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Abstract 

 
Fatalities due to road accidents are mainly caused by distracted driving. Driving demands 

continuous attention of the driver. Certain levels of distraction while driving can cause the driver 

to lose his/her attention which might lead to a fatal accident. Thus, early detection of distraction 

will help reduce the number of accidents. Several researches have been conducted for automatic 

detection of driver distraction. Many previous approaches have employed camera-based 

techniques. However, these methods might detect the distraction rather late to warn the drivers. 

Although neurophysiological signals using Electroencephalography (EEG) have shown to be 

another reliable indicator of distraction, EEG signals are very complex, and the technology is 

intrusive to the drivers, which creates serious doubt for its implementation. In this thesis we 

investigate a non-intrusive physiological measure-Galvanic Skin Responses (GSR) using a wrist 

band wearable and conduct an empirical characterization of driver GSR signals during a 

naturalistic driving experiment. The proposed method is used to evaluate and extract statistical, 

frequency and time domain features to identify distraction. Also, several data mining techniques 

such as feature selection, feature-ranking, dimensionality reduction and feature space analysis are 

performed to generate discriminative bases that reduce the computational complexity for efficient 

identification of distraction using supervised learning. A signal processing technique: continuous 

decomposition analysis, exclusive for skin conductance signal was investigated to better 

understand the behavior of raw signal during cognitive and visual over load from secondary tasks 

while driving. The proposed driver monitoring and identification system on the edge provided 

evident results using GSR as a reliable indicator of driver distraction while meeting the 

requirement of early notification of distraction state to driver.    
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Chapter 1 Introduction 

 
Distracted driving is one of the major reasons leading to fatalities on road. The most recent report 

by National Highway Traffic Safety Administration (NHTSA) published in 2017 reports 37461 

people (5.6% increase compared to 2015) lost lives to fatal road crashes in 2016 (NHTSA 2013). 

Although safety improvement in vehicle and on roads were implemented the count of fatalities 

continues to increase. Accidents on road that causes fatalities are predicted to be the ninth leading 

cause of death globally and are estimated to become seventh leading cause of death by 2030 (World 

Health Organization 2015). This increase in fatalities on road exemplifies the need to address this 

important issue. Preventing fatal accidents on road will help save millions of lives across the world. 

Most of the fatalities occur due to diminished driving performance caused by impairment 

of driver’s attention. Attentional impairment includes attributes like alcohol, drowsiness, fatigue, 

aging and distraction. More than 30% of the crashes are a result of alcohol impairment (NHTSA 

2013). Drowsy driving was responsible for 2.3-2.5% of fatalities on road as per report published 

by NHTSA.  Distracted driving compared to the above impairments, is one of the important form 

as it contributes majority of the crashes and fatalities on road. NHTSA reports 3477 people were 

killed in 2015 alone and 391,000 were injured in motor vehicle crashes due to distracted driving. 

Distracted driving has become a major concern in the modern era of innovative technology and 

has drawn attention from human behavior researchers and policy makers in the field of 

transportation safety (Box 2009).  Distraction while driving is primarily caused by performing 

secondary tasks such as having engaging conversation with the passengers, eating, drinking, using 

cell phones for making and receiving calls or text messages, or using one of the several in-vehicle 

information systems (IVISs) namely navigation system and radio (Regan et al. 2008). The 

increasing use of several IVISs and technologies like phone is becoming critical as they induce 

distraction in drivers. Assisting the drivers to make use of the IVISs without compromising on the 

safety is an important prevailing challenge.  

Distraction can be categorized into two main groups visual distraction and cognitive 

distraction. Visual distraction happens when the driver has his/her “eyes-off-road” and cognitive 
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distraction corresponds to “mind-off” the primary task of driving (Victor 2005). Both these 

distraction/inattention state result is affecting the driving performance of the driver by reducing 

the response time during hazards, large variation in lane, less effective visual scanning of the road. 

Moreover, these distractions can occur in combination with each other causing a higher order of 

distraction which creates major concerns to detect them in time.   

Among several secondary tasks that diverts drivers’ attention form the primary task of 

driving, it is observed phone conversation, or using the phone to send and receive text messages 

induces higher order of distraction. Much importance is given to aforesaid scenarios since they 

include both visual and cognitive distraction that diverts the attention of the driver from task of 

driving completely (Liang et al. 2007). Developing a warning system that detects and mitigates 

the inattention state of the driver in early stages of distraction is one way to solve this problem 

(Donmez et al. 2003). This created a need for detecting the distraction accurately and warning the 

driver early in real-time. 

1.1 Need for physiological signal monitoring 

Developing an early inattention state warning mitigation system is a critical challenge.  There have 

been several researches conducted to detect distraction using modalities recorded based on 

tracking driver’s eye gaze (Liu et al. 2015), eye lid movement (Metz et al. 2011), lane tracking 

(Young et al. 2011) and video cameras that captures behavior of the driver to detect distraction 

(Wege et al. 2013). Although these techniques demonstrated successful performance they suffer 

from major drawbacks such as invading privacy and mainly identifying and responding of 

distraction rather late only after it is visually noticeable. The above methods mainly focus on 

identifying visual distraction alone. These modalities lack identifying or detecting cognitive 

distraction as the above methods cannot record the cognitive behavior of the driver. Thus, to 

overcome these limitations there is a need for quick and reliable distraction detection modalities, 

which is achieved by continuous monitoring of physiological signals. 

1.2 Introduction to physiological Signals  

Measurements generated due to physiological process of human being such as heart-beat rate 

(electrocardiogram or ECG), respiratory rate, muscle current (electromyography or EMG), brain 

activity (electroencephalogram or EEG) or skin conductance (electrodermal activity (EDA) or 

galvanic skin responses (GSR)) are generally classified as physiological signals. In the recent years 
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physiological signals have become conventional measures in driver distraction experiments. 

Physiological signals have been used in several studies to identify level of mental load, mental 

stress and drowsiness during driving (Begum 2013).   

The authors (Alizadeh & Dehzangi 2016) used EEG dynamics captured during a 

naturalistic driving experiment to developed a systematic framework that extracts effective 

descriptors and measures the impact of in-vehicle secondary task on the cognitive state of the 

driver during driving.  They used several classification methods to detect distraction. This study 

demonstrated high detection accuracy for distraction.  The studies conducted by authors (Lin et al. 

2011; Kim et al. 2013) also demonstrated state-of-the-art results that are comprehensive and 

reliable. However, complexity to setup and analyzing data is the major limitation of the above-

mentioned studies making those systems expensive and intrusive to implement.  

In the study (Deshmukh & Dehzangi 2017) ECG modality was used to predict drivers 

distraction. Wavelet packet transform was used to localize the impact of distracting element and 

perform frequency sub-band analysis. Linear discriminant analysis (LDA) was used to reduce the 

generated WPT feature space. Kernel transformations were also employed to address the non-

linear nature of the input feature space. Kernel transformation demonstrated best identification 

accuracy. Although ECG is comparatively easy to record than EEG and a quick reliable indicator 

of distractions, it faces similar issues of intrusive implementation as EEG.  

To overcome the limitations of EEG and ECG modality, in this thesis we investigate skin 

conductance (SC) also known as galvanic skin responses (GSR) an electrical conductance of skin, 

is low cost, robust physiological signal which is a minimally intrusive modality that can be 

recorded on wrist and fingers easily (Ciabattoni et al. n.d.; Rajendra & Dehzangi 2017; Dehzangi 

et al. 2018). The change in electrical property of skin caused by interaction between environmental 

events and physiological state of a person is known as galvanic skin response.  GSR is one of the 

most sensitive physiological indicator of cognitive and emotional state. Emotional stimulation 

triggers skin conductance mainly in the hand and foot region. As the skin of a human is good 

conductor of electricity, when small amount of weak electric current is passed through skin, 

changes in skin conduction can be calculated. Higher value of skin conductance corresponds to 

higher arousal. Measuring skin conductivity can reveal changes in sympathetic nervous system 

which drives human behavior, cognitive and emotional state on a subconscious level (Nourbakhsh 

et al. 2012; Nourbakhsh et al. 2013). 
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1.3 Literature Review 

To inspect the impact of cognitive state change, synchronously recorded GSR signals were 

investigated in several experiments. In study (Nourbakhsh et al. 2012), the authors used GSR as 

an indicator of mental and emotional stress to evaluate users’ stress due to workload while 

performing reading and arithmetic task. Eight arithmetic tasks with four difficulty level were 

performed by the experimental subjects, similarly the reading tasks included silent reading, where 

each task comprised of four slides of text and each slide was displayed for 30 seconds with three 

levels of difficulty. Time domain and frequency domain features were explored and concluded that 

frequency domain features showed to be promising in measuring the cognitive workload compared 

to the time domain features. 

 In paper (Kurniawan et al. 2013) authors investigate how classification techniques can be 

used to automatically determine periods of acute stress relying on information contained in GSR 

and/or speech of a person. The experimental setup was designed to record information while the 

subjects were performing three levels of task where the difficultly level increased incrementally. 

The subjects were made to perform Stroop-Word congruent color test and few basic arithmetic 

tasks corresponding to the level of difficulty. Features such as mean, minimum, maximum and 

standard deviation of skin conductance and peak height; and the total number and the cumulative 

amplitude, rising time and energy of startle responses in segment were extracted from GSR signal. 

Four classifiers: K-means, GMM, SVM and decision tree were employed for performing 

identification task. SVM demonstrated 70% accuracy for detecting stress. Finally, the study 

concluded that using other measures and not relying only on GSR for stress detection might 

improve the performance of their classification model. 

 In the previous work (Lew et al. 2008), a novel method for analyzing skin conductance 

(SC) and pupillometry time-series data using Short Time Fourier Transform (STFT) was employed 

to extract estimation of mental work load with high enough temporal bandwidth to be useful for 

augmented cognition application. Measures such as SC, pupil dilation, blink rate, and visual 

scanning pattern were recorded while the participants were engaged in performing process control 

task based on DURESS simulation. Participants were to diagnose errors introduced in the form of 

fault events and perform control adjustments to maintain the operating simulator in the target 

range. The authors explored STFT of the extracted measures to check whether the STFTs produced 

visible effects demonstrating change or increase in the mental workload and stress associated. 
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Graphical data analysis of the STFT showed notable increase in the power spectrum across a range 

of frequencies directly following fault events. 

 (Ayata et al. 2017) used time domain, wavelet and empirical mode decomposition (EMD) 

based features extracted from galvanic skin responses (GSR) to perform emotion recognition. They 

categorized valence and arousal and used several machine learning algorithms such as random 

forest, decision tree, k-nearest neighbor and support vector machine to study relationship between 

physiological signals and arousal and valence. This study demonstrated that there is a relationship 

existing between GSR signal, arousal and valence. Prediction accuracy of 71.53% and 71.04% 

were achieved for predicting arousal and valence respectively using time domain features only. 

Employing EMD yielded increase in classification performance compared to time-domain only 

features. It demonstrated prediction accuracy of 85.07% and 82.81% for arousal and valence 

respectively.      

The previous work  (Liu et al. 2016) proposed a novel human emotion recognition 

technique that selects GSR features automatically. Wavelet function was employed to de-noise the 

data and data was normalized to eliminate individual difference. They also employed covariance-

based feature selection on the 30 generated features to improve the recognition performance. The 

covariance method selected 15 features that contains the most discriminative information to 

accurately represent the GSR signal. Support vector machine (SVM) was used to classify human 

emotion and the radial basis function (RBF) kernel SVM demonstrated accuracy of 66.67%.  

The above investigations provide evident proof to use skin conductance signal to identify 

human emotion. However, very few investigations are conducted to evaluate cognitive workload 

or distraction during naturalistic driving experiment.  (Min et al. 2013) investigated the effect of 

distraction task, such as using navigation system and sending text message with cellphone, on the 

driving performance of the driver using galvanic skin responses as the modality. The participants 

performed three driving tasks namely: driving only, driving + sending text message and driving + 

using navigation system, where each task was 2 min long. Then, relative change in skin 

conductance level was calculated and comparative analysis was performed for three tasks. The 

study resulted in the tasks driving + sending text message and driving + using navigation system 

demonstrating significant increase in relative skin conductance. However, this work did not 

include any significant quick and reliable distraction detection technique and the experiment was 

conducted using a driving simulator which is another major limitation of this study.  
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The authors in (Chen et al. 2017) used several physiological signals like electrocardiogram 

(ECG), galvanic skin response (GSR) and respiration to identify distraction while driving on the 

road. Spectral, time and wavelet multi-domain features were extracted for 10 second interval of 

data. Optimal feature sets were selected by combining Sparse Bayesian Learning (SBL) and 

Principal Component Analysis (PCA). Kernel based classifiers were employed to identify stress 

while driving. Experimental results of this study reveal that employing physiological measures to 

in-vehicle intelligent system to assist drivers on road for identifying and alerting stress early. In 

this study raw GSR signal was used with combination of other physiological measures and only 

time domain features were explored.  

1.4 Thesis and Contribution 

In this thesis, driver monitoring and intervention system on the edge using a non-invasive wrist 

band wearable galvanic skin response is proposed. To meet the requirement of quick and reliable 

distraction detection and mitigation system short-term segments were employed to detect the 

impact of secondary tasks of calling and texting on drivers during naturalistic driving. This thesis 

consists of three main published research works.  

The research work (Rajendra & Dehzangi 2017) was a preliminary analysis of driver 

distraction during naturalistic driving experiment using raw galvanic skin response signal. This 

work solely focused on two scenarios (i) normal driving (non-distracted state) and (ii) driving 

while having an engaging phone conversation (distracted state). Few standard statistical measures 

were generated and binary support vector machine (SVM) was used for distraction detection. The 

main aim was to investigate the discriminative power in the raw GSR space between normal and 

distracted driver state. An average detection accuracy of 91% using binary SVM was achieved.  

 The research work (Dehzangi Omid, Rajendra 2017) investigated Galvanic Skin Responses 

(GSR) using a wrist band wearable to conduct an empirical characterization of driver GSR signals 

during a naturalistic driving experiment. Three scenarios were investigated: 1) Normal driving 

focusing attention on the primary task of driving 2) Phone Distracted driving while having an 

engaging phone conversation and 3) Text distracted driving while writing and sending texts while 

driving. Here phone distraction is investigated as cognitive distraction element in comparison to 

text distraction, which represent cognitive and visual distraction at the same time. Time and 

frequency domain were explored to extract relevant features to capture the changes/patterns at the 

physiological level. Due to the fact that feature extraction is a manual process and to normalize 
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the feature space toward the identification task, the feature space was transformed using linear 

discriminant dimensionality reduction to discover discriminative bases of the GSR multivariate 

feature space that identify distraction. That would eliminate both the computational complexity 

and the redundancies in the manually generated feature space. Due to multi-class nature of the 

identification task, there might be biases between the distracted and non-distracted categories that 

can bias the estimation of between- and within-class scatter matrices. Therefore, a class dependent 

weight was incorporated to calculate the scatter matrices. The proposed weight aims to increase 

the flexibility of the discriminative bases vectors to capture the factors that focus on eliminating 

the overlap between distracted vs. non-distracted in the generalization phase. The experimental 

results demonstrated high cross validation accuracies of distraction identification using raw GSR 

signals (i.e. 85.19%). Conducting dimensionality reduction using LDA resulted in slight 

improvement in accuracy (i.e. 85.94%) using only two discriminant bases. The generalization 

accuracy was further improved by applying our proposed weighting mechanism (i.e. 88.92%). 

 In this research (Dehzangi et al. 2018) the raw GSR signal was decomposed into its phasic 

and tonic components using Continuous Decomposition Analysis (CDA), and then the continuous 

phasic component containing relevant characteristics of the skin conductance signals were 

investigated for further analysis. A high resolution spectro-temporal transformation of the GSR 

signals was generated for non-distracted and distracted (calling and texting) scenarios to visualize 

the associated behavior of the decomposed phasic GSR signal in correlation with distracted 

scenarios. According to the spectrogram observations, relevant spectral and temporal features were 

extracted that capture the patterns associated with the distracted scenarios at the physiological 

level. Then feature selection was performed using support vector machine recursive feature 

elimination (SVM-RFE) in order to: (1) generate a rank of the distinguishing features among the 

subject population, and (2) create a reduced feature subset toward more efficient distraction 

identification on the edge at the generalization phase. Support vector machine (SVM) was 

employed to generate the 10-fold cross validation (10-CV) identification performance measures. 

The results demonstrated cross-validation accuracy of 94.81% using all the features and the 

accuracy of 93.01% using reduced feature space. The SVM-RFE selected set of features generated 

a marginal decrease in accuracy while reducing the redundancy in the input feature space toward 

shorter response time necessary for early notification of distracted state of the driver.  
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Chapter 2 Experimental Setup 

 

This chapter presents the experimental design and data acquisition procedure using wrist band like 

wireless galvanic skin response wearable device.  

A custom designed wearable data acquisition platform was developed comprising a 

synchronized multi-modal solution to acquire the physiological signals using a comprehensive 

wearable sensor network, which is used to collect data (Dehzangi & Williams 2015). This platform 

is capable of collecting large amounts of heterogeneous drivers’ physiological including Galvanic 

Skin Response (GSR) during naturalistic driving. Experiments conducted in this thesis were 

approved by the Institutional Review Board (IRB) of the University of Michigan with the 

Submission ID: HUM00102869. The driver participants were given a consent form to sign before 

the experiments, in which the nature of the data collection was described. The experiments were 

conducted under constant supervision of two research investigators for a reliable data acquisition 

process. Wherein one of the research investigator sat beside the driver in the front to continuously 

monitored the driving subject to avoid any drastic situation. While the second research investigator 

sat behind to monitor and record the driving data from the participant continuously to acquire 

reliable recording for further investigations. The participants between the age group of 20–40 years 

that participated in our experiment were legally permitted to drive. Healthy male subjects were 

considered for this thesis to rule out the inconsistency. The subjects were asked to stay away from 

any alcoholic beverages or pharmaceuticals that would trade off their sharpness amid the 

investigation. Figure 2.1 depicts a driver subject while conducting our naturalistic driving 

experiment. Figure 2.2 illustrates the wireless galvanic skin response wrist band like wearable 

device used for data acquisition. Three scenarios of driving were considered in this thesis, each of 

which were performed by the subjects for ≈2 min and their corresponding GSR signals were 

recorded. The three driving scenarios were (i) driving under normal condition, (ii) driving while 

engaging in a phone conversation and (iii) driving while using the phone for texting. Normal 

driving (non-distracted) is represented by Scenario (i) while distracted driving is represented by 

scenarios (ii) and (iii). 
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Figure 2.1: A driver subject during our naturalistic driving experiment. 

 

 
Figure 2.2: Wireless galvanic skin response (GSR) wearable device on the right-hand wrist 

 

 
Figure 2.3: Illustrates data collection order during the naturalistic driving experiment 
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Figure 2.3 illustrates data collection order during our driving experiment. We employed a 10th 

order Butterworth low-pass filter <20 Hz on the recorded raw GSR to cope with and remove  

artifacts such as high frequency-noise, motion artifacts and electromyography (EMG) artifacts that 

might interfere due to the movement of hand and finger during phone and texting experiment 

sessions. 
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Chapter 3 Preliminary investigation of raw galvanic skin response for driver distraction 

detection 

 

This chapter presents the preliminary analysis employed on the raw galvanic skin responses 

recorded during naturalistic driving experiment to detect driver distraction. Six driver subjects 

participated in this realistic driving experiments. In this investigation two tasks including driving 

under normal condition and driving while having an engaging conversation on the phone were 

considered. The former would represent normal and the latter would represent distracted driving.  

Standard statistical features were extracted from the recorded raw GSR signal. The experimental 

results demonstrated high accuracies of detection under subject dependent scenarios. The 

possibility of subject independent distraction detection employing non-linear space transformation 

based on kernel analysis and support vector machines (SVM) were also investigated. 

3.1 Analysis method  

 
Figure 3.1: Flowchart for the proposed distraction detection system using raw galvanic skin 
conductance signal 

 

Figure 3.1 illustrates the general flow of the proposed driver distraction detection system. Raw 

GSR signal were recorded using a wrist-band wearable wireless GSR device. The GSR signals 

were recorded for two scenarios 1) Normal driving focusing attention on the primary task of 

driving and 2) Distracted driving via having an engaging phone conversation while driving. Then 

segmentation of 5 second window with 80% overlap was employed. Statistical features were 

extracted from each window. Subsequently, state-of-the-art support vector machine (SVM) and its 
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kernel were employed for detection driver distraction. In this section the implementation of each 

step is discussed in detail. 

3.1.1 Segmentation 

After obtaining the clean raw GSR signal, segmentation was applied to obtain short windows and 

features were extracted from these windows. Each window had a size of 5 seconds with an overlap 

of 4 seconds. This was performed in order to meet the short-response time requirement of driver 

monitoring or alerting system. 

3.1.2 Feature Extraction 

After applying the segmentation, the following features for each window were extracted: mean, 

variance, accumulated GSR, average GSR, maximum Value, and power. 

• Mean: It is the average of all the data points present in each window i.e. sum of all the data 

points divided by total number of data points in that window. 

• Variance: It is the average of squared distance from the mean. 

• Accumulated and Average GSR: Accumulated GSR is summation of GSR values of that 

window over task time (Nourbakhsh et al. 2013). Average GSR is normalized (Nourbakhsh 

et al. 2012) GSR value of a window over task time. Average GSR and accumulated GSR 

after applying normalization function to entire subjects 

 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖,𝑘𝑘,𝑡𝑡) =

𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖,𝑘𝑘, 𝑡𝑡)
1
𝑚𝑚∑ ∑ 𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖,𝑗𝑗,𝑡𝑡)𝑇𝑇𝑇𝑇𝑇𝑇

𝑡𝑡=1
𝑚𝑚
𝑗𝑗=1

 3.1 

 

GSR(i,k,t) is values of each data point at time t of task k of subject I and m is the number 

of tasks. They also calculated accumulated and average GSR for task k of subject I as 

below: 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖, 𝑘𝑘) = �𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑑𝑑𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖,𝑘𝑘,𝑡𝑡)
𝑡𝑡

 3.2 

 

  
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖,𝑘𝑘) =  

∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑑𝑑𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖,𝑘𝑘,𝑡𝑡)𝑡𝑡

𝑇𝑇
 3.3 

• Maximum Value: Maximum value of GSR in a window was the resulting value of this 

feature. 
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• Power: The sum of the absolute squares of a signals time-domain samples divided by the 

signal length, or, equivalently, the square of its root mean square (RMS) level. 

3.1.3 Identification Task 

3.1.3.1 Support vector machine (SVM) 

Classification task was conducted using Linear Support Vector Machine (SVM). The SVM 

approach offer an effective classification strategy to separate input vector in a 2 class problem and 

is investigated in many different applications (Vapnik 1995; Guyon et al. 2002). SVM projects 

input vector x into a scalar value 𝑓𝑓(𝑥𝑥) as the output score. 

   
𝑓𝑓(𝑥𝑥) =  �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥) + 𝑏𝑏

𝑁𝑁

𝑖𝑖=1

 3.4 

where, the vectors { 𝑥𝑥𝑖𝑖|𝑖𝑖 = 1, … . ,𝑁𝑁} are the support vectors, N is the number of support vectors, 

𝛼𝛼𝑖𝑖 > 0 are adjustable weights, 𝑦𝑦𝑖𝑖 = {−1, +1}, 𝑏𝑏 is the bias term, and the function 𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥) is the 

kernel function. For the 2-class classification, the class decision is made based on the sign of 𝑓𝑓(𝑥𝑥). 

As it can be seen, the classifier is constructed from sums of the kernel function expressed as, 

 𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥) =  𝜑𝜑(𝑥𝑥𝑖𝑖)𝑡𝑡𝜑𝜑(𝑥𝑥) 3.5 

where 𝜑𝜑(𝑥𝑥) is a mapping from the input space to a possibly infinite dimensional space.  

3.1.3.2 SVM Kernel 

• Polynomial Kernel (Poly d=2): It is a kernel function that represents similarity of vectors 

in a feature space over polynomials of the original variables, making it possible for learning 

nonlinear models. The polynomial kernel determines the similarity of the input samples 

not only by looking at the features of the input but also combinations of the features. The 

polynomial kernel for degree-d is defined as: 

 𝐾𝐾(𝑥𝑥,𝑦𝑦) = (𝑥𝑥𝑡𝑡  𝑦𝑦 + 𝑐𝑐)𝑑𝑑 3.6 

where x, y are vectors in input space. When c = 0 the kernel is called homogenous and c ≥ 

0 is a free parameter trading off the influence of higher-order versus lower-order terms in 

the polynomial. 

• Radial Basis Function (RBF) Kernel: The Radial Basis Function kernel, also called as 

RBF kernel, or Gaussian kernel, is in the form of radial basis function more specifically a 

Gaussian function. 
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𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥, 𝑥𝑥′) = exp�−

‖𝑥𝑥 − 𝑥𝑥′‖2

2𝜎𝜎2
� 3.7 

where x and x’ are two samples, represented as feature vectors in some input 

space. ‖𝑥𝑥 − 𝑥𝑥′‖2 is the squared Euclidian distance between the two feature vector. 𝜎𝜎 is a 

free parameter. 

3.1.4 10-Fold cross validation 

Linear and kernel-based SVM were employed on the data corresponding to each subject separately 

for training and then evaluation of the predictive model was conducted using 10-fold cross 

validation (10-CV). In 10-CV, the original dataset is partitioned into 10 equal size subsets. Of the 

10 subsets, a single subset is retained as the validation data for testing the model, and the remaining 

nine subsamples are used as training data. The cross-validation process is then repeated 10 times 

(the folds), with each of the 10 subsets used exactly once as the validation data. The 10 results 

from the folds can then be averaged to produce a single estimation. The advantage of this method 

is that all observations are used for validation in exactly one out of the 10 iterations without being 

participated in the training process whatsoever for that iteration. 

3.2 Experimental Results 

In order to evaluate the recorded raw GSR for detection of driver distraction, two types of 

predictive analysis were performed: 1) subject dependent analysis, and 2) subject independent 

analysis. 

3.2.1 Subject dependent analysis 

The detection accuracy on a subject by subject basis were evaluated. In this approach the data 

corresponding to each subject separately was considered for training and then evaluation of the 

predictive model was performed using 10-fold cross validation. The scatter plot of subject 1 (fairly 

similar across all the subjects) shown in Figure 3.2 depicts the classes “normal” (blue) vs. 

“distracted” (red), which shows a good separation between the two classes with few overlapping 

segments. The results for subject dependent analysis is shown in Table 3.1. Linear SVM produced 

an average accuracy of 89.45% averaged over all the subjects. A maximum accuracy of 97.4% 

was achieved with subject 5 and 95.8% for subject 1. The lowest accuracy of 80% was achieved 

with subject 4; several factors could affect the accuracy such as noise and motion artifacts while 
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collecting data. It can be observed from Table 3.1 that using kernels with SVM can only improve 

the detection results with RBF kernel (18% relative improvement). 

 

 
Figure 3.2: Scatter plot of the extracted segments of GSR for subject 1 using mean value and 

power features 

 

Table 3.1:Classification accuracy for subject dependent analysis 

Subjects 
Accuracy in % 
Support Vector Machine 
Linear Poly d = 2 Poly d = 3 RBF 

Subject1 95.8% 96.7% 96.3% 96.3% 
Subject2 82.1% 81.2% 83% 86.6% 
Subject3 87.5% 86% 87.1% 89.2% 
Subject4 80.6% 83.6% 83.8% 84.6% 
Subject5 97.4% 97.4% 95% 97.1% 
Subject6 93.3% 93.3% 94.2% 94.2% 
Average 89.45% 89.70% 89.90% 91.33% 

3.2.2 Subject independent analysis 

In this case, all the subjects were combined as follows. The “normal” data corresponding to all 

subjects were pooled into one class and all subject “distracted” data were pooled into another. 
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Figure 3.3 shows the scatter plot of meanValues and power features after pooling the subjects and 

high levels of overlap in the input feature space. Table 3.2 reports detection accuracies for subject 

independent analysis using different kernels with SVM.  

 

Figure 3.3: Scatter plot of subject independent analysis when all the subjects were pooled 
together 

The linear SVM detection rate degraded dramatically to 70.1% which was predictable based on 

Figure 3.3 scatter plot. RBF kernel effectively improved the detection accuracy to 76.7% (22% 

relative improvement) by inducing non-linearity into the feature space using a Gaussian kernel. 

The result for subject independent analysis is shown in Table 3.2. The kernel SVM namely 

polynomial and RBF demonstrated a promising result with an accuracy of 76.7%. The Gaussian 

RBF kernel could classify the non-linear data of subject independent task effectively. The 

generated results demonstrated high accuracies of detection under both subject dependent and 

subject independent task. Linear SVM on subject dependent task showed high average accuracy 

of 89.45% for all the six subjects. SVM kernels were employed on subject independent task. 

Combining all the subjects made the input feature space more overlapped. Kernels demonstrated 

acceptable results on the subject independent analysis. RBF showed a promising result of 76.7%. 
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Table 3.2: Accuracy results for subject independent analysis using SVM with different kernels 

Subjects 

Accuracy in % 
Support Vector Machine 

Linear Poly d = 
2 

Poly d = 
3 RBF 

Concatenated all subjects 70.10% 70.40% 71.70% 76.70% 
 

3.3 Conclusion 

GSR was investigated to analyze whether it can be used to detect distraction under naturalistic 

driving conditions using a wrist band wearable. Experimental results demonstrated high accuracy 

of detection under both subject dependent task as well as subject independent task. Predictive 

accuracy for subject dependent resulted in high average accuracy of 91.33% which is a promising 

result using minimally intrusive GSR technology. Next all the subjects were combined to 

investigate about subject independent analysis. Non-linear kernels employed demonstrated better 

performance for this scenario due to high levels of overlap in the input feature space which resulted 

in the accuracy of 76.7% which is about 90% of the subject dependent accuracy. This study 

provided evident results to employ unobtrusive GSR technology in the vehicle in order to detect 

distraction under naturalistic driving. 
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Chapter 4 Frequency, Time and Statistical Domain Feature Analysis 

 

Analysis conducted in the previous chapter provided evident and satisfactory results to use GSR 

signal as good indicator of distraction while driving. In this chapter further analysis is performed 

on the raw GSR signal by extracting relevant spectral and temporal features that contain most 

discriminative information to characterize driver distraction. In this chapter, three scenarios were 

investigated 1) Normal driving focusing attention on the primary task of driving 2) Phone 

Distracted driving while having an engaging phone conversation and 3) Text distracted driving 

while writing and sending texts while driving. Phone distraction is considered as cognitive 

distraction element in comparison to text distraction, which represent cognitive and visual 

distraction at the same time. A custom designed frequency domain, time domain and statistical 

feature space was generated for the recorded raw GSR signal that represents most discriminative 

information to characterize driver distraction. Due to the fact that feature extraction is a manual 

process, the redundancy and computational complexity of the feature space might limit the 

distraction identification performance. Therefore, linear discriminant dimensionality reduction 

was employed to discover discriminative bases of the GSR multivariate feature space to more 

efficiently identify distraction. A class dependent weight was incorporated to the calculation of 

scatter matrices, aiming to alleviate limitations of LDA with multiple distracting categories and to 

eliminate the overlap between distracted vs. non-distracted scenarios in the generalization phase.  

4.1 Analysis Method 

Figure 4.1 depicts a flowchart of the proposed methodology. The recorded raw GSR signal was 

segmented to meet the real-time requirement of a driver monitoring system.  

Segmentation method of 5 second windows with 4 second overlap was employed to meet 

the requirement of short-response time for a driver monitoring or alerting system, bringing a real-

time approach to our model. From every window custom designed relevant frequency domain, 

time domain and statistical features were extracted. Further dimensionality reduction technique 
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using linear discriminant analysis and weighted linear discriminant analysis were employed. 

Linear and  

 
Figure 4.1: Flowchart of the proposed methodology 

 

kernel-based support vector machine (SVM) with 10-fold cross validation were employed to 

generate identification results. Implementation of each step is discussed in detail in this section. 

4.1.1 Feature Extraction 

In this chapter custom designed frequency and time domain features the contained most 

discriminative information were generated form from every segmented window for the raw GSR 

signal. The above features along with the statistical features extracted in chapter 3 was used to 

create a high dimensional (16-D) feature space. The output of these features was labeled 

appropriately and considered as the sample data point of the feature space. Table 4.1 shows the list 

of extracted features.  

• Short Time Fourier Transform (STFT): STFT is a technique that is quite often used to 

analyze physiological signal. It can be used to conduct analysis of signals both in frequency 

and time domain. After dividing the original signal into equal segments, Fourier Transform 

is applied independently to each segment. In (Lew et al. 2008), STFT analysis on SC data 

showed effective results in detecting work load. We extracted four STFT coefficients each 

representing a sub-band with 12.5 Hz bandwidth between 0 and 50 Hz. 
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Table 4.1: List of extracted features 

Feature Domain Feature Names 

Statistical Mean, Variance, Accumulated GSR, Average GSR and 

Maximum Value 

Frequency Short Term Fourier Transforms (4 features) 

Time Fractal Dimensions and Auto Regressive Coefficients 

 

• Fractal Dimension: Fractal dimension is used to determine the chaotic or fractal nature of 

a physiological signal. It is an impressive mathematical tool to model various complex 

physiological signals and an index to quantify the complexity of a fractal pattern. One of 

the common techniques to characterize the time-series data, Katz method was used to 

extract one fractal dimension feature. Katz’s approach calculates the fractal dimension as 

follows: 

 
𝐷𝐷 =  

log �𝐿𝐿𝑎𝑎�

log �𝑑𝑑𝑎𝑎�
=  

𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛)

log(𝑛𝑛) + 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑑𝑑𝐿𝐿�
′ 4.1 

 

where total length of the curve is given by L, that is sum of the distance between successive 

points. Euclidian distance is used to calculate distance between two points of the signal. 

The maximum distance between the initial point and any other point of the sample is given 

by d, a is the average distance and n is L divided a (Esteller et al. 2001).  

• Auto-Regressive (AR) coefficients: In an AR model of order p, the current output is 

estimated based on the linear combination of past p output values plus some noise term. 

The mean squared prediction error of an auto-regression model is minimized by calculating 

the weights on the previous p outputs. The model with current output value 𝑦𝑦(𝑛𝑛) and zero 

mean white space noise input 𝑥𝑥(𝑛𝑛) is: 

 
𝑦𝑦(𝑛𝑛) =  �𝑎𝑎(𝑘𝑘)𝑦𝑦(𝑛𝑛 − 𝑘𝑘) = 𝑥𝑥(𝑛𝑛)

𝑝𝑝

𝑘𝑘=1

 4.2 

The parameters of order p were selected as the features for each window. The order of p 

was set to 5 which generated five AR features. 
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4.1.2 Discriminative Feature Space Analysis and Transformation 

An overall of 16 features (includes statistical, frequency and time domain features) were generated 

for each subject. To normalize the feature space towards the identification task, transformation of 

the feature space was employed using linear discriminant dimensionality reduction to discover 

discriminative bases of the GSR multivariate feature space purposed toward distraction 

identification. Further a class dependent weight was proposed to incorporate to the calculation of 

scatter matrices, aiming to alleviate limitations of LDA with multiple distracting categories and to 

eliminate the biases between distracted vs. non-distracted scenarios for unseen data at the 

generalization phase. 

4.1.2.1 Linear Discriminant Analysis (LDA): 

LDA is a linear transformation technique that performs dimensionality reduction of the feature 

space while preserving the class discriminatory information as much as possible (Yan et al. 2007) 

. It assumes the distribution of each class is Gaussian and all the classes have same covariance 

matrix. LDA tends to find the directions also known as ‘linear discriminants’ that represents the 

axes along which classes are best separated (Farooq & Dehzangi 2017). A linear projection matrix 

𝑦𝑦 = 𝑈𝑈𝑡𝑡𝑥𝑥 is computed by maximizing the ratio of between class scatter 𝑆𝑆𝑏𝑏 and within class 

scatter 𝑆𝑆𝑤𝑤 and expressed as follows: 

Within-class scatter matrix: 

 
𝑆𝑆𝑤𝑤 = ��(𝑌𝑌𝑗𝑗 − 𝑀𝑀𝑖𝑖)

𝑛𝑛𝑖𝑖

𝑗𝑗=1

𝑐𝑐

𝑖𝑖=1

(𝑌𝑌𝑗𝑗 − 𝑀𝑀𝑖𝑖)𝑇𝑇 4.3 

Between-class scatter matrix: 

 
𝑆𝑆𝑏𝑏 = �  (𝑀𝑀𝑖𝑖 −𝑀𝑀)

𝑐𝑐

𝑖𝑖=1

(𝑀𝑀𝑖𝑖 −𝑀𝑀)𝑇𝑇 4.4 

A transformation space is computed by LDA that maximizes the between class scatter and 

minimizes the within class scatter, expressed as follows: 

 
𝑚𝑚𝑚𝑚𝑚𝑚

�𝑆̃𝑆𝑏𝑏�
�𝑆̃𝑆𝑤𝑤�

= 𝑚𝑚𝑚𝑚𝑚𝑚
|𝑈𝑈𝑇𝑇𝑆𝑆𝑏𝑏𝑈𝑈|
|𝑈𝑈𝑇𝑇𝑆𝑆𝑤𝑤𝑈𝑈| 4.5 
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4.1.2.2 Linear Discriminant Analysis with Class-Dependent Weight 

In distraction identification task, there are multiple states to distinguish namely, phone and text. 

Since phone conversation only affects the driver’s cognitively it is expected to be less distracting. 

However, texting has further effects on the driver because the driver is visually distracted as well. 

Therefore, it was hypothesized that impact on the recorded signals would be different as well. A 

weight was incorporated to calculate within class scatter matrix for each class. The distance 

between the centroid of each class and the global mean is given by weight 𝜔𝜔𝑖𝑖.  

 
𝑆𝑆𝑤𝑤 =  �

1
𝜔𝜔𝑖𝑖

.�(𝑌𝑌𝑗𝑗 − 𝑀𝑀𝑖𝑖)
𝑛𝑛𝑖𝑖

𝑗𝑗=1

𝑐𝑐

𝑖𝑖=1

(𝑌𝑌𝑗𝑗 − 𝑀𝑀𝑖𝑖)𝑇𝑇 4.6 

4.2 Experimental Results 

In order to characterize and identify driver distraction with short response time first the recorded 

GSR signal is segmented into small windows and then 16 different features were generated which 

includes statistical, frequency and time domain features from each window. Linear and kernel-

based support vector machine was employed on the data corresponding to each subject separately 

for training and then evaluation of the predictive model was performed using 10-fold cross 

validation. Initially all the 16 features were used for predicting accuracy. Table 4.2 shows the 

classification models accuracy generated using 16 features. 

The scatter plot of subject 1 (fairly similar across all the subjects) generated using t-sne 

(Van Der Maaten & Hinton 2008) shown in Figure 4.2 depicts the classes “normal” (red), “phone” 

(green) and “text” (blue). The t-sne is a state of the art 2-D non-parametric representation of the 

manually generated 16-D feature space. Figure 4.2 shows a distinguished trend of change in the 

GSR-based feature space from normal driving toward phone distraction and further toward text 

distraction. This observation suggests that text distraction introduce higher amount of changes to 

the GSR-based features space, which might be due to the impact of visual distraction on top of 

cognitive distraction. The classification models resulted with an average accuracy of 85.19% 

averaged over all the subjects. A maximum accuracy of 92.5% was achieved with subject 4. The 

results reported in Table 4.2 demonstrated that GSR-based time and frequency feature extraction 

is useful to detect the state of distraction for each subject effectively. Examining Figure 4.2, there 

is still a great deal of overlap exists between the normal vs. phone scenarios.  
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Table 4.2: Classification accuracy of all subject using 16 features 

Subjects 
Accuracy in % 

Support Vector Machine 

 Linear Poly d=2 Poly d=3 RBF 

Subject 1 84.60 84.30 63.40 88.60 

Subject 2 71.00 76.10 76.30 79.60 

Subject 3 84.70 88.20 87.30 87.30 

Subject 4 86.60 89.30 92.50 91.30 

Subject 5 75.30 79.10 78.40 81.40 

Subject 6 80.60 91.20 88.20 92.10 

Subject 7 71.90 75.30 78.80 76.00 

Average 79.24 83.36 80.70 85.19 

 

 
Figure 4.2: Subject 1 scatter plot of complete feature space using t-sne representation 

Figure 4.2 also reports dramatic improvement from linear SVM to the best kernel-based 

SVM 10-CV accuracy (~29% relative improvement) which is an evidence of high degrees of 

overlap in the feature space. Although kernel-based SVM can alleviate the overlap in the feature 
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space using kernel non-linear expansion. However, it can also cause a great deal of complexity in 

time and space of the detection procedure. 

 
Figure 4.3: Subject 1 scatter plot after applying linear discriminant analysis (LDA) 

dimensionality reduction technique 

 

Table 4.3: 10-CV identification accuracy of subjects after applying LDA 

Subjects 

Accuracy in % 

Support Vector Machine 

Linear Poly d=2 Poly d=3 RBF 

Subject 1 86.40 89.40 88.90 87.50 

Subject 2 75.50 76.30 69.30 77.40 

Subject 3 85.60 89.40 89.40 89.50 

Subject 4 92.30 95.30 95.50 95.00 

Subject 5 77.10 80.20 80.30 78.90 

Subject 6 88.00 91.20 91.20 92.30 

Subject 7 75.80 78.30 74.20 81.10 

Average 82.95 85.73 84.10 85.94 
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LDA is an effective linear dimensionality reduction as it transforms the feature space into 

lower dimension by finding linear mapping that maximizes the class separability along with the 

direction in which most discriminative features of multiple classes are present. LDA was 

conducted to improve discrimination and reduce redundancy in the original 16-D space. Figure 4.3 

shows a scatter plot of the transformed feature space after applying dimensionality reduction using 

LDA, which shows better separation between three classes in a 2-D discriminant bases space. 

Prediction accuracy after applying dimensionality reduction using LDA is shown in Table 

4.3. LDA proved to be successful in transforming the high dimensional feature space into low 

dimension while preserving class discriminating features by demonstrating an average accuracy 

of 85.94% averaged over all the subjects. 

 

Table 4.4: 10-CV identification accuracy of subjects after applying weighting 

Subjects 

Accuracy in % 

Support Vector Machine 

Linear Poly d=2 Poly d=3 RBF 

Subject 1 93.4 93.2 93.7 93.5 

Subject 2 82.5 84.6 84.3 84.3 

Subject 3 89.6 89.4 89.4 90.4 

Subject 4 95.5 95.3 95.5 95.5 

Subject 5 82.7 83.2 83.3 83.1 

Subject 6 91.3 92.2 92.2 92 

Subject 7 80.5 82.3 82.9 83.6 

Average 87.93 88.60 88.75 88.91 

  

A best case with maximum accuracy of 95.5% was demonstrated by Subject 4. This cost 

reduction in time, computational complexity and reduced feature space will able our current model 

to move towards real-time driver monitoring system. Table 4.3 also reports less improvement from 

linear SVM to the best kernel-based SVM 10-CV accuracy (~17% relative improvement) which 

is an evidence of lower degrees of overlap in the feature space. However, as shown in Figure 4.3, 

phone class has more overlap with normals driving compared to texting. LDA can generate an 

optimistic estimate of between- and within-class scatter matrices if one or more of the classes are 
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well-separated even if there are other highly overlapped classes. In order to take that into account, 

we employed our proposed weighting scheme to reduce the impact of within class scatter matrix 

for the text class in learning LDA transformation matrix as discussed in section 4.1.2.2. The aim 

of the presented weighting mechanism is to alleviate the biased estimation of the within class 

scatter matrices and improve the prediction accuracy. The aim was to focus on reducing the overlap 

between the normal vs phone classes while lowering the contribution of text class in the 

optimization, which might not introduce any negative impact. 

Table 4.4 also reports minimal improvement from linear SVM to the best kernel-based SVM 

10-CV accuracy (~8% relative improvement) which is an evidence of much lower degrees of 

overlap in the feature space. This observation is specifically significant since linear detection and 

identification systems are generally more preferable due to lower complexity and higher reliability 

in practice. 

4.3 Conclusion 

In this chapter, raw GSR was investigated to check whether it can be used for empirical 

characterization of driving task under naturalistic driving conditions using a wrist band wearable. 

Seven driver subjects participated to perform three tasks i.e. driving normally, driving while 

having phone conversation and driving while using phone for texting.   

 
Figure 4.4: Accuracy % chart for all subjects 

 

Most relevant 16 features were extracted that included statistical, frequency domain and time 

domain features to capture changes/pattern at physiological level. As feature extraction is a manual 
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process and also to normalize the feature space towards identification task the original 16-

dimensional feature space was transformed using linear discriminant dimensionality reduction to 

discover discriminative bases of the GSR multivariate feature space to more efficiently identify 

distraction.  

A class dependent weight was incorporated to for the calculation of scatter matrices, aiming 

to alleviate limitations of LDA with multiple distracting categories and to eliminate the overlap 

between distracted vs. non-distracted scenarios in the generalization phase.  

Figure 4.4 shows the accuracy % comparison of the original 16-D feature space vs. reduced feature 

space with LDA and weighted LDA. This analysis provided evident results that the extracted 

frequency and time domain features contained the most discriminative information to characterize 

and identify driver distraction using raw GSR signals. These extracted measures were then made 

as standard to represent the GSR signal to identify distraction and were further used in the next 

analysis of this thesis. 
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Chapter 5 Continuous Decomposition of Galvanic Skin Responses  

 

In this chapter the raw GSR signal is decomposed into its phasic and tonic component using 

continuous decomposition analysis (CDA) technique (Benedek & Kaernbach 2010). Skin 

conductance (SC) or galvanic skin response (GSR) is basically made up of two components i) skin 

conductance level-SCL (tonic component) and ii) skin conductance responses-SCR (phasic 

component). The phasic component contains the most useful information to characterize the GSR 

signal. This was further supported by a conducting high resolution Spectro-temporal analysis on 

the phasic component of GSR signal. Thus, only the phasic component of GSR was used for 

identification of distraction in this chapter. A population of 10 driver subjects participated in this 

study during real driving experiments. Three scenarios were investigated: (1) normal driving 

focusing attention on the primary task of driving; (2) phone distracted driving while having an 

engaging phone conversation; and (3) text distracted driving while writing and sending texts when 

driving. Based on the results obtained in the previous chapter, several spectral and temporal 

measures were extracted that characterize the phasic GSR signal in correlation with distracted 

scenarios. Additionally, two more measures that represented the phasic component of GSR were 

extracted based on the observation of the high resolution spectro-temporal analysis. Since input 

feature space is constructed in a manual process, the redundancy and computational complexity of 

the space might decrease the accuracy and response time of distraction identification in the 

generalization phase. Therefore, support vector machine – recursive feature elimination (SVM-

RFE) (Huang et al. 2014) was employed to remove the redundancies for more efficient processing 

on the edge. SVM-RFE was employed in order for the following: (1) generate a rank of the 

discriminative features for the subject population, and (2) create a reduced feature subset with the 

highest distraction identification accuracy. The results using SVM-RFE demonstrated marginal 

decrease in accuracy while reducing the computational complexity and the redundancy in the input 

space towards early notification of distraction state to the driver. 
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5.1 Analysis Method 

 
Figure 5.1: Flowchart of the proposed driver monitoring and intervention system on the edge. 

 

Figure 5.1 illustrates the flowchart of the proposed driver monitoring and intervention system on 

the edge. After preprocessing, the recorded raw GSR signal was decomposed into phasic and tonic 

component using continuous decomposition analysis (CDA) and based on spectro-temporal 

analysis and characterization of the phasic GSR, segmentation and feature extraction modules were 

designed and developed. The extracted features were then used for identification tasks. 

Furthermore, feature selection was implemented using SVM-RFE to reduce the dimension of the 

feature space to alleviate the curse of dimensionality and improve the response time. In this section, 

we discuss the implementation of each steps in detail. 

5.1.1 Continuous Decomposition Analysis (CDA) 

Skin conductance data is described by the superposition of subsequent skin conductance responses 

(SCRs). Due to this characteristic of the SCRs, the process of calculating the actual responses to a 

sympathetic activity in response to an external stimulus becomes tedious. This limitation is 

overcome by the deconvolution technique that separates the skin conductance (SC) data into phasic 

and tonic continuous activities. The tonic activity might include noise and shows subject 

dependencies.  
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Figure 5.2: Continuous decomposition analysis (CDA) for normal scenario. 

 

The tonic activity can be observed as a trend in the original SC signal in the top subplot of Figure 

5.2. On the other hand, the phasic activity of the SC signal is considered for further investigation 

as this component of SC signal contains the actual response to any event-related sympathetic 

activity predominantly in the form of distinct burst of peaks with a zero baseline. The phasic 

component of SC also demonstrated trends in spectro-temporal space in correlation with the 

distracted scenarios. Extracting the phasic component is done in three steps: deconvolution of 

galvanic skin response (GSR) data, computation of tonic activity and computation of phasic 

activity. A particular change in skin conductivity is triggered by secretion of sweat due to activity 

of the sudomotor nerve. In mathematical terms, the sudomotor nerve activity can be treated as a 

driver, containing distinct sequence impulse/bursts, which triggers a particular impulse response 

(i.e., SCRs). The outcome of this procedure can be described by convolution of the driver with 

impulse response function (IRF). IRF characterizes the shape of impulse response over time 

(Benedek & Kaernbach 2010): 
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 𝑆𝑆𝑆𝑆𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼 5.1 

The phasic activity is believed to bestride a gradually changing tonic activity. Hence, SC activity 

can be considered to be composed as follows: 

 𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼 5.2 

Tonic activity can also be considered as convolution of a driver function with same IRF. SC data 

can then be written as: 

 𝑆𝑆𝑆𝑆 = (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼 5.3 

Deconvolution is the reverse process of convolution. Skin conductance data’s deconvolution 

incorporates a phasic and tonic fraction. By estimating one of them, the other can be determined 

easily: 

 𝑆𝑆𝑆𝑆
𝐼𝐼𝐼𝐼𝐼𝐼

= 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆 = �𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎� 5.4 

Tonic electro-dermal activity can be observed in the absence of any phasic activity. However, 

SCRs (representing phasic SC activity) have a slowly recovering trail that may obscure any tonic 

SC activity. For the driver, the time constant of phasic responses is markedly reduced and so is 

their overlap. Time intervals between distinct phasic impulses can then be used to estimate tonic 

activity. Convolution can be conceived as a smoothing operation. Deconvolution has the reverse 

effect and amplifies error noise. Therefore, the resulting driver is smoothed by convolution with a 

Gaussian window. According to Equation 5.4, the phasic driver can now be computed by 

subtracting the tonic driver from the total driver signal. This subtraction results in a signal, which 

shows a virtually zero baseline and positive deflections reflecting the time-constrained nature of 

the phasic activity underlying the original SC data. The above methodology was driven from 

previous work (Benedek & Kaernbach 2010). Figure 5.2 and Figure 5.3 represents the 

deconvolution/decomposition of skin conductance signal for two scenarios, normal and distracted. 

The top most subplot in both the figures represents the original SC signal, the middle subplot 

represents deconvolution of tonic driver and the bottom subplot represents the phasic driver of the 

SC signal that contains the most discriminating component to characterize distraction. It can be 

observed from Figure 5.2 that, for a normal scenario, the phasic driver does not show impulse burst 

(bursts of consecutive peaks) as the subject is not under heavy workload. However, when we 

observe Figure 5.3 for the distracted scenario, more impulse bursts are observed as the subject is 

in a distracted state undergoing cognitive and visual distraction. 
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Figure 5.3: Continuous decomposition analysis (CDA) for distracted scenario 

 

5.1.2 Spectral Analysis of Phasic Skin Conductance 

Phasic SC as a non-stationary and multi-component signal varies in time and components over the 

time, and it needs to be analyzed in both temporal and spectral space to have a comprehensive 

evaluation on its characteristics. In order to investigate the spectro-temporal characteristics of the 

phasic SC signals related to different states of the driver, Time-Frequency (TF) analysis was 

conducted and a high-resolution TF representation was designed. TF analysis could be considered 

as non-stationary signals analysis with frequency content varying with time. TF is a suitable 

representation for non-stationary and multi-component signals, which is able to describe the 

energy distribution of the given signal over time and frequency space simultaneously. The TF 

presents the beginning and end times of the different components of the signal as well as their 

frequency scope. To achieve the TF representation of the phasic SC signal, we use the Wigner–

Ville Distribution (WVD) (Pedersen 1997) approach attempting to attenuate the unwanted cross-

terms in the TF space relative to the signal components.  
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Figure 5.4: High-resolution time-frequency (TF) representation of the phasic component of GSR 

signal. 

 

Figure 5.4 depicts TF representation of three scenarios, including phone, text, and normal 

states. Figure 5.4 a-c represents normal, phone, and text scenarios, respectively, where the top 

panel in all of the sub-figures represents a raw phasic SC signal. The left panel depicts energy 

spectral density of a subject. The spectrograph represent time on the x-axis and normalized 

frequency on the y-axis, and the color is used to indicate the power of the TF sample. Based on 

the Nyquist frequency equation, with the sampling frequency of 50, the frequency range is 0–25 

Hz, which was normalized to 0–1 Hz. The spectrograms were generated with normalized 

frequency observing the spectrograms in Figure 5.4, and we could identify considerably higher 

frequency components and peaks during distracted scenarios versus normal scenarios. 
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Based on the observations in the TF space, a signal processing recipe was designed for 

driver distraction identification on the edge for proactive monitoring and intervention. In the 

following sections, implementation of segmentation, feature extraction from spectral and temporal 

domain, feature selection using SVM-RFE are discussed. 

5.1.3 Feature Extraction 

Along with the spectral and temporal features that were extracted in the previous chapter, 

additional spatial features were extracted based on the analysis of generated spectrograms. The 

results of the calculated features were labeled accordingly, and the feature space was generated 

using these sample data points. Table 5.1 illustrates the list of extracted features.  

 

Table 5.1: List of extracted features 

Feature Domain Feature Names 

Temporal Mean, Variance, Accumulated GSR, Average GSR, Maximum 

Value, Number of peaks and Sum of Amplitude of peaks, Fractal 

Dimensions, Auto Regressive 

Spectral Short Term Fourier Transforms (4 features) 

 

• Number of peaks based on second derivative: The phasic GSR, P(i) signal’s first and 

second derivatives, Q0(i) and Q1(i) are calculated as in (Kher et al. 2010), as follows: 

 𝑄𝑄0(𝑖𝑖) = |𝑃𝑃(𝑖𝑖 + 1) − 𝑃𝑃(𝑖𝑖 − 1)| 5.5 

 

 𝑄𝑄1(𝑖𝑖) = |𝑃𝑃(𝑖𝑖 + 2) − 2𝑃𝑃(𝑖𝑖) + 𝑃𝑃(𝑖𝑖 − 2)| 5.6 

These two arrays are scaled and then summed: 

 𝑄𝑄2(𝑖𝑖) = 1.3 ∗ 𝑄𝑄0(𝑖𝑖) + 1.1 ∗ 𝑄𝑄1(𝑖𝑖) 5.7 

This array is scanned until a threshold is met or exceeded: 

 𝑄𝑄2(𝑗𝑗) ≥ 1.0 5.8 

• Summation of amplitude of peaks: The amplitude of number of peaks detected in a 

window previously is calculated and the amplitude is summed. 
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5.1.4 Feature Selection Using Support Vector Machine—Recursive Feature Elimination 

(SVM-RFE) 

SVM-RFE feature selection methodology based on support vector machine (SVM) was introduced 

by (Guyon et al. 2002) and the authors used this methodology to select an important subset of 

features. It reduces the computational time for classification along with improvement of 

classification accuracy. The basis of SVM-RFE is backward removal of features iteratively.  

 

 
Figure 5.5: Algorithm of SVM-RFE for ranking features 

 

The main steps for feature selection is as follows (Huang et al. 2014):  

• Input the dataset to be classified,  

• Weight of each feature is calculated,  

• Removal of features having the smallest weight to obtain ranking of features.  

Initially, entire features in the dataset is considered to compute ranking weights for all 

features. The linear SVM classifier is used to compute the rank weight of each feature. Then, 

iteratively, features with the lowest rank weight are discarded until only one feature remains in the 

dataset. Finally, the features will be listed in descending order of generated ranked weights. Figure 

5.5 illustrates algorithm for an iteration of SVM-RFE for ranking features in which the weight of 

each feature 𝜔𝜔𝑖𝑖 is given by 
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 𝜔𝜔𝑖𝑖 = �(𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖)
𝑖𝑖

 5.9 

where α is a linear SVM classifier used to train the given feature set F and is given by 

 𝛼𝛼 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑋𝑋,𝑦𝑦) 5.10 

and X is the input sample dataset and y is the corresponding class label. 

5.2 Experimental Results 

In this section, the experimental analysis and results of the proposed methodology is presented. In 

order to meet the short response time to identify distraction, the decomposed phasic GSR signal 

was segmented into 5 seconds windows with 4 seconds overlap and then extracted 18 different 

spectral and temporal features from each window based on spectrogram observations. Linear and 

kernel-based SVM was employed on the data corresponding to each subject separately for training 

and then evaluation of the predictive model using 10-fold cross validation (10-CV). 

 

Table 5.2: Identification results using linear and kernel-based support vector machine (SVM) 
including accuracy, prediction speed, and training time with 18D feature space. 

Accuracy Prediction Speed Training Accuracy Prediction Speed Training Accuracy Prediction Speed Training
in % in ~ obs/sec Time in sec in % in ~ obs/sec Time in sec in % in ~ obs/sec Time in sec

Subject 1 82.90 6600.00 0.70 87.00 5700.00 0.74 85.40 5100.00 0.78
Subject 2 97.30 7700.00 0.75 97.30 7100.00 0.79 96.70 6800.00 0.81
Subject 3 92.30 6100.00 0.68 94.40 4900.00 0.77 90.60 4700.00 0.79
Subject 4 99.50 6100.00 0.74 99.20 5400.00 0.73 96.80 5300.00 0.79
Subject 5 87.10 6200.00 0.79 96.40 6400.00 1.37 87.40 6200.00 0.76
Subject 6 88.60 8000.00 0.74 93.60 7100.00 0.77 92.80 7300.00 0.89
Subject 7 98.00 6300.00 0.75 97.00 6300.00 0.73 97.50 6200.00 0.78
Subject 8 96.20 10000.00 0.75 97.40 8900.00 0.80 95.90 8500.00 0.90
Subject 9 84.00 8500.00 0.86 90.60 8000.00 1.08 87.40 7600.00 0.86

Subject 10 93.50 6900.00 0.75 95.20 6400.00 0.81 89.20 6300.00 0.81
Average 91.94 7240.00 0.75 94.81 6620.00 0.86 91.97 6400.00 0.82

Subjects
Classifier Performance

Support Vector Machine
Linear SVM Poly d=2 Radial basis function

 
 

5.2.1 Identification results using all the features 

Initially, the original 18D feature space was evaluated for identification generalization accuracy 

estimates. Table 5.2 reports the predictive model performance using all 18 features. Table 5.2 

demonstrates that using all the 18 features the nonlinear polynomial d = 2 kernel SVM classifier 

achieved the highest average prediction accuracy of 94.81%, which shows that some critical 
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discriminative information underlies in the nonlinear feature subspaces. It generated the results 

with an average prediction speed of 6620 observations per second and average training time of 

0.86 s.  

 

Table 5.3: 10-fold cross validation (10-CV) identification results using linear and kernel-based 
support vector machine (SVM) including accuracy, precision, recall and F-Score generated with 

18D feature space. 

Accuracy Precision Recall F-Score Accuracy Precision Recall F-Score Accuracy Precision Recall F-Score
Subject 1 82.90 75.57 80.85 83.44 87.00 84.42 84.49 84.69 85.40 76.47 93.46 84.12
Subject 2 97.30 95.70 99.63 97.62 97.30 96.36 98.88 97.61 96.70 95.99 98.13 97.05
Subject 3 92.30 84.71 100.00 91.72 94.40 88.82 99.31 93.77 90.60 81.82 100.00 90.00
Subject 4 99.50 99.33 99.33 99.33 99.20 98.04 100.00 99.01 96.80 97.26 94.67 95.95
Subject 5 87.10 84.42 88.42 86.38 96.40 95.34 96.84 96.08 87.40 84.16 89.47 86.73
Subject 6 88.60 75.15 90.71 82.20 93.60 85.16 94.29 89.49 92.80 85.23 90.71 87.89
Subject 7 98.00 98.31 97.22 97.77 97.00 96.15 97.22 96.69 97.50 98.85 95.56 97.18
Subject 8 96.20 96.67 98.51 97.58 97.40 96.91 99.79 98.33 95.90 95.33 99.58 97.40
Subject 9 84.00 79.78 96.00 87.14 90.60 86.98 98.00 92.16 87.40 84.78 94.67 89.45

Subject 10 93.50 93.47 95.02 94.24 95.20 96.22 95.02 95.62 89.20 90.50 90.87 90.68
Average 91.94 88.31 94.57 91.74 94.81 92.44 96.38 94.35 91.97 89.04 94.71 91.65

Subjects
Performance Measures in %

Support Vector Machine
Linear SVM Poly d=2 Radial basis function

 
 

From analyzing Table 5.2 ,the polynomial kernel classifier also demonstrated an average precision 

of 92.44% implying low false positive rate, recall of 96.38% implying even lower false negative 

rate, and f-score of 94.35%, the harmonic mean of the precision and recall, which are consistent 

with the accuracy results. It can be observed that linear SVM with an average accuracy of 91.94% 

was the fastest classifier achieving an average prediction speed of 7240 observations per second 

and an average training time of 0.75 s with a marginal decrease in average accuracy of 2.87%. 

This shows promising evidence that the generated feature space was effective in identifying the 

inattention state of the driver subjects even in the case of linear prediction. 

5.2.2 Identification Results Using SVM-RFE Selected Feature Subset 

To overcome the redundancy in the feature space, and computational complexity of the predictive 

learner due to the high dimensionality of the feature space, we employed SVM-RFE feature 

selection method. SVM-RFE also ranks the original feature space based on the feature correlation 

to the class label. It iterates through all the features calculating the correlation between the feature 

and class label and assigns a weight based on the level of correlation to the class label as described 
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in Section 5.1.4. Since the feature selection performed by SVM-RFE is a binary class technique, 

we considered two scenarios, namely (1) normal vs. phone and (2) normal vs. text. Scenario (1) 

was considered as cognitive distraction and scenario (2) was considered as cognitive and visual 

distraction. Table 5.4 shows the SVM-RFE ranking for normal vs. phone scenario and Table 5.5 

shows the ranking for scenario normal vs. text.  

 

Table 5.4: Support vector machine-recursive feature elimination (SVM-RFE) feature ranking for 
normal vs. phone. 

Subjects 
Normal vs Phone 

Rank 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Subject 1  6 13 15 17 14 18 16 9 5 1 12 7 8 3 3 4 2 10 
Subject 2 16 15 6 17 14 9 18 13 1 5 12 7 11 8 3 2 4 10 
Subject 3 16 15 6 14 17 18 9 13 12 5 1 7 8 11 3 2 4 10 
Subject 4 15 13 16 14 6 18 9 17 1 5 7 12 11 8 3 2 4 10 
Subject 5 1 15 6 17 16 14 18 9 13 5 12 7 11 8 3 2 10 4 
Subject 6 15 13 17 6 14 18 9 16 5 1 12 2 4 8 3 11 7 10 
Subject 7 6 15 14 16 9 18 17 13 12 11 7 5 1 4 2 3 8 10 
Subject 8 6 15 13 14 9 16 18 17 12 5 1 7 11 8 3 4 2 10 
Subject 9 6 17 1 15 14 18 13 16 9 5 12 7 11 8 3 2 10 4 
Subject 10 15 6 14 17 18 13 9 16 5 12 1 11 7 2 4 3 8 10 
Frequent 6 15 6 17 14 18 9 13 5 5 12 7 11 8 3 2 4 10 

 

Table 5.5:Support vector machine-recursive feature elimination (SVM-RFE) feature ranking for 
normal vs. text 

Subjects 
Normal vs Text 

Rank  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Subject 1  15 6 17 14 18 9 16 13 5 1 12 7 11 3 8 2 10 4 
Subject 2 15 6 17 14 18 16 9 13 12 7 11 5 1 3 8 10 2 4 
Subject 3 5 6 15 17 18 14 16 9 13 1 12 7 11 3 4 2 8 10 
Subject 4 17 15 13 18 14 6 16 9 1 12 5 7 11 3 8 2 10 4 
Subject 5 6 17 15 16 14 18 9 13 5 1 12 7 11 3 8 2 4 10 
Subject 6 17 16 6 15 18 14 9 13 1 2 4 12 5 8 3 11 7 10 
Subject 7 15 17 9 14 18 16 13 12 8 11 10 7 6 5 4 3 2 1 
Subject 8 5 15 6 17 14 18 16 9 13 12 7 8 11 10 4 3 2 1 
Subject 9 5 6 17 15 18 14 9 16 13 1 12 7 11 8 3 2 4 10 
Subject 10 15 17 12 14 18 13 9 6 16 11 5 1 8 3 2 4 7 10 
Frequent 15 6 17 14 18 14 9 13 13 1 12 7 11 3 8 2 2 10 

 

We observed a slight variance in the feature ranks between Table 5.4 and Table 5.5. 

However, considering subsets of features with various sizes, consistently similar set of features 
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were selected for both distracted scenarios. In addition, by inspecting subject by subject responses 

in Table 5.4 and Table 5.5, a high level of similarity in the feature ranks across all subjects is 

observed. These observations helped to pick a unified set of features that are highly relevant for 

the task of distraction identification and are consistent between different scenarios and subjects.  

 

Table 5.6: Identification results of linear and kernel-based support vector machine (SVM) 
including accuracy, prediction speed, and training time with the reduced 7D Feature Space. 

Accuracy Prediction Speed Training Accuracy Prediction Speed Training Accuracy Prediction Speed Training
in % in ~ obs/sec Time in sec in % in ~ obs/sec Time in sec in % in ~ obs/sec Time in sec

Subject 1 79.70 7000.00 0.68 85.60 6200.00 1.42 84.60 6300.00 0.69
Subject 2 97.10 9200.00 0.68 96.30 8600.00 1.89 97.30 8000.00 0.76
Subject 3 85.80 6600.00 0.75 91.20 5700.00 1.39 88.50 5800.00 0.71
Subject 4 99.70 7300.00 0.66 99.70 5700.00 0.79 98.70 5000.00 0.77
Subject 5 75.00 7800.00 1.27 95.40 7300.00 3.70 88.80 6500.00 0.78
Subject 6 82.90 8800.00 0.75 88.60 8700.00 0.76 86.80 8000.00 0.70
Subject 7 94.00 7900.00 0.65 96.30 7100.00 0.69 95.80 5500.00 0.78
Subject 8 92.50 12000.00 0.78 93.80 10000.00 0.77 94.60 9600.00 0.89
Subject 9 81.40 9800.00 1.49 88.00 8400.00 1.13 86.50 8200.00 0.77

Subject 10 95.40 8200.00 0.66 95.20 7200.00 0.77 94.50 7000.00 0.70
Average 88.35 8460.00 0.84 93.01 7490.00 1.33 91.61 6990.00 0.76

Subjects
Classifier Performance

Support Vector Machine
Linear SVM Poly d=2 Radial basis function

 
 

Table 5.7: 10-fold cross validation (10-CV) identification results using linear and kernel-based  
support vector machine (SVM) including accuracy, precision, recall and F-Score with the 

reduced 7D feature space. 

Accuracy Precision Recall F-Score Accuracy Precision Recall F-Score Accuracy Precision Recall F-Score
Subject 1 79.70 72.94 81.05 76.78 85.60 80.12 86.93 83.39 84.60 75.26 93.46 83.38
Subject 2 97.10 95.36 99.63 97.45 96.30 95.29 98.13 96.69 97.30 95.70 99.63 97.62
Subject 3 85.80 75.26 99.31 85.63 91.20 83.14 99.31 90.51 88.50 78.69 100.00 88.07
Subject 4 99.70 99.34 100.00 99.67 99.70 99.34 100.00 99.67 98.70 98.01 98.67 98.34
Subject 5 75.00 69.16 82.63 75.30 95.40 93.85 96.32 95.06 88.80 83.33 94.74 88.67
Subject 6 82.90 65.41 86.43 74.46 88.60 75.76 89.29 81.97 86.80 75.00 81.43 78.08
Subject 7 94.00 96.43 90.00 93.10 96.30 96.09 95.56 95.82 95.80 95.53 95.00 95.26
Subject 8 92.50 92.93 97.66 95.24 93.80 93.39 98.94 96.08 94.60 93.98 99.36 96.59
Subject 9 81.40 76.94 95.67 85.29 88.00 83.33 98.33 90.21 86.50 81.49 98.33 89.12

Subject 10 95.40 96.62 95.02 95.82 95.20 95.83 95.44 95.63 94.50 94.29 95.85 95.06
Average 88.35 84.04 92.74 87.87 93.01 89.61 95.83 92.50 91.61 87.13 95.65 91.02

Subjects
Performance Measures in %

Support Vector Machine
Linear SVM Poly d=2 Radial basis function
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The best subset of features was selected by calculating the most frequently occurring 

features across all subjects. Then first seven frequently occurring features were selected as they 

demonstrated higher 10-CV identification accuracies compared to other feature subset sizes. It was 

observed that, despite the fact that the order of first seven features is different for both scenarios, 

the set of the best seven features were the same for both distraction scenarios. The selected seven 

best features are listed below with their corresponding feature name: (i) number of peaks in a 

window; (ii) STFT’s 2nd feature; (iii) Katz fractal dimension; and (iv–vii) Auto-regressive 

features. 

Table 5.6 and  

Table 5.7 provide the identification results corresponding to the selected subset of 7D 

feature space in comparison with the results from 18D space. From Table 5.6 results using the 

subset of features that SVM-RFE selected, it is observed that it was possible to achieve the average 

identification accuracy of 93.01% with a prediction speed of 7490 observations per second using 

polynomial kernel SVM classifier. When compared to the original 18D feature space, the results 

showed a marginal decrease of 1.8% in identification accuracy while providing a considerable 

improvement in the prediction speed (increase of 870 observations per second).  

From  

Table 5.7, we can see that the predictive model generated after reducing the feature space 

to 7D also demonstrated similar performance as the 18D predictive model for precision, recall and 

f-score measure of 89.61%, 95.83% and 92.50%, respectively. This minimal performance decrease 

in the identification accuracy from the original 18D feature space to 7D is a trade-off that results 

in improved response time for the online identification task in hand. Reducing the dimensions of 

the feature space can also potentially alleviate the effect of curse of dimensionality and increase 

the robustness of the predictive model in the generalization phase. 

Table 5.6 demonstrates the nonlinear polynomial and RBF kernel SVM classifier 

generated the highest average accuracy of 93.01% and 91.61% respectively compared to linear 

SVM classifier with 88.35%. From  

Table 5.7, it can be observed that polynomial kernel SVM demonstrates the highest average 

precision, recall and f-score of 89.61%, 95.83% and 92.50%, respectively, which is consistent with 

the results based on the original feature space. These observations indicate that the selected subsets 

of features did not disrupt the discriminative capabilities of the original feature space by following 
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similar performance trends to identify the distracted state from the non-distracted state with 

minimal decrease in the prediction accuracy and a considerable gain in response time. 

5.3 Conclusion 

In this thesis, a continuous measure of phasic GSR component was investigated that can be used 

to identify distracted driving state under naturalistic driving conditions using a wrist band 

wearable. In contrast to other state-of-the-art driver monitoring and alerting systems using 

intrusive physiological signal measures such as EEG and ECG, GSRs are minimally intrusive. In 

this thesis GSR was evaluated toward real-time identification of distraction using short-term 

segmented windows. Since raw GSR is composed of two components (tonic and phasic), 

decomposition on the raw GSR was conducted to obtain a continuous phasic GSR signal that 

contained the most discriminative characteristics to identify driver distraction. Then a high-

resolution spectrogram of the phasic GSR signal were generated to visualize and better understand 

its behavior. 18 features were extracted that included spectral and temporal features bases on the 

analysis performed in the previous chapters, that capture the pattern changes from normal to 

distracted scenarios at a physiological level. The nature of feature extraction is manual and might 

include redundancies that can increase the computational complexity and decrease the robustness 

of the predictor. Therefore, SVM-RFE technique was applied to alleviate this limitation. SVM-

RFE then selected seven features based on the rank assigned to the features that best characterized 

the distracted state from the non-distracted state. Linear and kernel-based SVM with 10-fold cross 

validation (10-CV) was used to generate identification results on both the original 18D and reduced 

7D feature space. Further investigating the results demonstrated marginal reduction in prediction 

accuracy and considerable increase in the prediction speed. The results across the population of 

subjects also demonstrated a high level of consistency.  

  In thesis two approaches were employed to deal with curse of dimensionality i) linear 

discriminant analysis dimensionality reduction and ii) feature selection using SVM-RFE. 

Although the dimensionality reduction technique significantly reduced the dimension of the 

feature space the feature specific information was lost due to the transformation of the space. 

However, using the feature selection technique preserved the information about the useful feature 

and demonstrated better accuracies as well. The proposed driver monitoring and identification 

system on the edge in this thesis provided evident results using GSR as a reliable indicator of driver 

distraction while meeting the requirement of early notification of distraction state to driver. 
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