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Among forest pathogens, Beech Bark Disease (BBD) is unique in having a two-part attack on the 
American beech (Fagus grandifolia) by the beech scale insect and an invasive fungus. Interactions 
between beech scale and fungus have led to widespread beech mortality as populations are 
increasingly infected. A previous study on Colonial Point Memorial Forest beech populations in 
2012 by The University of Michigan Biological Station (UMBS) established two plots of beech 
trees to be monitored temporally for the effects ofBBD. This study examined the percent mortality 
of this beech population with respect to level of BBD infection and the status of forest succession 
as beech are eradicated. High levels of mortality were found, with one plot exhibiting significantly 
greater mortality, perhaps related to higher levels of infection in 2012. Species richness of saplings 
was comparable between beech plots despite differing beech mortality, whereas species richness 
of seedlings was more diverse in the plot with higher mortality. Continued monitoring of beech 
trees infected with BBD is critical for the understanding and conservation of populations 
threatened with extirpation. 
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1. Introduction 

The spread of forest pathogens has been well-documented throughout the 20th and 21st 

centuries. These pathogens have disrupted countless ecosystems, including those in temperate 

climates in North America. Many are invasive species that are believed to have been harbored on 

materials in the hulls of ships. The spread of pathogens through international trade has caused 

significant amounts of ecological and economic damage (Work et al., 2005). For example, 

chestnut blight, a fungal pathogen, extirpated the American chestnut (Castanea dentata) from 

Eastern North America, potentially altering nutrient cycling in affected ecosystems (Smock & 

MacGregor, 1988). They found that the absence of chestnut leaves was correlated with a 

decrease in the growth rates of endemic macroinvertebrates, which rely on the rapid 

decomposition of chestnut leaves for nutrients. The invasion of exotic fauna has also been well 

documented, particularly in the case of the Emerald Ash Borer (Agrilus planipennisfairmaire), 

an Asian beetle that eats the phloem and cambium of ash trees (Fraxinus americana), and is 

ultimately fatal (Pugh, Liebhold & Morin, 2011 ). The death of ash trees was estimated to cost 

10.7 billion U.S. dollars from 2009-2019 (Kovacs et al., 2009). Though these particular 

examples are well represented within the scientific literature, the emergence of Beech Bark 

Disease (BBD) is a topic requiring further research. 

Beech Bark Disease is a two-part attack on beech trees (Fagus grandifolia) by the beech 

scale beetle (Cryptococcusfagisuga) and one or more fungi (Nectria coccinea or Nectria 

galligena; Houston, 1998). The insect itself is not devastating to the tree, though some damage is 

inflicted by the colonies. Beech scale is not native to North America. Although it has been 

historically recorded in Europe, its origin is believed to be in Central Asia, but has not been 

confirmed (Gwiazdowski, 2006). Beech scale was first observed in North America in a Nova 



3 

Scotian botanical garden in the late 19th century. The beech scale colonies themselves consist of 

only females, which are parthenogenic (Hale, 2006). The beetles expand their territory when they 

are carried throughout a forest by wind. The insect has three life stages: wingless larvae (also 

called crawlers or nymphs), second stage nymphs, and adults. Crawlers cause direct damage to 

beech trees by burrowing in with a needle-like mouth in search of nutrients, which makes the 

trees vulnerable to fungal exposure. The fungus follows the beetle, entering the small holes 

produced by the larvae. Since the scales themselves cannot survive on a tree that has been 

infected by the fungus, they must move on to another tree or die. The fungus is visible as a 

fruiting body in the fall (Houston, 1998). 

In 2012, research was conducted by Dr. Joel Heinen and associate Marshall McMunn on 

two plots of beech trees located at Colonial Point Memorial Forest, a property of the University 

of Michigan Biological Station (45°29'3 l.14"N, 84°41 '10.81 "W; Heinen & Vande Kopple, 

2003). Colonial Point is located on a peninsula in Burt Lake, Michigan. The site and its 

ecosystem were influenced by glacial activity after the Wisconsin Glacier retreated roughly 

13,000 years ago (Nadelhoffer, Hogg & Hazlett, 2010; Michigan DNR, 2017). The ecosystem 

within the study site is a transition zone of mixed hardwood and boreal forests (Curtis et al. , 

2005). Beech (Fagus grandifolia), sugar maple (Acer saccharum), hophombeam (Ostrya 

virginiana), and hemlock (Tsuga canadensis) are species present within the site. In 2012, the 

beech-dominated forest showed signs of widespread BBD infection. Heinen and McMunn 

recorded information about the size and infection level of beech trees, as well as the prevailing 

succession of the forest's seedlings and saplings. These data were collected with the intention of 

observing the site over time to determine the effects of BBD progression in the two plots. 
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The primary objective ofthis study was to measure the percent mortality of all marked 

beech trees that were studied in 2012 and to determine if this percent differs between the two 

plots sampled. In addition, we sought to investigate which species of tree will succeed in the 

forest following the extirpation of the beech population. Given that Plot 1 had three dead beech 

trees and Plot 2 had none in 2012, we hypothesized that there would be a significant difference in 

percent mortality between the two plots in 2017, with Plot 1 exhibiting greater mortality than 

Plot 2. Given our initial observations of the understory at Colonial Point, we also hypothesized 

that sugar maple would be the primary species to succeed as the beech trees die. Although this 

study will likely not provide any definite conclusions or solutions for preventing BBD, we hope 

that our research will lend to the ongoing investigation of its devastating impacts on beech tree 

populations. 

2. Materials and Methods 

Two plots were studied following the protocol established by Heinen and McMunn in 

2012. Plot 1 was located on the western side of the main trail bisecting Colonial Point Forest, 

while Plot 2 was located on the eastern side of the same trail (Figure 1). The previously-studied 

adult beech trees were remeasured for diameter at breast height (DBH) and infection status. 

Seedling and sapling species and frequency were recorded within each plot. 

The DBH of each adult beech tree was recorded in centimeters at the height used in 

previous data collection (1.9 m). The infection status was determined by placing a 10 cm string 

transect 1.9 m high on each beech trunk and counting the number of points at which the transect 

intersected the white scales left by the beech scale. This was repeated four times on each tree in 

all cardinal directions. The average infection status of each tree was determined by averaging the 



white scale intersection counts from all faces of the trunk. To reduce inconsistencies, all 

infection status measurements were collected by the same observer. Dead trees were catalogued 

as such, and they also were measured for DBH and infection status when possible. Some trees 

were too decomposed for accurate measuring. Each measurement was recorded with the tree 's 

tag number so individuals could be compared to past data. 

KEY 

+ =Plot 1 

+ =Plot 2 

Figure 1. Map of Colonial Point Memorial Forest depicting the locations of Plot I and 
Plot 2. Source: Little Traverse Conservancy. 
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The species and frequencies of saplings and seedlings were recorded in Plot 1 by laying a 

40 m baseline from the southeastern to southwestern comer of the plot. A transect tape was then 

run 100 m north perpendicular to the baseline's 20 m mark. Along this central transect, 40 m 

lines running east to west were drawn every 20 m for a total of six lateral transects. We 

replicated this protocol on Plot 2, with the baseline running from the northeastern to 

northwestern comer and the central transect running south. Data were then recorded along these 



lateral transects at 10 m and 20 m to either side of the central transect, where 5x5 m plots were 

marked north of the lateral transects on the side facing the central transect (Figure 2). 

Within these plots, all saplings measuring more than Im in height and less than 5 cm in 

DBH were counted, and their species and infection status were recorded. Seedling species and 

frequency were also recorded within lxl m plots that were randomly selected within the 5x5 m 

sapling plots. 
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Figure 2. Overhead view of Plot I and Plot 2 in Colonial Point Memorial Forest. 
Twenty-four subplots were measured along six transects. 
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3. Results 

We used a Mann-Whitney U Test to determine whether average infection status of beech 

trees in Plot 1 and Plot 2 had significantly changed from 2012 to 2017. The results for Plot 1 

average infection status were non-significant at the a = 0.05 confidence level. Conversely, the 

test indicated a significant difference in Plot 2 average infection status. A Mann-Whitney U Test 

to determine whether infection was more prevalent on one side of the tree trunk revealed no 

significant difference between north and south or east and west (Table 1). Observations in Plot 1 

revealed that 88.1 % of beech saplings exhibited signs of beech scale presence, while saplings in 

Plot 2 exhibited 84.3% scale presence. 

Table 1. The table indicates that there are no significant differences in infection rates of 
tree trunks based on cardinal direction. 

Direction P-Value 
North 0.416 

South 0.231 

East 0.547 

West 0.064 

In 2012, Plot 1 exhibited 6% mortality and Plot 2 exhibited 0% mortality. Measurement 

of tree mortality in 2017 revealed that, of the trees that were alive in 2012, Plot 1had66% 

mortality and Plot 2 had 17% mortality. According to a linear regression, there was a significant 

relationship between plot and mortality (p-value < 0.001). A binomial logistic regression 

comparing 2012 DBH to 2017 beech mortality revealed no association between age of infected 

beech and likelihood of death within a five-year interval (Nagelkerke R-Square = 0.003 , p-value 

= 0.691). 
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To measure the diversity and abundance of seedling species within each plot, we used a 

Simpson Diversity Index (Table 2; Simpson, 1949). This is calculated using the equation D = 

(Ei=l~ ni(n;-l) , in which N is the total number of individuals and n; is the number of individuals 
N N-1 

of species i. The results are represented on an index ranging from 0 to 1, with 0 being high 

diversity and 1 being low. In 2012, Plot 1 had an index value of 0.32 and Plot 2 had an index 

value of 0.66. In 2017, Plot 1 had an index value of 0.86, while Plot 2 had an index value of 0.92. 

Species similarity between plots was measured using a S0rensen Similarity Index, which uses the 

equation QS = ..2£... (Table 3; Magurren, 2004). The variable C represents the number of species 
A+B 

the two plots share in common, A is the number of species in in Plot 1, and B is the number of 

species in Plot 2. This index ranges from 0 to 1, with 0 being no similarity between plots and 1 

being complete similarity. In 2012, Plot 1 and Plot 2 had a similarity of 0.66, while the plots had 

a similarity of 0.88 in 2017. Between 2012 and 2017, Plot 1 had a similarity of 0.73 , while Plot 2 

had a similarity of 0.85 . 

Table 2. This index describes species diversity and abundance between plots for 
seedlings and saplings, with 0 indicating high diversity and 1 indicating low diversity. 

Simpson Diversity Index: Seedlings 
Plots Index Value 

2012 Plot 1 0.32 
2017 Plot 1 0.86 
2012 Plot 2 0.68 

2017 Plot 2 0.92 

Simpson Diversity Index: Saplings 
Plots Index Value 

2012 Plot 1 0.66 
2017 Plot 1 0.92 
2012 Plot 2 0.7 

2017 Plot 2 0.96 
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Table 3. This index describes species similarity between plots for seedlings and saplings, 
with 0 indicating no similarity and 1 indicating complete similarity. 

5-rensen Similarity Index: Seedlings 
Plots Index Value 

2012 Plot 1/2012 Plot 2 0.66 
2017Plot1/2017 Plot 2 0.88 
2012 Plot 1/2017 Plot 1 0.73 

2012 Plot 2/2017 Plot 2 0.85 

StN:ensen Similarity Index: Saplings 
Plots Index Value 

2012 Plot 1/2012 Plot 2 0.57 
2017 Plot 1/2017 Plot 2 0.8 
2012 Plot 1/2017 Plot 1 0.85 

2012 Plot 2/2017 Plot 2 0.8 

Sapling data was analyzed similarly to that of seedlings. The Simpson Diversity Index 

showed that in 2012, Plot 1 had a diversity of 0.66 and Plot 2 had a diversity of 0.70. In 2017, 

Plot 1 had a diversity of 0.92 and Plot 2 had a diversity of 0.96. The S0rensen Similarity Index 

showed that Plot 1 compared to Plot 2 had a similarity of 0.57 in 2012. Plot 1 compared to Plot 2 

had a similarity of 0.80 in 2017. Between 2012 and 2017, Plot 1 had a similarity of 0.85, while 

Plot 2 had a similarity of 0.80 (Table 3). In both 2012 and 2017, both plots were dominated by 

sugar maple seedlings, while the dominant sapling species was beech. Sugar maple saplings 

decreased in frequency between 2012 and 2017 (Table 4 & 5). 

A Chi-squared test for homogeneity revealed no significant difference in sapling counts 

between Plots 1 and 2 at the a= 0.05 confidence level. We conducted an additional Chi-squared 

test for homogeneity to determine if there was a significant difference in seedling counts between 

plots. Again, no significant difference in seedling counts between plots was found. 
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Table 4. This table describes the proportion of each seedling species within Plots I and 
2. 

Seedling Plot Proportion within Proportion witllin 
Species Plot(2012) Plot(2017) 

Ash 1 0.017 0.008 

Beech I 0.167 0.014 

Ostrya 1 0.033 0.005 
Red Maple 1 0.317 0.035 
Hemlock I 0.017 0 

Sugar Maple 1 0.450 0.938 

Ash 2 0.031 0.007 

Beech 2 0.165 0.030 

Stripe Maple 2 0 0.007 

Red Maple 2 0 0.002 

Sugar Maple 2 0.803 0.954 

Table 5. This table describes the proportion of each sapling species within Plots I and 2. 

Sapling Plot Proportion Proportion 
Speties within Plot within Plot 

(2012) (2017) 
Beech I 0.808 0.865 

Os try a 1 0.058 0.056 

Sugar Maple 1 0.135 0.079 

Beech 2 0.832 0.981 

Os try a 2 0 0 

Ash 2 0.004 0 

Sugar Maple 2 0.163 0.019 

4. Discussion 

The average infection status in Plot 1 did not significantly change between 2012 and 

2017, but the average infection status in Plot 2 increased significantly from 2012 to 2017. This is 

likely because Plot 1 was already heavily infected with BBD in 2012. Plot 2 also exhibited signs 

of infection in 2012, though to a lesser extent than Plot 1. Our findings therefore suggest that 

beech plots already strongly infected with BBD will not exhibit a significant change in average 

infection status over a five-year interval, while beech plots with a low average infection status 
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will likely show a strong increase in average infection status within the same time frame. 

Interestingly, we found that the majority of beech saplings sampled within the plots showed 

signs of beech scale presence. Stephanson (2017) also noted that it is common to see the scale on 

saplings in Northeastern America. We do not currently know ifthe saplings are infected with 

both the scale and the fungus, which prevents us from drawing conclusions regarding infection 

status of saplings or potential future mortality. 

Additionally, there was no significant difference between which sides of the trees were 

most infected. Between the north and south sides of the trees and the east and west sides of the 

trees, infection status was relatively evenly distributed. This suggests that the beech scale does 

not preferentially infect one cardinal direction over another. These findings are consistent with 

the literature, since it is known that the larvae expand their territory to the entirety of the 

accessible bark when a clutch of scale eggs hatch (Houston, 1998). 

The strong correlation between mortality and plot found through a linear regression 

supports the observed difference that Plot 1 had a higher percent mortality than Plot 2. From this, 

it is possible that there may be a factor not captured in this study that is impacting the survival of 

the beech scale or the fungus. Beech in Plot 1 may exhibit qualities that cause BBD to 

preferentially infect them. These preferences, or lack thereof, cannot be attributed to tree age, as 

DBH in 2012 had no significant impact on tree mortality in 2017. Furthermore, they cannot be 

contributed to temperature, humidity, or elevation, since the two sites are in such close 

proximity. There could be different nutrients taken in by the trees, though this is unlikely. 

However, wind patterns may vary between the plots, which could influence the dispersal of 

beech scale. Genetic factors may also be impacting these relationships, as some trees may have 

stronger resistance against BBD. 
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Following our analysis of beech mortality, we examined succession within the two plots. 

It is common for beech dominated forests to have minimal understory other than beech and 

shade tolerant species. Presence of any other species is indication of the impact of beech tree 

mortality and the subsequent light gaps this creates (Stephanson, 2017). Light gaps in the forest 

canopy promote greater understory growth than would naturally occur in forests with limited 

light (Dai, 1996). Therefore, we expected the plot with higher mortality to have more light gaps, 

resulting in a higher sapling and seedling count. However, there was no difference between 

seedling or sapling count between plots, despite Plot 1 having greater beech mortality. This may 

have been due to light gaps having been newly formed in the canopy, resulting in insufficient 

time for the presence oflight to affect the understory. Additionally, it may be possible that 

insufficient light reached the forest floor even after beech tree death, as a study conducted by 

Emborg (1998) found that seedlings within a temperate forest were not successful when relative 

light intensity (RLI) was under 10%. Though we did not measure RLI, this variable may explain 

the understory trends we observed in our study. 

The Simpson Diversity Index showed that in 2012, seedling variety of both plots was 

shown to be more diverse than their 2017 counterparts. Sapling diversity was found to be 

comparable between beech plots despite differing beech mortality, whereas seedling diversity 

was found to be more prominent in the plot with higher mortality. This could be due to the 

timing of light gap availability. If there was less light to allow for growth in the time that the 

saplings were first germinating, only those species that were better competitors in shady 

environments would persist, leading to lower diversity. Now, in 2017, plentiful light gaps due to 

the death of beech trees in Plot 1 may be allowing more species to compete for this space than 

was previously possible (Tables 2 & 3). 
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Despite light gaps allowing a wider diversity of seedling species to compete within Plot 

1, the most prevalent seedling species in both plots was sugar maple. This is likely because sugar 

maple seedlings are extremely shade-tolerant and can withstand suppression for several years 

(Goodman, Yawny & Tubbs, 2017). However, there was a decrease in sugar maple sapling 

frequency from 2012 to 2017, despite sugar maple seedlings dominating the understory in 2012. 

This suggests that there may be a mechanism by which the seedlings are prevented from 

maturing into saplings. Based on these findings, we cannot accept our hypothesis that sugar 

maple will be the primary successional species in Colonial Point. 

Although we replicated Heinen and McMunn' s data collection, methodology from 2012 

was challenging to interpret. This may have altered the accuracy of method replication. One 

complication that arose due to this was that the rebar marking the northeast comer of Plot 2 had 

either been misplaced or moved since 2012, causing the plot's location to need remeasurement in 

2017. As this was an estimation of the original area measured, it is possible that the 2017 

seedling and sapling plots are not the same plots that were measured in 2012. However, we do 

not believe that this would have caused a significant change in our results. Additionally, Heinen 

and McMunn' s methods required random sampling of seedlings. Since this random sampling 

was conducted by humans, it may not have been truly randomized as we may have been more 

likely to select an area based on its accessibility. In the future, it would be useful to divide the 

plots into grids from which randomized cells could be selected for sampling. 

Colonial Point should continue to be studied in five year intervals in order to monitor 

infection, mortality, and succession of the beech plots. This may lead to a more comprehensive 

understanding of the effects ofBBD over time beyond the scope of the current study. In future 

studies, genetic analysis of the beech scale and fungi that infect beech trees may lead to insights 
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regarding the mechanism of infection, which trees are preferred, or which fungus is most 

commonly present. Further study of beech bark disease and its effects on forests is vital for 

understanding the future of beech populations and for the future conservation efforts that may be 

necessary to maintain them. 
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