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ABSTRACT

The Liquid Metal Battery (LMB) is a new promising concept of a device for large-scale

stationary energy storage. The ongoing development and commercialization of the LMB

faces the problem of disruptions of operation caused by the magneto-hydrodynamic insta-

bilities. One of the instabilities, the metal pad instability, is modeled and analyzed in the

thesis work. The numerical model is based on the open-source CFD software OpenFOAM,

modified to include electromagnetic effects and address the numerical aspects related to

strong variations of fluid parameters. The model is applied to investigate the effects of the

thickness of electrolyte, strength of magnetic field, and the metal and electrolyte densi-

ties on the instability. One conclusion of the study is that the metal pad instability can be

simulated using properly modified general-purpose CFD software. Another conclusion is

that the instability is the potentially serious problem that has to be addressed in the LMB

design.
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CHAPTER I

Introduction

1.1 Liquid metal battery as a possible solution for grid storage prob-

lem

The development of the renewable energy requires development of energy storage

methods. The reason is the intermittency of the sustainable energy sources. The stor-

age methods have to be low-cost, long-lasting and satisfy the requirements of scalability to

large sizes and high charging discharging rate. Existent solutions, such as Li-ion batteries,

pumped hydro storage and compressed air, are widely implemented and commercialized to

grid storage (4). However, these grid storage solutions are not perfect. For example, Li-ion

batteries are subjected to material degradation, which can seriously limit their lifecycle ((9),

(7)). The pumped hydro storage is limited by availability of suitable geographic locations.

Thus, a new large-scale storage solution with easy-to-get materials and long life-cycle is

required in short-term perspective.

The physical principle was first proposed in 1958, in the form of a thermally regenera-

tive battery (9). Intense research on development of the device, also called the Liquid Metal

Battery(LMB) was conducted at the GM’s research department and Argonne National Lab

(9). However, the development was slowed down for the following few decades because of

the low specific energy density, which made battery unusable for mobile applications (9).

After enduring several decades of stagnation, the development of liquid metal battery was
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reactivated by Professor Sadoway’s team from MIT in 2012. The aims was to develop a

low-cost, enduring energy storage device.

In general, the batteries work as the oxidation reactions occurs at the electrodes and

convert the electrochemical energy into electrical energy. The chemical potential differ-

ence between anode and cathode specify the cell’s open circuit voltage. The principle of

LMBs’ operation is different from Li-ion batteries. A typical Li-ion battery consists of

anode, cathode, separator, and electrolyte. During the charging process, lithium in positive

electrode is ionized and inserted into the negative layer through electrolyte. During the dis-

charging processes, lithium ions are dissociated from the anode and inserted into the crystal

structure of the cathode(e.g., specialty carbon) through the electrolyte. But the principle of

Liquid Metal Batteries’ operation is different as illustrated in Figure.1.1.

It contains three liquid layers. The lighter metal is located at the top. The heavier metal

stays at the bottom. The electrolyte is sandwiched in the middle. Because of the density

difference and the immiscibility of the metals with the electrolyte, the battery system can

be stable with the natural self-segregation of all-liquid components.

While the liquid metal battery is discharging, the oxidation reaction occurs at the top

in the alkali/earth-alkali (e.g., Li, Na, Mg) metal A. Electrons flow from the anode(top

metal layer) to the cathode. Ions of metal A pass through the molten salt electrolyte and

reduce to atoms A after receiving the electrons within the bottom layer. The reaction at the

anode/electrolyte and electrolyte/cathode interface during the discharge can be formulated

as follows:
A → Az+ + ze−

Az+ + ze− → A(N) ,
(1.1)

with A denoting the alkali or the earth-alkali metal (e.g., Na, Li, Ca, Mg), N representing

the heavy metal at the bottom layer(e.g., Bi, Sb, Zn, or PbSb) (28). The z denotes the

valence, i.e., 1 for alkali and 2 for earth alkali metals (25). The reactions and flows of the

electrons and ions are reversed when the battery is charging.
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Figure 1.1: Principal design of a Liquid Metal Battery in the discharging mode. Ref:

http://news.mit.edu/2016/battery-molten-metals-0112

One important property of the LMBs is their potentially very low cost. As agreed, for

example, in (9), the cheap manufacturing materials make it theoretically possible to build

a battery with cost below $100 per KWh of capacity. To achieve this goal, large batteries

(size 1m) must become technologically possible.

The liquid metal batteries’ all-liquid nature has drawn the attention of fluid scientists to

investigate the fluid mechanics. There are several topics under the fluid mechanics of Liq-

uid Metal Batteries: Tayler instability (23), thermal convection instability (18), Marangoni

instability (11) and the metal pad instability. The existance of metal pad instability in LMB

was first suggested in (27) where the analogy with the instability mechanism of aluminum

reduction cell was used. Although the model was based on reducing the top and bottom

electrodes into slabs of solid metal instead of liquid that have infinite degrees of freedom, it

well illustrated the physical mechanism of the metal pad instability. Then the metal pad in-

stability mechanism was further validated in (22), where instability properties mechanism
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of a cylindrical battery were studied numerically.

In conventional batteries, the microstructural degradation of solid electrodes is the most

important factor for the limiting life of battery. In contrast, the liquid metal battery is com-

petitive because the electrodes are liquid and, thus, inherently immune to the microstruc-

tural degradation (9). Therefore, the lifetime of battery can be profoundly extended.

The liquid state of the electrodes also presents a disadvantage. The fluid dynamics

effects can seriously impacts the stability of the metal electrolyte interfaces, which may

cause a short circuit between the electrodes, thus disrupting the operation.

1.2 Metal pad instability

This thesis addresses one of the possible mechanism leading to such behavior, namely

the metal pad instability. It is the phenomenon influenced by the magnetic field induced

by neighboring cells and supply lines. A similar instability was found in the aluminum

reduction cells ((3), (17), (19)). While the batteries are in charging or discharging, the liq-

uid metals are driven by the Lorentz force due to the interaction of the operating electric

current and magnetic field. Under specific parameters of the system, this leads to instability

generating growing waves at the interface between electrolyte and electrodes. In the worst

case, the metals at the top and bottom come to contact with each other to give rise to the

short circuit. In this case, the stability of the liquid metal battery can be seriously affected.

Hence, the mechanism of the instability needs to be investigated in order to optimize the

LMBs design. In the hydrodynamic perspective, the metal pad instability is defined as a

electrical-magnetically enhanced waves on interface between liquid metal and molten salt

electrolyte grown from the weak initial perturbations. In the operation of LMBs perspec-

tive, the metal pad instability is defined as the short circuit of the LMBs from the growth

of wave.

In the thesis work, the battery is modeled as a cuboid with three immiscible liquid

layers. The mechanism of the instability can be briefly described as follows. When the
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liquid metal battery is in operation, even a tiny perturbation leads to non-uniformity of

the electrolyte thickness. The non-uniform geometry of the electrolyte further leads to the

perturbation of electric currents flowing within the battery. The perturbation of the electric

currents gives rise to the electric potential difference in the horizontal plane. Therefore,

the local electric currents in the horizontal direction are generated in the metal layers. If

an extenally generated magnetic field is presented, this leads to the Lorentz force that may

work as a destabilizing force on the whole system. The instability occures as growing

sloshing waves at the interfaces. The metal pad instability mechanism is further detailed

and illustrated in following sections.

The metal pad instabilitiy was studied for the Hall-Héroult aluminum reduction cells

which can be seen as systems similar to that in Figure 1.1, but shallow and without the

top metal layer (see, e.g. (3)). For the LMB, the possibility of the instability was first

considered in (27) using a mechanical analogy. The relation between the magnetic field,

electric current and motion of pendulums imitating the metla layers was described. Then,

a numerical model was developed to simulate the instability in cylindrical liquid metal

batteries (22). The non-dimensional parameters were introduced to describe the instability

in (28) and (22). The non-dimensional parameter introduced in (28) is used in the present

study.
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CHAPTER II

Physical and Mathematical Model

The Liquid Metal Battery is a complex electro-hydromagnetic system even if it is con-

sidered in the framework of a simplified model. The system’s operation includes various

mechanisms, some of which are unknown. Therefore, a reasonable first step is to investi-

gate each mechanism individually, isolated from the rest. For example, the Tayler instabil-

ity is investigated ignoring the layered nature of the system and heating in (16), (20), (24).

The thermal convection is explored ignoring the effects of the deformation of the interface

(18).

This thesis will analysize the isolated effect of the metal pad instability. The effects of

the Tayler instability, thermal convection instability, Marangoni instability and electrovor-

tex flow are ignored.

2.1 The simplifying assumptions

2.1.1 Simplified model of magnetic field

The typical magnetic field of a Liquid Metal Battery is three-dimensional and possibly

unsteady. Part of the field is induced by the currents flowing through the battery. It is

primarily horizontal. The other part is truly three-dimensional and is generated by the

currents flowing in supply lines and neighboring battery cells (17). By the analogy with

the instability in aluminum reduction cells ((3), (17), (19)) that the metal pad instability

6



is caused by the vertical component of the magnetic field. For this reason, we neglect all

components but the vertical one, which is approximated by a constant.

2.1.2 The liquid metal battery is operated under proper care to avoid the solid inter-

metallic form of the metal

The intermetallic solid formation is viewed as one of the serious causes for the failure

of liquid metal battery (8). During the discharge stage of LMBs, poor mixing is likely to

cause the formation of intermetallic solid below the interface between the bottom electrode

and electrolyte. It would change the flow pattern due to the low thermal and electrical

conductivity of the solid (8).

2.1.3 Incompressible, Newtonian, electrically conducting fluid

Each fluid is assumed to be incompressible, Newtonian and having a constant electrical

conductivity. The properties are, however, different among the two molten metals and the

electrolyte.

2.1.4 Surface tension is insignificant

The coupling between the flows in the three layers via viscous shear force, pressure

force and Lorentz force is introduced in the model. The thermocapillary Marangoni effect,

the most well-studied surface tension effect in the LMB ((8), (11)) is absent in our mode

due to the assumption of constant temperature (see section 2.1.6). The surface tension itself

is included. We note, however, that the curvature of the interfaces remains small even is

strongly unstable cases. The surface tension forces, therefore, are insignificant.

2.1.5 Quasi-static approximation of electromagnetic effects

If the external magnetic field B is explicitly separated from the induced magnetic field

b, the quasi-static approximation can be applied in the MHD equations at low magnetic
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Reynolds numbers. It is known that the quasi-static approximation is valid at the magnetic

Reynolds numbers Rem < 0.1 ((3), (10)). In the approximation, the induced magnetic field

is neglected in comparison with the imposed field in the expressions for the Ohm’s law

and Lorentz force. The approximation can be derived theoretically ((3), (10)) and has been

thoroughly validated in comparison with experiments.

In our case, Rem =UL ·σ µo can be estimated by taking L= 0.1m,U ≈ 10−3 or 10−2 m/s,

σ= 80 or 3.62×106 S/m, µo = 4π×10−7 Pa · s which gives

[Rem]max =UL ·σ µo = 10−2×0.1×3.62×106×4π×10−7

= 4.549×10−3 < 0.1.
(2.1)

Thus, the quasi-static approximation is valid.

2.1.6 Constant temperature

The liquid metals inside the model are assumed to be maintained at a constant temper-

ature so that the effects of thermal and Marangoni convection will not affect the results.

The approximation is justified by the results of (18), (9) and (11) which show that the ther-

mal and Marangoni convection inevitably present in the battery are unlikely to perturb the

interfaces strongly under typical operational conditions.

2.1.7 Immiscible fluids

The liquid metals forming the top and bottom layers of the liquid metal battery are

assumed to be immiscible with the electrolyte forming the middle layer.

2.2 Governing equations

The governing equations of the model are introduced in this section. The main differ-

ence compared with the conventional fluid equations is that we add the Lorentz body force

8



and utilize the makrer equation to determine the location of the interface. The governing

equations include:

Continuity equation

∇ ·U = 0, (2.2)

where U = αtopUtop +αelectrolyteUelectrolyte +αbottomUbottom.

Momentum equation (15)

∂ρU
∂ t

+∇ · (ρUU) =−∇p+∇ ·
[
µ(∇U+∇UT )

]
+ρ (fL +g)+ fst , (2.3)

where t, U, ρ , p, µ , fL, g and fst represent the time, velocity field, density, pressure, dynamic

viscosity, Lorentz body force, acceleration of gravity and the surface tension force.

The Lorentz force fL is the result of the interaction between the electric current J and

the magnetic field B:

fL = J×B, (2.4)

where electric current density J is calculated by the Ohm’s law. The Ohm’s law reads:

J = σ(−∇φ +U×B), (2.5)

where σ is the electric conductivity of the fluid.

Following the quasi-static approximation, only the steady-state imposed component

of the magnetic field is represented by B. The additional field b included by the current

perturbations is assumed to be negligible in comparison with B.

Demanding the charge conservation ∇ · J = 0, we obtain the elliptic equation for the

electric potential:

9



∇ · (σ∇φ) = ∇ · (σ(U×B)). (2.6)

Three immiscible layers in the multiphase flow are identified by the marker equation:

Dαi

Dt
=

∂αi

∂ t
+∇ · (αiU) = 0, (2.7)

in which αi represents the fraction of a phase, i.e., αtop is the fraction of positive elec-

trode metal, αelectrolyte is the fraction of electrolyte, and αbottom is the fraction of negative

electrode metal at a given location.

The sum of the three layers’ markers is 1.

αtop +αelectrolyte +αbottom = 1 (2.8)

where αi takes the value from 0 to 1. The value of 1 represents the region that only have

one single phase. For example, αtop = 1 represents the location within the top metal layer,

αelectrolyte =αbottom = 0 in this layer. In the areas around the interfaces, intermediate values

of αi can be found. This is the effect of the numerical diffusion, and is tolerated in the

model, provided the thickness of the diffused interface remains small (1). The interface

between different fluids can be tracked using the value of αi. In the computational model,

the three immiscible fluids are considered as one effective fluid throughout the domain. The

physical properties stored at the center of cells are calculated from the weighted fractions of

three different phases. For example, the dynamic viscosity is computed as µ = µtopαtop +

µelectrolyteαelectrolyte +µbottomαbottom.

According to the Faraday’s law, the non-uniform electrolyte thickness results in the

local current perturbations j (see Figure 2.1). The Lorentz body force is generated by the

interaction between the horizontal component of the induced local electric current j and the

vertical component of the magnetic field. Such a Lorentz body force has a destabilizing

effect in the flow (Figure 2.1).
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Figure 2.1: Schematic representation of the physical mechanism of the metal pad instabil-

ity. The local electric current is induced by the horizontal electric potential difference due

to the non-uniform thickness of the electrolyte. It is further discussed later in the text.

Dimensionless equations are not used in our work because the three different layers

have different properties, e.g. viscosity, density and electric conductivity, which result in

a large number of dimensionless parameters. For example, the Reynolds number, which

is calculated by the fluid properties of density and viscosity, has three different values

in the three layers. Therefore, the dimensional governing equations are used during the

simulation.
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CHAPTER III

Numerical Methods

The evolution of a three-dimensional unsteady flow is calculated using the Finite Vol-

ume Method described in (13) and extended to flows with multiphase features in ((2), (21))

and flows with the combined effects of sloshing and magnetic field in (22). The details

of the method can be found in these references, while the main contribution in the thesis

work is to develop the magneto-hydrodynamic feature base on the OpenFOAM’s original

solver multiphaseInterFoam (6). In the following sections, the discretization schemes of

marker equation, momentum equation, continuity equation and electric potential equation

are presented. The solving procedure for a time step is presented at the end of this section.

3.1 Discretization approach

3.1.1 Generalization of Gauss integral equations

By implementing the Finite Volume Method (FVM), the discretized equations will be

integrated over every node. A single control volume of the structured grid that is used in

the simulations can be found in Figure 3.1.
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Figure 3.1: Illustration of the single control volume of the structured grid that is used in the

simulations. P is the center of the cell, N is the center of neighbouring cell, f is the center of

the interface between the owner and the neighbouring cells, d is the distance between the

center of the cell and the interface, D is the distance between the center of the neighbouring

cell and the interface

The generalized forms of the Gauss integral and the derivation of the discrete equations

are:

∫
V

∇ ·ϕϕϕdV =
∮

∂V

dS ·ϕϕϕ, (3.1)

∫
V

∇ϕdV =
∮

∂V

dSϕ, (3.2)

∫
V

∇×ϕϕϕdV =
∮

∂V

dS×ϕϕϕ, (3.3)

where ϕϕϕ stands for an arbitrary vector, ϕ for an arbitrary scalar, dS for the surface area

vector and dV for the control volume.

The control volumes are orthogonal hexahedral with six flat faces. Therefore, the inte-

gration over control volume in (3.1)-(3.3) is equivalent to the sum of the integrals over the

faces.

For example, equation (3.1) becomes
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∫
V

∇ ·ϕϕϕdV =
∮

∂V
dS ·ϕϕϕ =

n
∑

f=1

(∫
f

dS ·ϕϕϕ

)
≈

n
∑

f=1
A f ·ϕϕϕ f ,

(3.4)

where A f is the face area vector and n is the number of faces of a control volume.

The equations (3.1)-(3.3) can also be used to get the second order accurate predictions

of the values of differential operators at the centers of the cells:

(∇ ·ϕϕϕ)P ≈
1

VP

n

∑
f=1

A f ·ϕϕϕ f , (3.5)

(∇ϕ)P ≈
1

VP

n

∑
f=1

A f ϕ f , (3.6)

(∇×ϕϕϕ)P ≈
1

VP

n

∑
f=1

A f×ϕϕϕ f . (3.7)

The discretization equations above are used in the derivation of the governing equations

in the following sections.

3.1.2 Face addressing technique in the spatial discretization

A face addressing technique is used for the finite volume method. The objective of

this technique is to arrange the discretized nodes into an organized number array. Thus,

it will be able to improve the computational efficiency and conveniency of recognizing

the owner and neighbor faces. This arrangement simplifies the computer programming

and minimized the geometry information required for the computational grid (21). The

approach in (6) is meant for solutions on non-orthogonal grids. In our case, the orthogonal

grid is used. However, the face addressing technique is still an ideal way to organize the

grid for its convenience at recognition of face owner and neighbor.

The faces of the cells are numbered and categorized into owners and neighbors. Every
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face is shared by two neighbouring cells in which one own the face and the other cell is the

neighbor. In this way, the face area vector A f always points from the owner cell into the

neighbour cell of the face. Thus, the summation of the face integrals differs for owner (add

into summation) to neighbor as below.

n

∑
f=1

A f ·ϕϕϕ f = ∑
owner

A f ·ϕϕϕ f − ∑
neighbour

A f ·ϕϕϕ f (3.8)

3.2 Marker equation

Before introducing the marker equation, it is necessary to introduce the marker function

α . The Volume of Fluid (VOF) method, one of the most well-established versions of the

marker-and-cell method (MAC), is used here (1). The marker α is defined as the volume

of the fluid A in a control volume over the entire volume.

αphase =
volume of fluidA

volume of the control volume
(3.9)

For incompressible fluids, the governing equation describing the conservation of phase

in the integral form is:

t+δ t∫
t

∫
V

∂α

∂ t
dV

dt +
t+δ t∫
t

∫
V

∇ ·αUdV

dt = 0. (3.10)

The first term of equation (3.10) can be approximated as:

t+δ t∫
t

∫
V

∂α

∂ t
dV

dt ≈
t+δ t∫
t

(
∂αP

∂ t
VP

)
dt ≈

(
α

t+δ t
P −α

t
P

)
VP. (3.11)

For the second term of the equation (3.10), the Gauss theorem gives:
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t+δ t∫
t

(∫
V

∇ ·αUdV
)

dt =
t+δ t∫

t

( ∮
∂V

αdS ·U

)
dt

≈
t+δ t∫

t

(
n
∑

f=1
α f A f ·U f

)
dt=

t+δ t∫
t

(
n
∑

f=1
α f Ff

)
,

(3.12)

where volumetric flux Ff at the face is

Ff = A f ·U f . (3.13)

The time integral of the convection term is discretized by using the Crank-Nicolson

schemes (21):

t+δ t∫
t

∫
V

∇ ·αUdV

dt ≈
t+δ t∫
t

(
n

∑
f=1

α f Ff

)
dt =

n

∑
f=1

1
2

(
α

t
f +α

t+δ t
f

)
Ff δ t. (3.14)

Substituting (3.11) and (3.14) into (3.10), we obtain

α
t+δ t
P

VP

δ t
+

n

∑
f=1

1
2

α
t+δ t
f Ff = SαP , (3.15)

where SαP is the source term defined as:

SαP = α
t
P

VP

δ t
−

n

∑
f=1

1
2

α
t
f Ff . (3.16)

Equation (3.15) is the discretized form of the marker equation. Further details can be

found in (21).

16



3.3 Momentum and incompressibility equations

3.3.1 Final form of momentum equation

The momentum equation discretization is present in this section. The continuity equa-

tion and the momentum equation are strongly coupled in the problem. Thus, the Pressure

Implicit with Splitting of Operators (PISO) algorithm is implemented to decouple these

two equations (26).

In the PISO algorithm, the final form of the momentum equation (2.3) can be obtained

by reformulating the body force and pressure terms.

The modified pressure is introduced as

p∗ = p−ρg ·x. (3.17)

Taking the gradient at both side of equation (3.17),

∇p∗ = ∇p−ρg−g ·x∇ρ. (3.18)

The viscous stress term is reformulated as:

∇ · τ = ∇ · (µ∇U)+(∇U) ·∇µ. (3.19)

The surface tension force is reformulated as:

∫
S(t)

σκ
′
n
′
δ

(
x−x

′
)

dS ≈ σκ∇α, (3.20)

where κ is the curvature of the interface given by

κ = ∇ ·
(

∇α

|∇α|

)
. (3.21)
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Finally, the momentum equation prepared for discretization is:

∂ρU
∂ t +∇ · (ρUU) =

−∇p∗+∇ · (µ∇U)+(∇U) ·∇µ−g ·x∇ρ +σκ∇α +ρ (f−g) .
(3.22)

3.3.2 Discretization of momentum equation

Following the discretization method introduced in (15), the discretized form of momen-

tum equation is:

aU
P UP = H(U)−∇pd−g ·x∇ρ +σκ∇α. (3.23)

where the aU
P UP is the diagonal terms of the linear algebraic equations matrix and the H(U)

is the ‘H’ operator matrix which is the source term of the matrix minors the product of the

off-diagonal coefficient matrix and solution matrix (15).

The system of linear algebraic equations reads:

H(U) =
ρ

n+1
P Un+1

P −ρn
PUn

P
∆t VP +∑

f
ρ f φUn+1

f

= ∑
f

µ f S ·∇ f Un+1 +(∇U) ·∇µ f .
(3.24)

Reformulating it to isolate the velocity at cell centres:

UP =
[
aU

P
]−1

[H(U)−∇pd−g ·x∇ρ +σκ∇α] . (3.25)

Then, substituting the velocity as (3.25) in continuity equation. A Poisson equation is

generated and is good to be solved in iterative manner.

∇ ·
{[

aU
P
]−1

[H(U)−g ·x∇ρ +σκ∇α]
}
= ∇ ·

{[
aU

P
]−1

∇pd

}
(3.26)
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3.4 Electric potential equation

After solving the marker function and momentum equation, the flow properties are

updated. Consequently, the distribution of the electric potential is to be updated. For that,

we solve the potential equation

∇ · (σ∇φ) = ∇ · (σ(U×B)). (3.27)

Integrating the equation above, we find

∫
∂V

dS · (σ∇φ) =
∫

∂V

dS · (σ(U×B)). (3.28)

Applying the generalized discretization formulas in section 3.1, the equation can be

discretized as follow.

Left-hand side of equation (3.28) is discretized as:

∫
∂V

dS · (σ∇φ) =
n
∑

f=1

(∫
f

dS·(σ∇φ)

)
≈

n
∑

f=1
[σ f A f · (∇φ) f ].

(3.29)

Right-hand side of equation (3.28) is discretized as:

∫
∂V

dS · (σ(U×B)) =
n
∑

f=1

(∫
f

dS·(σ(U×B))

)
≈

n
∑

f=1
[σ f A f · (U×B) f ].

(3.30)

Finally, the discretized form of the electric potential equation (2.6) is:

n

∑
f=1

[σ f A f · (∇φ) f ] =
n

∑
f=1

[σ f A f · (U×B) f ]. (3.31)
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3.5 Harmonic interpolation

Since the finite volume method is used, the properties of the field are stored at the

centers of the control volumes. After applying the divergence theorem to the conservation

equations, the properties at the cell faces are needed to evaluate the surface fluxes. This

requires interpolation of the properties from the cell centers to the center points of cell

faces. Standard linear interpolation that guarantees the second order accuracy of the entire

discretization is used in the model with one important exception. The exception concerns

the interpolation of the electrical conductivities and the electrical potential. It is needed

because of the large differences of electrical conductivities between the electrolyte and the

electrodes (see Table 4.1).

The electrical conductivities σ of the electrodes are about 4 orders of magnitude larger

than the conductivity of the electrolyte. It is found that the special interpolation algorithm,

which can avoid the numerical error caused by substantial quantity difference between two

cells, is an important factor to get accurate results. Therefore, the interpolation of σ in

the cells near the electrolyte-electrode interface should be paid special attention. We use

the harmonic interpolation, which, as discussed in (14), gives much better accuracy than

the standard linear interpolation. To illustrate the effect, two neighbouring cells near the

interface are shown in Figure 3.2.

Figure 3.2: Illustration of interpolation over a single cell

The linear interpolation to the face center f is
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σ f =
δn

δ
σp +

δp

δ
σn. (3.32)

For simplicity, we assume that a uniform grid is implemented in the interface area(the

grid used in our simulations satisfies this property). For the typical values of metal and

electrolyte conductivities (see Table 4.1), we obtain

σ f =
1
2
×3.62×106 +

1
2
×80 = 1.81004×106, (3.33)

which is far too high compared with the real σ f in the electrolyte (80 S/m). As a result of

that, the model predicts too strong electric current through the face f.

Thus, the harmonic interpolation is introduced in our simulation in an attempt of achiev-

ing more accurate approximation. The conductivities at the face is:

σ f = [
(δN
/
δ )

σN
+

(δP
/
δ )

σP
]−1 = [

(1
/
2)

3.62×106 +
(1
/
2)

80
]−1 = 160

(
S
m

)
, (3.34)

which provides a more reasonable estimate of the electrical current at the interface between

electrolyte and electrode (14).

Also, in consistency with the harmonic interpolation for σ , the electric potential at the

face is implemented using the weighted interpolation with the interpolation weight ϖ . The

electric potential at the face is:

φ f = ϖ ·φP +(1−ϖ)φN , (3.35)

where the interpolation weight ϖ reads

ϖ =
δN ·σP

δP ·σN +δN ·σP
. (3.36)
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3.6 Numerical treatment of equation system; PISO algorithm

All numerical computations are performed using the PISO algorithm to decouple the

velocity and pressure in the momentum and continuity equations (5). The advanced algo-

rithm for the marker equation that achieves strong coupling between the classical VOF and

multiphase model (2).

The equations are discretized following the finite volume method illustrated in the pre-

vious sections. Time derivative terms are discretized using an implicit Euler scheme.

Each time step is solved as a sequence of the following substeps:

1. Solve the marker equation (3.15). Use the velocity and maker fields obtained at the

previous time level tn to update the maker fields αi of the three layers. Then, update

the flow properties fields based on the distribution of the liquid volume fraction.

2. Find the velocity predictor field by solving the discretized momentum equation (3.23)

in an implicit manner. Because the exact pressure gradient is not know at this stage

the pressure field from last time step pn−1 is used. The calculated velocity gives an

approximation of new velocity field.

3. Using the calculated velocity predictor field, the operator H(U) in equation (3.24) can

be assembled and the discretized pressure equation (3.26) can be formulated. Solve

the pressure equation (3.26) to get the first estimate of the new pressure field.

4. Update the corrected velocity field with the new pressure field in an explicit manner

using equation (3.25).

5. Iterate the step 2 to 4 until the pre-determined tolerance is reached.

6. Solve the electric potential equation (3.31) with the updated velocity implicitly. The

harmonic interpolation is used in calculating the electric conductivities to ensure the

reasonable electric conductivities at the interface.
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7. Update the electric current field with formal FOV manner and the Lorentz force

consequently.
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CHAPTER IV

Results

The model is designed to study the metal pad instability using the open-source soft-

ware OpenFOAM. The results include the time evolutions of the velocity, electric current,

pressure and electric potential fields as welll as the shapes of the interfaces between the

metals and electrolyte. Operational parameters and model setting are described in sec-

tion 4.1. In section 4.2, the grid sensitivity study is conducted to ensure the reliability of

the simulations. A reference case of the metal pad instability is presented in section 4.3.

The deformation of the interface between the top layer and electrolyte is observed. The

non-dimensional electromagnetic parameter used to describe the metal pad instabilities is

introduced in section 4.4. In section 4.5, a parametric study to investigate the relationship

between instability and magnitude of magnetic field is presented. In section 4.5.1, the effect

of the term U×B in the expression for the Ohm’s law J = σ · (∇φ +U×B) is investigated.

The effect of the electrolyte’s thickness is investigated and presented in section 4.6. Finally,

the effect of the ratio between the density jumps across the two interfaces is presented in

section 4.7.

4.1 Model description

4.1.1 General settings of the model

The interior of a battery is modeled as a cube with side length of 0.1 m. In the reference

case, which is considered everywhere except section 4.6, the thickness of the electrolyte
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equals to 0.005 m. It is sandwiched between the anode and cathode with thicknesses of

0.0475 m (See Figure 4.1).

Figure 4.1: The geometry of the model with coordinate system.

Because of the immiscibility of the three liquids, distinct physical properties are as-

signed to each layers. The properties are given in table 4.1.

h ρ υ σ

unit cm kg/m3 m2/s S/m
Negative electrode(top) 4.75 1577 6.70×10−7 3.62×10+6

Electrolyte(middle) 0.5 1715 6.80×10−7 80
Positive electrode(bottom) 4.75 6270 1.96×10−7 8.66×10+5

Table 4.1: Physical parameters of the reference case. Physical properties of liquids in dif-
ferent layers. Unperturbed layer thickness h, density ρ , kinematic viscosity υ and electric
conductivities σ are shown.

4.1.2 Initial conditions

4.1.2.1 Marker field α

The marker field α determines the distribution of the electrolyte and the two metals.

Initially, the distribution is that of three horizontal layers with a small perturbation of the
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interface between the top and middle layers. The bottom-electrolyte interface remains flat.

The perturbation of the top interface is set as an inclined plane with small slope k (=1/50).

The maximum perturbation amplitude is: ε = k×0.1m = 0.1∗ (1/50) = 2(mm).

4.1.2.2 Electrical potential field φ

The initial condition is defined in equivalence with the unperturbed vertical electric

current J= 7850 A/m2. From the electrical potential equation (J=−σ∇ ·φ ) in the absence

of flow, the initial distribution of the electrical potential φ can be expressed as solution of

the equation:

σ · (∂φ

∂x
,
∂φ

∂y
,
∂φ

∂ z
) = (0,−7850,0), (4.1)

where σ is different for different layers.

The initial distributions of electrical potential φ and marker α can be initialized by the

OpenFOAM’s field-setting function ’funkySetFields’ based on the expressions above.

4.1.3 Boundary conditions

4.1.3.1 Boundary conditions for φ

For the boundary conditions for φ , zero-gradient is applied at the side walls of cell.

The boundary conditions for the top and bottom walls are defined according to the

equation (4.1). Integrating (4.1) rewritten as:

σi ·
dφ

dy
=−7850

A
m2 , (4.2)

where σi represents the electrical conductivities in different layers, we obtain

∆φ = φtop−φbottom =−0.4912 V. (4.3)
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The condition is assumed to remain valid when the interfaces are perturbed.

Hence, the boundary conditions at the top and bottom are specified as

φtop =−4.912×10−01 V and φbottom = 0 V.

4.2 Grid sensitivity tests

In order to achieve accurate results with good computational efficiency, the grid sen-

sitivity tests are conducted. We expect stronger gradients of velocity and other fields in

the vertical than in the horizontal directions. Therefore, denser meshes should be applied

along the vertical direction. Furthermore, dense mesh particularly in the vertical direction

is needed in the areas of two interfaces, so that the interface deformation and the result-

ing changes in the electric currents are reproduced correctly. To save the computational

resources, the grading (nonuniform) mesh is implemented. Small vertical grid steps ∆ymin

are used in and around the interfaces. Outside this area, ∆y is increased in a manner of

geometric progression to ∆ymax = 10−3 at the top/bottom of the model. The resulting mesh

is illustrated in Figure.4.4.

In the grid sensitivity test, the parametric study is conducted by changing the unit length

of the cell ∆ymin as well as ∆x and ∆z. The grid is deemed sufficient if further refinement

does not bring significant change in the time period and the peak value of the curve of the

velocity time signal at a given point. The test parameters are shown in table 4.2.
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∆x ∆ymin ∆z ∆t Time period Execution Time
m m m s s s

2×10−3 1×10−4 2×10−3 1×10−3 3.34 245158
2×10−3 2×10−4 2×10−3 1×10−3 3.32 81533.2
2×10−3 5×10−4 2×10−3 1×10−3 3.34 39379.1
1×10−3 2×10−4 1×10−3 1×10−3 3.29 242300
2×10−3 2×10−4 2×10−3 5×10−4 3.33 144624
2×10−3 2×10−4 2×10−3 2×10−3 3.26 40321.6
2×10−3 2×10−4 2×10−3 4×10−3 3.27 22570.6
2×10−3 2×10−4 2×10−3 5×10−3 3.29 20063.4

Table 4.2: Grid sensitivity study for B = (0,10,0) mT and J0 = (0,7850,0) A/m2. The
model is simulated with side length of 0.1 m, thickness of electrolyte 0.005 m with small
initial perturbation(see text). The properties of the metals and electrolyte are in Table 4.1.
For each case, the 10 seconds of the cell’s evolution are simulated. Execution time of the
run on 8 CPUs of our cluster is also shown.

4.2.1 Effect of ∆ymin

The results are presented in Table 4.2 and Figure 4.2. We see that the grid step affects

the time period of the fluctuations very little. The simulations with ∆ymin = 5× 10−4m

predict clearly incorrect values of the vertical current (see Figure 4.2). We attribute this

to poor resolution of the interface zone, which leads to underestimating the local electri-

cal resistance. There is no significant difference between the velocity and current curves

at ∆ymin = 1× 10−4 m and ∆ymin = 2× 10−4 m while it take much more computational

time to simulate with the ∆ymin = 1× 10−4 m. Therefore, we take ∆ymin = 2× 10−4 m

as the optimal grid size, at which a compromise between the computational accuracy and

computational time is achieved.
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Figure 4.2: The signals of horizontal velocity Ux at the point x=0.05 m, y=0.049 m, z=0.016
m (within the electrolyte) is shown on the left. The signals of vertical current Jy at the point
x=0.05 m, y=0.06 m, z=0.016 m (within the top layer) is shown on the right.

4.2.2 Effect of ∆x = ∆z

The computed results are less sensitive to the horizontal grid size. We see that the

horizontal grid step affects the time period of the fluctuations very little. The simulations

with ∆x = ∆z = 2× 10−3 and ∆x = ∆z = 1× 10−3 predicts identical value for the curve

of horizontal velocity Ux and vertical current Jy (see Figure 4.3). We conclude that the

computed results are less sensitive to the horizontal than to vertical grid size. Therefore,

the ∆x = ∆z = 2×10−3 is used in the simulations.
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Figure 4.3: The signals of horizontal velocity Ux at the point x=0.05 m, y=0.049 m, z=0.016
m (within the electrolyte) is shown on the left. The signals of vertical current Jy at the point
x=0.05 m, y=0.06 m, z=0.016 m (within the top layer) is shown on the right.

The final mesh with x×y×z = 50×170×50 cells used in the simulations is illustrated

in Figure 4.4.

Figure 4.4: The mesh determined as optimal in the grid sensitivity testing.

4.2.3 Effect of ∆t

The results of the time step sensitivity test are presented in this section. The optimal

mesh shown in Figure 4.4 is used. The numerical stability of the code requires that the
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Courant number Co = ∆t
(

Ux
∆x +

Uy
∆y +

Uz
∆z

)
is kept below 0.5. With the optimal mesh de-

scribed above, the ∆t should be smaller than 5×10−3 s.

Considering that the first order scheme is used for time discretization, ∆t much smaller

than the numerical stability limit may be needed for numerical accuracy.
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Figure 4.5: The signals of vertical electric current Jy at point x=0.05 m, y=0.049 m,
z=0.016 m (within the electrolyte) for various values of the time step ∆t.

The parametric study of the effect of ∆t ranged between 5× 10−4 s to 5× 10−3 is

conducted. The basic purpose is to find the ∆t optimizing the relation between the compu-

tational time and accuracy. The results illustrated in Figure 4.5 and 4.6 indicate that there

is no significant difference for the velocity Ux curve while serious differences exist among

the curves for electric curves. The reason for this remains unclear. We leave this question

to further studies and use. ∆t = 4×10−3 s as the best option that can produce reasonably

accurate results in relatively short time.
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Figure 4.6: The signals of horizontal velocity Ux at point x=0.05 m, y=0.049 m, z=0.016
m (within the electrolyte) for various values of the time step ∆t.

Note that this value of the time step ∆t might become invalid in the case of larger

magnetic field. A stronger magnetic field leads to stronger instability and, thus, higher

flow velocity. Smaller time steps are, therefore, needed to satisfy the Courant-Friedrichs-

Lewy(CFL) condition (26).

4.3 Reference case

A reference case for the metal pad instability at By = 10mT , Jy = 7850 A/m2 and

helectrolyte = 5mm is presented in this section. The properties of the liquid metal and elec-

trolyte are listed in Table.4.1.

We find that the metal pad instability is predicted by the solver. With the magnetic field

By = 10mT , the system is evidently unstable. After a short period of growing, the small

initial perturbation gives rise to periodic oscillations at the interface between the top metal

and the electrolyte.
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Figure 4.7: The signal of Ux at the By = 10mT is presented as a reference case. The probe

point is inside the electrolyte during the entire simulation. The metal pad instability results

in growing a periodic oscillations, which represent growing sloshing waves at the interface.

Figure 4.8: Evolution of the metal pad instability at different time t = 0s, t = 70s, t = 110s,

t = 120s.
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Figure 4.9: Vectors of Lorentz force in the cross-section z = 0.05m for the reference case
flow at t = 120s.

Figure 4.10: Streamlines of electric currents in the cross-section z= 0.05m for the reference
case flow at t = 120s.
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4.4 Instability parameters

It has been suggested in the recent works ((22), (28)) that in the case when the instability

occurs at only one interface, it is largely controlled by the non-dimensional electromagnetic

parameter similar to that found earlier for the aluminum reduction cells. For example, for

the upper interface at ∆ρA� ∆ρB, the parameter is:

Π≡ J0B0LxLz

∆ρAhE
0 hA

0 g
, (4.4)

where J0, B0, Lx, Lz, ∆ρA = ρelectrolyte−ρ top layer, hE
0 , hA

0 and g are the base electric current,

vertical component of the magnetic field, side length of cubic in x-axis direction, side

length of cubic in z-axis direction, the density difference between top layer and electrolyte,

unperturbed thickness of electrolyte, unperturbed thickness of top layer and acceleration of

gravity respectively.

An analogous parameter exists for the instability developing at the lower interface at

∆ρA� ∆ρB = ρbottom layer−ρelectrolyte:

Π≡ J0B0LxLz

∆ρBhE
0 hB

0 g
. (4.5)

According to previous studies in (28), the interface instability will be more complicated

if ∆ρA ∼ ∆ρB. The interface deformation is taking effect on both top and bottom interface,

which might give rise to coupling effect.

The validity of these criteria is partially tested in the following sections.

4.5 Effect of the strength of magnetic field

The parametric study of the effect of the strength of the magnetic field is presented in

this section. We change the magnitude of By while keeping the other parameters of the

system unchanged. It is expected that the destabilization effect will increase at higher By.
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The growth rate of the perturbations is not considered as a measurement for the instabil-

ity. We have found that OpenFOAM is not a good tool for computing evolution of infinite

small perturbations due to the slowness of calculations and the inaccuracy in reproduction

of small amplitude motions of the interface. All the simulations are conducted for weak

but finite-amplitude perturbations, i.e. in the nonlinear regime. Furthermore, in reality,

the instability of interface in the liquid metal batteries is already strong invoked by other

mechanisms such as thermal convection(18).
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Figure 4.11: Signal of Ux at By = 1 mT . There is no metal pad instability at this magnetic
field. The initial perturbation is neutralized by gravity and the flow become zero eventually.
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Figure 4.12: Signal of Ux at By = 7 mT . There is no metal pad instability at this magnetic
field. The metal pad instability grows into periodic oscillations without decaying.

Time

U
x

0 20 40 60 80

0.01

0.005

0

0.005

0.01

B
y
=8 mT

Figure 4.13: Signal of Ux at By = 8 mT . The metal pad instability grows very slowly. The
system may be in a state close to the threshold of the metal pad instability.
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Figure 4.14: Signal of Ux at By = 15 mT . The amplitude of the oscillations keeps growing
with active interface deformation until it saturates at a high amplitude. We consider this
flow as strongly unstable.

The results about the magnetic fields comparison illustrate the fact that the battery be-

comes more unstable with the increase of the magnetic fields.

4.5.1 Effect of σU×B in the Ohm’s law

Recalling the Ohm’s law for a moving conductor:

J = σ (∇φ +U×B) . (4.6)

Two simulations are conducted. One uses the full expression (4.6). In the other case, the

σU×B term is removed from (4.6) and, respectively, from the electric potential equation

(2.6).

It has been suggested in simpler (for example linearized or shwllow water) models of

the instability that the effect of the magnetic force is insignificant and the simulations can

be simplified by neglecting the effect of σU×B (28).
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Figure 4.15: The effect of the second term of Lorentz force is investigated. The simulations
are conducted under the By = 15 mT . The simulation with σU×B show periodic oscil-
lations in the saturated stage after the growth of instability, while the simulation without
σU×B does not allow saturation and results in further growth and short circuit between
the metal layers.

However, the comparison between the results of the two runs shows that the second

term in Ohm’s law σU×B has an effect as a stabilized term and cannot be neglected as

presented in Figure 4.15.
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4.6 Effect of thickness of electrolyte

The effect of the thickness of the electrolyte is discussed in this section. In order to

analyze this effect, the following thicknesses shown in Table 4.3 are simulated in our study.

helectrolyte Time period τ Π

mm s
3 4.35 5.984
5 3.43 3.666
7 3.04 2.675

10 2.69 1.935

Table 4.3: Effect of electrolyte thickness for B = (0,15,0) mT and J0 = (0,7850,0) A/m2

with side length of 0.1 m. The properties of the metals and electrolyte are in Table 4.1.
Each case is executed for 80 seconds, changing helectrolyte while keeping the other settings
unchanged.

It is predicted in the earlier studies and suggested by the non-dimensional criterion (4.4)

that the thickness of the electrolyte is one of the key factors for the metal pad instability

((22), (28)).

40



Time

U
x

0 20 40 60 80
0.03

0.02

0.01

0

0.01

0.02

0.03

h
electrolyte

 = 3 mm

Time

U
x

0 20 40 60 80
0.03

0.02

0.01

0

0.01

0.02

0.03

h
electrolyte

 = 5 mm

Time

U
x

0 20 40 60 80
0.03

0.02

0.01

0

0.01

0.02

0.03

h
electrolyte

 = 7 mm

Time

U
x

0 20 40 60 80
0.03

0.02

0.01

0

0.01

0.02

0.03

h
electrolyte

 = 10 mm

Figure 4.16: Time signals of the horizontal velocity Ux at the point x=0.05 m, y=0.049 m,
z=0.016 m (within the electrolyte) for the cases with various helectrolyte presented in Table
4.3.

We find that the thinner the electrolyte, the more unstable the system is. The time period

of instability oscillation decreases with increasing of helectrolyte as shown in Figure 4.16.

4.7 Effect of density ratio

The effect of the density jumps across the interfaces is analyzed in this section. A

parametric study is conducted, in which we keep constant ρ top layer and ρbottom layer, but

vary ρelectrolyte. The following densities of the electrolyte ρelectrolyte shown in Table 4.4 are

simulated in our study.
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ρelectrolyte Time period τ Π

kg/m3 s
1646 4.64 7.332
1715 3.43 3.666
2083 2.02 1
5994 0.48 1.833
6132 0.48 3.666

Table 4.4: Effect of the density jumps for B = (0,15,0) mT , helectrolyte = 5 mm and J0 =
(0,7850,0) A/m2 with side length of 0.1 m. The properties of the metals and electrolyte are
in Table 4.1. Each case is executed by changing ρelectrolyte while keeping the other settings
unchanged.

Figure 4.17: Metal pad instability and streamlines of electric currents in the cross-section
z = 0.09m for Π = 7.332 at t = 13s.

Given that ∆ρA � ∆ρB, we find that the significant deformations are expected at the

upper interface at Π = 7.332 (See Figure 4.17). Frequencies and magnitudes of instability

oscillation increase with increasing of Π(See Figure 4.18).
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Figure 4.18: Time signals of the horizontal velocity Ux at the point x=0.05 m, y=0.049 m,
z=0.016 m (within the electrolyte) for the cases with various ρelectrolyte presented in Table
4.4.

We have also performed simulations with ∆ρA� ∆ρB and expect two dominating fre-

quencies in the Figure 4.19 and Figure 4.20. It is predicted in the earlier studies (12) that the

flow dynamics is complex due to the coupling effect of the two metal-electrolyte interfaces.

We will leave it for future studies.
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Figure 4.19: Time signals of the horizontal velocity Ux at the point x=0.05 m, y=0.049 m,
z=0.016 m (within the electrolyte) for the case with Π = 1.833 presented in Table 4.4. Two
main time periods are observed with τ1 = 0.48 s and τ2 = 5.08 s
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Figure 4.20: Time signals of the horizontal velocity Uz at the point x=0.05 m, y=0.049 m,
z=0.016 m (within the electrolyte) for the case with Π = 1.833 presented in Table 4.4.
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CHAPTER V

Conclusions

We have studied the metal pad instability in the Liquid Metal Batteries(LMBs) with

vertical magnetic field B0. The main conclusion is that, the magnetic field induced by

neighboring cells and supply lines can potentially affect the operation of LMBs and should

always be considered in the design of the devices. We find that the the metal pad instabilities

can be simulated by the open-source CFD software OpenFOAM. The effect of the metal

pad instability can be controlled by the magnetic field B0, the vertical electric current J0,

the geometry parameters of the LMBs such as the thickness of the electrolyte helectrolyte

and the density jumps across the interfaces ∆ρA or ∆ρB.

Our results indicate that the effect of the metal pad instability has positive correlation

with the magnitude of B0 and J0 while has negative correlation with the thickness of elec-

trolyte helectrolyte and the density jumps of the interfaces ∆ρA or ∆ρB. The accuracy of the

simulations is limited by the numerical error from the solution of multiphase flow problem.

The numerical error is enlarged by substantial difference in electrical conductivities among

metal/electrolyte layer. We leave this interesting problem for future studies.

46



BIBLIOGRAPHY

[1] A. Prosperetti, G. T. 2007. Computational methods for multiphase flow. Cambridge

University Press.
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