yof) with a value of about 4 db (1.6). At very low
frequencies all the vehicle combinations will approach the O db M-
contour corresponding to large, open-loop gain values and -270 degrees
of phase shift.

The Nichols chart of Figure 8 also illustrates, very directly, the
influence upon the closed-loop system response of changing the gain or
phase of the open—loop transfer function. For example, an increased
open-loop gain corresponds simply to an upward shift of the frequency
responsé locus, and a constant increase in phase angle to a rightward
shift of the locus. Thus, by way of example, if driver/vehicle con-
figuration B was able to lower its open-loop gain by approximately -6 db
(0.50), a significant improvement in closed-loop stability would result,
with the maximum resonance dropping from 14 db to about 11 db. A
similar result would be obtained for any reduction in open-loop transfer
function time lags productive of about a 5-10 degree increase in phase
angle at the upper frequencies (e.g., a 0.03 second decrease in an
open—loop transport lag).

DRIVER/VEHICLE FREQUENCY RESPONSE CORRESPONDING TO MORE EXTREME
VARIATIONS IN VEHICLE AND DRIVER PROPERTIES AS PREDICTED BY A
MATHEMATI CAL MODEL

In order to examine the influence of more dramatic variations in
vehicle properties and driver properties upon the nature and appearance
of each of the discussed plots, a mathematical model of the driver/
vehicle system (MacAdam, 1981) is employed in this section to calculate
frequency response characteristics. The vehicle component of the
driver/vehicle model is essentially a linear, two-degree-of-freedom
(lateral and yaw motions) representation, including lateral path dis-
placement and heading angle. The driver component is a preview control
which synthesizes closed-loop steering control based on vehicle dynamics



Nyquist Diagram of Driver/Vehicle Experimental Measurements

Figure 7.
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information defined by the vehicle properties, a specified driver pre-
view time, and a specified driver transport lag.

Variations in Vehicle Properties

Figure 9 shows 22.4 m/s (50 mph) frequency response calculations
predicted by the driver/vehicle model for three variations in vehicle
understeer (7, 0, and -7 degrees/g). These calculations are equivalent
to the frequency response measurements of the driver/vehicle, open-loop,
describing function presented in the previous section. The vehicle
dynamic properties for the 7 degree/g vehicle are defined by the
parameter list contained in Appendix A of (MacAdam, 1981), and corresponds
closely to vehicle D of the previous section. The driver model preview
time and transport lag parameters are held fixed at values of 2.25
seconds and 0.28 seconds for the calculations shown in Figure 9. The
transition from understeer (7 deg/g) to neutral steer (0 deg/g) to over-
steer (-7 deg/g) was achieved by reducing the cornering stiffness of the
rear tires. The extreme -7 deg/g oversteer vehicle is directionally
unstable (open-loop) at this speed, operating above its critical velocity
of 15.2 m/s (34 mph). However, the closed-loop (driver-controlled)
system is stable, but only marginally so. Reference to Figure 9 and
invocation of the phase margin "rule of thumb'" would not indicate a
marginally stable driver/vehicle system but rather, a highly stable,
well-damped system. Use of the phase margin rule in this case leads to
confusion since three separate crossover frequencies are indicated, two
implying instability, the other implying a very stable system. How such
an assessment of closed-loop system stability is accurately determined
is presented in Figure 10.

Figure 10 shows a Nyquist diagram for the same data seen in the
Bode plot of Figure 9. The locus corresponding to the -7 deg/g vehicle
is distinctly different from the two remaining loci by wrapping itself
about the origin more tightly, and in doing so, coming very close to the
(1,180 degree) critical point at a frequency of about 1.5 radians/
second. The maximum closed-loop resonance, |Yo|/|1 + YO] near the cri-
tical point is about 6. At lower frequencies, the Nyquist diagram for
the open-loop oversteer vehicle continues to decrease in phase angle,
eventually approaching -450 degrees with very large values of gain.
Because a sign reversal occurs in the open-loop directional dynamics of
the oversteer vehicle when operating above its critical velocity, such
driver/vehicle data will display an additional 180 degrees of negative
phase shift over driver/vehicle systems which contain directionally
stable vehicle dynamics. The 7 deg/g and 0 deg/g vehicles, which are
open—-loop directionally stable, will approach the more conventional
-270 degree phase shift condition at very low frequencies.

The principal difference noted here in closed-loop system stability
for the 7 deg/g and 0 deg/g vehicles is a slight advantage for the under-
steer vehicle. However, this result applies only for a fixed set of
driver characteristics (2.25-second preview, 0.28-second transport lag).
Without examining other driver parameter combinations and determining
whether or not different vehicle dynamic characteristics promote differ-
ent driver preview preferences, conclusions concerning "optimal" levels
of vehicle understeer or related questions cannot be objectively
offered.

Finally, Figure 11 shows these same frequency response character-
istics plotted on a Nichols chart. The most noteworthy item here is
the behavior, again, of the unstable (open-loop), oversteer vehicle,
causing the locus to wrap sharply around the Nichols chart origin. It
is seen from this chart that the maximum closed-loop system resonance
of 16 db (6.0) occurs at an open—-loop gain of about 1.5 db and -180
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Figure 9. Mathematical Model Predictions of Driver/Vehicle Response

Due To Vehicle Understeer, K, Variations; Bode Plot.
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Figure 10. Mathematical Model Predictions of Driver/Vehicle Response

Due To Vehicle Understeer, K, Variations; Nyquist Diagram.




Figure 11.

Due To Vehicle Understeer, K, Variations; Nichols Chart.
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degrees phase shift (approximately 1.5 radians/second). The understeer
vehicle exhibits a maximum closed-loop resonance of approximately 3.5 db
(1.5) while the neutral steer vehicle has a maximum resonance of 6 db
(2.0), each in the vicinity of 2 radians/second.

Variations in Driver Control Characteristics -

Variations in driver control characteristics, as represented by the
preview time (""look ahead" time used by the driver) driver model para-
meter (TP), are shown in the Bode plot of Figure 12. The 7 deg/g under-
steer vehicle dynamics of the preceding discussion were used here for all
preview parameter varilations. As seen, the variations in preview avail-
able to drivers is a particularly powerful means of modifying and defin-
ing the open-loop driver/vehicle frequency response characteristics.
Figure 13 displays these same data on a Nyquist diagram. The decrease in
system stability accompanying decreased preview times is intuitively
understood and analogous to. restricting a driver's view of the roadway.
Routine circumstances occurring in everyday driving which require drivers
to alter their preview times in the interest of maneuverability (e.g.,
different path-following requirements or obstacle-avoidance maneuvers)
might therefore imply a compromise between closed-loop system stability
and maneuverability. This issue is discussed somewhat further in the
final section of the paper.

Lastly, presentation of the driver preview time variations on a
Nichols chart is seen in Figure 14. The 1.0-second preview case shows a
maximum closed-loop resonance of 16 db (6.0) occurring just above cross-
over at an open-loop gain of about 1 db and -175 degrees phase shift. 1In
contrast, the 3.5-second preview case shows a maximum closed-loop
resonance of less than 0.25 db (1.03) occurring for an open-loop gain of
approximately 12 db and -105 degrees phase shift (frequency of 1 radian/
second). The results presented in Figure 14 underscore, again, the
strength of the preview control mechanism available to drivers in largely
determining the directional stability of the closed-loop system.

MANEUVERABILITY OF DRIVER/VEHICLE SYSTEMS

The material presented in previous sections has been primarily
concerned with matters of relative stability of driver/vehicle systems
and associated methods of analysis. The material which follows attempts
to examine the topic of driver/vehicle maneuverability and its relation-
ship to the earlier topic of closed-loop system stability. The term
"maneuverability" is used here to describe the steady-state, path-
tracking ability of a driver/vehicle system in response to a sinusoidal
path input. For example, envision a test in which a driver is asked to
follow a sinusoidal path laid out along a test course. If the forward
velocity of the vehicle remains comstant, the ability of the driver/
vehicle system to accurately track this path will depend upon the spatial
frequency of the path and the characteristics of the dynamic system. At
low spatial frequencies the trajectory of the wvehicle center of gravity
will closely match the sinusoidal path. As the frequency of the path
increases, the ability of the driver/vehicle system to replicate the
path will become degraded. At high enough frequencies, the system will
not be capable of responding and will simply move in a straight line
down the center of the course. At intermediate frequencies, the system
path response will become attenuated, or, in some cases, will resonate
at certain frequencies prior to attenuating at higher frequencies.
Exactly how a driver/vehicle system does respond under such conditions
depends largely upon the driver control strategies and limitations (e.g.,
amount of preview used by the driver/driver lags).
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Figure 12. Mathematical Model Predictions of Driver/Vehicle Response

Due To Driver Preview, TP, Variations; Bode Plot.
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Mathematical Model Predictions of Driver/Vehicle Response

Figure 13.
Due To Driver Preview, TP, Variations; Nyquist Diagram.
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Figure 14.
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One way of describing this path-tracking ability, or closed-loop
maneuverability, of the driver/vehicle system is to consider a frequency
response function, F(jw), relating the vehicle center of gravity lateral
displacement, y, tc the lateral displacement of the path input, Yps for
various path input frequencies, w:

vy, = FGw (4)
For low sinusoidal input frequencies of y, we would expect F(jw) to have
a gain of unity and zero phase angle. As frequency increases, F(jw)
would eventually attenuate, possibly displaying some resonance at inter—
mediate frequencies. Increased phase lag would accompany the higher
frequencies as well.

Precisely this approach was adopted in this section in order to
examine the maneuverability of closed-loop driver/vehicle systems. The
mathematical model of the driver/vehicle system (MacAdam, 1981) used in
the previous section is employed here to calculate F(jw). ©Note that the
frequency response calculations/measurements and resonances discussed in
the previous two sections in connection with closed-loop system stability
are not the same calculations or resonances being discussed here. The
former frequency response calculations associated with stability of the
closed-loop system are analogous to the frequency response relating
driver-estimated future vehicle position to previewed path errors—a
quantity that depends largely upon the inner control loops synthesized
by drivers attempting to follow a previewed path. This preview strategy,
of course, depends upon feedback queues involving each of the wehicle
motion variables. In contrast, the F(jw) measure discussed in this sec-
tion is simply a direct result of the above driver steering control
strategy, manifesting itself, slightly later in time, as a vehicle path
displacement approximating the desired input path.

Figure 15 shows an example calculation of F(jw) relating y/yp ver-
sus path input frequency. The result shown here corresponds to the 7
deg/g understeer vehicle of the previous section operating at 22.4 m/s
(50 mph) with a fixed driver preview time equal to 2.25 seconds and
transport lag of 0.28 seconds. We see that at very low path input fre-
quencies, the gain is unity and the phase angle is near zero. As fre-
quency. increases, the gain attenuates, reaching -20 db (0.1) and -50
degrees of phase shift at 2 radians/second. We conclude from Figure 15
that, at a path input frequency of 2 radians/second, this particular
driver/vehicle configuration would reproduce only 10 percent of the
amplitude of a 3-second-period sinewave path and be delayed in time 0.4
seconds (-50 degrees). The driver, as modeled here, is assumed to
weight path errors equally over the preview interval and thus acts as a
preview filter. It should be expected, therefore, that as the sinusoidal
path input period decreases to a value equal to the driver preview time,
the gain of F(jw) will approach zero. This implies that the bandwidth
of F(jw), or closed-loop maneuverability limit, can be altered directly
by drivers, simply by employing variable amounts of preview. The
bottom portion of Figure 15 shows an example time history calculation of
vehicle path corresponding to a 1.0 radian/second sinusoidal path input
(6.3-second period) and a 2.25-second driver preview time.

Figure 16 shows the same calculation as seen in Figure 15 except
for a reduced value of driver preview time of 1.0 seconds. We see a
similar attenuation in F(jw) at increased frequencies, but not until
about 5 radians/second, or, sinewave periods approaching 1.0 second.
Also seen on this plot is an indication of amplification or resonance
in the vicinity of 3.2 radians/second (2-second sinewave period). This
latter result would suggest that the driver/vehicle combination utiliz-
ing a 1.0-second preview time would "track'" a 2-second sinewave of



Figure 15. F(jw), Closed-Loop Frequency Response of Path Displacement;
Preview (TP) = 2.25 sec; Driver Lag (TAU) = 0.28 sec.
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Figure 16. F(jw), Closed-Loop

Preview (TP) = 1.0 sec; Driver Lag (TAU) = 0.28 sec.

Frequency Response of Path Displacement;
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amplitude C with a sinusoidal vehicle path displacement of amplitude

1.4C while lagged in time 0.5 seconds (-90 degrees phase shift). A time
history comparison of the vehicle lateral displacement and sinusoidal
path is seen at the bottom of Figure 16, illustrating the path amplifica-
tion observation.

The influence that driver transport lags can have on the appear-
ance of F(jw) is seen in Figure 17. The calculations appearing in
Figures 15 and 16 are repeated here with driver transport lag values of
0.75 seconds and 0.28 seconds, respectively. In the first case corres-
ponding to a driver preview time of 2.25 seconds, increasing the trans-
port lag from 0.28 to 0.75 seconds precipitates path amplification in
F(jw). On the other hand, reducing the driver transport lag from 0.28
to 0.10 seconds in the 1.0-second preview case eliminates amplification
in F(jw). Although these driver transport lag variations are somewhat
unrealistic, they do serve to illustrate the importance of the primary
control response limitation inherent in human operators and its inter-
play with driver preview control strategy.

The net result deriving from the frequency response calculations
of directional stability and those just presented for path maneuver-
ability is the simple illustration that drivers, by altering their pre-
view control strategies to satisfy different path-following requirements,
may simultaneously trade off decreased closed-loop stability in exchange
for increased path maneuverability. Thus, the transition by a driver
from a 2.25-second preview time to a 1.0-second preview time for obtain-
ing the increased path maneuverability suggested by Figures 15 and 16,
will incur a "cost" of reduced system stability suggested in Figures 13
or 1l4.

The matter of tradeoff or compromise between closed-loop system
stability and path maneuverability is a continual part of the normal
driving process and which has not been, to date, adequately investigated
by driver/vehicle testing. It would seem that sinusoidal path tests of
the type suggested here, in combination with the disturbance tests out-
lined in the previous section, would provide the kind of pertinent
information necessary for investigating this issue further from an
experimental foothold. Furthermore, the type of driver/vehicle tests
suggested are relatively simple to implement, easily conducted, and
would be directly applicable to the frequency domain techniques and
analyses examined above.

SUMMARY AND CONCLUSIONS

Several frequency domain techniques, useful for analyzing both
experimental measurements and mathematical model predictioms of driver/
vehicle steering response, have been presented and discussed. The less
well-known Nyquist and Nichols methods are seen as offering certain
advantages and accuracy for interpreting and analyzing driver/vehicle
data over the more prevalent and widely used Bode method. The effect of
more extreme variations in vehicle dynamics and driver steering control
characteristics on the nature of the graphical loci representing each
method were illustrated using a mathematical model of the driver/vehicle
system. Calculation of driver/vehicle maneuverability, as defined by an
ability to track steady-state sinusoidal paths, was discussed and
demonstrated for several driver control characteristics.

A principal conclusion, based upon the above analysis techniques
and example calculations, is that preview-based steering control stra-
tegies as typically employed by drivers of automobiles, may produce a
tradeoff of closed-loop directional stability in exchange for path
maneuverability. In most cases, decreased driver preview permits




Figure 17. F(jw), Closed-Loop Frequency Response of Path Displacement;

Influence of Driver Lag Variations.
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improved path maneuverability at the expense of reduced closed—-loop
system stability. Further investigation of this conclusion and related
closed-loop directional performance matters are suggested through
appropriate experimental testing of driver/vehicle systems. Additional
experimental measurements of the driver/vehicle system, in general, and
greater use of frequency domain analysis techniques for studying such
data are recommended.
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