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Estimating the effect of a rare time-dependent
treatment on the recurrent event rate
Abigail R. Smithab, Danting Zhua, Nathan P. Goodrichb, Robert M. Merionb,
and Douglas E. Schaubela∗

In many observational studies, the objective is to estimate the effect of treatment or state-change on the recurrent
event rate. If treatment is assigned after the start of follow-up, traditional methods (e.g., adjustment for baseline-
only covariates, or fully conditional adjustment for time-dependent covariates) may give biased results. We propose
a two-stage modeling approach using the method of sequential stratification to accurately estimate the effect of a
time-dependent treatment on the recurrent event rate. At the first stage, we estimate the pre-treatment recurrent
event trajectory using a proportional rates model censored at the time of treatment. Prognostic scores are estimated
from the linear predictor of this model and used to match treated patients to as-yet untreated controls based
on prognostic score at the time of treatment for the index patient. The final model is stratified on matched
sets and compares the post-treatment recurrent event rate to the recurrent event rate of the matched controls.
We demonstrate through simulation that bias due to dependent censoring is negligible, provided the treatment
frequency is low, and we investigate a threshold at which correction for dependent censoring is needed. The method
is applied to liver transplant (LT), where we estimate the effect of development of post-LT End Stage Renal Disease
(ESRD) on rate of days hospitalized. Copyright c© 2017 John Wiley & Sons, Ltd.
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1. Introduction

Recurrent events often serve as the basis for measuring treatment effects in observational studies. A reduction in outcomes,
such as repeated myocardial infarction or opportunistic infections, indicates that a treatment has a positive effect on
morbidity. Reductions in hospital admission rates among the treatment group would imply that lower morbidity as well as
reduced health care costs are associated with (or caused by) treatment.

Methods for analyzing recurrent events have been well described in the literature. Models have been developed that
condition on the event history [1] or previous number of events [3]. Marginal models, such as those of Lawless and
Nadeau [4] or Lin et al. [5], allow for an interpretation of covariate effects on the recurrent event rate that does not
require patients to have similar event histories. Few papers to date have explored methods for using recurrent events as an
evaluation of an experimental treatment, with exceptions being Cook et al. [6] and Schaubel and Zhang [7].

Treatment can be initiated after the beginning of follow-up, which occurs frequently in studies without randomization.
While some existing recurrent event methods can incorporate time-dependent covariates [8], these traditional methods
often do not give interpretations that satisfy the research question of interest. In the settings often of interest, treatment
initiation depends on internal processes such as disease progression or the event history itself, violating the assumption
of most time-dependent recurrent event methods that time-dependent covariates be external [9]. Ideally, we would begin
follow-up of an untreated patient, and after treatment initiation we would compare the recurrent event rate to that of the
same patient had they remained untreated. This counterfactual experience is unobservable in practice, however.
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In an attempt to compare each treated subject with their unobservable counterfactual treatment-free experience, this
article will extend the sequential stratification method described by Schaubel et al. [10] to the recurrent event setting. For
every subject treated at time s, subjects that are eligible to receive treatment at time s but do not are matched to the treated
subject. Each treated subjects’s post-treatment recurrent event rate is compared to the averaged matched recurrent event
rate in what can be conceptualized as a subject-level experiment. Matched subjects that subsequently receive treatment are
censored from experiments for which they serve as controls, and begin their own experiment as the treated subject. Note
that,in every experiment, the comparison of interest begins at time s, such that recurrent events that occur in [0, s) are not
considered.

Schaubel et al [10] proposed combining hard covariate matching and adjustment to ensure that matched subjects were
‘similar’ to the treated subject in addition to the requirement that they remain untreated at time s. This method was
proposed in the univariate survival setting where failure times prior to treatment are not observed for treated subjects.
However, information regarding pre-treatment recurrent event trajectories are available on all subjects in the setting
described above. Given that event history is a strong predictor of the recurrent event rate, we propose to leverage this
information using a two-stage modeling approach. In the first stage, we use a conditional rate model to describe pre-
treatment event trajectories for all subjects. We then use the linear predictor from this first stage model to caliper-match as
yet untreated patients to those receiving treatment at time s. The goal is to create a control group with an event trajectory
similar to that which the treated patient would have experienced had treatment not been available. The final model for
the recurrent event rate includes only the treatment effect and a measure of distance between the prognostic score of the
treated subject and that of the matched controls.

The method proposed is not restricted to “treatment” in the classical sense, and is in fact applicable to any state change.
Often this state change is in the form of treatment such as initiation of new medication or performance of a procedure, but
this is not always the case. Diagnosis of disease or experience of a medical event such as injury could constitute a state
change for which comparing the recurrent event rate in the presence and absence of the state change is of clinical or policy
interest. This will be discussed further in relation to the application of the method to liver transplantation.

The remainder of this article proceeds as follows. In Section 2 we introduce the notation and proposed models and
describe the parameter estimation. Section 3 presents results of simulation studies to demonstrate the performance of the
treatment effect estimator in moderate sized samples. An application to living donor liver transplant is described in Section
4 using data from the Adult-to-Adult Living Donor Liver Transplantation Cohort Study (A2ALL). Some concluding
remarks are offered in Section 5.

2. Methods

2.1. Notation

In the following, i represents subject (i = 1, . . . , n), Ti is treatment time, with Ti ≥ 0, and Z∗
i (t) represents the time-

dependent covariate for subject i. We assume for the purposes of this article that subjects treated at time Ti remain treated
for the duration of follow-up. The true number of events for subject i in [0, t] is defined as N∗

i (t) =
∫ t
0
dN∗

i (u). Event and
treatment times are subject to independent right censoring by Ci, assumed to be administrative in this setting without loss
of generality. The number of observed events is given by Ni(t) =

∫ t
0
I(Ci > u) dN∗

i (u).
The number of pre-treatment events in (0, t] is given by the counting process

N0
i (t) =

∫ t

0

I(Ti > u) dN∗
i (u). (1)

If patient i receives treatment at time s; i.e., Ti = s, then the post-treatment event counter is defined as

N1
i (t; s) = I(Ti = s)

∫ s+t

s

dN∗
i (u). (2)

Note that it will be our convention that N(t; s) refers to the interval of length t, but starting at time s; a single time
index, as in the previously-defined N0

i (t), pertains to the (0, t] time interval. Correspondingly, we define an event counter
representing the events that would have been experienced in the absence of treatment, also beginning at time s,

N0
i (t; s) =

∫ s+t

s

I(Ti > u)dN∗
i (u). (3)

Note that (3) is the pre-treatment event counter described in (1) but instead of (0, t] the counter N0
i (t; s) tracks the patient

on (s, s+ t]. For a subject eligible to receive the treatment at time s, (i.e. I(Ti ≥ s)), if Ti = s, the counting process (2)
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takes effect; if the treatment had not been available, process (3) takes effect. The subject is untreated on (0, s) under either
scenario to which (2) and (3) pertain.

Finally, we define a 0/1 process for being observed to receive treatment,

NT
i (t) =

∫ t

0

I(Ci > u)dI(Ti ≤ u). (4)

2.2. Proposed Models

As described above, the goal of this method is to compare the post-treatment recurrent event mean to the corresponding
event mean under no treatment. We denote the mean of (2) by

µ1
i (t; s) = E

[∫ t

0

N1
i (du; s)|Ti = s,Hi(s)

]
, (5)

where Hi(s) = {Z∗
i (u), Ni(u), I(Ti > u), I(Ci > u); 0 ≤ u < s} represents the observed pre-treatment history for

subject i on [0, s).
Similarly, in the absence of treatment, the mean of (3) can be written as

µ0
i (t; s) = E

[∫ t

0

N0
i (du; s)|Hi(s), Ti > u

]
. (6)

Note, both models are partly conditional [11, 12, 13] in the sense that they condition on the history up until time s as
opposed to s+ t. We do not model either (5) or (6) directly, instead, our model of interest is given by

µ1
i (t; s) = µ0

i (t; s) exp{β?}, (7)

which can equivalently be expressed in terms of a rate function by

µ1
i (dt; s) = µ0

i (dt; s) exp{β?}. (8)

In this model µ0
i (t; s), the treatment-free mean number of events is scaled up or down by exp{β?} if subject i received

the experimental treatment at time s. The mean number of post-treatment events is then compared to the mean number of
treatment-free events after time s. It is conceivable that the treatment effect could depend on time since treatment, t, or
time of treatment, s, and this model can be extended to accommodate a time-dependent β? in the form β?(t; ·), β?(·; s) or
β?(t; s). Note that these different time-dependent forms of β? could be any parametric function of time such as linear or
log-linear; time could also be categorized to examine the functional form of the time-dependent effect.

Since we cannot observe a patients’ pre-treatment experience once treatment is initiated, a patient treated at time s will
be compared to similar patients who did not start treatment at follow-up time s but were eligible to do so. Similar to
Schaubel et al. [10], we use the concept that each treatment time initiates an “experiment”, in which the recipient of the
treatment is compared to ‘similar’ treatment-eligible candidates. Note that ‘similar’, in this context, refers to current status
(i.e., at time s) and history on [0, s). Eligibility for the comparison is defined as

ei(s) = I(Ti = s) + I(Ti > s)

i.e., at time s, patient i either received the treatment or remained untreated.
Our method of estimating β? from (8) involves a stratified analysis. Each treated patient generates a stratum, which will

include the index patient as well as similar treatment-eligible patients. Here we define similar as both treatment eligible
at s, ei(s), and similar with regard to accumulated covariate and recurrent event history on (0, s], Hi(s). In order to
quantify each subject’s history, we use a prognostic score [14] based on the pre-treatment event rate, modeled using a
time-dependent proportional rates model,

dµ0
i (t) = E [dN∗

i (t)|Hi(t), Ti > t] = exp{αT0Zi(t)}dµ0(t), (9)

where the covariate Zi(t) is chosen to capture the pertinent components of the history, E[dN∗
i (t)|Hi(t), Ti > t] =

E[dN∗
i (t)|Zi(t), Ti > t]. Model (9) resembles the marginal Lin et al. [5] model, but is more accurately interpreted as the

conditional Andersen-Gill [1] model, due to the explicit dependence on the prior event history, a property avoided by Lin
et al. [5]. The regression parameter α0 from (9) can be computed by solving the unweighted Cox [15] score equation. Due
to the dependence on internal covariates [9], elements of α0 are difficult to interpret. However, the purpose of this model
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is matching similar subjects on [0, s), not interpretation. Note that, although we have chosen a multiplicative model, other
models (e.g., an additive model with time-varying effects ([2])) may provide better fit and are reasonable options. Note
also that alternatives to prognostic matching exist, and will be discussed in Section 5.

The purpose of the prognostic score is to match patients that have similar pre-treatment event rates, the rationale being
that previous event rate is the most important predictor of the current event rate. Unlike a propensity score, which uses the
treatment event rate to match subjects with similar probabilities of being treated, the prognostic score aims to compare the
effect of treatment on the event rate among subjects that were on the same trajectory with respect to their pre-treatment
event rate. The use of prognostic scores in conjunction with, or as a alternative to, propensity scores has been considered
in several reports [16, 17, 18, 19] and will be discussed later. Once the prognostic scores have been estimated, caliper
matching is used to assign untreated control subjects to a subject receiving treatment at time s. Caliper matching requires
that the prognostic scores of matched subjects be within a certain radius of the prognostic score of the index subject.
Appropriate selection of the caliper involves balancing the need for homogeneity within-stratum with the need to have an
adequate number of matches for each index subject. The discrepancy between prognostic scores for experimental subject
j and control subject i can be quantified through the subject-pair specific rate ratio,

ψi,j(s) =
dµ0

i (s)

dµ0
j (s)

= exp{αT0 [Zi(s)−Zj(s)]}.

Subject i is ‘similar’ on [0, s) to subject j if | logψij(s)| ≤ ε, where ε > 0 is a pre-determined constant.
Combining the eligibility indicators and prognostic scores, patient i is included in the stratum generated by patient j if

mij(s) = 1, where

mij(s) = ei(s)I(Ti > s)ej(s)I(Tj = s)I(| log ψ̂ij(s)| ≤ ε),

with ψ̂ij(s) = exp{α̂T0 [Zi(s)−Zj(s)]}. In order to account for the residual difference between patients i and j, we
propose to adjust for log ψ̂ij(s) in the final model. Incorporating the eligibility indicator and the prognostic score distance,
the final fitted model for the event mean for stratum j is then

µ?ij(t; s) = mij(s)µ
0
i (t; s) exp{β?I(Ti = s) + βψ log ψ̂ij(s)}. (10)

In (10), j is the stratum (generated by patient j through Tj = s) and i is the patient within stratum. The model governs the
treated patient through the indicator I(Ti = s), which equals 1 if i = j. The vector of parameters to be estimated and the
corresponding covariates are given by

β?ψ =

[
β?
βψ

]
Z?i (s) =

[
I(Ti = s)

log ψ̂ij(s)

]
, (11)

such that model (10) can be re-written as µ?i (t; s) = mij(s)µ
0
i (t; s) exp{βT?ψZ

?
i (s)}.

Subjects matched to the treated subject enter the experiment without receiving any treatment, but could subsequently
receive treatment. If a matched subject receives treatment after time s they are censored from all experiments in which
they serve as controls and begin their own experiment as the index subject. This generally results in dependent censoring
since, although treatment can be considered random given Hi(s+ t), the model for µ?ij(t; s) from (10) only conditions
on Hi(s), the pre-treatment history up to time s. While this could be addressed though Inverse Probability of Censoring
Weighting (IPCW) [20, 21, 27], in this article we consider treatments that are relatively rare, with rates small enough such
that bias due to dependent censoring is negligible. Section 3 will investigate through simulation treatment rates at which
dependent censoring needs to be addressed.

2.3. Parameter Estimation

In order to estimate β? we define the pertinent risk set indicator for stratum j,

Yij(t; s) = mij(s)I(Ci > s+ t){I(Ti = s) + I(Ti > s+ t)}

If, given Hi(s) matched subjects are randomly assigned to treatment after time s, the process

mij(s)

∫ τ−s

0

Mij(du; s), (12)

where mij(s) is the matching indicator described above, Mij(du; s) = Yij(u; s){Ni(du; s)− µij(du; s)}, and τ is chosen
to satisfy P (Ci ≥ τ) > 0 and often set to max{C1, . . . , Cn}, would have mean zero. As mentioned above, bias due to
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censoring of subsequently treated controls is expected to be minimal in the setting of rare treatment, so we assume the
condition above holds.

Aggregating across subjects for the experiment occurring at time s produces the set of zero mean processes,∑n
i=1mij(s)

∫ t
0
Mij(du; s) (13)∑n

i=1mij(s)
∫ t
0
Z?i (s)Mij(du; s). (14)

We reorganize this system to solve implicitly for the baseline mean, µ0
0(u; s) in (13), then substitute into (14). Then,

aggregating across all experiments yields the final estimating function for β?ψ,

U(β) =

n∑
j=1

n∑
i=1

∫ τ

0

mij(s)

∫ τ−s

0

{Z?i (s)−Z?(u; s)}Ni(du; s)dNT
j (s), (15)

where

Z?(u; s) =

∑n
`=1m`j(s)Z

?
i (s) exp{β

T
?ψZ

?
i (s)}∑n

`=1m`j(s) exp{βT?ψZ
?
i (s)}

.

Since U(β) from (15) behaves asymptotically like a zero-mean estimating function, the solution to U(β) = 0, denoted by
β̂?ψ , should yield a consistent estimator of β?ψ.

2.4. Asymptotic Properties and Inference

We propose a variation of a method proposed by Lin et al [5] to construct confidence bands for the mean function of the
proportional means model. The following regularity conditions are imposed:

(a)
[
Ni(t), Ci(t), N

T
i (t), N

D
i (t),Zi(t), γi

]
are independent and identically distributed.

(b) P (Xi ≥ τ) > 0 for all i.
(c) Ni(τ) <∞ for all i.
(d) E[I(Ti ≤ τ)] > 0 for all i.
(e) Zi(t) is of bounded variation.

Under these conditions, it can be shown that

n1/2(β̂ − β) = A−1(β)n−1/2
n∑
i=1

U i(β) + op(1), (16)

where

U i(β) =

∫ τ

0

mi(s)

∫ τ−s

0

{Z?i (s)− z?(u; s)}dMi(s)dF
T (s),

A(β) = E

[∫ τ

0

mi(s)

∫ τ−s

0

{Z?i (s)− z?(u; s)}⊗2 exp{βTZ?i }dR0
i (u; s)dFT (s)

]
,

mi(s) is an indicator taking value 1 when patient i is matched in terms of prognostic score to the index patient treated at
time s and FT (s) is defined as above.

We the approximate the distribution of (16) using the sandwich form Â
−1

(β̂)n−1/2
∑n

i=1 Û i(β̂)Û i(β̂)
T .

3. Simulation Study

3.1. Simulations of Proposed Method

We conducted simulations to demonstrate the properties of the proposed estimator in moderate sized samples. For each
scenario we simulated 1000 subjects 500 times. In addition to the observed experience, the counterfactual, treatment-
free experience was generated for each subject in order to determine target values for β?, which, given the complex data
structure, were difficult to pre-specify. Target values of β? were determined by simulating observed and counterfactual
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Table 1. Results from simulations of n=1000 subjects with varying baseline pre-treatment event rates

Scenario dµ1
0 β? Estimate Bias ESE ASE CP

1 0.3 -0.725 -0.731 -0.006 0.179 0.167 0.94
2 0.4 -0.553 -0.558 -0.005 0.171 0.165 0.95
3 0.5 -0.407 -0.410 -0.003 0.171 0.162 0.95
4 0.75 -0.111 -0.115 -0.004 0.172 0.157 0.94
5 1 0.113 0.111 -0.002 0.166 0.154 0.94
6 1.5 0.454 0.449 -0.005 0.166 0.149 0.93
7 1.75 0.592 0.585 -0.007 0.163 0.147 0.93
8 2 0.714 0.702 -0.012 0.166 0.145 0.92

experience for 100,000 subjects 10 times and comparing each treated subjects’ observed experience to their counterfactual
experience.

Independent adjustment covariates Zi1 and Zi2 were generated to follow a Bernoulli(0.5) distribution. A longitudinal
covariate Z3 was generated to follow a U(0, 1) distribution at time 0 updated at every time unit with increment
Bernoulli(0.5)× U(0, 1). Starting at time 0, we generated a new event process based on the updated value
of Z3 using a frailty model with rate parameter Qidµ0 exp {α1Zi1 + α2Zi2 + α3Zi3(t)}, where dµ0 = 10, α1 =
0.3, α2 = −0.1, α3 = 0.1, where Qi was distributed Gamma with mean 1 and variance 0.5. Qi was used to
induce additional correlation between recurrent events and was capped at 2, the 90th percentile. Treatment times,
TSi , were then generated to follow the hazard λT0 exp {δ1Zi1 + δ2Zi2 + δ3 log(Ni(t

−) + 1) + δ4Zi3(t)}, where δ1 =
−0.2, δ2 = 0.2, δ3 = 0.2, δ4 = 0.4. The recurrent event times post-treatment were generated from rate parameter
Qidµ

T
0 exp {φ1Zi1 + φ2Zi2 + φ3 log(Ni(Ti) + 1) + φ4Zi3(t)}, where φ1 = 0.3, φ2 = −0.1, φ3 = 0.2, φ4 = 0.1.

Once the data were generated, prognostic scores representing pre-treatment event trajectories were obtained from the
model dµ0

i (t) = exp
{
α01Zi1 + α02Zi2 + α03N

0
i (t

−) + α04Zi3(t)
}

. Subjects were matched if | log ψ̂ij | ≤ 0.025.
Parameters used in the simulation studies are as follows. For the pre-treatment event rates, we set dµ0 = 3, α1 = 0.3, and

α2 = −0.1 for the observed process and dµ0 = 6, α1 = 0.3, and α2 = −0.1 for the unobserved process. For the treatment
hazard, λT0 = 0.01, δ1 = −0.2, δ2 = 0.1, δ3 = 0.2, and δ4 = 0.5. Finally, for the post-treatment event rate, dµT0 was given
values of 1, 1.5, 2, 3, 4, and 5, φ1 = 0.3, φ2 = −0.1, and φ3 = 0.2. This resulted in values of β? ranging from -0.725 to
0.714. In the simulated data 8% of the sample received treatment and the mean number of events was 20.7.

Results from the simulations are show in Table 1. Absolute bias ranged from 0.002 to 0.012. Empirical and asymptotic
standard errors were similar, and coverage probabilities ranged from 0.92 to 0.95, close to the target level of 0.95.

3.2. Investigation of dependent censoring

Recall that subjects are censored from strata in which they serve as controls if they subsequently receive treatment. Since
treatment depends on, among other things, the event history, this will result in dependent censoring in cases where
treatment is not rare. We used simulation to explore the point at which more common treatments result in substantial
bias. To do this we used a similar set up to that of the previous section except that dµT0 was set at 1 and λT0 took on values
of 0.01, 0.05, 0.15, and 0.3. This resulted in percentages of subjects treated ranging from 8% to 64%. Results of these
simulations are shown in Table 2.

As shown in Figure 1, increasing the proportion of subjects treated increases bias and decreases coverage probability.
At approximately one-third of subjects treated bias is at 0.03, and this almost triples to 0.086 when 64% of subjects are
treated, with increased bias resulting in lower coverage. Bias and coverage are similar from 8-24% treated, likely due
to the smaller absolute number of treated subjects. However, as the percentage of subjects treated increases, censoring of
subjects serving as controls due to subsequent treatment results in dependent censoring that begins to have a non-negligible
effect on the treatment effect. Given this trajectory it is important to keep in mind that methods such as IPCW aimed at
correcting dependent censoring are not necessary only if the proportion of treated subjects relatively rare; however, once
the proportion of treated subjects becomes more prevalent weighting is necessary to correct bias.
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Table 2. Results from simulations with varying percent treated

Scenario % Treated β? Estimate Bias ESE ASE CP

1 8% 0.714 0.706 -0.008 0.151 0.145 0.95
2 16% 0.693 0.681 -0.012 0.115 0.103 0.93
3 24% 0.674 0.651 -0.023 0.095 0.086 0.92
4 33% 0.650 0.620 -0.030 0.079 0.075 0.92
5 41% 0.626 0.585 -0.041 0.076 0.068 0.88
6 46% 0.603 0.553 -0.050 0.071 0.064 0.84
7 54% 0.578 0.518 -0.060 0.065 0.061 0.81
8 64% 0.536 0.450 -0.086 0.059 0.054 0.72

Figure 1. Bias and coverage probability with increasing percentage treated: The left y-axis shows bias and corresponds to the solid line. The right y-axis shows coverage probability
and corresponds to the dashed line.

4. Application to Liver Transplantation

Development of End Stage Renal Disease (ESRD) post-liver transplant leads to increased patient morbidity and
mortality, and places increased burden on heath care resources. We will use the proposed method to evaluate effect of
ESRD development post-liver transplant on the number of days hospitalized in the Adult-to-Adult Living Donor Liver
Transplantation Cohort Study (A2ALL). In this setting the “treatment” of interest is development of ESRD, defined
as initiation of dialysis or kidney transplant post-liver transplant. As mentioned previously, the proposed method is
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Table 3. Prognostic model: Pre-treatment rate of days hospitalized

Parameter Rate Ratio 95% Confidence Interval p-value
Recipient age at Transplant (ref=65+)
18−40 1.00 (0.95, 1.06) 0.873
40−50 0.77 (0.73, 0.81) <.001
50−55 0.79 (0.75, 0.83) <.001
55−60 0.78 (0.74, 0.82) <.001
60−65 0.87 (0.82, 0.92) <.001
Recipient diagnosis: HCV 1.07 (1.04, 1.10) <.001
African−American (ref=all others) 0.75 (0.71, 0.79) <.001
Diabetes 0.89 (0.86, 0.92) <.001
Ln(creatinine) (time−dependent) 1.31 (1.27, 1.35) <.001
Ln(bilirubin) (time−dependent) 1.09 (1.07, 1.10) <.001
Ln(albumin) (time−dependent) 0.36 (0.34, 0.38) <.001
Donor age (ref=70+)
<18 0.64 (0.55, 0.74) <.001
18−40 0.76 (0.67, 0.87) <.001
40−50 0.78 (0.69, 0.89) <.001
50−60 1.02 (0.90, 1.16) 0.722
60−70 0.72 (0.63, 0.83) <.001
DCD (ref=non−DCD) 1.33 (1.21, 1.47) <.001
Regional (ref=Local) 1.32 (1.25, 1.40) <.001
National (ref=Local) 1.41 (1.32, 1.51) <.001
Split Liver 1.18 (1.08, 1.29) <.001
Living Donor (ref=Deceased Donor) 0.96 (0.88, 1.05) 0.397
Hospitalization History (per day) 1.02 (1.02, 1.02) <.001

generalizable to time-dependent state changes such as development of post-LT ESRD. In this setting we utilize time-
dependent markers of kidney function such as creatinine to estimate the hopitalization trajectory from the time of transplant
to the development of ESRD, and use these to match with patients on similar trajectories that do not develop ESRD.
Comparing the rate of days hospitalized for a patient that develops post-LT ESRD compared to the rate that would have
been observed had the patient not developed ESRD is a critical component to the estimation of the costs of post-LT care.

A2ALL is a multi-center NIH-funded consortium composed of 12 North American transplant centers. Potential living
donor liver transplant (LDLT) recipients transplanted between January 1, 1998 and January 31, 2014 were enrolled.
Retrospective and prospective data collection included post-transplant vital status and laboratory information as well as
hospitalization admission and discharge information. Data were supplemented from the Scientific Registry of Transplant
Recipients (SRTR). The SRTR data system includes data on all donors, wait-listed candidates, and transplant recipients in
the United States; these data are submitted by the members of OPTN and have been described elsewhere. The Health
Resources and Services Administration (US Department of Health and Human Services) provides oversight for the
activities of the OPTN and SRTR contractors.

There were 55 ESRD events out of 1447 transplanted patients in A2ALL. Median post-transplant follow-up time was
5 years, and the average number of days hospitalized per patient year was 14.9 for non-ESRD patients and 37.2 for
ESRD patients (median days 2.3 and 5.1, respectively). Hospitalization admissions that occurred after discharge from the
transplant hospitalization but before onset of ESRD were used to build the prognostic model, which was adjusted for the
event history as well as other transplant and post-transplant time-dependent predictors. Results from the prognostic model
are shown in Table 3. Each additional day of hospitalization history was associated with a 2% increase in the rate of future
hospitalization days (p <0.001).

Using prognostic scores derived from the model in Table 3, the distribution of prognostic score distance from index
patient with and without matching is shown in Figure 2. Prior to matching on prognostic score the range of distance
between the index subject and matched controls spans from -7.2 to 5.4, with 98% of matched controls within the interval
[−1.5, 3.5] from the index subject. When the 55 patients that developed ESRD post-transplant were matched to patients
that had not yet developed ESRD based on prognostic score, with all control subjects within ±0.02, the distribution of
score distance is much tighter around zero. The matching resulted in a median of 14 matches, with 6 (11%) of patients
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Figure 2. Distribution of prognostic score distance from index patient with and without matching: The left panel shows the difference in prognostic scores between the index patient
and all potential controls. The right panel shows the difference in prognostic scores between the index patient and matched controls, i.e. controls with prognostic scores within the
caliper.

that developed ESRD being excluded due to lack of matches.
The proposed method was then used to fit a stratified model to determine the effect of ESRD on the rate of days

hospitalized (Model I) using model (10). The following traditional time-dependent proportional rates models were also
fitted where ESRD status was treated as a time-dependent predictor adjusted for the same predictors in the prognostic
model (Table 2).

µi(t) = µ0
i (t) exp{θIII(Ti ≤ t) + β

TZi(t)}. (17)

µi(t) = µ0
i (t) exp{θIIII(Ti ≤ t) + β

TZi}. (18)

In the first model, model (17), additional time-dependent predictors thought to be associated with the progression to
ESRD were included, such as lab values and hospitalization history, while in second model, (18), only baseline, i.e. at
transplant, values of these predictors were used. The results from all three models are shown in Table 4. In Model I,
which uses the proposed method, patients that develop ESRD have a rate of days hospitalized that is 2.9 times higher than
patients that have not yet developed ESRD. By contrast, results from Model II give a rate that is only 1.4 times higher for
patients that have developed ESRD, but this comparison is to patients without ESRD that have the same lab values and
hospitalization history at time t. By contrast, adjusting only for baseline values of factors associated with the development
of ESRD (Model III) estimates that patients that develop ESRD have a days hospitalized rate 3.2 times higher than patients
that do not have ESRD at time t and were similar at transplant. This comparison demonstrates how use of the proposed
method balances the opposing biases of over- and under-adjustment. As a sensitivity analysis we also tested interactions
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Table 4. Rate of days hospitalized post-liver transplant: comparison of proposed method with traditional baseline and
time-dependent Cox models

Model Equation Parameter RR 95% CI p-value

I: Proposed Method (10) β? 2.90 (1.69, 4.97) <0.001

II: Time-dependent Adjustment Covariates (17) θII 1.44 (1.35, 1.53) <0.001

III: Baseline Adjustment Covariates (18) θIII 3.17 (3.01, 3.35) <0.001

RR=Rate Ratio; CI = Confidence Interval

with time since development of ESRD and time of development of ESRD, but no significant variations in the effect ESRD
development were found (both rate ratios ≈ 1, p = 0.23 and p = 0.68, respectively).

5. Discussion

In this report we lay out a two-stage method for estimating the effect of time-dependent treatments on recurrent events
using an extension of the method of sequential stratification. The method proposed is partly conditional in the sense that
information up until treatment time, s, is used in the prognostic model, but the final model for µ?ij(t; s) does not condition
on covariates after s. A purely conditional model (e.g. Anderson and Gill [1]), which would include covariate information
on [s, s+ t), would tend to dampen the effect of treatment because it would require comparison subjects to have the same
history at the time of treatment. A marginal analysis such as that of Lin et al [5], on the other hand, would exaggerate
the effect of treatment because since treatment depends on the history, subjects that receive treatment at time s may differ
from those that do not. Our method ensures subjects are similar up to s through conditioning, and is marginal thereafter,
so that the post-treatment comparison averages over the treatment-free experience of the matched controls.

Note that there are two practical considerations to consider when applying this method. First, in order to fit the
prognostic model there needs to be sufficient observed time-at-risk prior to treatment, and a sufficient number of events
prior to treatment. In the repeated measures setting this is generally not a concern since a given subject can have multiple
events, however, if the recurrent event is rare and many subjects never experience the recurrent event or don’t experience
their first recurrent event prior to treatment this must be considered. Second, there must be enough strata for sequential
stratification to be appropriately applied. In the proposed method each treated subject forms their own stratum and is
matched to patients with similar prognostic scores at the time of treatment. In theory this implies that there does not
need to be large variation in treatment times, however the method was developed for the setting in which subjects receive
treatment at varying times during follow-up, and in the setting in which all patients are treated at the same time (i.e. at or
close to baseline) alternative, traditional methods apply.

The biases of the approaches featuring either baseline-covariate-only or fully time-dependent covariate adjustment is
demonstrated in Section 5 in the context of the development of post-liver transplant ESRD in the A2ALL study. While all
three methods produced significant results, the fully time-dependent model, which included a time-dependent indicator for
development of ESRD as well as time-dependent lab values and previous number of days hospitalized (each associated
with renal failure progression) underestimated the effect of ESRD on the rate of days hospitalized by almost half. In
contrast, the baseline-covariate-only approach over-estimated the effect of ESRD development. While in this application
the two traditional models produced bias in opposite directions, this may not always be the case, and the direction of
the bias may depend on the magnitude and direction of association between the time-dependent covariate(s) and the
probability of treatment and the recurrent event rate, the degree of model misspecification, and the presence of non-linear
link functions. In addition, the comparison groups for these models are not constructed in a way that gives the desired
interpretation; i.e. a comparison of the event rate in the time period following treatment in the presence and absence of
treatment.

Note that the outcome chosen in the application was days hospitalized instead of hospital admissions. Analyses of
hospital admissions often ignore the fact that patients are not at risk for hospitalization during the period in which they are
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in the hospital. This can be accounted for by removing the duration of hospitalization from the risk set, however, this step
is often ignored. Modeling days hospitalized instead of hospital admissions automatically removes this potential for error,
however, in some situations, hospital admissions may be a more relevant outcome.

As mentioned previously, it follows from the dependence of treatment initiation on the event history that censoring
of matched controls due to treatment would constitute dependent censoring. We have shown that when the treatment is
rare, bias is not substantial, and therefore IPCW to correct for dependent censoring is not necessary. However, for more
common treatments, bias will be induced and therefore some sort of weighting must be done to preserve the unbiased
properties of β?.

The proposed method makes use of the prognostic score in order to match as yet untreated patients into strata. Another
viable alternative would be propensity matching [22], i.e., matching on the probability of receiving treatment. A time-
dependent propensity score has been proposed by Lu [29], and could be used in this setting. Our goal, however, was
to create a comparison group that mirrored the treatment-free experience of a subject treated at time s. It was therefore
necessary to ensure that the event trajectories up until s were the same between treated and control subjects, a property
that the propensity score does not preserve. Some combination of prognostic and propensity scores could also be used.
Another potential option would be to hard match on the event counter at the time of treatment initiation, given that it is
the strongest predictor of the pre-treatment event rate. However, we previously investigated this approach and found that
prognostic score matching performed better ([27]).

One limitation of the proposed method is that it does not account for terminating events that halt all further occurrences
of the recurrent event. The terminal event is often correlated with the recurrent event, and when treated as a censoring
mechanism, can result in dependent censoring. Numerous methods for the simultaneous modeling of recurrent and
terminal events are currently available. Marginal models of recurrent events while subjects are alive have been described by
Cook and Lawless [23] and Ghosh and Lin [24]. Joint modeling methods where the recurrent and terminal event processes
are linked through a subject-level random effect have been proposed by Liu et al. [25], Ye et al. [26], Kalbfleisch et al.
[28], and others. Development of these methods is currently underway.
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