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Abstract 
 

The widespread usage of wearable sensors such as smart watches provide access to valuable 

objective physiological (such as Electrocardiogram(ECG)) signals ubiquitously. Healthcare 

domain has been tremendously benefited by the collection of physiological signals which can be 

used for health monitoring of patients. The signals from the wearable sensors enabled the 

researchers and data experts to process them and identify the human physiological state by 

classifying the human activities. This led to the growth and development of smart ecosystem in 

the healthcare domain. 

In this thesis, ECG signals have been investigated as the physiological measure to detect 

human activities. Various measures are extracted from ECG, such as heart rate variability, 

average heart rate etc. and their relationships with different human activities are investigated. To 

build a comprehensive analytical machine learning model for ECG signals and to enable the 

continuous monitoring of humans, one would need access to real time streaming of continuous 

data. So, the data would be unsupervised most of the time and it would be very expensive 

(almost practically impossible) to label all the data streaming in real time. Also, it is highly 

probable that the data is collected from different sessions and varying situations. Therefore, the 

machine learning models need to be able to adapt to new sessions. This would be a major 

challenge in human state monitoring provided that the conventional predictive models work only 

on the stationary data. Also, these models would fail to work on the data from multiple sessions. 

To provide a practical solution to address above issues, two advanced methods in machine 

learning have been discussed in this research: Incremental learning and Semi supervised 

learning. 

Incremental learning is a paradigm in Machine learning where the stream of input data is 

continuously used to extend the existing knowledge learnt by the model. The incremental 

learning module has been built in Apache Spark platform which provides a scalable cloud 
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infrastructure to apply machine learning algorithms on streaming data. Semi supervised learning 

is another solution implemented in this thesis where some out of all the data points are labelled. 

Different semi supervised algorithms have been studied and applied which learn the relationship 

between features and adapts the model to data from multiple sessions. Finally, the results are 

compared and the implementation ideas for the discussed solutions have been proposed.
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Chapter 1: Introduction 
 

1.1 Background 
 

Technology is rapidly advancing and evolving every single day. There is essentially a race for 

the companies to lead in developing technologies that help with the active lifestyles. Wearable 

technologies that monitor health and daily activities have created a massive and quickly 

developing market and customer base. The growing popularity of wearable devices has opened 

wide prospects in health monitoring as part of smart connected health systems. The ensuing 

information from such systems can potentially result in ground-breaking developments in a huge 

array of applications such as healthcare, elderly care support, wellness, emergency response, 

fitness monitoring, long-term preventive chronic care, and other smart environments (Achten and 

Jeukendrup, 2003)(Syed and Guttag, 2011)(Salehizadeh et al., 2015). Despite many interesting 

approaches in previous studies, there are many challenges in designing and developing smart 

pervasive monitoring systems which can scale large streams of behavioral and physiological 

signals (Banaee, Ahmed and Loutfi, 2013)(Kulkarni and Ade, 2014). 

Physiological signals have been an important measure which depict the physiological 

process of human beings. There are various physiological measures such as heart beat rate 

(electrocardiogram(ECG)), respiratory rate (capnogram), skin conductance (electrodermal 

activity(EDA)), muscle current (electromyography(EMG)), brain electrical activity 

(electroencephalography(EEG)) which are popular in research activities to determine the human 

state or activity. Implementation of some of these techniques through portable devices could be 

expensive or intrusive. So, ECG has been considered for this research as it generates reliable 

signal which can recognize physiological changes consistently, at low cost, and with minimum 

intrusiveness. 



 2 

An electrocardiogram (ECG) is a continuous recording of the electrical activity of the heart 

muscle or myocardium. During heartbeat, the cardiac muscles undergo contraction along with a 

sequence of depolarization and repolarization resulting in electrical waves. During 

depolarization, a cardiac cell generates an electrical impulse where different concentrations of 

ions such as sodium, potassium etc. cross the cell membrane and causes the action potential. 

Repolarization is the return of the ions to their previous resting state which corresponds with 

relaxation of the heart muscles. These changes in potential, summed over many cells, can be 

measured by electrodes placed on the surface of the body. For any pair of electrodes, a voltage is 

recorded whenever the direction of depolarization (or re-polarization) is aligned with the line 

connecting the two electrodes. The sign of the voltage indicates the direction of depolarization, 

and the axis of the electrode pair is called as the lead. Multiple electrodes along different axes 

can be used so that the average direction of depolarization, as a three-dimensional vector, can be 

reconstructed from the ECG tracings. In usual scenarios, portable ECG monitors wouldn’t use 

multi-lead data so that the battery life can be maximized by reducing the number of electrodes 

used. However, obtaining the data from multiple leads could lead to better learning of the ECG 

patterns in terms of user’s physiological state. Therefore, this study includes the analysis of data 

from all electrodes in ECG sensor but only for 7 hours of duration. 

ECG has the advantage of being easy to acquire. The electrical activity of the heart can be 

measured on the surface of the body in an inexpensive manner. In real scenarios, where ECG is 

generally important to diagnose health parameters, the ECG is typically captured by bedside 

monitors, in an in-patient setting. However, in an out-patient setting, a portable ECG device 

worn by patients can record data continuously over long hours. This research involves a 

hypothetical out-patient scenario and collects data using a mobile phone. This can be considered 

as the personal mobile phone of the subject, where in the data streaming app is installed and the 

subjects is required to carry it all along. 

In this thesis, data are collected from portable ECG sensors and are investigated to recognize 

the human activities using the physiological changes collected from the sensors. So, the subjects 

were made to do a series of pre-defined activities and the machine learning techniques have been 

implemented on the physiological data to recognize the activities. The challenges have been 
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discussed with respect to conventional machine learning techniques, and new methodologies 

have been tried out and adapted to support the hypothesis. 

Already popular in health-related applications, the wearables sensors are being extended to 

other domains. The analysis on valuable data from wearables could be employed by industries 

and business and used in variety of applications like for example, building a smart environment 

for the users. 

 

1.2 Problem Statement 
 

The signals collected from the wearables could be either streaming(free-form) or isolated. The 

isolated data are collected under experimenter’s supervision, so the data would be clearly 

labelled. Whereas the streaming data is collected in real time and requires continuous queries to 

process them. This type of data is so continuous in a way that, understanding the physiological 

changes in human while transitioning from one activity to another becomes important. 

Additionally, the analytics on streaming data adds real-time insight to decision making models. 

Such real-time insights would be valuable for the industries and could generate greater potential 

benefits for the businesses. 

However, there are a lot of challenges while collecting and analyzing the streaming data. 

The app which collects the data should be stable and shouldn’t crash during the process of data 

collection. Battery constraints of the mobile phone and sensors limit the duration of data 

collection. Also, the analytics on streaming data is a developing technology and not a lot of 

experts are found in this field. So, new machine learning methodologies are being implemented 

to work on the streaming data. 

Another challenging aspect in modern machine learning applications is session to session 

variability. It would seem highly unlikeable that all the streaming data could come from one 

single session because of the constraints mentioned earlier. Additionally, there are possibilities of 

session disconnectivity or session crash due to multiple reasons like hardware failure, out of 

range between wearable sensor and data receiving equipment etc. So, in practical situations, the 

data would be collected in multiple sessions. Also, the isolated data and free-form data collection 
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represent the data from 2 different sessions. Conventional machine learning algorithms would 

fail to make good predictions on the data from new session which was never trained before. This 

drawback calls for the need of handling the variabilities between multiple sessions which is a 

major challenge in modern applications. The solution would be to build a model that can adapt to 

new sessions by transferring the knowledge from the learned session. So, the model adaptability 

becomes an important criterion for the development of machine learning solution to handle 

streaming data from multiple sessions which has been discussed in this thesis. 

 

1.3 Related work 
 

1.3.1 Wearable Sensors 

 

The wearable sensing devices is making the healthcare system go through a transformation 

which makes the continuous monitoring of inhabitants possible even without hospitalization 

(Mukhopadhyay, 2014). This work talks about how advancements in sensing technologies along 

with necessary networking technologies and applied sciences is enabling the smart systems to 

monitor human activities continuously. In paper (Patel et al., 2012), the authors discuss the 

recent developments in the field of wearable sensors and systems that relate to rehabilitation. 

Also, they discuss the health monitoring applications of wearable systems that employ multiple 

sensors integrated into a sensor network either only body worn sensor network or integration of 

body worn sensors with ambient sensors. However, wired sensors cannot be used for long term 

health monitoring, hence the evolution on wireless wearable communication technology is on 

rise. 

Another work (Yilmaz, Foster and Hao, 2010) shows how chronic disease management has 

been achieved by detecting vital signs from wearable sensing devices. Such monitoring systems 

could be employed for efficient disease management and to prevent diseases and thereby to 

reduce health care costs. In a recent paper (Ravi et al., 2017), Ravi et al. introduce a deep 

learning approach in data analytics for low-power mobile wearable devices. They discussed the 

constant and rapid growth in the wearable devices applications and how the segmentation of the 

raw signals could make machine learning more practical. 
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1.3.2 Human Activity Recognition 

 

Authors from the journal paper (Bulling, Blanke and Schiele, 2014) talk about how human 

activity recognition has been a main research interest in the last 20 years and the progress in the 

development of matured activity recognition systems. Also, the importance of sensor-based 

human-activity recognition in the field of artificial intelligence and ubiquitous computing has 

been discussed and presented in (Yin, Yang and Pan, 2008). Authors in this paper have 

employed physiological signals for activity detection but the focus was on detecting abnormal 

activities from normal activities. Some other works talk about the usage of physiological 

monitoring human emotion recognition (Kim, Bang and Kim, 2004). 

However, majority of human activity recognition systems employ behavioral data such as 

triaxial accelerometer signals from inertial sensors, smartwatches and smartphones. Inertial 

sensors could be combined with other wearable sensors to propose multi modal analysis which 

has wider applicability in many domains. One such work has been discussed in paper (Bulling, 

Ward and Gellersen, 2012) where eye and body movements were jointly studied to recognize the 

reading events. 

 

1.4 Experimental Setup 
 

This thesis focuses on analyzing the data collected over an extended period of time. Figure 1 

illustrates the overview of the experimental setup. The data is collected using SHIMMER 

(Sensing Health with Intelligence, Modularity, Mobility and Experimental Re-usability) ECG 

Sensors (Mehmood et al., 2016).  
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Figure 1: Illustration of Experimental setup 

 

The Shimmer ECG unit is worn on a subject’s chest with electrodes attached to different parts of 

the chest as shown in Figure 2. Shimmer follows the configuration of four-lead setup and it 

records the pathway of electrical impulses through the heart muscle. A lead refers to the signal of 

the voltage difference between 2 electrodes. In this work, the collection and storage of data have 

been demonstrated in 2 ways: 

1. An android app called MultiShimmerSync is used to collect the data streaming from 

Shimmer sensor and stores the data in .dat format which is similar to an excel file. This 

datafile is stored in Micro SD card of the android device. The data is then manually 

loaded into the processing framework i.e., MatLab installed in the processing system.  

2. There is a custom app built which can send the data to the server in the form of JSON 

(JavaScript Object Notation) arrays. The data is packaged for every 5 minutes and sent to 

the server. Custom API (Application Programming Interface) has been built which reads 

the data packets streaming from the android app, parses it and loads into the SQL server. 

The database and API are hosted in the same server to provide vicinity to each other 

thereby avoiding any network delays. This is crucial for continuous loading of the 

streaming real time data. The API provides additional functionalities such as token based 

authentication and entity framework for user data. Users can register and login through 

their credentials and start sending data packets using a token generated for them. So, the 
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API would automatically assign the correct user id based on the token submitted by the 

users. This user id would be tagged along all the physiological data before they get 

loaded into the database. Such continuous data can be retrieved by MatLab by using its 

inbuilt Database explorer app and a relevant SQL JDBC driver. 

 
Figure 2: Shimmer ECG electrodes placement 

 

1.5 Processing framework 
 

Figure 3 represents the overview of the processing framework. As represented in the block 

diagram, there are 6 major steps: 

1. Data collection 

2. Data segmentation 

3. Data filtering and labeling R-R peaks 

4. Feature extraction 

5. Feature selection 

6. Model generation 

Each of the modules is discussed in detail in the subsequent sections. 
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Figure 3: Overview of the data processing steps 

 

1.5.1 Data Collection 

 

The data is collected using Shimmer ECG Sensors (Mehmood et al., 2016). Data acquisition has 

been conducted in two modes i.e. supervised and unsupervised. Physiological signals have been 

collected from 10 different subjects and the results are presented in this thesis. The subjects were 

made to perform a set of tasks during both supervised and unsupervised sessions. During 

supervised session, all the activities were done in a controlled environment and were labelled 

accordingly. Whereas in unsupervised session, the data was collected in free-form style which 

aligns with the daily routine of the subject. The data has been collected at 51.2 Hz sampling 

frequency. Table 1 lists all the monitored signals used in this study. 

 
Table 1: Acquired ECG signals from the Shimmer device 

Signal Calibration Unit 

ECG LA-RA CAL mV 

ECG LL-LA CAL mV 

ECG LL-RA CAL mV 

ECG Vx-RL CAL mV 

 

The signals in the Table 1 represents the four-lead ECG solution configured in the Shimmer 

device. The leads are described as below. The first 3 leads are bipolar leads which represents the 

voltage difference between 2 limb electrodes. 

• Lead 1 (LA-RA) is the ECG vector signal measured from the RA (right arm) position to 

the LA (left arm) position. 
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• Lead II (LL-RA) is the ECG vector signal measured from the RA (right arm) position to 

the LL (left leg) position 

• Lead III (LL-LA) is the ECG vector signal measured from the LA (left arm) position to 

the LL (left leg) position. This is derived by subtracting Lead I from Lead II. 

• Unipolar lead (Vx-RL) is the ECG vector signal measured from the Wilson's Central 

Terminal (WCT) voltage to the Vx position. The Wilson's Central Terminal (WCT) is a 

voltage that represents the average potential of the body and acts as a reference point, 

with respect to which the voltage difference for the unipolar leads is measured. It is 

calculated by averaging the voltage measured at the RA, LA and LL electrodes. RL 

electrode has been used to drive the inverted WCT voltage where RL can be placed 

anywhere on the body as long as it is outside of the triangle formed by the other 3 limb 

electrodes (LA, RA and LL). 

 

1.5.1.1 Supervised Data Collection 

 

Subjects were required to do five different activities in exclusion with each other under the 

supervision of the experimenter. Table 2 summarizes the supervised data, which is collected for 

five activities: sitting, walking, standing, eating and driving a car. Each activity was performed 

for 10 minutes each and the data files corresponding to each activity were labeled straightaway. 

These data files represent the source for building baseline solution for the proposed 

methodologies discussed in subsequent chapters. The details about the activities performed by 

the subjects are as follows: 

• Sitting: Users were made to sit on a chair or a couch. This represents sedentary activity 

where minimal movement was recorded. 

• Standing: Users were made to stand still without much movement. 

• Walking: Users were made to walk continuously either indoors or outdoors. 

• Eating: Users were made to sit and have a meal or snacks. 

• Driving: Users were required to drive a Car. 
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Table 2: Supervised data summary 

SN Duration (min) Activity 

1 10:00 Sit 

2 10:00 Stand 

3 10:00 Walk 

4 10:00 Eat 

5 10:00 Drive a car 

 

1.5.1.2 Unsupervised Data Collection 

 

The unsupervised long span data was collected for 7-8 hours continuously, taking into 

considerations the battery life of the shimmer device. Table 3 provides a detailed description of 

one of the sessions of unsupervised data collection. The timestamps presented in the Table 3 are 

recorded and logged manually by the participant. The activities are performed in sync with daily 

routine of the subject. However, the subjects were made to manually log the activities during 

unsupervised session for evaluation purposes. For each activity, the log includes the start time of 

the activity, name of the activity and end time of the activity recorded by the subjects. Many 

third-party apps are available to help manual logging, out of which an app called TimeStamper 

has been employed by the subjects. With free-form data continuously collected for 7-8 hours at 

51.2 Hz sampling frequency, the size of the data files generated were turned out to be ~800-900 

MB. 
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Table 3: Unsupervised data logging 

Start Time End Time Duration (hh:mm:ss) Activity 
9:25:08 9:25:20 0:00:12 walk 
9:25:20 9:44:17 0:18:57 sit 
9:44:17 9:45:59 0:01:42 walk 
9:45:59 10:09:57 0:23:58 sit 
10:09:57 10:11:43 0:01:46 walk 
10:11:43 10:16:16 0:04:33 stand 
10:16:16 10:17:41 0:01:25 walk 
10:17:41 10:39:17 0:21:36 drive 
10:39:17 10:53:35 0:14:18 walk 
10:53:35 10:56:49 0:03:14 stand 
10:56:49 10:58:55 0:02:06 walk 
10:58:55 11:06:08 0:07:13 drive 
11:06:08 11:19:33 0:13:25 walk 
11:19:33 11:40:47 0:21:14 eat 
11:40:47 12:54:19 1:13:32 sit 
12:54:19 13:23:35 0:29:16 walk 
13:23:35 13:47:17 0:23:42 stand 
13:47:17 13:49:36 0:02:19 walk 
13:49:36 14:07:19 0:17:43 sit 
14:07:19 14:19:43 0:12:24 walk 
14:19:43 14:32:18 0:12:35 stand 
14:32:18 14:45:53 0:13:35 eat 
14:45:53 14:52:23 0:06:29 sit 
14:52:23 14:53:03 0:00:41 walk 
14:53:03 14:55:10 0:02:07 sit 
14:55:10 15:03:23 0:08:13 stand 
15:03:23 15:39:28 0:36:05 sit 
15:39:28 15:42:51 0:03:24 walk 
15:42:51 15:55:30 0:12:39 eat 
15:55:30 16:03:07 0:07:37 sit 
16:03:07 16:09:32 0:06:24 walk 
16:09:32 16:14:04 0:04:33 stand 
16:14:04 16:25:03 0:10:59 eat 

 

1.5.2 Data Segmentation 

 

As suggested in one of the related works (Ravi et al., 2017), the method adopted for data pre-

processing was to segment the data signal by overlapping in such a way that each segment (also 
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called as window) comprises of 200 data points and increments were made for every 50 data 

points. So, each window had data points collected for 4 seconds and there was 3 seconds overlap 

in every subsequent window. Then each window was considered a unit of ECG data for the 

subsequent processing. Figure 4 shows the illustration of the segmentation procedure employed 

in this work. 

 

 
Figure 4: Segmentation procedure 

 

1.5.3 Data filtering 

 

The segments were made to undergo signal processing using low-pass and high-pass filters 

having cut-off frequencies of 0.5 Hz to 4 Hz. In this way, the power line noise and high 

frequency noise were removed. Along with the noise removal, other pre-processing tasks were 

also carried out such as locating local maxima through windowed filtering, and labeling R peaks 

in the recorded ECG data. This was implemented in MatLab as per the package provided by 

authors Burns et al. in their comprehensive work (Burns et al., 2010). 
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1.5.4 Feature Extraction 

 

ECG data features were extracted using MATLAB from the signals and are shown in Table 4. 

After segmentation of the signal, various time domain and frequency domain features were 

extracted from each window. Time domain features are mostly based on R-R peaks and are 

derived by using the preprocessing package written by author Sergey Chernenko. Feature name, 

unit of measurement and a brief description regarding each feature is given in the Table 4. 

 
Table 4: Extracted ECG features 

Domain Feature Unit Description 

Time – Domain HRV - Heart Rate Variability 

AvgHR bpm Average Heart Rate 

MeanRR ms Mean of selected R-R series 

NN50 count No. of consecutive R-R intervals that differs 

more than 50 milliseconds 

SD_HR 1/min Standard Deviation of Heart Rate 

SD_RR 1/min Standard Deviation of R-R interval 

RMSSD ms Root Mean Square of the differences of selected 

R-R interval series 

SE - Sample Entropy 

Frequency- Domain PSE - Power Spectral Entropy 

 

The distribution of data points could be visualized using scatter plot. The relationship 

between Average heart rate and standard deviation of heart rate is shown in the Figure 5. 
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Figure 5: Scatter plot of lead1 data from subject 1 

 

1.5.5 Feature Selection 

 

Feature Selection is the automatic selection of attributes in the data that are most relevant to the 

current predictive modeling problem. It helps overcome the curse of dimensionality as well as 

improve the accuracy of the model. Two methods of feature selection have been implemented in 

this work. 

 

1.5.5.1 Correlation 

 

One of the cleanest method for understanding a feature relation to the target variable is Pearson's 

correlation coefficient which computes linear correlation between two vectors or variables. The 

resulting value lies in [-1;1], with -1 indicating perfect negative correlation (as one variable 

increases, the other decreases), +1 indicating perfect positive correlation and 0 meaning no linear 

correlation between the two entities. 

In this method, correlation of each feature is calculated with label and is stored in a vector. 

By observing the values of correlation coefficients, an absolute threshold value of 0.2 was set 
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and only those features which had correlation coefficient value above the threshold were 

considered. If we have 2 datasets, the correlation coefficient between two variables can be 

determined by equation (1) given below. 

 
𝑟𝑟 =

∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖 −  𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1 �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛

𝑖𝑖=1
 ( 1 ) 

 

where: 

 n is the sample size 

 xi, yi are the single samples indexed with i 

 𝑥̅𝑥 = 1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1   is the sample mean for one dataset {x1,….,xn} 

𝑦𝑦� = 1
𝑛𝑛
∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1   is the sample mean for another dataset {y1,…,yn} 

 

1.5.5.2 SequentialFS: 

 

SequentialFS is a wrapper method of Feature selection where it selects features sequentially and 

trains an algorithm using cross validation. It repeats this process until it has good subset of 

features which performed best during learning phase. The algorithm used in this wrapper method 

is Linear Discriminant Analysis(LDA) which works well with SequentialFS and 10-fold cross-

validation has been used. The output is a logical vector indicating which features are finally 

chosen. 

 

1.5.6 Model Generation 

 

This is the core step in the process of learning from the data. Various Machine learning solutions 

has been studied and applied in this thesis. Since features are extracted from 3 different bipolar 

leads, the models have been built using each of those leads and from combination of features 

from multiple leads. More information about the methodologies are discussed in subsequent 

chapters. 
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Chapter 2: Proposed Methodology 
 

2.1 System Architecture 
 

The work undertaken in this thesis follows 3 methodologies out of which first one is 

conventional machine learning techniques. The challenges and drawbacks associated with this 

method have been discussed in this chapter. The other 2 methodologies – incremental learning 

and semi supervised learning techniques represent the solutions which have been discussed in 

subsequent chapters. Figure 6 depicts the block diagram of the whole architecture. 
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Figure 6: Block diagram of the system architecture 

 

2.2 Conventional machine learning 
 

In previous chapter, all the steps in data pre-processing were covered. This section is focused on 

model generation part. Conventional Machine learning paradigm considers data in 2 phases – 

training phase and testing phase. So, supervised data has been used in training phase whereas 

unsupervised data has been used in testing phase. Logs manually logged by subjects were used to 

label the unsupervised data. Linear SVM has been used to build baseline models in MatLab. The 

models were generated on supervised data (during training phase) and used to predict labels on 

unsupervised data (during testing phase). This experiment gave a chance to see how the 

conventional algorithms work on data from different sessions. 
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Linear SVM offer an effective classification strategy to separate input vector into a 2-class 

problem by evaluating a score on the input vector. The score is represented in terms of a scalar 

function f(x) and is calculated as shown in (2). 

 
𝑓𝑓(𝑥𝑥) =  �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥) + 𝑏𝑏

𝑁𝑁

𝑖𝑖=1

 ( 2 ) 

 

where, 

 xi represent the support vectors, 

 N is the number of support vectors 

 ai > 0 are adjustable weights 

 yi can be either -1 or +1 

 b is the bias term 

 and K (xi, x) is the kernel function. 

 

Binary SVM has been extended to multi class classifier which uses built in MatLab function 

fitcecoc. Three different leads of ECG data measurements raised the opportunity to create 

multiple models and study the differences between them. Three models were built using the 

features extracted from each of the bipolar leads of ECG. Three other models were built by 

combining the features from multiple leads. Table 5 lists the models created in this study. The 

models were built using 10-fold cross validation method (10-CV). In 10-CV, the original dataset 

is partitioned into 10 equal size subsets. Of the 10 subsets, a single subset is retained as the 

validation data for testing the model, and the remaining nine subsamples are used as training 

data. The cross-validation process is then repeated 10 times (the folds), with each of the 10 

subsets used exactly once as the validation data. The 10 results from the folds can then be 

averaged to produce a single estimation. The advantage of this method is that all observations are 

used for validation in exactly one out of the 10 iterations without being participated in the 

training process for that iteration. 
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Table 5: Evaluated models 

Models Description No. of Features 

L1 Lead1 9 

L2 Lead2 9 

L3 Lead3 9 

L1 + L2 Lead1 + Lead2 18 

L1 + L3 Lead1 + Lead3 18 

L1 + L2 + L3 Lead1 + Lead2 + Lead3 27 

 

2.3 Results 
 

For each of these models, 10-fold cross validation was applied to obtain cross validated models. 

The accuracies of all the six models are shown in Table 6. These models were tested on the 

unsupervised data files which followed the same preprocessing steps as supervised data files and 

the prediction results are shown in Table 7. 

 
Table 6: 10-CV Accuracies on supervised data 

Models Subject 
1 

Subject 
2 

Subject 
3 

Subject 
4 

Subject 
5 

Subject 
6 

Subject 
7 

Subject 
8 

Subject 
9 

Subject 
10 

L1 89.8% 98.4% 86.1% 94.0% 80.2% 92.0% 83.7% 86.3% 84.8% 98.9% 
L2 92.7% 91.4% 92.5% 79.7% 88.2% 75.8% 89.3% 95.3% 82.1% 97.8% 
L3 91.4% 90.4% 98.8% 84.1% 100.0% 83.1% 86.9% 97.4% 88.0% 78.6% 

L1 + L2 94.4% 99.4% 93.1% 98.6% 97.2% 97.8% 96.9% 97.4% 90.0% 99.3% 
L1 + L3 96.0% 100.0% 99.3% 99.4% 100.0% 97.0% 98.3% 99.8% 93.3% 99.5% 
L1 + L2 

+ L3 97.9% 100.0% 100.0% 99.2% 100.0% 98.7% 98.5% 100.0% 95.5% 99.6% 

 

Table 7: Prediction accuracies on unsupervised data 

Models Subject
1 

Subject
2 

Subject
3 

Subject
4 

Subject
5 

Subject
6 

Subject
7 

Subject
8 

Subject
9 

Subject
10 

L1 21.2% 51.0% 23.5% 47.9% 53.5% 52.7% 12.9% 20.1% 20.6% 12.4% 
L2 18.0% 47.7% 0.1% 68.7% 39.3% 42.8% 35.0% 19.0% 50.6% 18.3% 
L3 16.6% 10.1% 11.0% 57.1% 27.1% 22.2% 22.2% 54.1% 10.5% 24.5% 

L1 + L2 23.3% 64.2% 6.7% 51.3% 37.6% 41.8% 27.6% 36.6% 20.1% 12.7% 
L1 + L3 35.5% 39.2% 6.5% 56.2% 23.0% 8.7% 32.0% 41.3% 10.6% 8.3% 
L1 + L2 

+ L3 31.0% 39.1% 12.7% 59.1% 22.9% 8.9% 28.9% 41.7% 10.6% 11.9% 
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2.4 Conclusion 
 

Support Vector Machines have failed to apply the learned model to predict the labels on 

unsupervised data with good accuracy rate. This gives an idea about the drawbacks of 

conventional machine learning algorithms while dealing with the data that was never seen 

before. Though there is a plenty of opportunity to refine the models, by optimizing the 

parameters or by feature selection, there is still not much improvement in the accuracy rate 

because of the variabilities between sessions. Subsequent chapters talk about the methodologies 

and techniques that can be applied to overcome this problem. 
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Chapter 3: Incremental learning 
 

3.1 Introduction 
 

Incremental learning has recently attracted growing attention from both academia and industry. 

Incremental learning is a machine learning paradigm where the learning process takes place 

whenever new examples emerge and adjusts what has been learned according to the new 

examples. From the computational intelligence point of view, there are at least two main reasons 

why incremental learning is important. First, from data mining perspective, many of today’s 

data-intensive computing applications require the learning algorithm to be capable of 

incremental learning from large-scale dynamic stream data, and to build up the knowledge base 

over time to benefit future learning and decision-making process. Second, from the machine 

intelligence perspective, biological intelligent systems are able to learn information 

incrementally throughout their lifetimes, accumulate experience, develop associations, and 

coordinate sensory-motor pathways to accomplish goals. 

In this thesis, analyzing the data collected over long period of time has been the main focus. 

To overcome the drawbacks of the conventional machine learning techniques, incremental 

learning provides a needed solution from streaming analytics. In this chapter, a hypothesis to 

construct an incremental learning module using streaming logistic regression and streaming k 

means algorithms has been developed and supported through empirically generated models. 

 

3.2 Related Work 
 

In (He et al., 2011) He et al. put forward a universal adaptive incremental learning framework 

called ADAIN which is said to learn from continuous data and enhance trained model and its 

prediction performance with time. The input data is considered as raw data over which a baseline 

model and hypothesis was developed. Some of the previous works show modification of existing 
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algorithms to support incremental learning. One such paper (Polikar et al., 2001) discusses the 

proposed algorithm called Learn++ which uses Neural Networks pattern classifiers for 

incremental training. 

There have been some previous efforts on clustering of data streams. The exploration of the 

data stream over different time windows can provide the users with a much deeper understanding 

of the evolving behavior of the clusters (Aggarwal et al., 2003). The authors in this work 

(Aggarwal et al., 2003) have proposed an idea of using two components, one online component 

to store detailed summary statistics periodically and another off-line component which uses these 

statistical data to provide a quick understanding of the clusters in the data streams. In a similar 

work (Chen and Tu, 2007) the authors have proposed density approach to cluster the data 

streams in real time by studying relationship between data density, decay factor and cluster 

structure. 

In many applications, the value of data decreases in proportion to the time that has passed 

since the data is produced (Maarala et al., 2015). For example, in traffic scenarios, a delay 

counted in minutes is too long when decisions about the quickest driving routes in metropolitan 

areas have to be made immediately. In (Maarala et al., 2015), the authors discuss that Apache 

Spark Streaming is an efficient method as the core component for real time analysis because it is 

efficient in iterative computing tasks, supports a variety of data sources and programming 

languages, and can be run on Hadoop, which is significant for Big Data processing. 

 

3.3 Platform 
 

Apache Spark is an open source big data processing framework built with sophisticated 

analytics. It provides a comprehensive framework to manage big data processing requisites with 

a diverse range of data sets. Spark supports many applications through its variety of components 

among which Spark’s Machine learning component and Streaming component are of our 

interests. MLlib is Spark’s machine learning (ML) library. Its goal is to make practical machine 

learning scalable and easy. It consists of common learning algorithms and utilities, including 

classification, regression, clustering, collaborative filtering, dimensionality reduction, and so on. 
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Spark streaming component receives the data streams and divides the data into batches which are 

then sent to spark engine for further processing. 

 

3.4 Methodology 
 

3.4.1 Preprocessing 

 

For our analysis, we have used streaming logistic regression and streaming k means clustering 

algorithms to build an incremental learning module in Spark. Streaming logistic regression is 

intended to work only on binary classification. So, we had to build 5 models with One vs Rest 

criterion. 

The streaming machine learning algorithms in Spark accept the data in labeled point format 

as shown in expression (3). 

 (Class; [Feature1; Feature2; Feature3; …….]) ( 3 ) 

 

Also, the Streaming k-means clustering algorithm requires training files in vector format 

which is shown in expression (4). 

 [Feature1; Feature2; Feature3; ……….] ( 4 ) 

 

So, the data files were converted into the formats required by Spark before loading them to 

streaming algorithms.  

 

3.4.2 Streaming Model generation 

 

Streaming logistic regression creates a baseline model and updates it by learning from the new 

training files being streamed to the algorithm. Datasets from one lead (Lead 1) were considered 

for streaming logistic regression and 4 sessions of incremental training has been carried out for 

all the subjects. 

Additionally, as clustering provides the best solution for unsupervised learning, Streaming 

k-means clustering has been used as part of the analysis. Streaming k-means clustering enhances 
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the functionality of k-means algorithm by learning from the streaming data continuously and 

updating the cluster centers during each interval as defined by an input parameter called batch 

duration. In this work, the effect of streaming data files on the clustering algorithm was studied 

by predicting the clusters for new data points, analyzing the shift in size of each cluster and 

analyzing the variation in the cluster centers. For each batch of data, all the data points were 

assigned to their nearest cluster, new cluster centers were computed by using equation (5). 

 

 𝑐𝑐𝑡𝑡+1 =  
𝑐𝑐𝑡𝑡𝑛𝑛𝑡𝑡𝛼𝛼 + 𝑥𝑥𝑡𝑡𝑚𝑚𝑡𝑡

𝑛𝑛𝑡𝑡𝛼𝛼 + 𝑚𝑚𝑡𝑡
 ( 5 ) 

 

where, 

 ct represents old cluster center, 

 nt represents number of data points present in the cluster thus far 

 α represents the decay factor which is the key element in incremental learning 

 xt is the new cluster center from the current batch 

 mt is the number of data points added to cluster in the current batch 

 

3.5 Results 
 

3.5.1 Streaming logistic regression 

 

To build models for binary classification using streaming logistic regression, we converted the 

labels in our data files so that they can be either 0 or 1. Since, we have 5 different activities, we 

built 5 models with one vs rest criterion for each subject. For each of these models, we have 

prepared 4 training data files (1 baseline datafile + 3 incremental files) and a single test file. The 

baseline file has been created from Supervised data and the incremental files have been created 

from unsupervised data. Once the streaming context with logistic regression is started, the 

incremental files and test file are passed to streaming directories and accuracies are calculated. 

Figure 7 shows the snapshot for one of the models designed to distinguish sitting activity 

from rest of the activities. It indicates the results shown after a baseline model is trained. The 

classes are distinguished as 1 and 0 where sit activity is labeled as 1.0 and rest of the activities 
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comprising stand, walk, eat and drive are labeled as 0.0. The output of streaming algorithm is 

shown in terms of (Actual class label, Predicted class label). Figure 8 shows the improved results 

after an incremental file is passed to the trained model. It can be observed that some of the data 

samples were correctly classified as 1.0(sit activity) after incremental file is passed. 

 

 
Figure 7: Results of a baseline logistic regression model at a timeframe 

 

 
Figure 8: Results of the logistic regression model after incremental learning at a timeframe 

 

The analysis using Streaming logistic regression has been extended to all subjects. Table 8 

indicates the prediction accuracies on test files during 4 sessions of incremental learning. Each 
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subject’s results are shown in terms of average of all binary classifier (one vs rest model) results. 

Session 1 indicates the results of a baseline model trained from supervised data. Sessions 2, 3 

and 4 indicate results after new data files were passed to the streaming algorithm to update the 

model. It is evident from the Table 8 that the models were getting better and were able to predict 

the classes with higher accuracies during subsequent sessions of incremental learning. 

 
Table 8: Accuracies of streaming logistic regression during incremental learning 

Subjects Session 1 Session 2 Session 3 Session 4 

Subject 1 55% 65% 74% 76% 

Subject 2 71% 76% 80% 87% 

Subject 3 74% 72% 81% 84% 

Subject 4 84% 86% 86% 90% 

Subject 5 74% 71% 76% 84% 

Subject 6 74% 65% 74% 76% 

Subject 7 66% 74% 84% 83% 

Subject 8 80% 82% 84% 87% 

Subject 9 82% 79% 79% 85% 

Subject 10 75% 77% 81% 82% 

Average 73% 75% 80% 83% 

 

3.5.2 Streaming k-means clustering 

 

The streaming k-means clustering has been implemented to group the data points among 

different clusters incrementally. Once each incremental file is passed, the cluster labels are 

predicted and printed to a result file. Spark starts labeling the clusters from 0. Hence, we have 

cluster labels 0,1,2,3 and 4 for five activities. The number of data points assigned to each cluster 

are noted and consequently, the shift in number of data points from one cluster to another are 

analyzed. Figure 9 shows the distribution of data points in each cluster as and when different 

incremental files were passed to the streaming algorithm. The change in cluster counts has been 

analyzed over 5 sessions. There is a possibility of having low inter cluster distances between few 

activities which could be the reason for having less data points in few clusters like clusters 1 and 
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3. Irrespective of that, the model is being continually updated from the incremental files which is 

evident from the shifting of the data points from clusters 0 and 2 to cluster 4. 

 

 
Figure 9: Trend in the change of number of data points in each cluster as a result of incremental learning 

 

Additionally, work has been extended in Apache Spark to read the cluster centers of the 5 

clusters produced using streaming k-means algorithm. Figures 10-13 demonstrate the change of 

cluster centers as and when new data files were added to streaming algorithm. Cluster centers 

were extracted from the trained model and were written to a file. Since streaming algorithms are 

being dealt with, the algorithm writes the outputs in multiple files as per the batch duration 

which was set to 15 seconds. The cluster centers from the output files were exported to MatLab 

and were analyzed by drawing scatter plots. 
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Figure 10: Scatter plots of cluster center during baseline model 

 

 
Figure 11: Cluster centers during incremental learning (1) 

 

        
Figure 12: Cluster centers during incremental learning (2) 
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Figure 13: Cluster centers during incremental learning (3) 

 

The scatter plots of cluster centers have been shown in only 2-dimensions for 

representational purpose. The first plot shown in Figure 10 indicates random cluster assignments 

at the beginning of the algorithm. So, the cluster centers were set around the values of 0 

randomly. The second plot shown in Figure 11 indicates changes in cluster centers after k-means 

algorithm starts clustering the new data points from the first data file. As and when new data files 

were added, these cluster centers appear to change as shown in Figure 12. It can be observed that 

some of the clusters are closely grouped because of some of the identical physiological features 

between few activities. However, we can see a small separation between 2 very closely located 

cluster centers in the last plot shown in Figure 13 which we couldn’t see in previous 2 plots. But 

the other two cluster centers shown in variants of blue colors show better separation when the 

model was getting updated continuously in the process of incremental learning. If the plots could 

be visualized in multi-dimensions we might be able to see the well separated cluster centers 

between all the activities. 

 

3.6 Conclusion 
 

In this chapter, different aspects of an incremental learning of a model have been introduced in 

order to identify a set of human states physiologically using the participants ECG signals. ECG 

based time and frequency domain features have been used in Spark platform to do streaming 

analytics and results have been presented. Streaming logistic regression have been used to do the 

task of online learning which adapts the model continuously by learning from streaming data. 

The spark platform provides a flexibility to read data at time intervals as defined by the user 
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efficiently. This is an added advantage as the system will keep tapping for any incoming data and 

as soon as data is available, the computations would initiate. Various observations have been 

made on the datasets from 10 subjects which showed the trend towards more accurate 

classification using incremental method. The addition of more incremental data files would help 

achieve optimal results. 
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Chapter 4: Semi Supervised Learning 
 

4.1 Introduction 
 

Semi Supervised Learning is a classical machine learning setup that assumes only limited 

samples of labelled data for training purposes. This methodology is becoming widely popular as 

the researchers want better performance for less cost and unlabeled data is cheaper compared to 

labelled data. The continuous streaming data under the study could be a real nudnik to be 

labelled. Also, labelling such large streams of data would need experts’ advice along with the 

subject’s knowledge. This led to the raise of a paradigm called Semi-supervised learning where 

both labelled and unlabeled data were used to build better learners, than using each alone. Ideally 

both labelled and unlabeled data would be combined together in a single feature matrix and 

semi-supervised algorithms learn from the gaussian distribution and decision boundary shift. 

The general principle underlying semi-supervised learning is that the marginal distribution, 

which can be estimated from the data alone, may suggest an appropriate way to adjust and adapt 

the target function. The structure of such marginal distributions can be assumed based on the 

closeness of the data points to each other (continuity assumption), or formation of discrete 

clusters (cluster assumption), or the location of underlying data points on a manifold of much 

lower dimension (manifold assumption). Transductive inference has been a common method in 

semi supervised learning that is focused on learning the unlabeled data and focused on deducing 

the right labels for them (Sindhwani, Niyogi and Belkin, 2005). This work discusses the 

implementation of LapSVM (Laplacian Support Vector Machines) algorithm along with a semi-

supervised dimensionality reduction technique which have performed well as state of the art 

methods for Semi supervised learning. 
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4.2 Related Work 
 

Various methods have been designed and implemented for Semi supervised learning and 

transductive learning tasks. Authors in paper (Olivier, Schölkopf and Zien, 2006) have showed 

that how LapSVM has proven to improve the accuracy while detecting the diabetes prediction as 

compared to the fully supervised version of the classifier. Another work (Li, Du and Zhang, 

2012) discusses the detection of abnormalities in ECG in the aim to identify the irregular cardiac 

activities by using the transductive transfer learning framework. Various transductive and cluster 

transfer learnings have been studied and compared. In (Sigdel et al., 2014), Sigdel et al, have 

evaluated the performance of two wrapper methods for semi supervised learning algorithms for 

classification of protein crystallization images. Self-training algorithms were used as a baseline 

and compared with another method called Yet Another Two Stage Idea (YATSI) semi 

supervised learning. 

Semi supervised classification algorithms can be combined with some of the state of the art 

semi supervised dimensionality reduction techniques. One such work has been proposed to 

diagnose bearing faults in induction motors (Razavi-Far et al., 2017). Different semi supervised 

dimensionality reduction techniques have been applied and combined with semi supervised 

classification algorithms and different combinations were evaluated. 

Similar to semi supervised learning, there are other directions to build generalized models 

that complement the goals of semi supervised learning. Related works on such new techniques 

have been studied and discussed in (Luo et al., 2017) where the authors have studied how the 

reusable and general purpose adaptation models can be enabled to quickly learn future tasks 

without much human intervention. 

 

4.3 Methodologies 
 

4.3.1 Semi-Supervised Discriminant Analysis(SDA) 

 

Semi supervised Discriminant Analysis(SDA) is a dimensionality reduction technique which 

extracts the features from higher dimensional data and make use of both labeled and unlabeled 
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data points. SDA could be considered as an extended version of Linear Discriminant 

Analysis(LDA) where the class discriminatory function is preserved as much as possible. LDA 

uses a linear projection matrix which maximizes the inter-class covariance and minimizes the 

within-class covariance simultaneously. However, it would be improbable that the covariance 

matrix could be estimated accurately for each class if there are no sufficient training samples. So, 

SDA has been proposed by Deng et al. (Cai, He and Han, 2007) which uses the intrinsic features 

of LDA in finding optimum projections based on class separability and extends it by learning the 

geometric structure of data from unlabeled data points. Specifically, the labeled data points along 

with unlabeled data points are jointly used to build a graph incorporating locality information of 

the data set. The graph provides a discrete estimation to the local geometry of the data manifold. 

SDA also extends a regularization term, which is normally used to avoid overfitting in 

regularization algorithms, to incorporate the data manifold structure. Finally, the eigenvector is 

computed based on the non-zero eigenvalues and used to determine the extracted features in 

lower dimensional space. 

 

4.3.2 Semi-supervised Classifier – LapSVMs 

 

In machine learning, Manifold regularization is a technique for using the shape of a dataset to 

constrain the functions that should be learned on that dataset. In many machine learning 

problems, the data to be learned will be of marginal distribution and do not cover the entire input 

space. The technique of manifold learning assumes that the relevant subset of data comes from a 

manifold, a lower dimensional mathematical structure with useful properties. The technique also 

assumes that there is a good separation between data with different labels so that the function to 

be learned is smooth, and so the labeling function should not change quickly in areas where there 

are likely to be many data points. Manifold regularization algorithms can extend supervised 

learning algorithms in semi-supervised learning and transductive learning settings, where 

unlabeled data are available. Manifold regularization is a type of regularization which ensures 

that a problem is well-posed by penalizing complex solutions. Manifold regularization adds a 

second regularization term, the ‘intrinsic regularizer’, to the ‘ambient regularizer’ used in 

standard regularization methods which are aimed at overcoming the problem of overfitting. 
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Laplacian Support Vector Machines (LapSVMs) are the natural extensions to Support 

Vector Machines and have performed well as a state of the art method of semi supervised 

learning. LapSVMs follow the principles behind manifold regularization where the loss function 

is the linear hinge loss which is mainly used for Support Vector Machines. The loss function also 

has a smoothening factor which is the weight of the norm of the function in the low dimensional 

manifold (or intrinsic norm), that enforces smoothness along the sample. 

Primal problems (not limited to the linear case) are best useful in the case of LapSVM. 

Melacci et, al have proposed two methods for solving the primal LapSVM problem: Newton’s 

method and Preconjugate Gradient Descent(Melacci and Belkin, 2011). There are two primary 

reasons why such a solution may be preferable. First, it allows us to efficiently solve a single 

problem without the need of a two-step solution. Second, it allows us to very quickly compute 

good approximate solutions, while the exact relation between approximate solutions of the dual 

and original problems may be involved. 

 

4.3.2.1 Newton’s Method: 

 

Solving the primal problem using the Newton’s method has the same complexity of the original 

LapSVM. The only benefit of solving the primal problem with Newton’s method relies on the 

compact and simple formulation that does not requires the “two step” approach and a quadratic 

SVM solver. Newton’s method appears a natural choice for an efficient minimization, since it 

builds a quadratic approximation of the function which thus makes the function differentiable. 

 

4.3.2.2 Early stopped Preconditioned Conjugate Gradient (PCG): 

 

Instead of performing a costly Newton’s step, the solution of the system can be computed by 

conjugate gradient descent. In detail, when the decision function becomes quite stable between 

consecutive iterations or when the error rate on is not decreasing anymore, then the PCG 

algorithm should be stopped. Due to their heuristic nature, it is generally better to compare the 

predictions every few iterations and within a certain tolerance. In this method of training the 

classifier, various parameters have been included such as: 

MaxIter- Maximum number of iterations = 2000 
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CGstopType – The stopping criterion for CG iterations is ‘Stability stop’ 

CGStopParam – The parameter for the selected CG stop type which would be the percentage of 

tolerated different decisions between two consecutive checks = 1.5% 

CGStopIter = 3 (which checks for stability after every three iterations) 

Due to the high amount of unlabeled training points in the semi–supervised learning 

framework, the stability of the decision, can be used as a reference to early stop the gradient 

descent (stability check). By implementing this algorithm, the error rates are considerably 

reduced, and the time required to train the classifier are drastically improved. 

 

4.4 Results 
 

The semi-supervised learning is implemented on the LapSVMs algorithms ‘Newton’s method’ 

and ‘Early stopped PCG’ which show a considerable difference in the performance. Training by 

PCG with the proposed early stopping conditions shows an appreciable reduction of the training 

time and the error rate on all datasets. Three models for each subject have been considered for 

the study. Since LapSVM is a binary classifier, transformation techniques were applied to 

convert into a multiclass classifier using one vs rest strategy. It can be observed that PCG 

method has edged Newton method by providing better prediction accuracies on unlabeled data at 

around 86% and also at minimal training time. The accuracies and training times for each model 

before employing semi-supervised discriminant analysis are shown in Table 9. 

The employment of Semi supervised discriminant analysis has transformed the original 

feature space into 5-dimensional feature space. However, the complex geographical separations 

of unlabeled data points have resulted in better accuracies in higher dimensional space (before 

SDA) than on transformed lower dimensional space (after SDA). The results for LapSVM on 

reduced dimensionality set have been shown in Table 10. 
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Table 9: LapSVM accuracies and training times before SDA 

Subject Model 

Newton Method Early Stopped PCG method 

Accuracy 
Training time 

(secs) Accuracy 
Training time 

(secs) 

Subject1 
L1 77.2% 2.72 86.0% 0.23 

L1 + L2 76.3% 2.20 85.9% 0.22 
L1 + L2 + L3 76.8% 1.85 86.5% 0.22 

Subject2 
L1 89.3% 21.06 86.7% 0.21 

L1 + L2 89.1% 4.17 86.5% 0.22 
L1 + L2 + L3 86.8% 1.76 87.0% 0.19 

Subject3 
L1 83.7% 23.52 87.5% 0.16 

L1 + L2 80.5% 1.11 88.0% 0.14 
L1 + L2 + L3 86.8% 1.02 88.9% 0.14 

Subject4 
L1 88.2% 2.83 90.1% 0.20 

L1 + L2 90.9% 1.10 91.3% 0.21 
L1 + L2 + L3 93.2% 0.90 91.6% 0.17 

Subject5 
L1 86.4% 9.69 84.5% 0.13 

L1 + L2 86.8% 4.45 86.0% 0.13 
L1 + L2 + L3 82.5% 1.00 82.7% 0.18 

Subject6 
L1 83.6% 8.48 86.6% 0.15 

L1 + L2 80.5% 1.66 86.4% 0.15 
L1 + L2 + L3 80.1% 1.45 86.2% 0.19 

Subject7 
L1 79.0% 24.66 80.8% 0.44 

L1 + L2 79.2% 2.96 85.7% 0.19 
L1 + L2 + L3 80.1% 1.75 85.9% 0.20 

Subject8 
L1 78.8% 36.18 86.2% 0.23 

L1 + L2 78.8% 15.56 86.4% 0.29 
L1 + L2 + L3 78.4% 2.96 86.6% 0.24 

Subject9 
L1 84.8% 11.71 86.0% 0.19 

L1 + L2 87.2% 3.22 84.9% 0.26 
L1 + L2 + L3 76.7% 1.95 87.0% 0.19 

Subject10 
L1 79.4% 55.79 84.8% 0.43 

L1 + L2 79.0% 3.91 85.1% 0.31 
L1 + L2 + L3 82.4% 3.55 85.2% 0.32 

Average 82.8% 8.51 86.4% 0.22 
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Table 10: LapSVM accuracies and training times after SDA 

Subject Model 

Newton Method Early Stopped PCG method 

Accuracy 
Training time 

(secs) Accuracy 
Training time 

(secs) 

Subject1 
L1 75.0% 145.99 74.3% 0.82 

L1 + L2 78.2% 122.50 71.5% 0.86 
L1 + L2 + L3 34.2% 132.02 33.8% 0.60 

Subject2 
L1 72.8% 115.28 76.4% 0.34 

L1 + L2 86.9% 91.92 77.2% 0.25 
L1 + L2 + L3 77.4% 113.41 65.1% 0.24 

Subject3 
L1 80.3% 53.44 81.0% 0.19 

L1 + L2 77.9% 73.89 79.6% 0.31 
L1 + L2 + L3 81.0% 67.14 75.9% 0.59 

Subject4 
L1 87.3% 53.67 86.6% 0.58 

L1 + L2 89.0% 45.19 89.4% 0.42 
L1 + L2 + L3 90.7% 45.77 93.5% 0.22 

Subject5 
L1 84.6% 47.96 79.5% 0.28 

L1 + L2 82.4% 37.22 80.7% 0.49 
L1 + L2 + L3 82.5% 55.86 82.6% 0.29 

Subject6 
L1 82.2% 73.17 81.6% 1.07 

L1 + L2 85.4% 67.45 81.8% 0.42 
L1 + L2 + L3 76.3% 65.03 77.2% 0.39 

Subject7 
L1 77.8% 160.20 82.6% 0.54 

L1 + L2 75.8% 145.62 75.9% 0.56 
L1 + L2 + L3 80.3% 125.04 79.7% 0.75 

Subject8 
L1 75.5% 139.30 73.9% 1.05 

L1 + L2 77.4% 135.93 77.2% 0.43 
L1 + L2 + L3 78.0% 127.61 76.9% 1.16 

Subject9 
L1 83.4% 111.52 76.9% 0.64 

L1 + L2 84.5% 124.96 83.9% 0.73 
L1 + L2 + L3 77.7% 112.85 77.1% 0.64 

Subject10 
L1 76.3% 1174.68 76.4% 2.32 

L1 + L2 74.7% 238.17 75.1% 0.92 
L1 + L2 + L3 77.1% 316.67 64.1% 1.33 

Average 78.7% 143.98 76.9% 0.65 
 

4.5 Comparison and Conclusion 
 

In this thesis different state of the art methodologies have been applied to classify different 

activities on large amount of continuous data. Since the data was collected in two different 
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modes: supervised and continuous, the baseline model failed to predict the labels on continuous 

data with good accuracies. So, the methods applied using incremental learning and Semi 

supervised learning have provided better results and overcome many challenges in machine 

learning such as session to session variability, regularization and continuous adaptability. The 

comparison between all the solutions for Lead 1 ECG data have been shown in Figure 14. 

 

 
Figure 14: Comparison chart of different machine learning solutions applied in this thesis 

 

It can be observed that both Incremental learning using Streaming logistic regression and 

Semi supervised learning using Laplacian SVM have yielded good results overcoming all the 

challenges discussed earlier. Though, the LapSVM trained on original feature set using early 

stopping PCG method has fared better than the incremental learning results. Semi-supervised 

analysis has shown that more customization on the optimization and regularization parameters 

can help us achieve even better results. 
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4.6 Future Scope 
 

As future work, additional technologies that complement online learning and semi supervised 

learning such as domain adaptation methods, transfer learning methods, zero shot learning, multi 

task learning etc. can be implemented and compared. The development of these state of the art 

methods can deal with many hardest challenges in Machine learning. 

The machine learning models which can predict user’s state in real time can be incorporated 

in many applications in the various domains. Other physiological measures such as GSR 

(Galvanic Skin Response) and behavioral data such as motion could be included to support multi 

modal analysis. Many solutions can be built than can address the development of Smart homes, 

Smart cities, Smart mobility etc. One such project has already kicked off with University of 

Michigan Dearborn - Ford Motor Company Alliance, where the project deals with the usage of 

IOT technologies and Machine learning technologies implemented in this thesis to create smart 

environments. Some of the functionalities that are planned to be implemented are seamless home 

automation, customer state monitoring, adaptive environmental customization in vehicles and so 

on. 

Additionally, this work could be extended to do provide multi modal sensing, and prediction 

and segregation functions can be improved by optimizing all the parameters and additional 

modalities in addition to ECG. Also, as Spark is open source and supported by almost all cloud 

technologies, the streaming implementations could be achieved seamlessly, and real time 

predictions can be done which would make creating smart environments achievable at affordable 

cost.  
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