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As computers get faster, researchers—not hardware or algorithms—become the bottleneck in scientific discovery. Com-
putational study of colloidal self-assembly is one area that is keenly affected: even after computers generate massive
amounts of raw data, performing an exhaustive search to determine what (if any) ordered structures occur in a large
parameter space of many simulations can be excruciating. We demonstrate how machine learning can be applied to dis-
cover interesting areas of parameter space in colloidal self-assembly. We create numerical fingerprints—inspired by
bond orientational order diagrams—of structures found in self-assembly studies and use these descriptors to both find
interesting regions in a phase diagram and identify characteristic local environments in simulations in an automated
manner for simple and complex crystal structures. Utilizing these methods allows analysis to keep up with the data gen-
eration ability of modern high-throughput computing environments. VC 2018 American Institute of Chemical Engineers
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Introduction

In the process of engineering the self-assembly behavior

of colloidal- and nanoscale particles, scientists leave enor-

mous amounts of configurational data in their wake.

Experimentally, crystal structures with tunable properties

can be created through anisotropic colloidal building

blocks,1 DNA-coated nanoparticles,2–4 or a host of other

interactions.5 In computational studies of colloidal matter,

various simple, as well as complex, phases can be formed

through systematic modification of entropic or enthalpic

interparticle interactions.6–11 For exploratory studies of

these parameter spaces, the design process is difficult:

after the computationally expensive undertaking of per-

forming simulations, each data set must also be ana-

lyzed—a procedure that is often manual, repetitive, and

labor-intensive in the case of crystal structure identifica-

tion. This analysis difficulty is partly due to the wide vari-

ety of crystal structures that can be found in self-

assembling systems, as shown in Figure 1. As advances in

hardware and software conspire to decrease the cost of

parallel computation, it will only become more imperative

that researchers utilize automated, high-performance

analysis methods to investigate the data generated from
their high-throughput simulation codes.

Automated analysis of data from two-dimensional systems
has been successfully performed using variations on the n-atic
order parameter(s) wn, defined for each particle as12,13
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where the sum is over particle i’s neighbors and hij is the angle
of the bond between particle i and particle j. wn can identify
tetratic and hexatic behavior in hard squares,14 rectangles,15

and disks,12,13 as well as hexagonal order in systems of
active disks.16 In general, this order parameter works well for
detecting local n-fold bond orientational ordering in two-
dimensional systems, as evidenced by its wide use in these
applications. In three spatial dimensions, however, structural

order can be more complex, and detecting it more challenging.
The Steinhardt order parameter(s)17 Qn are natural three-
dimensional analogues to the n-atic order parameters and they
have been used to analyze many systems assembling relatively
simple structures,17–19 but they have some shortcomings. Even
for some of the simplest, most common structures we find in
self-assembly, Steinhardt order parameters Qn (and the related
family of order parameters Wn, also derived from combina-
tions of neighbor-bond spherical harmonics) often poorly dis-
tinguish between distinct structures, and can be distributed
differently for the same structure formed by dissimilar pair-
wise interactions.20 Usually the inputs to Steinhardt order
parameters for selection of neighbor shells, as well as thresh-
old values for recognizing particles as being crystalline must
be carefully tuned by hand to optimize the specificity for each
system they will be used to identify.17,21,22 Ideally, the order
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parameters we use would be more robust and less biased if
driven by the data we are interested in rather than arbitrary
choices of symmetries to search for and hand-picked threshold
values for the chosen parameters.

Another problem that hinders automatic structure analy-

sis is that we typically do not know which structures are

present in a data set before analyzing it exhaustively. This

can be problematic even for simple systems. For example,

hard particles—which have some of the simplest interac-

tions to define — are known to self-assemble into a great

diversity of complex structures, including quasicrystals

and crystals with many-atom repeat units.10,23 Creating

and tuning high-specificity order parameters by hand for

each of these structures would be an onerous task. Rather

than designing and optimizing parameters manually, we

endeavor to create generic descriptions of local symmetry

and to utilize machine learning methods, in conjunction

with simulation data, to automatically formulate appropri-

ate order parameters for the structures we find. Here we

will show that we can use machine learning methods to

cluster data into sets of similar structures before the struc-

tures have been identified, or to identify systems quickly

and efficiently given a set of known structures.
Machine learning (ML) has proven to be a powerful tool

in many different fields. Typically, researchers use

domain-specific knowledge to create a set of “descriptors”

which place the data of interest in some high-dimensional

space that the ML algorithms can work in. These descrip-

tors should represent the important aspects and invariants

of the systems we wish to study. In the field of soft matter,

researchers have created ML models using descriptors that

are sensitive to particle coordination and local bond angles

to identify crystalline phases24–26 and glassy solids27

respectively. One review paper28 presents an overview of

families of descriptors and order parameters with applica-

tions to condensed matter systems. For the study of colloi-

dal self-assembly, once we evaluate a set of descriptors

for our data, we can apply standard machine learning

methods to solve the problems that interest us. In this

article, we present the use of neighborhood-local spherical
harmonics, inspired by Bond Orientational Order (BOO)
analysis,10,23,28–30 as descriptors of local particle environ-
ments that are sensitive to three-dimensional symmetries.
We demonstrate the usefulness of these descriptors by ana-
lyzing data from self-assembly of complex structures via
common machine learning algorithms.

Bond Orientational Order Analysis

A common method of evaluating the structure of simu-
lated systems is to compare Bond Orientational Order Dia-
grams (BOODs)10,23,28–30 to those of reference structures.
In a BOOD, the bonds—or vectors drawn between par-
ticles, typically within the first neighbor shell—of all the
particles in the system are globally projected in a histo-
gram on the surface of the unit sphere, as shown in Figure
2. Much like a diffraction pattern, the BOOD description
of a system can be informative in analyzing the symmetry
and quality of a crystal. However, BOOD analysis involves
three caveats: first, because the BOOD is a superposition
of all local crystalline environments in the global reference
frame, the presence of different crystal grains—each with
their own orientation—can hinder identification of struc-
tures. In the best case this is merely an annoyance, and in
the worst case it can lead to the misidentification of a
structure. For example, the BOOD of an ABC layered
face-centered cubic (FCC) crystal with a stacking fault can
appear very similar to the BOOD of an AB layered hexag-
onally close-packed (HCP) structure, as shown in Figure
2c. Similarly, FCC structures can also be icosahedrally
twinned,31 which causes the BOOD to exhibit icosahedral
symmetry, again leading to structure misidentification.
Second, because the orientation of a BOOD is tied to the
orientation of the crystal it comes from, point-matching or
symmetry detection algorithms28 would need to be
employed to automatically compare a new sample to refer-
ence BOODs or find high-symmetry axes. Finally, BOODs
are graphical metrics and can thus be difficult to quantita-
tively compare between samples and structures.

Figure 1. Key results from a self-assembly study of isotropic pair potentials.11

(a) The oscillating pair potential V(r) used in the study and a schematic adaptation of the phase diagram11 as generated by manual

analysis of the structures generated by systematically varying k and /. The quasicrystalline region contains low-density and

intermediate-density icosahedral quasicrystals, as well as a high-density quasicrystal approximant. The clathrates that form are

typically a mixture of clathrates I, II, and IV, with the prevalence of individual structures primarily dictated by the potential

parameter k. (b) A subset of the simple and complex structures that self-assemble from the oscillating pair potential. For each

structure, Pearson symbols and particle configurations in crystal unit cells are shown on the left, and Voronoi polyhedra corre-

sponding to representative nearest-neighbor local environments are shown on the right. [Color figure can be viewed at wileyonline-

library.com]
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In this work we retain the idea of viewing projections of
near-neighbor bonds, but rather than arranging them based
on the global orientation of the crystal, we orient the bonds
of each particle by a local measure: the principal axes of
rotation (the eigenvectors of the inertia tensor) of its local
neighborhood.

Local Neighborhood Descriptors

For structural analysis, global rotational invariance is one of
the most basic properties we require of an order parameter. If
the order parameters we generate are sensitive to sample ori-
entation, they will be less helpful when identifying the same
structure in two different systems, which may have crystal-
lized with two distinct orientations. Ideally, identical bulk
structures with different global orientations—or even within
the same system in polycrystalline samples—would be indis-
tinguishable given only the values of the order parameters we
create. For crystals of anisotropic particles, a good choice of
local reference frame could be based on the orientation of the
reference particle; however, in plastic crystals this information
would be less useful due to the rotational freedom of the par-
ticles and, in general, this idea is not applicable to point
particles.

To achieve global rotational invariance in our algorithm
using only local information and without assuming that par-
ticles are anisotropic, we orient each particle’s local environ-
ment based on the principal axes of rotation of its nearest
neighbors*, represented as point masses. For a given number
of nearest neighbors Nn around particle i, the inertia tensor of
the neighborhood is

�Iði;NnÞ5
XNn

j51

ð~rij � ~rijÞ�12~rij � ~rij

where ~rij is the vector from particle i’s position to the position
of its jth nearest neighbor, �1 is the identity tensor, and � is the
tensor product. We then rotate the points into the principal ref-
erence frame for each particle, where the inertia tensor of the
neighborhood is diagonal. We accomplish this by finding the
eigenvalues ki and corresponding eigenvectors ~vi of the inertia

tensor. We orient the structure such that the eigenvector with

the largest eigenvalue (and moment of inertia) is in the z-direc-

tion, the second-largest in the y-direction, and the smallest in

the x-direction.
Using the inertia tensor to orient the local environment

involves three details. First, the result of the diagonaliza-

tion procedure depends strongly on the number of particles

Nn in the local neighborhood and the symmetry of the

structure being studied. For machine learning algorithms,

which are often used for very high-dimensional data, we

simply concatenate the descriptors computed for several

different neighborhood sizes. Second, when the inertia ten-

sor has repeated eigenvalues, diagonalization orients the
neighborhood with one (two identical eigenvalues) or two

(three identical eigenvalues) remaining degrees of freedom

randomly distributed, placing bonds randomly in rings or

on the surface of the sphere, respectively. In the latter

case both ordered and disordered structures exhibit no dis-

tinct intensity peaks, but we emphasize that this only

occurs for particular combinations of structure and neigh-

borhood size, so when descriptors are computed for

machine learning applications—using a range of neighbor-

hood sizes—this ambiguity is not an issue. Finally, in

ordered systems with well-defined shells of nearest-
neighbor particles, there is often a degeneracy in terms of

which nearest-neighbor particles within the shell the algo-

rithm will find—for example, when looking at 5-particle

neighborhoods in the cI2 (BCC) structure, there are
� 8

5

�

ways to place five particles in the eight vertices of the

cube in the first neighbor shell, many of which are equiva-

lent by symmetry. One solution to this problem is to aver-

age over multiple particles’ descriptors, which samples

over the various ways that particles can be placed within

neighbor shells. Alternatively, supervised learning meth-
ods are not limited to using pairwise distances as a mea-

sure of similarity and can naturally learn which features

are important to associate the multiple distinct appearances

of a local neighborhood to a single crystal structure.
Crystal structures can be visualized in the same manner as

BOODs10,28–30 using histograms of the bonds between neigh-

boring particles, rotated into the reference frame of the local

neighborhood as defined above. This procedure forms distinct

Figure 2. Bond orientational order diagrams (BOODs) for various systems.

(a) Geometry schematics and BOODs for simple cubic, body-centered cubic, and face-centered cubic structures. (b) Geometry

schematics and BOODs of structures with multiple local environment orientations. The BOOD is the superposition of the signals

from the bonds of each local environment orientation. (c) BOODs of real face-centered cubic structures with defects. Above, the

BOOD appears very similar to that of a hexagonally close-packed structure due to stacking faults. Below, the BOOD appears to

exhibit 10-fold symmetry due to polycrystallinity. Points with blue and yellow coronas are only on the front-facing and back-facing

side of the sphere, respectively. [Color figure can be viewed at wileyonlinelibrary.com]

*The N nearest neighbors of particle with index i are the N distinct particles with
smallest Euclidean distance jj~rij jj from particle i, where i 6¼ j.
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patterns—much like BOODs—for different structures and
numbers of neighbors. For several ideal structures with Gauss-
ian noise applied to the positions, we show histograms on the
surface of a unit sphere of the four nearest neighbor bonds in
this reference frame in Figure 3 below.

To create a numerical description of neighboring parti-
cle bonds, we use sets of spherical harmonics Ym

l ðh;/Þ,
which are a natural set of basis functions for density
maps—like these local BOODs—on the surface of a
sphere. Because our definition above creates a useful ori-
entation for each particle based on its local environment,
we do not have to resort to using rotation-invariant combi-
nations of spherical harmonics17 and can evaluate the
spherical harmonics for all l and m.

We can reduce the spherical harmonics in a number of ways
based on the desired application and the capacity of the
machine learning methods we plan to use. When classifying
individual particles, we use the neighbor-averaged spherical
harmonics: for each particle i and a set of spherical harmonics
of degree l and order m, we define

�Y
m
l ði;NnÞ5

1

Nn

����
XNn

j51

Ym
l ðhij;/ijÞ

���� (1)

where hij and /ij are the spherical coordinates of the bond
from particle i to particle j in the reference frame of the local
neighborhood of particle i as defined above and Nn is the num-
ber of nearest-neighbor bonds to consider. This averaging

method is the same idea that is used when computing wn (and
it is identical in the case of m 5 6 l): the signal from some
spherical harmonics would constructively interfere at particu-
lar frequencies (here particular orders of spherical harmonics
(l, m) would exhibit constructive interference for particular
patterns, such as the eight vertices of an axis-aligned cube),
while others would exhibit only noise.

We find that neighbor-averaged spherical harmonics
work well in a supervised ML setting, but due to the com-
binatorial degeneracy of placing particles inside neighbor
shells, the neighbor-averaged spherical harmonics do not
work as well for unsupervised learning algorithms. When
training unsupervised models, we can instead look at glob-
ally averaged spherical harmonics: that is, for a particular
l and m, we generate

��Y
m
l 5

1

NpNn

����
XNp

i51

XNn

j51

Ym
l ðhij;/ijÞ

���� (2)

where Np is the number of particles in the system. This is
equivalent to taking the spherical harmonic transformation of
the local BOODs shown in Figure 3. This method sacrifices
some of the convenient locality properties of the neighborhood
orientation: if there are grain boundaries or defects in the sys-
tem, their signal will be reflected in the description of the
whole system rather than being localized to the particles that
are part of the grain boundary or defect.

Figure 3. Sphere surface histogram of four nearest-neighbor bonds in the local reference frame as defined by the
nearest 6, 12, and 20 neighbors for face-centered cubic, hexagonally close-packed, body-centered cubic,
and b-manganese structures. FCC and HCP have full neighbor shells at 12 neighbors with diagonal or
nearly diagonal inertia tensors, so they mostly exhibit noise. b-manganese is a more complex structure
with 20 particles per unit cell and exhibits weak patterns at low neighbor counts for this amount of
noise.

[Color figure can be viewed at wileyonlinelibrary.com]
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Using Spherical Harmonic Descriptors
for Structure Identification

To validate the usefulness of our local neighborhood spheri-
cal harmonic descriptors, we study the simulation results of a
paper11 describing the assembly behavior of a host of complex
crystal structures, including clathrates and quasicrystals. We
chose this study because it contains some of the most complex
crystals in terms of size and structure of the repeat unit
that have been predicted so far via colloidal and nanoscale
self-assembly. The crystals were all obtained using the same
two-parameter pair potential, defined as follows

VðrÞ5 1

r15
1

1

r3
cos kðr21:25Þ2/ð Þ

The potential was truncated, shifted, and smoothed to zero at
the third maximum to create short-range interaction poten-
tials. The systems were slowly cooled to a low temperature
from thermalized initial conditions, creating minimal surface
area droplets (not connected through periodic boundary con-
ditions) and columns (connected through periodic boundary
conditions in one dimension) of solid. Different combina-
tions of the two independent potential parameters k and /
produced different crystal structures. Including statistical
replicas, this data set contains over 1,100 samples—a volume
that would take a researcher performing manual analysis
days or weeks to identify. Below we show that using the

spherical harmonics of the neighbor bond distribution—ori-
ented via the local environment—coupled to standard
machine learning methods, we are able to analyze this data
set, without a priori knowledge of the structures, in an auto-
mated manner in under 30 min on a common desktop proces-
sor. We first pair our descriptors with an unsupervised ML
method (clustering via Gaussian Mixture Models32) to iden-
tify interesting structural regions of phase space and then
with a supervised ML algorithm (artificial neural networks)
to generate a complete phase diagram from exemplar crystal
structures. Detailed descriptions of the analysis performed in
all cases are available in the Supporting Information.

Unsupervised Learning

After generating the data, analysis of simulation results typ-
ically begins by trying to determine which—if any—crystal
structures are present, with the eventual goal of identifying
distinct regions in parameter space where each structure is
formed. A simulation data set could include thousands of com-
binations of simulation parameters and several replicas for
each condition, so being able to lump together similar struc-
tures in an automated manner can reduce the required human
work by orders of magnitude. This stage of analysis is an ideal
application of unsupervised learning, which is often used to
group data points together based on some idea of similarity in
a high-dimensional space.

Figure 4. Icosahedral quasicrystal data set phase diagrams generated by unsupervised Gaussian Mixture Models
(GMMs).

(a) Shannon entropy (blue line) of the quasicrystal data set as GMM components are successively merged from 15 clusters to one

cluster. Merged cluster counts corresponding to (b–d) are indicated by black points. (b–d) Phase diagrams generated by taking the

most common predicted cluster type for each parameter point, indicated by the black points in (a). For each selected cluster count,

dark gray regions show a poor preference for any single structure among the samples for those parameters. Each type of system

as identified by the GMM is assigned a different color, but this unsupervised algorithm clusters the distinct structures that it finds

rather than labeling a previously identified set of known structures. Phase boundaries generated by manual analysis11 are included

for reference as black lines. [Color figure can be viewed at wileyonlinelibrary.com]
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We use Gaussian mixture models (GMMs) as implemented

in scikit-learn33 to perform unsupervised learning. Briefly,

GMMs attempt to create a probability density function that

agrees well with the distribution of observed data using a

given number of Gaussian functions in the input space. The

number of Gaussian components in the mixture model is typi-

cally found by optimizing the Bayesian information criterion

(BIC)34 which measures how well a GMM fits the observed

data while penalizing models with many parameters to prevent

overfitting.
While GMMs produced by optimizing the BIC usually fit

well the density distribution of the data set they are trained on,

the clusters that underlie our data are very commonly not

Gaussian-distributed in space. This means that a mapping

from the Gaussian component to which a point belongs (or the

vector of probabilities for each component) to more meaning-

ful cluster membership is necessary. Several algorithms based

on various strategies for generating such a mapping have been

proposed over the years.35–38 In this work we use the method

of Baudry,36 which greedily merges pairs of components

based on the largest decrease in Shannon entropy (for observa-

tions i and components j, 2
P
i;j

pi;jlnðpi;jÞ) caused by merging

the pair of components.
Because there are over one thousand simulated systems in

the icosahedral quasicrystal data set,11 we use globally-

averaged spherical harmonics instead of neighborhood-

averaged spherical harmonics for our GMMs, as in Eq. 2. To

find appropriate values for the maximum number of neighbors

we use for the local bond descriptors and the maximum spheri-
cal harmonic degree l for the local environment descriptors, we
simultaneously optimize these values and the number of Gauss-

ian components in the mixture model using the BIC after pro-
jecting the descriptors to 128 dimensions using Principal
Component Analysis (PCA)39 if the number of descriptors for

each system is greater than 128. In this way, we choose a set of
descriptors that is most readily fit by Gaussian mixtures with
the fewest tunable parameters. To improve the reproducibility

of the GMM fits to the observed probability distributions, we
also select the best GMM (as judged by the BIC) out of three
different initial configurations for each parameter set. In the

end, this procedure selects 7 maximum nearest neighbors, a
maximum spherical harmonic degree of 7, and a GMM of 15
Gaussian components. In summary, the globally averaged

spherical harmonics produce a vector of spherical harmonics of
length 36 (corresponding to the eighth triangle number T8: we
produce spherical harmonics with 0< l� 7 and 0�m� l) for
each number of nearest neighbors Nn 2 ½4; 7�, which we concat-

enate into one vector of length 140 for each system snapshot
after excluding the constant ��Y

0

0. We use PCA to project the
input data into 128 dimensional space before formulating

GMMs. We note that the final unsupervised learning results
(after merging GMM components) are qualitatively very similar
for all combinations of these parameters we tried for less than

one close-packed neighbor shell (around 12 neighbors) and
with moderate-to-low spherical harmonic degree (lmax� 12).

After finding a GMM that fits the data well, we can merge
Gaussian mixture components to identify the clusters found in

our data. Following the method of Baudry,36 we sequentially
merge pairs of GMM components that yield the largest
decrease in Shannon entropy. Figure 4a shows the Shannon

entropy as GMM components are merged from the original 15
clusters—where each cluster corresponds to a GMM compo-
nent—down to 1 cluster. In general for this method, the cor-

rect number of clusters to use is indicated by an upward elbow
in the entropy plot. For data that are not perfectly Gaussian in
nature, however, the elbow is smoothed out into more of a

curve. Based on this analysis, reasonable choices for the num-
ber of clusters to select may be between 9 and 13.

Phase diagrams for three selections of cluster counts, colored
by the clusters found at each point in parameter space, are
shown in Figures 4b–d. Of the structures in this data set, we

find that the models are able to distinguish least clearly between
the high-density icosahedral quasicrystal approximant and the
disordered region as these are the first components to be

merged. In general, we would expect cleaner crystals and crys-
tals with fewer local environments to have more distinct spheri-
cal harmonic signatures that are easier for the GMMs to

distinguish. Even without knowing how many phases are con-
tained within, the model very accurately maps out the areas
associated with the five crystalline regions, the icosahedral/qua-

sicrystal region, and the disordered region. By clustering similar
samples together, unsupervised learning can reduce the number
of structures in this data set that must be identified by an expert

from over 1,100 to the order of a dozen. Here it is important to
note that the results of unsupervised learning still require man-
ual analysis to identify the structures present within the phase

diagram, for example, by manually identifying the best-scored
sample for each cluster; once this step has been completed,
these exemplar structures can be used to formulate a supervised
learning classifier for high-throughput identification of struc-

tures as illustrated in the next section.

Figure 5. Different crystal structures as identified by
unsupervised learning of local environments.
Colors correspond to the clusters identified
by GMM components in Figure 4d.

(a, b) Pure cP8 and mixed cP8–tP30 phases in the cP8

region of the phase diagram. (c, d) More-ordered and

less-ordered hP2 crystals, respectively. (e, f) BOODs of

more- and less-well-ordered hP2 crystals. [Color figure

can be viewed at wileyonlinelibrary.com]

AIChE Journal June 2018 Vol. 64, No. 6 Published on behalf of the AIChE DOI 10.1002/aic 2203

http://wileyonlinelibrary.com


One interesting observation is the presence of multiple
predicted phases in the cP8 and hP2 regions of the phase
diagram. As shown in Figure 5, on closer inspection we find
that one of the cP8 region structures of the original study11

corresponds to a cP8 structure and the others indicate
polycrystalline cP8 and mixed systems of cP8 and tP30
(Frank-Kasper r) phases. To identify individual particles or
crystalline domains as the cP8 or tP30 phases, we could
apply supervised learning to the descriptors of individual par-
ticles’ local environments instead of globally averaging the
descriptors over entire systems. In contrast to the cP8 case,
the two types of structures found in the hP2 region corre-
spond to a more- and less-well ordered version of the same
hP2 crystal. Because these structures are so similar, it makes
sense that they are among the earliest sets of GMM compo-
nents to be merged. To qualitatively compare the two hP2
structures, we show BOODs of an example of each type of
system in Figures 5e, f.

Supervised Learning

With supervised learning methods, we can use our local
environment descriptors to create order parameters based on
our knowledge of which structures are present in the systems
we study. We take exemplary simulation data for the five
periodic crystal structures, the low- and medium-density ico-
sahedral quasicrystals, the high-density periodic quasicrystal
approximant structure, and four points in the disordered
region of the phase diagram from manual analysis11 and train
a simple feedforward artificial neural network† (ANN) with
one hidden layer to predict the structure (i.e., from which
exemplar sample each particle was taken) from the neighbor-
averaged spherical harmonics of each particle, as given in
Eq. 1. As in our unsupervised learning example, we use local
environments from 4 to 7 nearest neighbors and a maximum
spherical harmonic degree of 7 to generate a 140-
dimensional input vector for each particle. We use this ANN
to construct the phase diagram by finding the most common
particle type prediction among all particles in the systems at
a particular set of conditions. The phase diagram colored by
the most prevalent predicted structure in each simulation is
shown in Figure 6.

Although there are still some tP30 samples in the cP8
region of the phase diagram, the ANN identifies the whole
region as entirely cP8 because tP30 was not given as a distinct
example structure for training. This makes sense because cP8
and tP30 are similar structures, so the ANN identifies the tP30
samples as the nearest structure in descriptor space that it was
trained on—that is, cP8. This ability to generalize with sensi-
ble responses to previously-unseen data is strongly influenced
by the choice of descriptors and ML model and cannot be
taken for granted, as illustrated by the comparison to Stein-
hardt order parameters below.

In the original study,11 detailed analysis of the clathrate
region of the phase diagram was omitted, partly because the
clathrates are complicated structures which often appear next
to each other in the same simulation to form mixtures.
Because the ANN provides a structure estimate for each par-
ticle in a system, we can use it to quantitatively identify the
prevalence of the three clathrate structures present in this
phase diagram, as shown in Figure 7a. The ANN finds an
abundance of clathrate I at low k, II at high k, and IV at

intermediate k, just as was qualitatively described in the orig-
inal study.

Our supervised learning model can also be used to help iso-
late individual grains within a sample, or one structure from
another in a mixed system. In Figure 7b, we show a few typi-
cal systems of clathrates, with each particle colored according
to its predicted type based on its local environment. Visually,
the ANN is able to distinguish the square tiling arrangement
of cage motifs found in clathrate I from the rhombic and trian-
gular arrangement of cage motifs found in clathrates II and IV,
even in highly mixed systems.

Comparison to Steinhardt Order Parameters

We compare our local spherical harmonic descriptors to the
Steinhardt order parameters—which are among the simplest
comparable methods and have been extensively used in analy-
sis of 3D ordered systems17–20—to get an idea of their capabil-
ity. In general, there are many factors that should be carefully
considered when comparing two sets of descriptors. Desirable
attributes include low computational complexity, high infor-
mation density, and the ability to be inverted (i.e., to easily
compute a structure from a set of descriptor values) or refined
(i.e., to be able to generate successively higher-fidelity
descriptions). For the purpose of comparing to previous work,
here we will focus more concretely on the performance of
descriptors in supervised learning applications.

To probe the difference between our neighbor-averaged
spherical harmonic descriptors to the Steinhardt order parame-
ters, we generate a phase diagram of the icosahedral quasicrys-
tal data set using an ANN trained on a vector of per-particle
Steinhardt order parameters for particle i, Ql(i) (with l from 2
to 20):

QlðiÞ5
1

Nn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p

2l11

Xl

m52l

����
XNnðiÞ

j51

Ym
l ðhij;/ijÞ

����
2

vuut : (3)

Here, we take the neighbors that we sum over as all particles
within two standard deviations of the first four nearest-
neighbor distances over the whole sample. While this is poten-
tially a somewhat simplistic choice and more sophisticated

Figure 6. Supervised phase diagram generated by a
neural network trained on representative
structures at particular points in parameter
space. Stars indicate locations of training
data for the disordered region. Black lines
are phase boundaries as identified by
hand.11

[Color figure can be viewed at wileyonlinelibrary.com]

†Artificial neural network models were produced with the python library Keras.40
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methods of using Steinhardt order parameters have been

explored,20 this is effective to illustrate a baseline comparison

of the Steinhardt order parameters and our local environment

spherical harmonic descriptors. The Steinhardt order parame-

ter phase diagram should be directly comparable to the phase

diagram generated using neighbor-averaged spherical harmon-

ics in Figure 6. We show the supervised learning phase dia-

gram generated from Steinhardt order parameter descriptors in

Figure 8.
We find that, while the phase diagram generated from Stein-

hardt order parameters agrees with manual analysis in most

cases, it differs significantly in how well the ANN model can

identify the cP8 and cI16 phases. Looking at these structures

manually in more detail, we find that the network trained with

Steinhardt order parameters identifies tP30, mixed cP8-tP30,

and even pure cP8 systems in the high / region as the low-

density icosahedral quasicrystal structure. Overall, the local

environment spherical harmonics seem to generalize better in

this case for the purpose of identifying structures than the

Steinhardt order parameters.

Conclusion

We have introduced a generalized structural descriptor of a

particle’s local environment that is sensitive to the symmetry

of the local neighborhood. These descriptors are scale-free and

rotation-invariant, and are useful for supervised, as well as

unsupervised, learning of ordered systems. By coupling our

numerical descriptions of local environments to common,

readily available machine learning algorithms, we are able to

locate interesting structural regions of a complex phase dia-

gram without prior information or to apply our knowledge of

the available structures to generate phase diagrams automati-

cally. Because the rate-limiting step of clustering observations

into sets of distinct structures happens in an unsupervised

manner, this method is highly useful for analyzing results of
high-throughput computational experiments. Even though the
descriptors are relatively short-ranged, only looking at the
seven nearest neighbors of each particle in this case, they are
able to distinguish complicated clathrate structures with doz-
ens of particles in a unit cell—and even an icosahedral quasi-
crystal that has no unit cell, but possesses extraordinarily
complex orientational order.

In summary, our method allows machine learning algo-
rithms to automatically build order parameters that describe
interesting structural behavior from data sets. The machine
learning methods and structural descriptors are applicable any-
where that the local environment of a system needs to be char-
acterized, even for complex crystals. We expect our method to
be useful in the study of crystal nucleation and growth, glass

Figure 8. Supervised phase diagram generated using a
vector of per-particle Steinhardt order param-
eters �Ql.

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 7. Identification of clathrate local environments using supervised learning.

(a) Fraction of particles in systems identified as clathrate I, II, and IV, as identified by an ANN. (b) Three representative snapshots

of simulations with particles colored by their identified structure type and a few characteristic cage arrangements from each sam-

ple emphasized. Red: clathrate type I, brown: clathrate type II, blue: clathrate type IV. [Color figure can be viewed at wileyonline-

library.com]
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behavior, and building block design for engineering desirable
structures.
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