Angewandte cheme

Supporting Information

Design, Synthesis, and Application of Chiral C_{2}-Symmetric SpiroketalContaining Ligands in Transition-Metal Catalysis
Alonso J. Argüelles, Siyuan Sun, Brenna G. Budaitis, and Pavel Nagorny*

anie_201713304_sm_miscellaneous_information.pdf

Table of Contents
Table of Contents 2
General information 3
Synthesis of diphosphine (S, S, S)-SPIRAP and Pd(II) complex 4
Synthesis of diphosphine (R, S, S)-SPIRAP and Pd(II) complex 23
Synthesis of diphosphinite (S, R, R)-SPIRAPO 29
Synthesis of monophosphine (R, S, S)-SPIROMP and (S, S, S)-SPIROMP 30
Asymmetric hydroarylation of methylated cinnamyl alcohol 32
Asymmetric allylic alkylation of chalcone derivatives 33
Asymmetric Heck reaction of 2-vinylphenyl triflate with norbornene 35
Asymmetric hydrogenation of quinolines 36
Asymmetric hydrogenation of acrylate derivatives 37
Asymmetric Baylis Hillman reaction of methyl vinyl ketone and an aromatic tosylimine 38
Computational models and analysis 39
X-Ray crystallography studies 46
HPLC, SFC, and GC traces 47
NMR spectra 60
References 143

General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out under an atmosphere of nitrogen in flame-dried glassware with magnetic stirring, unless otherwise noted. Airsensitive reagents and solutions were transferred via syringe or cannula and were introduced to the apparatus through rubber septa. Reactions were cooled via external cooling baths: ice water $\left(0^{\circ} \mathrm{C}\right)$, dry ice-acetone $\left(-78^{\circ} \mathrm{C}\right)$, or Neslab CB 80 immersion cooler (0 to $\left.60^{\circ} \mathrm{C}\right)$. Heating was achieved using a silicone bath with regulated by an electronic contact thermometer. Deionized water was used in the preparation of all aqueous solutions and for all aqueous extractions. Solvents used for extraction and column chromatography were ACS or HPLC grade. Dry tetrahydrofuran (THF), dichloromethane (DCM), toluene (PhMe), and diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) was prepared by filtration through a column (Innovative Technologies) of activated alumina under nitrogen atmosphere. Reactions were monitored by nuclear magnetic resonance (NMR, see below) or thin layer chromatography (TLC) on silica gel precoated glass plates (0.25 mm , SiliCycle, SiliaPlate). TLC plate visualization was accomplished by irradiation with UV light at 254 nm or by staining with a potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ or cerium ammonium molybdate (CAM) solution. Flash chromatography was performed using SiliCycle SiliaFlash P60 (230-400 mesh) silica gel. Powdered $4 \AA$ molecular sieves were pre-activated by flame-drying under vacuum before use.

Proton $\left({ }^{1} \mathrm{H}\right)$, deuterium (D), carbon $\left({ }^{13} \mathrm{C}\right)$, fluorine $\left({ }^{19} \mathrm{~F}\right)$, and phosphorus $\left({ }^{31} \mathrm{P}\right)$ NMR spectra were recorded on Varian VNMRS-700 (700 MHz), Varian VNMRS-500 (500 MHz), Varian INOVA $500\left(500 \mathrm{MHz}\right.$), or Varian MR400 (400 MHz). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$, and ${ }^{31} \mathrm{P}$ NMR spectra are referenced on a unified scale, where the single reference is the frequency of the residual solvent peak in the ${ }^{1} \mathrm{H}$ NMR spectrum. Chemical shifts (δ) are reported in parts per million (ppm) relative to tetramethylsilane for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, fluorotrichloromethane for ${ }^{19} \mathrm{~F}, 85 \%$ phosphoric acid for ${ }^{31} \mathrm{P}$. Data is reported as $(\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=\mathrm{doublet}, \mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet; coupling constant(s) in Hz ; integration). Slight shape deformation of the peaks in some cases due to weak coupling (e.g. aromatic protons) is not explicitly mentioned. High resolution mass spectra (HRMS) were recorded on Micromass AutoSpec Ultima or VG (Micromass) 70-250-S Magnetic sector mass. IR spectra were collected using a Nicolet iS10 spectrometer equipped with a diamond attenuated total reflectance (ATR) accessory. IR absorption peaks were reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. The enantiomeric excesses were determined by GC, SFC, or HPLC analysis employing a chiral stationary phase column and conditions specified in the individual experiment. SFC analysis was carried out in a Waters Investigator SFC instrument. HPLC experiments were performed using a Waters Alliance e2695 Separations Module instrument. GC analysis was done in a Shimadzu GC-2010 Plus instrument. Optical rotations were measured at room temperature in a solvent of choice on a JASCO P-2000 digital polarimeter at 589 nm (D-line).

Synthesis of diphosphine (S,S,S)-SPIRAP and Pd(II) complex

3-(methoxymethoxy)benzaldehyde (1a)

3-hydroxybenzaldehyde ($24.0 \mathrm{~g}, 196.5 \mathrm{mmol}$), DCM (500 mL), and N,N-diisopropylethylamine ($100 \mathrm{~mL}, 574 \mathrm{mmol}$) were cooled to $0^{\circ} \mathrm{C}$ before adding chloromethyl methyl ether $(23 \mathrm{~mL}, 302.8 \mathrm{mmol})$ over 2 h with a venting needle to handle the fumes. Reaction mixture was then warmed to room temperature. After 17 h at room temperature, reaction mixture was quenched with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(500 \mathrm{~mL})$. After separating the phases, the aqueous layer was extracted DCM twice. Combined organic was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Crude was purified by $\mathrm{FCC}\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc}\right.$ in hexanes) to obtain the desired product 1 a as pale yellow liquid $(31.94 \mathrm{~g}, 97.8 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.98(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 191.96,157.76,137.82,130.11,123.81,122.83,115.93,94.39,56.16$. IR (film): $\mathrm{v}_{\max }=2956,2923,2849,2730,1699,1585,1463,1454,1389,1248,1152,1077,1008,789 \mathrm{~cm}^{-1}$

3-((benzyloxy)methoxy)benzaldehyde (1b)

$\mathrm{NaH}(60 \%$ suspension $)(2.47 \mathrm{~g}, 60.25 \mathrm{mmol})$ was added to a solution of 3 -hydroxybenzaldehyde $(5.00 \mathrm{~g}, 40.94 \mathrm{mmol}) \mathrm{in} \mathrm{DMF}(120 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 15 min , benzyl chloromethyl ether ($8.54 \mathrm{~mL}, 61.42 \mathrm{mmol}$) was added dropwise followed by the addition of tetrabutylammonium iodide $(826 \mathrm{mg}, 2.24 \mathrm{mmol})$. After overnight stirring at $0^{\circ} \mathrm{C}$, reaction mixture was quenched with water (80 mL), and the product was extracted with DCM $(4 \times 70 \mathrm{~mL})$. Combined organic was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. Crude was purified by $\mathrm{FCC}\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}\right.$ in hexanes) to afford aldehyde $\mathbf{1 b}$ as clear oil $(9.62 \mathrm{~g}, 97 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.98(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 6 \mathrm{H}), 5.36(\mathrm{~s}$, $2 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right)$ ס 191.93, 157.83, 137.86, 136.96, 130.14, 128.49, 128.00, 127.98, 123.74, 122.76, 116.16, 92.24, 70.22. IR (film): $v_{\max }=2904,2729,1699,1585,1483,1454,1383,1242,1157,1144,1076,1013,989,736 \mathrm{~cm}^{-1}$

3-(benzyloxy)benzaldehyde (1c)

1c

A solution of 3-hydroxybenzaldehyde ($13.50 \mathrm{~g}, 110.54 \mathrm{mmol}$) and potassium carbonate ($22.90 \mathrm{~g}, 165.7 \mathrm{mmol}$) in DMF (225 mL) was treated dropwise with solution of benzylchloride ($19 \mathrm{~mL}, 165.1 \mathrm{mmol}$) in DMF (160 mL). After 15 min at $50^{\circ} \mathrm{C}$, reaction mixture was heated to $85^{\circ} \mathrm{C}$ for 24 h . Reaction mixture was cooled to room temperature, diluted with DCM (150mL), and quenched with water $(300 \mathrm{~mL})$. After separating the phases, the aqueous layer was extracted with DCM $(3 \times 200 \mathrm{~mL})$. Combined organic was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. Crude was purified by $\mathrm{FCC}\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}\right.$ in hexanes $)$ to yield aldehyde 1c as a white solid $(18.77 \mathrm{~g}, 80 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.98(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}$, 2H).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 192.02,159.30,137.82,136.30,130.10,128.66,128.19,127.53,123.65,122.17,113.27,70.22$.
IR (film): $v_{\max }=2811,2727,1693,1594,1480,1443,1383,1325,1255,1146,1016,990,794,741,697 \mathrm{~cm}^{-1}$

(S)-1-(3-(methoxymethoxy)phenyl)propan-1-ol (2a)

Alkylations using DBNE as a catalyst were based on a reported procedure. ${ }^{[1]}$ Those using aziridine catalyst 3a or 3b were based on another report. ${ }^{[2]}$

a) Using (-)-DBNE

Aldehyde 1a ($31.92 \mathrm{~g}, 192.1 \mathrm{mmol}$), hexanes (370 mL), and N, N-dibutyl-D-(-)-norephedrine ($3.8 \mathrm{~mL}, 13.6 \mathrm{mmol}$) were cooled to $0^{\circ} \mathrm{C}$ before adding a 1 M solution of diethylzinc in hexanes ($430 \mathrm{~mL}, 430 \mathrm{mmol}$) portionwise over 2 h . After 27 h at $0^{\circ} \mathrm{C}$, reaction mixture was quenched with an aqueous solution of $\mathrm{HCI} 1 \mathrm{M}(150 \mathrm{~mL})$ and then filtered with DCM washings. Water $(400 \mathrm{~mL})$ was added to the filtrate. After separating the layers, the aqueous fraction was with DCM twice. Combined organic was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Crude was purified by $\mathrm{FCC}\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc}\right.$ in hexanes) to obtain (\mathbf{S})-2a as pale yellow oil (36.5g, 96.8\% yield, 94% ee).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dt}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{ddd}, \mathrm{J}=8.2,2.6,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 4.60-4.55(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.71(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.36,146.44,129.44,119.47,115.15,113.91,94.44,75.83,56.01,31.84,10.15$.
IR (film): $\mathrm{v}_{\text {max }}=3411$ (br), 2961, 2932, 1586, 1486, 1451, 1242, 1149, 1077, 1011, $993,923 \mathrm{~cm}^{-1}$
HPLC (Chiralpak IA column, $96: 4$ hexanes/isopropanol, $1.0 \mathrm{ml} / \mathrm{min})$, $\mathrm{t}_{\mathrm{r}}=15.4 \mathrm{~min}(\mathrm{minor}, R), 17.0 \mathrm{~min}(\mathrm{major}, \mathrm{S})$

b) Using aziridine organocatalyst 3a:

Hexanes $(20 \mathrm{~mL})$, and diphenyl($(R)-1-\left((S)-1\right.$-phenylethyl)aziridin-2-yl)methanol 3 a ($100.0 \mathrm{mg}, 0.30 \mathrm{mmol}$) were cooled to $0^{\circ} \mathrm{C}$ before adding a 1 M solution of diethylzinc in hexanes ($13.3 \mathrm{~mL}, 13.3 \mathrm{mmol}$) dropwise. Reaction mixture was stirred at $0^{\circ} \mathrm{C}$ before the addition of aldehyde $1 \mathrm{a}(1.00 \mathrm{~g}, 6.0 \mathrm{mmol})$ dropwise. After 20 h at $0^{\circ} \mathrm{C}$ and 20 h at room temperature, action mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. After separating the layers, the aqueous fraction was with EtOAc three times. Combined organic was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Crude was purified by FCC ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc}$ in hexanes) to obtain (S)-2a (1.14g, 96.5% yield, $>99 \%$ ee) as pale yellow oil.

Identical spectral properties as above.

(R)-1-(3-((benzyloxy)methoxy)phenyl)propan-1-ol (2b)

Using aziridine organocatalyst 3a:

A solution of $\mathrm{Et}_{2} \mathrm{Zn}\left(1 \mathrm{M}\right.$ in hexanes) $(2.7 \mathrm{~mL}, 2.7 \mathrm{mmol})$ was added dropwise to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of diphenyl((S)-1-((S)-1-phenylethyl)aziridin-2-yl)methanol $3 \mathrm{a}(20 \mathrm{mg}, 0.06 \mathrm{mmol})$ in toluene $(0.5 \mathrm{~mL})$. After 30 min at $0^{\circ} \mathrm{C}$, a solution of aldehyde $\mathbf{1 b}(300 \mathrm{mg}$, $1.24 \mathrm{mmol})$ in toluene (1.5 mL) was added dropwise, and the reaction mixture was allowed to slowly warm to room temperature. After 24 h , reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(8 \mathrm{~mL})$, the solid was filtered, and filtrate was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 8 \mathrm{~mL})$. Combined organic was washed with brine, dried over anhydrous MgSO_{4}, and concentrated in vacuo. Crude was purified by FCC ($\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc}$ in hexanes) to alcohol (S)-2b as a clear oil ($307 \mathrm{mg}, 91.0 \%$ yield, 99% e.e.)

Using aziridine organocatalyst 3b:
A solution of $\mathrm{Et}_{2} \mathrm{Zn}$ (1 M in hexanes) ($6 \mathrm{~mL}, 6 \mathrm{mmol}$) was added dropwise to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of diphenyl((R)-1-((S)-1-phenylethyl)aziridin-2-yl)methanol 3 b ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$) in toluene $(0.5 \mathrm{~mL})$. After 30 min at $0^{\circ} \mathrm{C}$, a solution of aldehyde $\mathbf{1 b}(658 \mathrm{mg}$, 2.72 mmol) in toluene (4.5 mL) was added dropwise, and the reaction mixture was allowed to slowly warm to room temperature. After 24 h , reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(8 \mathrm{~mL})$, the solid was filtered, and filtrate was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 8 \mathrm{~mL})$. Combined organic was washed with brine, dried over anhydrous MgSO_{4}, and concentrated in vacuo. Crude was purified by FCC ($\mathrm{SiO}_{2}, 10 \%$ EtOAc in hexanes) to alcohol (R)-2b as a clear oil ($548 \mathrm{mg}, 74.1 \%$ yield, 99% ee).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 4.57(\mathrm{td}, J=6.6$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.70(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.42,146.43,137.26,129.46,128.43,128.01,127.85,119.51,115.22,113.99,92.30,75.81,69.93$, 31.84, 10.13.

IR (film): $\mathrm{v}_{\max }=3406$ (br), 2962, 2932, 2875, 1585, 1486, 1453, 1237, 1157, 1075, 1015, 993, 785, 736, $696 \mathrm{~cm}^{-1}$
HPLC (Chiralpak IA column, $96: 4$ hexanes/isopropanol, $1.0 \mathrm{ml} / \mathrm{min}$), $\mathrm{t}_{\mathrm{r}}=22.6 \mathrm{~min}(\mathrm{major}, R), 24.2 \mathrm{~min}(\mathrm{minor}, \mathrm{S})$

1-(3-(benzyloxy)phenyl)propan-1-ol (2c)

a) Using (+)-DBNE

Aldehyde 1c ($50 \mathrm{mg}, 0.24 \mathrm{mmol}$), toluene (3 mL), and N , N -dibutyl-D-(+)-norephedrine ($4 \mu \mathrm{~L}, 0.014 \mathrm{mmol}$) were cooled to $0^{\circ} \mathrm{C}$ before adding a 1 M solution of diethylzinc in hexanes $(0.5 \mathrm{~mL}, 0.5 \mathrm{mmol})$ dropwise over 20 min . After 20 h from $0^{\circ} \mathrm{C}$ to room temperature, reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. After separating the layers, the aqueous fraction was with EtOAc three times. Combined organic was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Crude was purified by FCC ($\mathrm{SiO}_{2}, 20 \%$ EtOAc in hexanes) to obtain (R)-2c ($47 \mathrm{mg}, 82 \%$ yield, 95% BRSM, 91% ee) as pale yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}$, $1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=8.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.80$ $(\mathrm{m}, 1 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 158.93,146.52,137.08,129.44,128.61,127.99,127.58,118.71,113.80,112.55,75.81,69.99,31.88$, 10.21.

IR (film): $\mathrm{v}_{\text {max }}=3366$ (br), 3032, 2962, 2929. 2873, 1583, 1485, 1446, 1250, 1154, 1025, 994, $779 \mathrm{~cm}^{-1}$

HPLC (Chiralpak IA column, 95:5 hexanes/isopropanol, $1.0 \mathrm{ml} / \mathrm{min}$), $\mathrm{t}_{\mathrm{r}}=21.2 \mathrm{~min}(R), 24.5 \mathrm{~min}(S)$

b) Using aziridine organocatalyst 3a

Aldehyde 1c (14.2g, 66.9 mmol$)$, toluene (35mL), and diphenyl((S)-1-((S)-1-phenylethyl)aziridin-2-yl)methanol 3a (1.32g, 4.0mmol) were cooled to $0^{\circ} \mathrm{C}$ before adding a 1 M solution of diethylzinc in toluene ($148 \mathrm{~mL}, 148 \mathrm{mmol}$) dropwise over 6 h . Reaction mixture was allowed to warm to room temperature slowly. After $30 h$, reaction mixture was quenched with a saturated solution of $\mathrm{NH} \mathrm{H}_{4} \mathrm{Cl}(150 \mathrm{~mL})$. After separating the layers, the aqueous fraction was with EtOAc three times. Combined organic was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Crude was purified by $\mathrm{FCC}\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc}\right.$ in hexanes) to obtain (S)-2c (16.2g, quant. yield, 98% ee) as pale yellow oil.

Identical spectral properties as above.

Using organocatalyst 3b, (R)-2c obtained in 97.8\% ee.

Lithiation studies

Before optimizing the spiroketalization reaction, we decided to study the selectivity of the ortho-lithiation of alcohols $\mathbf{2}$. After treating $\mathbf{2}$ with 2 equivalents of n-butyllithium, aliquots were extracted at time points and then quenched with $\mathrm{CD}_{3} \mathrm{OD}$. After removing the volatiles, the deuterated material was analyzed by NMR. We found that selective and almost quantitative lithiation at the desired position occurred for $\mathbf{2 a}$ and $\mathbf{2 b}$, and $\mathbf{2 c}$ at around $\mathbf{2 - 3 h}$ in toluene. For example, for $\mathbf{2 a}$:

1hafternBuLi

$2 h$ after nBuLi
H_{a}

3h after nBuLi

For 2b:
Starting material

15 min after nBuLi
H_{a}

30min afternBuLi
H_{a}

1h afternBuLi
H_{a}

2h afternBuLi
H_{a}
$\begin{array}{ll}15 & 7.14 & 7.13 & 7.12 & 7.11 & 7.10 & 7.09 & 7.08 & 7.07 & 7.06 & 7.05 & 7.04 & 7.03 & 7.02 & 7.01 & 7.00 & 6.99 & 6.98 & 6.97 & 6.96 & 6.95 & 6.94 & 6.93 & 6.92 & 6.91\end{array}$

For 2c:
Starting material

Additionally, using THF as solvent, or TMEDA as additive gave unselective lithiations.
(1R,3S, 3^{\prime} 'S)-3,3'-diethyl-7,7'-bis(methoxymethoxy)-3H,3'H-1,1'-spirobi[isobenzofuran] ((R,S,S)-6a)

Alcohol (S)-2a (22.84g, 116.4 mmol$)$ and $\mathrm{PhMe}(330 \mathrm{~mL})$ were cooled to $0^{\circ} \mathrm{C}$ before addition of a 2.5 M solution n-Butyllithium in hexanes (44 mL over 15 min , then 50 mL over $1 \mathrm{~h}, 235.0 \mathrm{mmol}$). Reaction mixture was then warmed to room temperature. After 3 h , the resulting suspension was dissolved using 12 mL of THF and cooled again to $0^{\circ} \mathrm{C}$. Diethyl carbonate (7.7 mL , 63.5 mmol) was incorporated over 2 h at $0^{\circ} \mathrm{C}$. Reaction mixture was allowed to warm slowly to room temperature overnight (12h). Glacial acetic acid $(100 \mathrm{~mL})$ was then added slowly at room temperature. After 4 h at room temperature, reaction mixture was quenched with 500 mL of water, followed by careful addition of 100 g of NaHCO_{3}. After separating the layers, the aqueous fraction was with DCM three times. Combined organic was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The mixture components were purified by FCC $\left(\mathrm{SiO}_{2}\right)$: 3.34 g of starting material 2a (14.6\% recovery) were obtained at 15% EtOAc in hexanes, while 15.65 g of desired product

6a (67.2\% yield, 78.7% BRSM) were isolated at 25% EtOAc in hexanes as pale yellow oil. Additionally, some intermediate isobenzofuranone 4 a ($2.43 \mathrm{~g}, 9.4 \%$ yield) was obtained at 35% EtOAc in hexanes as pale yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{dd}, J=7.9,3.6 \mathrm{~Hz}, 4 \mathrm{H}), 5.40(\mathrm{dd}, J=7.4,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.82(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 6 \mathrm{H}), 1.98(\mathrm{dtd}, J=14.8,7.3,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{dq}, J=14.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 6 H).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.44,145.61,130.58,127.76,113.99,112.15,93.29,83.15,55.60,28.06,9.74$.
ESI-HRMS Calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{6}{ }^{+} 401.1964[\mathrm{M}+\mathrm{H}]^{+}$, found 401.1958 .
IR (film): $v_{\max }=2962,2934,1614,1599,1479,1256,1152,1002,960,928,734 \mathrm{~cm}^{-1}$
(1S,3R, $\left.3^{\prime} R\right)-7,7^{\prime}-$-bis((benzyloxy)methoxy)-3,3'-diethyl-3H, $\mathbf{3}^{\prime} \mathrm{H}-1,1^{\prime}$-spirobi[isobenzofuran] ((S,R,R)-6b)

Alcohol $(S)-2 b(210 \mathrm{mg}, 0.77 \mathrm{mmol})$ and $\mathrm{PhMe}(4.6 \mathrm{~mL})$ were cooled to $0^{\circ} \mathrm{C}$ before dropwise addition of a 2.5 M solution n-Butyllithium in hexanes $(690 \mu \mathrm{~L}, 1.73 \mathrm{mmol})$. Reaction mixture was stirred at room temperature for 90 min . Diethyl carbonate $(50 \mu \mathrm{~L}, 0.41 \mathrm{mmol})$ was incorporated over 20 min at $0^{\circ} \mathrm{C}$. Reaction mixture was allowed to warm slowly to room temperature overnight. After 24 h , glacial acetic acid (1mL) was then added slowly at room temperature. After 5 h at room temperature, reaction mixture was treated with a saturated solution of $\mathrm{NaHCO}_{3}(8 \mathrm{~mL})$. After separating the layers, the aqueous fraction was washed with DCM three times. Combined organic was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The mixture components were purified by $\mathrm{FCC}_{(\mathrm{SiO}}^{2}$, 5% EtOAc in hexanes) to obtain $(S, R, R)-6 \mathbf{b}(126 \mathrm{mg}, 59 \%$ yield, $64 \% \mathrm{BRSM})$ as pale yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{dd}, J=6.5,2.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.93(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{dd}, J=7.4,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.27-4.11(\mathrm{~m}, 4 \mathrm{H}), 1.98(\mathrm{~m}$, $2 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 152.53,145.77,136.67,130.73,128.28,128.25,128.16,127.81,127.78,115.94,114.04,112.11$, $90.33,83.28,69.03,28.13,9.85$.

ESI-HRMS Calcd. for $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{O}_{6}{ }^{+} 553.2584[\mathrm{M}+\mathrm{H}]^{+}$, found 553.2580 .
IR (film): $v_{\max }=2964,2874,1599,1479,1250,1155,1093,1065,1002,958,734,697 \mathrm{~cm}^{-1}$

Alcohol (S)-2c $(200 \mathrm{mg}, 0.83 \mathrm{mmol})$ and $\mathrm{PhMe}(2.4 \mathrm{~mL})$ were cooled to $0^{\circ} \mathrm{C}$ before addition of a 2.5 M solution n-Butyllithium in hexanes $(300 \mu \mathrm{~L}$ dropwise, then $370 \mu \mathrm{~L}$ over $30 \mathrm{~min}, 1.68 \mathrm{mmol})$. Reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h . Dimethyl carbonate ($38 \mu \mathrm{~L}$, 0.45 mmol) was incorporated over $30 \mathrm{~min} 0^{\circ} \mathrm{C}$. Reaction mixture was allowed to warm slowly to room temperature overnight (12h). Glacial acetic acid (1.2 mL) was then added slowly at room temperature. After 6 h at room temperature, reaction mixture was diluted with water $(20 \mathrm{~mL})$ and then neutralized carefully with solid NaHCO_{3}. The product was extracted with DCM three times. Combined organic was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The mixture components were purified by $\mathrm{FCC}\left(\mathrm{SiO}_{2}\right.$, 10% EtOAc in hexanes) to obtain (R, S, S) - $\mathbf{6 c}(84.8 \mathrm{mg}, 42 \%$ yield, $66 \% \mathrm{BRSM}$) as white solid, as well as 74.1 mg of (S)-2c.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.02(\mathrm{~m}, 6 \mathrm{H}), 6.83(\mathrm{dd}, \mathrm{J}=14.9,7.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.75-6.62(\mathrm{~m}, 4 \mathrm{H}), 5.39$ (dd, $J=7.2,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.00-4.80(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.59(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}{ }^{2}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 154.21,145.84,136.62,130.52,127.97,127.50,127.15,126.42,115.83,113.51,110.36,83.14,68.86$, 27.79, 9.64.

ESI-HRMS Calcd. for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{O}_{4}{ }^{+} 493.2373[\mathrm{M}+\mathrm{H}]^{+}$, found 493.2370.
IR (powder): $v_{\max }=3030,2963,2933,2872.1735,1612,1597,1480,1451,1284,1267,1027,930 \mathrm{~cm}^{-1}$
(1R,3S,3'S)-3,3'-diethyl-3H, $\mathbf{3}^{\prime} \mathrm{H}-1,1^{\prime}$ '-spirobi[isobenzofuran]-7,7'-diol ((R,S,S)-7) and (S,S,S)-7 diastereomer from $\mathbf{6 a}$

The deprotection of the MOM group using AcCl in MeOH was mild enough that after 6 h at room temperature the less thermodynamically stable diol $(\mathbf{R}, \mathbf{S}, \mathbf{S})-\mathbf{7}$ is the major compound. However, SiO_{2} and other acidic conditions epimerize it into (S,S,S)-7. These results agree with the calculated ΔG of $1.0 \mathrm{kcal} / \mathrm{mol}$ favoring ($\boldsymbol{R}, \mathbf{S}, \boldsymbol{S}$)-7. Consequently, neutralizing the acidic conditions after 6h of reaction yields (R, S, S)-7 selectively, while performing chromatography after the reaction time gives $(S, S, S)-7$ enriched material, as exemplified below. In addition, acidic deprotection led to partial epimerization of $(\boldsymbol{R}, \mathbf{S}, \mathbf{S})-\mathbf{6 a}$ and $(\boldsymbol{R}, \mathbf{S}, \mathbf{S})-\mathbf{6 b}$ leading to formation of undesired (S,R,S)-7 diastereomer. This side reaction could be avoided by using non-acidic deprotection methods such as hydrogenolysis of (R,S,S)-6c.

(R,S,S)-selective deprotection

Spiroketal (R, S, S)-6a ($21.9 \mathrm{mg}, 0.055 \mathrm{mmol}$) and $\mathrm{MeOH}(0.5 \mathrm{~mL})$ were added to a vial. Solution was cooled to $0^{\circ} \mathrm{C}$, and then acetyl chloride ($8.0 \mu \mathrm{~L}, 0.11 \mathrm{mmol}$) was added slowly. Reaction mixture was warmed to room temperature. After 6h, reaction mixture was quenched with a saturated solution of NaHCO_{3}. Extracted three times with DCM, and then combined organic was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to afford a mixture of diols 7 (17.0mg, 93% yield, d.r. 1:3.8 (S,S,S)-7:(R,S,S)-7 with 6% of undesired $(S, R, S)-7)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=6.7,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.73(\mathrm{~s}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.86,145.37,132.30,123.26,115.49,113.62,83.07,27.76,9.18$.
ESI-HRMS Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{4}{ }^{+} 314.1440[\mathrm{M}+\mathrm{H}]^{+}$, found 314.1435 .

(S,S,S)-selective deprotection

Spiroketal (R,S,S)-6a(2.82g, 7.04 mmol$)$ and $\mathrm{MeOH}(35 \mathrm{~mL})$ were added to a round bottom flask. Solution was cooled to $0^{\circ} \mathrm{C}$, and then acetyl chloride ($1.0 \mathrm{~mL}, 14.1 \mathrm{mmol}$) was added slowly. Reaction mixture was warmed to room temperature. After 6 h , reaction mixture was concentrated in vacuo, and purified by $\mathrm{FCC}\left(\mathrm{SiO}_{2}, 30 \% \rightarrow 40 \%\right.$ EtOAc in hexanes) to obtain a mixture of diols $7(2.15 \mathrm{~g}$, 92.1\% yield 1:1.9 d.r. (R,S,S)-7:(S,S,S)-7 with 5.6% of undesired (S,R,S)-7).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=7.6,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.60(\mathrm{~s}, 1 \mathrm{H}), 1.99-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.65,145.24,131.99,123.37,115.46,113.84,84.89,30.61,9.74$.
(1S, 3R, $3^{\prime} R$)-3,3'-diethyl-3H, $\mathbf{3}^{\prime} \mathrm{H}-1,1^{\prime}$ '-spirobi[isobenzofuran]-7,7'-diol ((S,R,R)-7) from 6b

Spiroketal (S, R, R)-6b ($20.9 \mathrm{mg}, 0.04 \mathrm{mmol}$) and $\mathrm{MeOH}(200 \mu \mathrm{~L})$ were added to a vial. Solution was cooled to $0^{\circ} \mathrm{C}$, and then acetyl chloride ($8.0 \mu \mathrm{~L}, 0.11 \mathrm{mmol}$) was added slowly. Reaction mixture was warmed to room temperature. After 3 h , reaction mixture was diluted with EtOAc, and treated with a saturated solution of $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. After separating layers, the aqueous fraction was extracted three times with EtOAc. Combined organic was washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and purified by $\mathrm{FCC}\left(\mathrm{SiO}_{2}\right.$, $5 \% \rightarrow 40 \%$ EtOAc in hexanes) to obtain a mixture of diols 7 (11.6mg, 87% yield 1:1.3 d.r. (S, R, R) $\mathbf{- 7}:(R, R, R)-7$ with 11% of undesired (R, S, R)-7).
(1R,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diol (R,S,S-7) from 6c

Spiroketal (R,S,S)-6c(54mg, 0.11 mmol$), \mathrm{Pd} / \mathrm{C}(22 \mathrm{mg}, 0.022 \mathrm{mmol}), \mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1 \mathrm{mmol})$ and methanol (2mL) were added to a round bottom flask charged with nitrogen before purging with hydrogen balloon twice. After 2 h at room temperature, reaction mixture was filtered through syringe filter and concentrated in vacuo to obtain a mixture of diols 7 ($32 \mathrm{mg}, 94 \%$ yield, $\mathrm{dr}=1: 6.9(S, S, S)$ -7:(R,S,S)-7, no undesired (S,R,S)-7 was observed) as white solid. Spectral properties described above.

Diol equilibration studies

The isomeric ratio of the diols was variable, because epimerization happens in silica-containing solutions and the dr is dependent on the solvent. Most solvents, such as EtOAc/Hexanes mixtures slightly favor the (S,S,S)-7 isomer. Curiously, SiO_{2} in $\mathrm{PhMe}^{\mathrm{C}} \mathrm{lightly}$ favors equilibration towards the $(\boldsymbol{R}, \mathbf{S}, \mathbf{S})-\mathbf{7}$ isomer, this is not unreasonable given that the gas phase free energy difference between diastereomers is small.

A vial was charged with a $2.9: 1(S, S, S)-7:(R, S, S)-7$ mixture $(300 \mathrm{mg})$, $\mathrm{PhMe}(3 \mathrm{~mL})$, and $\mathrm{SiO}_{2}(3.0 \mathrm{~g})$. After stirring at room temperature for 4 days, the diol mixture was recovered quantitatively by filtration and concentration in vacuo, with a 1:2.4 (S,S,S)-7:(R,S,S)-7 d.r.. Similarly, a vial was charged with a 1:2.4 (S,S,S)-7:(R,S,S)-7 mixture (100mg), EtOAc (0.5mL), hexanes (0.5mL), and SiO ${ }_{2}(1.0 \mathrm{~g})$. After stirring at room temperature for 2 days, the diol mixture was recovered quantitatively by filtration and concentration in vacuo, with a 1.2:1 (S,S,S)-7:(R,S,S)-7 d.r..
(1S,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl bis(trifluoromethanesulfonate) ((S,S,S)-8) from (R,S,S)-6a

(R, S, S)-6a

(R,S,S)-8

$(S, S, S)-8$

The (R, S, S)-8:(S,S,S)-8 ratio was mostly conserved during the triflation, so the product ratio depended on the d.r. of the diol used. An (S, S, S)-8-selective preparation is shown below.

Spiroketal (R, S, S)-6a(12.57g, 31.4 mmol) and methanol $(160 \mathrm{~mL})$ were cooled to $0^{\circ} \mathrm{C}$ before dropwise addition of acetyl chloride $(4.5 \mathrm{~mL}, 63.3 \mathrm{mmol})$. Reaction mixture was then warmed to room temperature. After for 6 h , the volatiles were removed in vacuo, and the crude was purified by $\mathrm{FCC}\left(\mathrm{SiO}_{2}, 30 \% \rightarrow 40 \%\right.$ EtOAc in hexanes). Purified diol, DCM (150mL), and pyridine (12.5mL, 155.2mmol) were cooled to $0^{\circ} \mathrm{C}$ before addition of trifluoromethanesulfonic anhydride ($12.0 \mathrm{~mL}, 71.5 \mathrm{mmol}$) over 30 min . Reaction mixture was then warmed to room temperature. After 1 h , a saturated aqueous solution of $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ was added. After separating the layers, the aqueous phase extracted with DCM twice. Combined organic was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Crude was purified by a short column $\left(\mathrm{SiO}_{2}, 10 \%\right.$ EtOAc in hexanes) to afford a mixture of triflates as an oil which solidified on cooling (17.55g, 91% yield 1:1.9 d.r. (R,S,S)-7:(S,S,S)-7 with 6% of undesired (R,S,R)-7).

The ditriflates can be separated by $\mathrm{FCC}\left(\mathrm{SiO}_{2}, 4 \% \mathrm{EtOAc}\right.$ in hexanes $)$, but for convenience we chose to do a chemical resolution (vide infra). The spectral characteristics of the isolated ditriflates are shown below:
(1R,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl bis(trifluoromethanesulfonate) ((R,S,S)-8)
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 5.36(\mathrm{dd}, J=8.5,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~m}, J=15.0,7.5$, 4.0 Hz, 2H), $1.97-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{19}$ F NMR (376 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-74.57$
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 147.80,144.92,132.21,129.82,122.91,120.81,119.72,119.13,116.54,113.33,83.64,27.39,10.05$. ESI-HRMS Calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{O}_{8} \mathrm{~S}_{2}{ }^{+} 577.0426[\mathrm{M}+\mathrm{H}]^{+}$, found 577.0415 . IR (powder): $\mathbf{v}_{\max }=2975,2878,1470,1419,1204,1137,936,896,848 \mathrm{~cm}^{-1}$
(1S,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl bis(trifluoromethanesulfonate) ((S,S,S)-8)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{dd}, J=7.2,4.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.07-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.06(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H})$
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-74.58$
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 147.33,144.73,132.07,130.30,122.92,121.21,119.74,119.62,119.60,116.55,114.51,113.37$, 84.77, 30.09, 9.45

ESI-HRMS Calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{O}_{8} \mathrm{~S}_{2}{ }^{+} 577.0426[\mathrm{M}+\mathrm{H}]^{+}$, found 577.0418 .
IR (powder): $\mathrm{v}_{\text {max }}=2973,2880,1470,1422,1207,1137,935,852,749 \mathrm{~cm}^{-1}$
(1S,3S,3'S)-7'-(diphenylphosphoryl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl trifluoromethanesulfonate ((S,S,S)-9)

$(S, S, S)-8$ $+(R, S, S)-8$ $+(S, R, S)-8$
 $\mathrm{Pd}(\mathrm{OAc})_{2}$, dppb

DMSO, $80^{\circ} \mathrm{C}$

$(S, S, S)-9$

A flask in the glovebox was charged with a mixture of ditriflates $(12.624 \mathrm{~g}, 21.89 \mathrm{mmol}, 1: 1.9$ d.r. $(\mathbf{R}, \mathbf{S}, \mathbf{S})-\mathbf{7}:(\mathbf{S}, \mathbf{S}, \mathbf{S})-\mathbf{7}$ with 6% of undesired (R, S, R)-7), palladium(II) acetate ($245 \mathrm{mg}, 1.09 \mathrm{mmol}$), 1,4 -Bis(diphenylphosphino)butane ($466 \mathrm{mg}, 1.09 \mathrm{mmol}$), and diphenylphosphine oxide ($4.861 \mathrm{~g}, 24.04 \mathrm{mmol}$). The flask was taken outside the glovebox, and DMSO (85 mL) and N, N diisopropylethylamine $(9.5 \mathrm{~mL}, 54.5 \mathrm{mmol})$ were added. Reaction mixture was then stirred at room temperature for 1 h , before being heated to $80^{\circ} \mathrm{C}$. After 8 h , reaction mixture was cooled to room temperature and partitioned between EtOAc $(260 \mathrm{~mL})$ and a half saturated aqueous solution of $\mathrm{NaHCO}_{3}(260 \mathrm{~mL})$. After separating the layers, the aqueous phase was extracted with EtOAc twice. Combined organic was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Crude was purified by FCC $\left(\mathrm{SiO}_{2}, 10 \rightarrow\right.$ 50% EtOAc in hexanes) to yield two fractions. At 10% EtOAc in hexanes, a (R, S, S) -8 was obtained (4.82 g total, 31% recovery of $(R, S, S)-8$ with 4% undesired (S,R,S)-8) At 50% EtOAc in hexanes, the desired phosphine oxide (S,S,S)-9 was obtained (7.71g, 54% yield of (S,S,S)-9 with 2% undesired ($\mathbf{S}, \boldsymbol{R}, \boldsymbol{S}$)-9).

The desired product was further purified by two recrystallizations from cyclohexane with excellent recovery. The first recrystallization of 5.71 g of the product mixture gave 5.33 g of a $1: 26$ mixture of epimeric product $(\boldsymbol{S}, \boldsymbol{R}, \boldsymbol{S})-\mathbf{8}$ and desired phosphine oxide $(\boldsymbol{S}, \mathbf{S}, \boldsymbol{S})-\mathbf{8}$, respectively (97% recovery of product). A second recrystallization of 5.02 g of this mixture produced 4.58 g of almost pure $(S, S, S)-8$ (1:65 with respect to $(S, R, S)-8)(93 \%$ recovery of product), as a white foam.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.02(\mathrm{dd}, \mathrm{J}=13.9$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{dd}, J=7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{dd}, J=7.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dd}, J=7.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~m}, J=13.5,6.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.83(\mathrm{~m}, \mathrm{~J}=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{2}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.85,146.47,146.40,144.19,141.69,141.64,133.80,133.77,133.70,132.93,132.51,132.14$, 132.07, 131.68, 131.55, 131.53, 131.31, 131.25, 131.20, 131.18, 131.01, 130.94, 128.59, 128.49, 128.22, 128.19, 128.12, 128.09, 127.40, 125.38, 125.36, 121.89, 120.41, 119.34, 118.47, 116.80, 116.25, 85.27, 83.49, 30.60, 29.71, 26.90, 9.88, 9.66.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-75.05.
${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.57$.
ESI-HRMS Calcd. for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{PS}^{+} 629.1375[\mathrm{M}+\mathrm{H}]^{+}$, found 629.1366.
IR (powder): $\mathrm{v}_{\text {max }}=2934,1419,1210,1194,1140,931 \mathrm{~cm}^{-1}$
[$\alpha]_{\mathrm{D}}:-70.8$ ($\mathrm{c}=1.0$ in DCM)
(1S,3S,3'S)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl trifluoromethanesulfonate ((S,S,S)10)

Phosphine oxide (S,S,S)-9 (4.95g, 7.88 mmol), PhMe (80 mL), and Diisopropylethylamine ($55 \mathrm{~mL}, 315.7 \mathrm{mmol}$) were cooled to $0^{\circ} \mathrm{C}$ before addition of trichlorosilane $(12.5 \mathrm{~mL}, 125.7 \mathrm{mmol})$ over 10 min . The flask was sealed with a glass stopped and heated to $80^{\circ} \mathrm{C}$. After 20h, the mixture was cooled to room temperature and quenched carefully by transferring it to a flask containing a saturated aqueous solution of $\mathrm{NaHCO}_{3}(120 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, with diethyl ether washings. Crude was filtered through Celite with diethyl ether washings, and the filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Crude was purified by $\mathrm{FCC}\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}\right.$ in hexanes) to afford (S,S,S)-10 $(3.89 \mathrm{~g}, 80.6 \%$ yield) as white foam.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{td}, \mathrm{J}=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.07$ (td, $J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{dd}, J=7.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{td}, J=7.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{td}, J=6.8,4.6 \mathrm{~Hz}$, $2 H), 1.96(\mathrm{~m}, \mathrm{~J}=16.9,14.0,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~m}, \mathrm{~J}=14.2,7.2,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 147.39,147.37,144.53,143.68,143.62,142.55,142.35,137.03,136.93,135.49,135.41$, 133.96, $133.94,133.63,133.49,133.46,133.33,132.58,132.56,132.42,131.46,129.59,128.42,128.20,128.17,128.12,128.00,127.95$, 122.04, 120.56, 119.35, 118.87, 116.81, 116.51, 116.49, 84.66, 84.61, 84.05, 30.47, 29.70, 9.64, 9.43.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-74.90$
${ }^{31}$ P NMR (202 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-18.88$.
ESI-HRMS Calcd. for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{PS}^{+} 613.1425[\mathrm{M}+\mathrm{H}]^{+}$, found 613.1419.
IR (powder): $\mathrm{v}_{\max }=2970,1738,1421,1211,1140,943 \mathrm{~cm}^{-1}$
$[\alpha]_{\mathrm{D}}:-44.0(\mathrm{c}=1.0$ in DCM $)$
((1S,3S,3'S)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl)diphenylphosphine oxide ((S,S,S)SPIRAP(O))

A flask in the glovebox was charged with phosphine $(\mathbf{S}, \mathbf{S}, \mathbf{S})-10(3.89 \mathrm{~g}, 6.35 \mathrm{mmol})$, palladium(II) acetate $(71.3 \mathrm{mg}, 0.32 \mathrm{mmol}), 1,4-$ Bis(diphenylphosphino)butane ($135.4 \mathrm{mg}, 0.32 \mathrm{mmol}$), and diphenylphosphine oxide $(2.57 \mathrm{~g}, 12.7 \mathrm{mmol})$. The flask was taken outside the glovebox, and DMSO (25 mL) and N, N-diisopropylethylamine $(5.5 \mathrm{~mL}, 31.6 \mathrm{mmol})$ were added. Reaction mixture was then stirred at room temperature for 1 h before being then heated to $100^{\circ} \mathrm{C}$. After 2 h , reaction mixture was cooled down to room temperature and partitioned between EtOAc (160mL) and a half saturated aqueous solution of $\mathrm{NaHCO}_{3}(160 \mathrm{~mL})$. After separating the layers, the aqueous phase was extracted with EtOAc twice. Combined organic was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Crude was purified by FCC $\left(\mathrm{SiO}_{2}, 20 \rightarrow 30 \%\right.$ EtOAc in hexanes) to yield (S,S,S)-SPIRAP(O) (3.95g, 93.6\% yield) as white foam.
${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{td}, J=6.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.13(\mathrm{~m}, 13 \mathrm{H}), 7.07(\mathrm{td}, J=7.3,2.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.02(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{dd}, J=7.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=13.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=8.2$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~m}, \mathrm{~J}=14.8,7.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~m}, \mathrm{~J}=14.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~m}, \mathrm{~J}=11.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~m}, \mathrm{~J}=14.3,7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}) $\delta 146.70,146.55,146.26,146.24,146.21,146.19,144.53,144.51,144.50,143.64,143.60,138.60$, $138.53,136.55,136.48,134.76,134.17,134.16,134.06,133.46,133.42,133.40,133.24,133.13,133.05,132.87,132.36,132.31$, $131.56,131.51,131.08,131.07,131.03,131.01,130.99,130.93,128.79,128.29,128.22,127.95,127.93,127.89,127.86,127.81$, $127.76,127.74,127.72,127.65,127.27,124.65,124.64,121.46,118.68,84.29,83.26,83.21,29.93,29.54,9.85,8.82$.
${ }^{31}$ P NMR (283 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 28.63, -18.52.
ESI-HRMS Calcd. for $\mathrm{C}_{43} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{P}_{2}{ }^{+} 665.2374[\mathrm{M}+\mathrm{H}]^{+}$, found 665.2366 .
IR (powder): $\mathbf{v}_{\max }=2964,1434,1336,1214,998,915,696 \mathrm{~cm}^{-1}$
$[\boldsymbol{\alpha}]_{\mathrm{D}}:-93.3\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
Crystallographic data: CCDC 1812181 contains the supplementary crystallographic data of (S,S,S)-SPIRAP(O). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
((1S,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl)bis(diphenylphosphane) ((S,S,S)-SPIRAP) from phosphine oxide (S,S,S)-SPIRAP(O)

Phosphine oxide (S,S,S)-SPIRAP(O) (106mg, 0.159 mmol$)$, PhMe (1.6 mL), and diisopropylethylamine (1.1 mL , 6.3 mmol) were cooled to $0^{\circ} \mathrm{C}$ before dropwise addition of trichlorosilane $(0.25 \mathrm{~mL}, 2.5 \mathrm{mmol})$. The flask was sealed with a glass stopped and heated to $80^{\circ} \mathrm{C}$. After 20h, reaction mixture was cooled to room temperature and quenched carefully by transferring it to a flask containing a saturated aqueous solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, with diethyl ether washings. Crude was filtered through Celite with diethyl ether washings, and the filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Crude mixture was purified by $\mathrm{FCC}\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}\right.$ in hexanes) to afford (S,S,S)-SPIRAP (58.2mg, 56% yield) as white foam. The yield for this reaction was variable, with a 2.9 g scale giving 35% yield due to the formation of an epimeric trichlorosilane adduct as the major component of the mixture, which can be cleanly converted to its free phosphine by stirring in isopropanol with traces of acetyl chloride. For this reason, we developed a direct method of obtaining $(\mathbf{S}, \mathbf{S}, \mathbf{S})$-SPIRAP from monophosphine $(\mathbf{S}, \mathbf{S}, \mathbf{S})-10$. Spectral properties described below.
((1S,3S, $\mathbf{3}^{\prime}$ S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl)bis(diphenylphosphane) ((S,S,S)-SPIRAP) from phosphine (S,S,S)-10

$(S, S, S)-10$
HPPh_{2}, DIPEA $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{dppb}$

DMF, $100^{\circ} \mathrm{C}$

(S,S,S)-SPIRAP

A Schlenk flask was charged with palladium(II) acetate ($36.6 \mathrm{mg}, 0.163 \mathrm{mmol}$) and 1,4 -Bis(diphenylphosphino)butane (76.6 mg , $0.180 \mathrm{mmol})$. DMF (3.0 mL) and diisopropylethylamine $(1.8 \mathrm{~mL}, 10.3 \mathrm{mmol}$) were added. Solution was stirred at room temperature. After 1 h , diphenyl phosphine $(850 \mu \mathrm{~L}, 4.89 \mathrm{mmol})$ was added. After 5 min , phosphine $(\mathbf{S}, \mathbf{S}, \mathbf{S})-10(1.000 \mathrm{~g}, 1.632 \mathrm{mmol})$ was added as a solution in DMF (3.5 mL , including washings). The sealed flask was heated to $100^{\circ} \mathrm{C}$. After 24 h , volatiles were removed under N_{2} flow. Crude was purified by $\mathrm{FCC}\left(\mathrm{SiO}_{2}, 0 \rightarrow 15 \% \rightarrow 30 \%\right.$ DCM in hexanes), and the product was then washed with hexanes to yield (S,S,S)-SPIRAP (977mg, 92.3\% yield) as white solid.
${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{tq}, \mathrm{J}=13.7,7.6 \mathrm{~Hz}, 10 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.06(\mathrm{td}, \mathrm{J}=7.5,1.8 \mathrm{~Hz}$, $4 \mathrm{H}), 6.89(\mathrm{dd}, J=7.5,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.96(\mathrm{dd}, J=6.8,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~m}, J=14.6,7.3,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{~m}$, $J=14.3,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (176 MHz, CDCl_{3}) $\delta 145.51,145.49,145.36,145.34,144.09,144.07,144.05,144.03,138.22,138.15,136.81,136.74$, $134.11,133.99,133.72,133.71,133.13,133.02,132.59,132.48,129.12,128.23,128.02,127.98,127.93,127.85,127.82,127.76$, 121.54, 118.55, 83.29, 83.25, 29.76, 9.32.
${ }^{31} \mathbf{P}$ NMR (283 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-18.71$.
ESI-HRMS Calcd. for $\mathrm{C}_{43} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{P}_{2}{ }^{+} 649.2425[\mathrm{M}+\mathrm{H}]^{+}$, found 649.2417.
IR (powder): $\mathrm{v}_{\max }=2970,1739,1433,1365,1217,696 \mathrm{~cm}^{-1}$
$[\alpha]_{\mathrm{D}}:-227.4\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
[((1S,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl)bis(diphenylphosphane)]palladium(II) chloride ((S,S,S)11)

Diphosphine (S,S,S)-SPIRAP ($8.0 \mathrm{mg}, 0.012 \mathrm{mmol}$), bis(benzonitrile)palladium(II) chloride ($4.7 \mathrm{mg}, 0.012 \mathrm{mmol}$), and benzene $(0.82 \mathrm{~mL})$ were stirred at room temperature. After 6 h , the complex was precipitated upon addition of hexanes as an orange solid, which was collected by filtration and washed with hexanes. The solid was redissolved in DCM for collection, and the volatiles were evaporated in vacuo to yield pure complex ($\mathbf{S}, \mathbf{S}, \mathbf{S}$)-11 as a yellow-orange solid ($9.9 \mathrm{mg}, 97 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{dd}, J=12.3,7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.57(\mathrm{~s}, 4 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 7.24-7.17$ $(\mathrm{m}, 4 \mathrm{H}), 7.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{dd}, J=9.9,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C} \operatorname{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.30,147.26,137.91,137.87,135.23,135.16,134.24,134.18,133.99,133.93,131.75,131.39$, $130.52,130.30,129.46,129.41,128.02,127.95,126.64,126.33,125.54,125.42,125.31,116.26,83.57,30.49,11.27$.
${ }^{31} \mathbf{P}$ NMR $\left(283 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 32.83$.
ESI-HRMS Calcd. for $\mathrm{C}_{43} \mathrm{H}_{38} \mathrm{ClO}_{2} \mathrm{P}_{2} \mathrm{Pd}^{+} 789.1070[\mathrm{M}-\mathrm{Cl}]^{+}$, found 789.1076.
IR (powder): $\mathbf{v}_{\max }=2225,1435,1095,998,921727,688 \mathrm{~cm}^{-1}$
$[\alpha]_{\mathrm{D}}:+10.9\left(\mathrm{c}=0.5\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Thermal stability study

Complex (S,S,S)-11 (8.0mg) was dissolved in PhMe and heated to $110^{\circ} \mathrm{C}$ for 12 h . The material was recovered quantitatively and was unchanged by NMR analysis.

$\begin{array}{lllllllllllllllllllllllllllllllllllll}8.2 & 8.0 & 7.8 & 7.6 & 7.4 & 7.2 & 7.0 & 6.8 & 6.6 & 6.4 & 6.2 & 6.0 & 5.8 & 5.6 & 5.4 & 5.2 & 5.0 & 4.8 & 4.6 & 4.4 & 4.2 & 4.0 & 3.8 & 3.6 & 3.4 & 3.2 & 3.0\end{array}$

(s,s,s)-11
control

[^0]
Synthesis of diphosphine (R,S,S)-SPIRAP and Pd(II) complex

(1R,3S,3'S)-7'-(diphenylphosphoryl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl trifluoromethanesulfonate ((R,S,S)-9)

Recovered ($R, \mathbf{S}, \mathbf{S}$)-8 (from the coupling of ($\mathbf{S}, \mathbf{S}, \mathbf{S}$)-8 to diphenylphosphine oxide) was recrystallized from cyclohexane. A flask in the glovebox was charged with ditriflate $(3.946 \mathrm{~g}, \quad 6.84 \mathrm{mmol})$, palladium(II) acetate ($154 \mathrm{mg}, \quad 0.69 \mathrm{mmol}$), $1,4-$ Bis(diphenylphosphino)butane ($321 \mathrm{mg}, 0.75 \mathrm{mmol}$), and diphenylphosphine oxide ($2.768 \mathrm{~g}, 13.69 \mathrm{mmol}$). The flask was taken outside the glovebox, and DMSO (27 mL) and N, N-diisopropylethylamine ($4.8 \mathrm{~mL}, 27.6 \mathrm{mmol}$) were added. Reaction mixture was then stirred at room temperature for 1 h , before being heated to $100^{\circ} \mathrm{C}$. After 24 h , reaction mixture was cooled to room temperature and partitioned between EtOAc $(60 \mathrm{~mL})$ and a half saturated aqueous solution of $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$. After separating the layers, the aqueous phase was extracted with EtOAc twice. Combined organic was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Crude was purified by FCC ($\mathrm{SiO}_{2}, 5 \rightarrow 40 \% \mathrm{EtOAc}$ in hexanes). At $5 \% \mathrm{EtOAc}$ in hexanes, some impure starting material was recovered $(100.9 \mathrm{mg})$. At 40% EtOAc in hexanes, the desired product (R, S, S) -9 was obtained as white foam ($4.081 \mathrm{~g}, 94.8 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($401 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.28(\mathrm{~m}, 13 \mathrm{H}), 7.15(\mathrm{dd}, J=10.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{dd}, J=13.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=8.2$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=10.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~m}, J=14.9,7.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~m}, J=14.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~m}, J=15.0,7.5$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.53(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.90$.
${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-75.08.
ESI-HRMS Calcd. for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{PS}^{+} 629.1375[\mathrm{M}+\mathrm{H}]^{+}$, found 629.1372.
IR (powder): $\mathrm{v}_{\text {max }}=2970,1738,1419,1214,1141,930,695 \mathrm{~cm}^{-1}$
[$\alpha]_{\mathrm{D}}$: -46.3 ($\mathrm{c}=1.0$ in CHCl_{3})
(1R,3S,3'S)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl trifluoromethanesulfonate ((R,S,S)10)

Phosphine oxide (R,S,S)-8(2.00g, 3.18 mmol$)$, PhMe (32 mL), and Diisopropylethylamine ($22.2 \mathrm{~mL}, 127.5 \mathrm{mmol}$) were cooled to $0^{\circ} \mathrm{C}$ before addition of trichlorosilane $(6.80 \mathrm{~mL}, 68.4 \mathrm{mmol})$ over 10 min . The flask was sealed with a glass stopped and heated to $80^{\circ} \mathrm{C}$. After 16 h , the mixture was cooled to room temperature and quenched carefully by transferring it to a flask containing a saturated aqueous solution of $\mathrm{NaHCO}_{3}(70 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, with diethyl ether washings. Crude was filtered through Celite with diethyl ether washings, and the filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Crude was purified by $\mathrm{FCC}\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}\right.$ in hexanes) to afford (R, S, S) $-10(870 \mathrm{mg}, 44.6 \%$ yield, $66.1 \% \mathrm{BRSM}$) as white foam. Starting material was recovered at 50% EtOAc in hexanes $(311 \mathrm{mg})$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.07$ $(\mathrm{td}, J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{dd}, J=7.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{td}, J=7.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{td}, J=6.8,4.6 \mathrm{~Hz}$, $2 H), 1.96(\mathrm{~m}, \mathrm{~J}=16.9,14.0,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~m}, J=14.2,7.2,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 147.39,147.37,144.53,143.68,143.62,142.55,142.35,137.03,136.93,135.49,135.41,133.96$, $133.94,133.63,133.49,133.46,133.33,132.58,132.56,132.42,131.46,129.59,128.42,128.20,128.17,128.12,128.00,127.95$, 122.04, 120.56, 119.35, 118.87, 116.81, 116.51, 116.49, 84.66, 84.61, 84.05, 30.47, 29.70, 9.64, 9.43.
${ }^{19}$ F NMR (471 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-74.90$.
${ }^{31}$ P NMR (202 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta-18.88$.
ESI-HRMS Calcd. for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{PS}^{+} 613.1425[\mathrm{M}+\mathrm{H}]^{+}$, found 613.1419.
IR (powder): $v_{\max }=2968,1469,1421,1211,1140,1009,962,926,848,743 \mathrm{~cm}^{-1}$
$[\alpha]_{\mathrm{D}}:+47.6\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
((1R,3S,3'S)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl)diphenylphosphine oxide ((R,S,S)SPIRAP(O)

A flask in the glovebox was charged with phosphine $(\boldsymbol{R}, \mathbf{S}, \boldsymbol{S}) \mathbf{- 1 0}(83 \mathrm{mg}, 0.14 \mathrm{mmol})$, palladium(II) acetate ($1.52 \mathrm{mg}, 0.007 \mathrm{mmol}), 1,4-$ Bis(diphenylphosphino)butane ($2.89 \mathrm{mg}, 0.007 \mathrm{mmol}$), and diphenylphosphine oxide ($54.8 \mathrm{mg}, 0.271 \mathrm{mmol}$). The flask was taken outside the glovebox, and DMSO $(540 \mu \mathrm{~L})$ and N, N-diisopropylethylamine $(100 \mu \mathrm{~L}, 0.57 \mathrm{mmol})$ were added. Reaction mixture was then stirred at room temperature for 1 h before being then heated to $100^{\circ} \mathrm{C}$. After 3 h , reaction mixture was cooled down to room temperature and partitioned between EtOAc (1mL) and a half saturated aqueous solution of NaHCO_{3} (1mL). After separating the layers, the aqueous phase was extracted with EtOAc twice. Combined organic was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Crude was purified by FCC ($\mathrm{SiO}_{2}, 35 \% \mathrm{EtOAc}$ in hexanes) to yield (R,S,S)-SPIRAP(O) (84.8mg, 94\% yield) as white foam.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.00(\mathrm{~m}, 5 \mathrm{H}), 6.95(\mathrm{dd}, \mathrm{J}=13.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=9.9,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.11(\mathrm{dd}, \mathrm{J}=10.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 0.83(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.45(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{31}$ P NMR (202 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta ~ 29.82,-22.07$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 148.72$, 148.49, 147.11, 147.09, 147.04, 147.02, 144.48, 142.80, 142.74, 138.82, 138.71, 137.86, $137.75,135.25,135.22,135.04,134.93,134.21,134.10,133.59,133.55,133.44,132.83,132.68,132.59,132.52,131.97,131.89$, $131.16,131.13,131.10,131.08,130.47,130.33,128.67,128.21,128.11,128.08,128.03,128.01,127.97,127.90,127.81,127.45$, 126.62, 124.66, 124.64, 121.61, 110.00, 83.37, 82.38, 28.03, 28.00, 27.32, 10.88, 10.59.

ESI-HRMS Calcd. for $\mathrm{C}_{43} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{P}_{2}{ }^{+} 665.2374[\mathrm{M}+\mathrm{H}]^{+}$, found 665.2370 .
IR (powder): $v_{\max }=2969,2842,1435,1217,1007,973,917,741,694 \mathrm{~cm}^{-1}$
$[\alpha]_{\mathrm{D}}:-45.8\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
Crystallographic data: CCDC 1812182 contains the supplementary crystallographic data of (S,R,R)-SPIRAP(O) made by using (R)2a. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
((1R,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl)bis(diphenylphosphane) ((R,S,S)-SPIRAP) from phosphine (R, S, S)-10

A Schlenk flask was charged with palladium(II) acetate ($21.9 \mathrm{mg}, 0.097 \mathrm{mmol}$) and 1,4 -Bis(diphenylphosphino)butane (46.0 mg , $0.107 \mathrm{mmol})$. DMF (1.9 mL) and diisopropylethylamine ($1.04 \mathrm{~mL}, 5.97 \mathrm{mmol}$) were added. Solution was stirred at room temperature. After 1 h , diphenyl phosphine ($510 \mu \mathrm{~L}, 2.92 \mathrm{mmol}$) was added. After 5 min , phosphine $(\mathbf{R}, \mathbf{S}, \mathbf{S}) \mathbf{- 1 0}(596 \mathrm{mg}, 0.97 \mathrm{mmol})$ was added as a solution in DMF (2.0 mL , including washings). The sealed flask was heated to $100^{\circ} \mathrm{C}$. After 16 h , volatiles were removed under N_{2} flow. Crude was purified by FCC $\left(\mathrm{SiO}_{2}, 30 \% \rightarrow 40 \% \mathrm{DCM}\right.$ in hexanes) and the product was washed in hexanes to yield (R,S,S)-SPIRAP ($551 \mathrm{mg}, 87 \%$ yield) as white solid.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.14(\mathrm{~m}, 14 \mathrm{H}), 7.06-6.92(\mathrm{~m}, 10 \mathrm{H}), 5.15(\mathrm{dd}, J=10.1,3.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.70(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}), 0.66(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{31}$ P NMR (202 MHz, CDCl ${ }_{3}$) δ-20.99.
${ }^{13}{ }^{3}$ NMR (126 MHz, CDCl_{3}) $\delta 145.38,145.15,144.72,144.69,144.65,138.28,138.18,137.55,137.44,134.73,134.14,134.05$, 133.97, 132.98, 132.90, 132.83, 132.15, 132.12, 131.98, 131.95, 129.28, 128.22, 128.19, 128.17, 128.14, 128.11, 128.09, 128.04, 128.02, 128.00, 127.97, 127.95, 127.57, 121.73, 117.51, 82.84, 27.88, 10.77 .

ESI-HRMS Calcd. for $\mathrm{C}_{43} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{P}_{2}{ }^{+} 649.2425[\mathrm{M}+\mathrm{H}]^{+}$, found 649.2421 .
IR (powder): $\mathrm{v}_{\text {max }}=3067,2969,2845,1434,1274,1005,969,917,741,694 \mathrm{~cm}^{-1}$
[$\alpha]_{\mathrm{D}}:+203.8$ ($\mathrm{c}=1.0$ in CHCl_{3})
[((1R,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl)bis(diphenylphosphane)]palladium(II) chloride ((R,S,S)11)

Diphosphine (R,S,S)-SPIRAP (12.0mg, 0.018 mmol), bis(benzonitrile)palladium(II) chloride ($7.1 \mathrm{mg}, 0.018 \mathrm{mmol}$), and benzene $(1.2 \mathrm{~mL})$ were stirred at room temperature. After 16 h , the complex was precipitated upon addition of hexanes as an orange solid, which was collected by filtration and washed with hexanes. The solid was redissolved in DCM for collection, and the volatiles were evaporated in vacuo to yield pure complex ($\boldsymbol{R}, \mathbf{S}, \mathbf{S}$)-11 as a yellow-orange solid ($14.0 \mathrm{mg}, 92 \%$ yield).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{ddd}, J=12.3,6.6,2.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.65-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.41(\mathrm{dd}, J=12.8,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=$ $2.6 \mathrm{~Hz}, 6 \mathrm{H}), 7.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{ddd}, J=18.8,9.1,4.8 \mathrm{~Hz}, 6 \mathrm{H}), 4.71(\mathrm{dd}, J=9.8,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{~m}$, $2 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 0.84(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{31} \mathbf{P}$ NMR (202 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 33.38$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 148.22,148.16,140.26,140.19,135.74,135.64,134.11,134.03,133.87,133.78,132.70,132.19$, $130.83,130.25,129.57,129.50,128.23,128.13,128.08,128.03,127.88,127.46,125.78,125.42,124.17,113.55,80.36,24.97$, 10.80.

ESI-HRMS Calcd. for $\mathrm{C}_{43} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pd}^{+} 755.1460[\mathrm{M}-2 \mathrm{Cl}+\mathrm{H}]^{+}$, found 755.1438 .
IR (powder): $v_{\max }=2970,1738,1435,1092,998,969,912,740,688 \mathrm{~cm}^{-1}$
$[\alpha]_{\mathrm{D}}:+27.1\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Thermal stability study

Complex ($\boldsymbol{R}, \mathbf{S}, \mathbf{S}$)-11 (10.0mg) was dissolved in PhMe and heated to $110^{\circ} \mathrm{C}$ for 12 h . The material was recovered quantitatively and was unchanged by NMR analysis.

$\left.\begin{array}{llllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

Synthesis of diphosphinite (S, R, R)-SPIRAPO

(((1S,3R, $\left.3^{\prime} R\right)-3,3^{\prime}$-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl)bis(oxy))bis(diphenylphosphane) ((S,R,R)-SPIRAPO)

Spiroketal $(S, R, R)-6 a(40 \mathrm{mg}, 0.10 \mathrm{mmol})$ and methanol $(1.0 \mathrm{~mL})$ were cooled to $0^{\circ} \mathrm{C}$ before dropwise addition of acetyl chloride $(14 \mu \mathrm{~L}$, $0.20 \mathrm{mmol})$. Reaction mixture was then warmed to room temperature. After for 6 h , the volatiles were removed in vacuo. The crude diol and 4-Dimethylaminopyridine ($1.2 \mathrm{mg}, 0.01 \mathrm{mmol}$) were dissolved into $\mathrm{DCM}(1.0 \mathrm{~mL})$ at room temperature before addition of triethylamine ($0.13 \mathrm{~mL}, 1.0 \mathrm{mmol}$) and chlorodiphenylphosphine ($46 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$) over 30min. After 12 h , volatiles were removed in vacuo, and the crude was purified by $\mathrm{FCC}\left(\mathrm{SiO}_{2}\right.$ treated with $5 \% \mathrm{TEA}, 4 \% \rightarrow 9 \%$ EtOAc in hexanes) to afford (S,R,R)-SPIRAPO (34mg, 56\% yield) and (R, R, R)-SPIRAPO (17mg, 26% yield) as white foams.

For purified (S,R,R)-12
${ }^{1} \mathrm{H} \operatorname{NMR}\left(399.54 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.21(\mathrm{~m}, 12 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~m}, 6 \mathrm{H}), 6.97-6.90(\mathrm{~m}, 4 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 2 \mathrm{H})$, $5.26(\mathrm{dd}, \mathrm{J}=8.2,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 152.36,152.27,146.31,140.11,139.92,139.88,139.72,130.73,130.59,130.49,129.74,129.63$, $129.52,128.89,128.39,128.31,128.25,128.18,115.33,115.17,115.09,114.69,82.94,28.02,10.25$
${ }^{31} \mathbf{P}$ NMR (161.75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 105.24$
ESI-HRMS Calcd. for $\mathrm{C}_{43} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{P}_{2}^{+} 681.2317[\mathrm{M}+\mathrm{H}]^{+}$, found 681.2316 .
$[\alpha]_{\mathrm{D}}:-80.7(\mathrm{c}=1.25$ in THF)

For purified (R, R, R)-12
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.19(\mathrm{~m}, 12 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-6.99(\mathrm{~m}, 6 \mathrm{H}), 6.97(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{dd}, J=7.2,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.72(\mathrm{~m}, 4 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}{ }^{2}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 145.83,130.82,130.63,130.47,130.46,129.75,129.61,129.57,129.06,128.23,128.17,115.11$, 114.72, 84.21, 30.06, 9.74 .
${ }^{31}$ P NMR (202 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 104.37$.
$[\alpha]_{\mathrm{D}}:-14.8(\mathrm{c}=5.25$ in THF)

Synthesis of monophosphine (R,S,S)-SPIROMP and (S,S,S)-SPIROMP

(1S,3S, 3^{\prime} 'S)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-ol ((S,S,S)-SPIROMP)

Hydrolysis based on a modified reported procedure. ${ }^{[3]}$ Triflate $(S, S, S)-10(300 \mathrm{mg}, 0.49 \mathrm{mmol})$, wet $\mathrm{Cs}_{2} \mathrm{CO}_{3}(800 \mathrm{mg}, 2.45 \mathrm{mmol})$, and DMF (8.0 mL) were added to a flask. Reaction mixture was heated to $80^{\circ} \mathrm{C}$. After 8 h , reaction mixture was filtered through Celite and then purified by FCC $\left(\mathrm{SiO}_{2}, 20 \% \rightarrow 25 \%\right.$ EtOAc in hexanes) to obtain $(\mathbf{S}, \mathbf{S}, \mathbf{S})$-SPIROMP $(224 \mathrm{mg}, 95 \%$ yield) as white solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 5 \mathrm{H}), 7.16-7.06(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, \mathrm{J}=7.3,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=7.9,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H}), 2.04-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{31} \mathbf{P}$ NMR (202 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$-18.74.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 151.04,145.19,145.17,143.40,143.35,142.91,142.71,137.32,137.22,135.46,135.38,134.29$, $134.27,133.86,133.68,133.63,133.53,133.46,133.38,131.46,129.56,128.40,128.16,128.11,127.88,127.82,126.08,126.05$, $122.12,116.75,116.73,114.46,113.09,85.38,85.32,83.73,30.96,29.54,10.04,9.14$.

ESI-HRMS Calcd. for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{P}^{+} 481.1933[\mathrm{M}+\mathrm{H}]^{+}$, found 481.1934.
IR (powder): $\mathbf{v}_{\max }=3306,2962,1606,1474,1297,1005,927,741,692 \mathrm{~cm}^{-1}$
$[\alpha]_{\mathrm{D}}:-3.7\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
(1R,3S,3'S)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-ol ((R,S,S)-SPIROMP)

Triflate $(R, S, S)-10(112 \mathrm{mg}, 0.18 \mathrm{mmol})$, wet $\mathrm{Cs}_{2} \mathrm{CO}_{3}(300 \mathrm{mg}, 0.92 \mathrm{mmol})$, and DMF $(3.0 \mathrm{~mL})$ were added to a flask. Reaction mixture was heated to $80^{\circ} \mathrm{C}$. After 8 h , reaction mixture was filtered through Celite and then purified by $\mathrm{FCC}\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc}\right.$ in hexanes) to obtain ($\boldsymbol{R}, \mathbf{S}, \mathbf{S}$)-SPIROMP together with an impurity ($90.1 \mathrm{mg}, 1: 11.6$ impurity:product). The product was further purified by recrystallization from cyclohexane (35mg, 40\% yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(401 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.16(\mathrm{~m}, 8 \mathrm{H}), 7.02(\mathrm{~m}, 5 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.41(\mathrm{dd}, \mathrm{J}=6.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=9.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.66(\mathrm{~m}, 1 \mathrm{H})$, 1.00 (t, J = 7.4 Hz, 3H), 0.83 (t, J = 7.4 Hz, 3H).
${ }^{31} \mathbf{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-23.06$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 150.95,145.81,143.90,143.84,142.99,142.72,137.33,137.20,136.59,136.45,135.30,134.12$, $133.91,133.70,132.98,132.80,131.38,130.09,128.51,128.18,128.11,127.81,125.98,125.95,122.30,115.57,114.87,113.10$, $84.39,84.34,81.67,81.63,27.94,27.64,27.59,10.70,9.24$

ESI-HRMS Calcd. for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{P}^{+} 481.1933[\mathrm{M}+\mathrm{H}]^{+}$, found 481.1929. IR (powder): $v_{\max }=3326(b r), 2959,2853,1604,1473,1295,1005,922,740,696 \mathrm{~cm}^{-1}$ $[\alpha]_{\mathrm{D}}:+13.2\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Asymmetric hydroarylation of methylated cinnamyl alcohol

Preparation of substrate - (E)-(3-methoxyprop-1-en-1-yl)benzene

Alkenyl ether (15) was prepared according a reported procedure. ${ }^{[4]}$ A flask was charged with a suspension of NaH (60%, prewashed with hexanes, $520 \mathrm{mg}, 21.7 \mathrm{mmol}$) and THF (30 mL) before addition of cinnamyl alcohol ($1.4 \mathrm{~mL}, 10.87 \mathrm{mmol}$). After stirring at room temperature for 100 min , methyl iodide $(2.0 \mathrm{~mL}, 32.6 \mathrm{mmol})$ was added at room temperature. After 3h, reaction mixture was filtered through a SiO_{2} pad, with 50% EtOAc in hexanes elution. The filtrate was concentrated in vacuo and purified by $\mathrm{FCC}\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}^{2}\right.$ in hexanes) to afford the desired product (1.52g, 94.4% yield) as a colorless oil. Spectral properties match those reported in literature.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.38(\mathrm{dd}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=8.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.28(\mathrm{dt}, J=$ 16.0, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, cdcl_{3}) $\delta 136.70,132.40,128.52,127.63,126.44,125.94,73.07,57.96$.
IR (film): $\mathrm{v}_{\max }=3026,2924,2820,1494,1449,1379,1190,1119,965,734,691 \mathrm{~cm}^{-1}$

Hydroarylation procedure

(S)-2-(2-(1-methoxy-3-phenylpropyl)phenyl)pyridine

Hydroarylations were carried out according to a recently reported procedure. ${ }^{[5]} \mathrm{Bis}(1,5$-cyclooctadiene)diiridium(I) dichloride (3.3mg, $0.0049 \mathrm{mmol})$ and $(\mathbf{S}, \mathbf{S}, \boldsymbol{S})$-SPIRAP $(7.6 \mathrm{mg}, 0.012 \mathrm{mmol})$ were added to a Schlenk tube strictly under nitrogen. PhMe ($330 \mu \mathrm{~L}$) was added and the mixture was stirred at room temperature. After 20min, sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (18.1mg, $0.0196 \mathrm{mmol})$ was added. After $15 \mathrm{~min}, 2-\mathrm{phenylpyridine} 13(30 \mu \mathrm{~L}, 0.21 \mathrm{mmol})$ and cinnamyl ether $12(30 \mu \mathrm{~L}, 0.196 \mathrm{mmol})$ were added. Reaction mixture was then heated to $70^{\circ} \mathrm{C}$. After 24 h , reaction mixture was cooled to room temperature. Volatiles were removed in vacuo and the crude was purified by FCC (10\% EtOAc in hexanes) to obtain pure product 14 (56.9mg, 96\% yield, 95.4\% ee) as colorless oil that solidifies on cooling.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.59-8.51(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{td}, J=7.7,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{dt}, J=8.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.19 (ddt, $J=26.8,14.7,7.7 \mathrm{~Hz}, 5 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{dd}, \mathrm{J}=8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H})$, 2.02 (m, 2H).
${ }^{13}{ }^{\mathbf{C}} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.28$, 149.05, 142.02, 140.75, 140.19, 136.06, 129.41, 128.73, 128.52, 128.18, 127.06, 126.16, 125.50, 123.99, 121.63, 78.18, 56.57, 39.61, 32.20.

ESI-HRMS Calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}^{+} 304.1701[\mathrm{M}+\mathrm{H}]^{+}$, found 304.1696.
IR (film): $\mathrm{v}_{\max }=2924,1585,1425,1100,1022,747,698 \mathrm{~cm}^{-1}$
SFC (Chiralpak OD-H, $92: 8 \mathrm{CO}_{2}$ /isopropanol, $3.5 \mathrm{ml} / \mathrm{min}, 40^{\circ} \mathrm{C}, 120$ bar back pressure), $\mathrm{t}_{\mathrm{r}}=7.4 \mathrm{~min}(\mathrm{minor}, R), 7.9 \mathrm{~min}(\mathrm{major}, \mathrm{S})$

For $(\mathbf{S}, \mathbf{R}, \boldsymbol{R})$-SPIRAP - No product observed.
For (R)-SDP - 82\% yield, 94.9\% ee.

Asymmetric allylic alkylation of chalcone derivatives

Preparation of substrate - (E)-1,3-diphenylallyl acetate

(E)-1,3-diphenylallyl acetate was synthesized following a slightly modified reported procedure. ${ }^{[6]}$ (E)-chalcone ($988 \mathrm{mg}, 4.74 \mathrm{mmol}$) and methanol $(12 \mathrm{~mL})$ were cooled to $0^{\circ} \mathrm{C}$ before portionwise addition of sodium borohydride (365mg, 9.66 mmol). Reaction mixture was then warmed to room temperature. After 1 h , reaction mixture was partitioned between EtOAc (30 mL) and water (30 mL). After separating the layers, the aqueous solution was extracted with EtOAc twice. Combined organic was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The allylic alcohol was acetylated without further purification as follows. 4Dimethylaminopyridine $(58.8 \mathrm{mg}, 48.1 \mathrm{mmol})$, DCM $(30 \mathrm{~mL})$, and triethylamine $(1.7 \mathrm{~mL}, 12.2 \mathrm{mmol})$ were added to the crude. Reaction mixture was cooled to $0^{\circ} \mathrm{C}$ before dropwise addition of acetic anhydride ($1.1 \mathrm{~mL}, 11.6 \mathrm{mmol}$). Reaction mixture was warmed to room temperature and stirred overnight. Water (30 mL) was added, and after separating the layers, the aqueous solution was extracted with DCM twice. Combined organic was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Pure product 15 (841.2 mg , 70.3% yield) was obtained after purification by $\mathrm{FCC}\left(\mathrm{SiO}_{2}, 10 \rightarrow 20 \%\right.$ EtOAc in hexanes $)$. Spectral properties match those reported in literature.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.13(\mathrm{~m}, 10 \mathrm{H}), 6.65(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=15.7,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.15 (s, 3H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 169.97,139.20,136.14,132.56,128.59,128.54,128.45,128.39,128.29,128.13,128.02,127.47$, 127.01, 126.66, 76.10, 21.32.

IR (film): $v_{\max }=3029,1734,1495,1370,1227,1017,962,743,694 \mathrm{~cm}^{-1}$

Asymmetric allylic alkylation procedure

Dimethyl (S,E)-2-(1,3-diphenylallyl)malonate

15

16
$\left[\mathrm{PdCl}(\text { allyl) }]_{2 .}\right.$. (3 mol\%)
 dioxane

17

The asymmetric alkylation was performed following a modified reported procedure. ${ }^{[7]}$ (E)-1,3-diphenylallyl acetate (49.3mg, $0.195 \mathrm{mmol}) 15$ and 1,4 -dioxane (1 mL) were stirred at room temperature. In a separate flask, allylpalladium(II) chloride dimer (1.8 mg , 0.0049 mmol), ($\mathbf{S , S , S}$)-SPIRAP ($7.6 \mathrm{mg}, 0.012 \mathrm{mmol}$), and 1,4 -dioxane (1 mL) were stirred for 1 h at room temperature. The catalyst solution was transferred to the substrate flask by syringe with dioxane washings (1 mL). In another flask, dimethyl malonate 16 ($45 \mu \mathrm{~L}$, 0.39 mmol) and 1,4 -dioxane $(1 \mathrm{~mL})$ were cooled to $0^{\circ} \mathrm{C}$, and then treated with a 1 M solution of diethylzinc in hexanes $(390 \mu \mathrm{~L}$, $0.39 \mathrm{mmol})$. The substrate flask was cooled with an ice bath while the reagent solution was slowly transferred via syringe with dioxane washings (1 mL). Reaction mixture was then warmed to room temperature. After 90 min , reaction mixture was diluted with EtOAc $(5 \mathrm{~mL})$ and quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. After separating the layers, the aqueous solution was extracted with EtOAc twice. Combined organic was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Crude was purified by FCC (SiO_{2}, gradient $0 \rightarrow 10 \%$ EtOAc in hexanes) to afford pure product 17 ($59.8 \mathrm{mg}, 94 \%$ yield, 96.6% ee) as colorless oil. Spectral properties match those reported in literature.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.18(\mathrm{~m}, 10 \mathrm{H}), 6.51(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{dd}, J=15.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=10.9,8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}{ }^{2}$ NMR (100 MHz, CDCl_{3}) $\delta 168.20,167.78,140.20,136.84,131.85,129.14,128.74,128.49,127.89,127.59,127.18,126.40$, 57.67, 52.63, 52.46, 49.22.

IR (film): $\mathrm{v}_{\text {max }}=3316$ (br), 3026, 2861, 1494, 1091, $945,733,691 \mathrm{~cm}^{-1}$
HPLC (Chiralpak AD column, 95:5 hexanes/isopropanol, $1.0 \mathrm{ml} / \mathrm{min}), \mathrm{t}_{\mathrm{r}}=12.6 \mathrm{~min}(\mathrm{minor}, R), 17.1 \mathrm{~min}(\mathrm{major}, \mathrm{S})$

For ($\mathbf{R}, \mathbf{S}, \mathbf{S}$)-SPIRAP - 98% yield, 86% ee

Asymmetric Heck reaction of 2-vinylphenyl triflate with norbornene

Substrate synthesis

2-vinylphenyl trifluoromethanesulfonate was synthesized following a two-step procedure reported elsewhere. ${ }^{[8]}$ Methyltriphenylphosphonium bromide $(3.52 \mathrm{~g}, 9.85 \mathrm{mmol})$ and diethyl ether $(60 \mathrm{~mL})$ were cooled to $0^{\circ} \mathrm{C}$ before the addition of $\mathrm{KOt} \mathrm{Bu}(2.16 \mathrm{~g}$, 19.25 mmol). After 15 min , a solution of salicylaldehyde ($1 \mathrm{~mL}, 9.38 \mathrm{mmol}$) in diethyl ether (30 mL) was added. Reaction mixture was then warmed to room temperature. After 16 h , a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ was added. After separating the layers, the aqueous solution was extracted with diethyl ether twice. Combined organic was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Crude was purified by $\mathrm{FCC}\left(\mathrm{SiO}_{2}\right.$, gradient $5 \rightarrow 15 \%$ EtOAc in hexanes) to afford unreacted starting material (141mg, 12\% recovery) and pure 2-vinylphenol ($942 \mathrm{mg}, 84 \%$ yield) as light yellow liquid.

Vinylphenol ($767 \mathrm{mg}, 6.38 \mathrm{mmol}$), DCM $(18 \mathrm{~mL})$, and pyridine $(1 \mathrm{~mL}, 12.77 \mathrm{mmol})$ were cooled to $0^{\circ} \mathrm{C}$ before the dropwise addition of trifluoromethanesulfonic anhydride (1.3mL, 7.66 mmol). Reaction mixture was then warmed to room temperature. After 13 h , reaction mixture was filtered with DCM washings, concentrated in vacuo, and purified by $\mathrm{FCC}\left(\mathrm{SiO}_{2}\right.$, hexanes) to afford 2-vinyltriflate (1.427g, 89\% yield) as colorless liquid.
${ }^{1} \mathrm{H}$ NMR (401 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.69-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{dd}, J=17.5,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, \mathrm{~J}=17.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.48(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 146.82,131.01,129.23,128.81,128.35,127.21,121.62,120.15,118.58,116.97$.
${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-73.64$.
IR (film): $\mathrm{V}_{\max }=1419,1207,1137,1077,886,792,760 \mathrm{~cm}^{-1}$

Asymmetric Heck reaction

(1S,4R,4aS,9aR)-9-methylene-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanofluorene

18
$+$

19

20

The asymmetric Heck reaction was performed following a modified reported procedure.Error! Bookmark not defined. Bis(dibenzylideneacetone)palladium(0) ($4.7 \mathrm{mg}, 0.0082 \mathrm{mmol}$), (S,S,S)-SPIRAP(O) (6.5mg, 0.0098 mmol) were added to a Schlenk tube strictly under nitrogen. 1,4-dioxane ($320 \mu \mathrm{~L}$) was added, and the mixture was stirred at room temperature. After 30 min , 2 vinyltriflate $18(60 \mu \mathrm{~L}, 0.32 \mathrm{mmol})$, norbornene ($122.1 \mathrm{mg}, 1.30 \mathrm{mmol}$), and diisopropylethylamine ($110 \mu \mathrm{~L}, 0.63 \mathrm{mmol}$) were added and then the mixture was heated to $70^{\circ} \mathrm{C}$. After 20 h , reaction mixture was concentrated in vacuo and purified through a short pipette column $\left(\mathrm{SiO}_{2}\right)$ with hexanes elution to afford pure product $20(63.7 \mathrm{mg}, 99 \%$ yield, 95% ee)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.12(\mathrm{~m}, 3 \mathrm{H}), 5.51(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~m}, J=18.4,15.4,11.6,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~m}, \mathrm{~J}=18.9,9.0,2.4 \mathrm{~Hz}$, 2H), $1.09-0.92$ (m, 2H).
${ }^{13}{ }^{\mathbf{C}}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 154.44,148.89,142.58,128.54,126.57,125.09,119.95,102.93,52.20,52.01,44.59,42.49,32.33$, 29.36, 28.62.

IR (film): $\mathrm{v}_{\max }=2948,2868,1635,1471,868,782,756,730 \mathrm{~cm}^{-1}$
SFC (Chiralpak OJ-H, $99: 1 \mathrm{CO}_{2} /$ isopropanol, $3.5 \mathrm{ml} / \mathrm{min}, 40^{\circ} \mathrm{C}, 120$ bar back pressure), $\mathrm{t}_{\mathrm{r}}=3.5 \mathrm{~min}(\mathrm{minor},(1 R, 4 \mathrm{~S}, 4 \mathrm{aR}, 9 a S)$), 3.8 min (major, (1S,4R,4aS,9aR))

For (R,S,S)-SPIRAP(O) - 96\% yield, -86\% ee (enantiomer of 20)

Asymmetric hydrogenation of acrylate derivatives

Methyl acetyl-L-alaninate

The asymmetric hydrogenation of acetamidoacryllic esters was based on a reported procedure. ${ }^{[9]}$ (S,R,R)-SPIRAPO (11.2mg, $0.016 \mathrm{mmol})$ and $\mathrm{Rh}(\mathrm{COD})_{2} \mathrm{OTf}(7.0 \mathrm{mg}, 0.015 \mathrm{mmol})$ were measured and packed into a Schlenk tube in the glovebox before the addition of dry DCM $(3.0 \mathrm{~mL})$ to make a stock solution. Methyl 2-acetamidoacrylate $(28.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added to the flask before addition of the stock solution $(2.0 \mathrm{~mL})$. The reaction flask was placed into the hydrogenation apparatus before purging with N_{2} and H_{2}, and the reaction was stirred under $500 \mathrm{psi}_{2}$ for 3 h . Volatiles were removed in vacuo, and the crude was purified by $\mathrm{FCC}\left(\mathrm{SiO} \mathrm{S}_{2}, 20 \%\right.$ EtOAc in hexanes) to afford methyl acetyl-L-alaninate (S)-22 (25.3mg, 87\% yield, 91\% ee) as clear oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.02(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{p}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 173.62,169.52,52.46,48.00,23.15,18.55$.
IR (film): $\mathrm{v}_{\max }=3282,2955,1739,1652,1533,1436,1372,1207,1160,1058,733,607 \mathrm{~cm}^{-1}$

GC conditions 1:

Rt- bDExsm column ($\mathrm{df}=0.25 \mu \mathrm{~m}, 0.25 \mathrm{~mm}$ i.d. $\times 30 \mathrm{~m}$, fused silica capillary column); carrier gas, He (flow $1.5 \mathrm{~mL} / \mathrm{min}$); injection temp, $230{ }^{\circ} \mathrm{C}$; initial column temperature, $70^{\circ} \mathrm{C}$; progress rate, $2{ }^{\circ} \mathrm{C} / \mathrm{min}$; final column temperature, $90^{\circ} \mathrm{C}$); $\mathrm{t}_{\mathrm{r}}=28.9 \mathrm{~min}(\mathrm{minor}, R$), 29.3 min (major, S)

GC conditions 2

Rt- bDExsm column (df $=0.25 \mu \mathrm{~m}, 0.25 \mathrm{~mm}$ i.d. $\times 30 \mathrm{~m}$, fused silica capillary column); carrier gas, He (flow $1.5 \mathrm{~mL} / \mathrm{min}$); injection temp, $230{ }^{\circ} \mathrm{C}$; initial column temperature, $70^{\circ} \mathrm{C}$; progress rate, $2{ }^{\circ} \mathrm{C} / \mathrm{min}$; final column temperature, $110{ }^{\circ} \mathrm{C}$); $\mathrm{t}_{\mathrm{r}}=48.7$ min (major, R), 51.2 min (minor, S)

For (S)-SDPO - 85\% yield, 94\% ee (S)-22
For (S)-BINAPO - 84\% yield, -91\% ee (R)-22
For $(\boldsymbol{R}, \boldsymbol{R}, \boldsymbol{R})$-SPIRAPO - 85\% yield, -93% ee $(\boldsymbol{R})-\mathbf{2 2}$
(S)-4-methyl-N-(2-methylene-1-(4-nitrophenyl)-3-oxobutyl)benzenesulfonamide

The asymmetric Baylis-Hillman reaction was performed following a reported procedure. ${ }^{[10]}$ Imine SI-1 (48mg, 0.16 mmol), catalyst (S, S, S)-SPIROMP (7.9 mg .0 .02 mmol), activated $3 \AA \mathrm{MS}$, and $\mathrm{CHCl}_{3}(820 \mu \mathrm{~L})$ were added to a Schlenk tube. Mixture was cooled to $78^{\circ} \mathrm{C}$, then 3-Buten-2-one ($41 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$) was added before warming the reaction to $-10^{\circ} \mathrm{C}$. After 5 days, volatiles were removed in vacuo, and the crude was purified by $\mathrm{FCC}\left(\mathrm{SiO}_{2}, 20 \rightarrow 40 \% \mathrm{EtOAc}\right.$ in hexanes) to afford sulfonamide (S)-SI-2 ($50.2 \mathrm{mg}, 85 \%$ yield, 83\% ee).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.13(\mathrm{~s}$, 1H), $6.08(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 198.72,147.18,146.15,145.42,143.81,137.36,129.63,127.23,127.17,123.61,58.95,26.17,21.51$. SFC (Chiralpak IA, $70: 30 \mathrm{CO}_{2}$ /isopropanol, $3.5 \mathrm{ml} / \mathrm{min}, 40^{\circ} \mathrm{C}, 120$ bar back pressure), $\mathrm{t}_{\mathrm{r}}=4.0 \mathrm{~min}$ (major S), 4.6 min (minor, R)

For (R,S,S)-SPIROMP - 6.8\% yield, -71.8\% ee (R)-SI-2

Computational models and analysis

Quantum chemical calculations were performed using the Q-Chem 4.3 package. ${ }^{[11]}$ Geometry optimizations were evaluated using the B97-D density functional. ${ }^{[12]}$ For compounds not containing transition metals, double- $\zeta-$ quality basis set with polarization functions was used on all atoms, 6-31G**. ${ }^{[13]}$ For Pd-complexes, the LANL2DZ basis set ${ }^{[14]}$ was used of Pd, P, and Cl atoms, while $6-31 \mathrm{G}^{* *}$ was used on all other atoms. Pictorial representations of we made in Discovery Studio 4.1 Visualizer. ${ }^{[15]}$ The electronic Gibbs free energy values were obtained from single point calculatings using the ω B97X-D exchange functional. ${ }^{[16]}$ The final Gibbs free energy values were obtained by correcting the electronic free energy with the enthalpic and entropic contributions from vibrations, rotations, and translations at 298 K . These frequency computations were performed using the B97-D functional. For the enthalpic and entropic corrections to the free energies from the harmonic oscillator approximation, all frequencies below $50 \mathrm{~cm}^{-1}$ were treated as if they were $50 \mathrm{~cm}^{-1}$.

Cartesian coordinates for starting geometries, transition states, and products are described below.

Diol (S,S,S)-7			
43			
C	-3.16660418	2.51676888	1.21187067
C	-3.47220673	1.73275471	0.08830678
C	-2.53030555	0.80808774	-0.40577742
C	-1.30924670	0.68440827	0.27839571
C	-1.01430839	1.47044495	1.39556754
C	-1.93172027	2.40595904	1.88125011
C	-0.12997580	-0.19398482	-0.05346636
O	0.70580487	-0.09105548	1.11598208
C	0.39861682	1.13963116	1.82881223
C	-0.37560667	-1.64951697	-0.36454275
C	0.38034724	-2.02588796	-1.47838614
C	1.15869767	-0.80975373	-1.93518700
O	0.51272696	0.29807553	-1.24524866
C	-1.16867638	-2.57630232	0.33225338
C	-1.19723175	-3.90426804	-0.13963789
C	-0.43227714	-4.27249729	-1.25731951
C	0.37379853	-3.34325761	-1.94429854
O	-1.91800076	-2.25264222	1.42462945
O	-2.84906405	0.06926319	-1.50667348
C	3.41783300	0.38462186	-1.92406340
C	2.65144451	-0.89646971	-1.56304832
C	2.84936369	1.86763352	1.78200466
C	1.39725415	2.25469900	1.46328589
H	-3.91142875	3.22728152	1.57364590
H	-4.43155190	1.82694792	-0.41941506
H	-1.70717902	3.02792390	2.74812206
H	0.47683546	0.90246922	2.90277633
H	1.05154092	-0.60576479	-3.01314195
H	-1.82004054	-4.63174383	0.37983659
H	-0.47177422	-5.30695997	-1.60170327
H	0.96516968	-3.64555388	-2.80885692
H	-1.80138354	-1.30443316	1.61090982
H	-2.08996952	-0.49764490	-1.72910958
H	4.47230619	0.31117324	-1.62012042
H	3.38544103	0.57146204	-3.00921822
H	2.96579672	1.24714660	-1.41595888
H	2.71218848	-1.09304024	-0.48259783
H	3.08175872	-1.76942095	-2.08222447
H	3.54273745	2.67255686	1.49694678
H	2.97854259	1.66895187	2.85785605
H	3.12365368	0.95793215	1.23163953
H	1.28101785	2.46614191	0.38996576
H	1.10629563	3.16536281	2.01307874

Diol (R,S,S)-7

C	-3.76748275	-3.51818612	3.74134222
C	-4.04786752	-4.32271515	2.62564730
C	-3.45630547	-4.03988022	1.37903507
C	-2.58731767	-2.93968672	1.29453362
C	-2.33080690	-2.13637533	2.40609471
C	-2.90764851	-2.40726314	3.65048742
C	-1.75263192	-2.46918854	0.12313126
O	-1.33419260	-1.15283165	0.52609458
C	-1.39749492	-1.02425722	1.97727821
C	-2.41852000	-2.41568750	-1.22378468
C	-1.76340458	-3.25381099	-2.12681959
C	-0.58568313	-3.88561829	-1.41845772
O	-0.63347975	-3.35355276	-0.06748417
C	-3.54783541	-1.66657797	-1.59694885
C	-4.04281795	-1.82777312	-2.90574637
C	-3.39386045	-2.69531117	-3.79983007
C	-2.24066834	-3.41529605	-3.43270641
O	-4.17439363	-0.80788731	-0.74398872
O	-3.76646128	-4.84404146	0.31544995
C	0.53095627	-6.03436956	-0.60243733
C	-0.65273218	-5.42162842	-1.36568745
C	-0.95554273	1.48604679	1.79257206
C	-1.88902753	0.38542121	2.32117428
H	-4.24178652	-3.75594205	4.69457540
H	-4.73073494	-5.16856809	2.70062728
H	-2.70758831	-1.77956704	4.51933719
H	-0.38105357	-1.17187408	2.38584392
H	0.37166407	-3.57603345	-1.87653534
H	-4.92315513	-1.26253861	-3.20950163
H	-3.79409634	-2.80270317	-4.80896192
H	-1.74017002	-4.07168318	-4.14457134
H	-3.59982713	-0.69337294	0.03439360
H	-3.42615899	-4.43070991	-0.49806151
H	0.44644039	-7.12979398	-0.55685303
H	1.48529960	-5.78251220	-1.09156344
H	0.55748647	-5.64086814	0.42266486
H	-1.60205125	-5.70440808	-0.88514505
H	-0.68313979	-5.79451996	-2.40318202
H	-1.34103428	2.48445362	2.04502104
H	0.05015853	1.38430648	2.22935637
H	-0.86048987	1.41117827	0.70081747
H	-2.90513296	0.50713752	1.90944932
H	-1.98200101	0.45008968	3.41754948
	-.4		

Diphosphine (S,S,S)-SPIRAP

C	-7.90764641	4.02001391	-0.83380907
C	-8.73687968	2.88382919	-0.82809801
C	-8.19982073	1.57815228	-0.84935829
C	-6.79307735	1.47712345	-0.87837356
C	-5.96971226	2.60520309	-0.86840526
C	-6.51019265	3.89422007	-0.85036631
C	-5.90792373	0.25061771	-0.97713722
O	-4.59106596	0.73441794	-0.67744595
C	-4.52621460	2.16693643	-0.88023199
C	-6.17256176	-0.96590450	-0.11275732
C	-6.08335956	-2.10139521	-0.92085989
C	-5.80582018	-1.68030128	-2.34138947
O	-5.97863626	-0.24283852	-2.32359121
C	-6.42856914	-1.05256265	1.27216854
C	-6.58147584	-2.35190383	1.80273633
C	-6.48332319	-3.49521836	0.98946764
C	-6.23375823	-3.38431127	-0.38623589
P	-6.78078390	0.48213066	2.26531693
C	-6.98264883	-0.23098775	3.97005112
C	-5.93078373	-0.39357444	4.89360778
C	-6.17654444	-0.95213631	6.15720737
C	-7.47150586	-1.36450667	6.50908669
C	-8.52607438	-1.20765798	5.59522774
C	-8.28407762	-0.63542328	4.33831026
C	-5.11365286	1.28903301	2.37946729
C	-3.89754775	0.59604254	2.21516053
C	-2.67533597	1.27755487	2.29588594
C	-2.65390580	2.66017617	2.54586685
C	-3.85990152	3.35978388	2.70811059
C	-5.08302591	2.67798932	2.61664993
P	-9.24673037	0.05359405	-0.62106436
C	-10.95981583	0.77002223	-0.64094337
C	-11.42747123	1.34630849	0.56147976
C	-12.71456381	1.89554698	0.63696180
C	-13.56372506	1.85516235	-0.48138255
C	-13.11358046	1.27113343	-1.67522810
C	-11.81748872	0.73823713	-1.75841582
C	-9.13924589	-0.77089700	-2.27768337
C	-9.37509966	-2.15997856	-2.32426442
C	-9.29822771	-2.85484377	-3.54094681
C	-8.96937924	-2.16851902	-4.72072830
C	-8.72122194	-0.78601403	-4.68035743
C	-8.80806051	-0.09071416	-3.46615752
C	-4.09030743	-1.53863732	-4.22412336
C	-4.38555316	-2.04782917	-2.80522051
C	-2.36275746	1.96149457	-2.21138747
C	-3.80347831	2.49280888	-2.20007364
H	-8.36371906	5.01127638	-0.81735828
H	-9.81679996	3.01756759	-0.79335127
H	-5.86560702	4.77455090	-0.83789391
H	-3.96614341	2.57700505	-0.02528605
H	-6.55538974	-2.07544920	-3.04544850
H	-6.79072764	-2.47799627	2.86382364
H	-6.60982679	-4.48034059	1.44186675
H	-6.17110686	-4.26957097	-1.02086764
H	-4.92247659	-0.08204485	4.62077012
H	-5.35450550	-1.07121192	6.86539243
H	-7.65843792	-1.80122674	7.49143592
H	-9.53596752	-1.52224537	5.86359684
H	-9.10645234	-0.50624819	3.63096079
H	-3.91734998	-0.47097711	1.99572448
H	-1.74025911	0.73275036	2.15605383
H	-1.70158551	3.18961372	2.60643515
H	-3.84960055	4.43542765	2.89213393
H	-6.02140882	3.22693431	2.71661133
H	-10.77256313	1.37381334	1.43531412
H	-13.05766320	2.34635264	1.56983298
H	-14.56961448	2.27340596	-0.42041490
H	-13.76841783	1.23629022	-2.54772753
H	-11.46941555	0.29827418	-2.69309161
H	-9.59714548	-2.69919218	-1.40145400
H	-9.48293789	-3.93011735	-3.56527841

H	-8.89936938	-2.70873016	-5.66628152
H	-8.45468321	-0.25169991	-5.59363251
H	-8.59199231	0.97630720	-3.42701153
H	-3.07018880	-1.80464183	-4.53924995
H	-4.19382515	-0.44556076	-4.25707290
H	-4.79867957	-1.96941946	-4.94991582
H	-4.27968607	-3.14500505	-2.75648042
H	-3.67935161	-1.61255768	-2.08224141
H	-1.86467047	2.17860027	-3.16798376
H	-2.36715602	0.87370143	-2.05587264
H	-1.77079779	2.41772489	-1.40197647
H	-3.81717628	3.58735788	-2.33851580
H	-4.38677856	2.04683405	-3.01971212

Diphosphine (S, R, R)-SPIRAP
85

P	-0.78415159	20.90796583	8.41079710
P	1.44835665	20.43430813	5.41165053
O	-1.04984959	17.26105507	7.80678199
O	-0.30266885	17.20831307	5.55590269
C	-1.66600258	20.13399215	9.84495430
C	-1.09623503	20.30205435	11.12593669
H	-0.18905620	20.89924711	11.23977342
C	-1.68127432	19.70405196	12.25082947
H	-1.23242863	19.84458927	13.23547462
C	-2.83319146	18.91319687	12.10660070
H	-3.28284917	18.43739840	12.97944197
C	-3.39766703	18.73140872	10.83504215
H	-4.28555929	18.10901962	10.71593561
C	-2.81978708	19.33731675	9.71008592
H	-3.24943097	19.17805742	8.72261144
C	-1.31874942	22.68327129	8.50317996
C	-2.15880668	23.20666114	9.50525908
H	-2.57059359	22.54357470	10.26624302
C	-2.46775272	24.57630343	9.52951042
H	-3.11890619	24.96770466	10.31330913
C	-1.95381877	25.43645292	8.54770159
H	-2.19874538	26.49952954	8.56664662
C	-1.12030554	24.92154126	7.54042534
H	-0.71441795	25.58191739	6.77222087
C	-0.79722161	23.55870422	7.52324894
H	-0.14376871	23.16803974	6.74064575
C	-1.77123850	20.30637233	6.95544366
C	-2.80272911	21.06589082	6.36246850
H	-3.08520489	22.01858200	6.80791271
C	-3.46127534	20.62695103	5.20081197
H	-4.25336544	21.24283339	4.77186890
C	-3.10603661	19.41576269	4.58694232
H	-3.60632120	19.08016497	3.67733792
C	-2.08213158	18.66129965	5.16631175
C	-1.43572263	19.09156420	6.32870521
C	-0.45011830	18.01137998	6.73664555

Pd(II) complex (S,S,S)-11

H	-9.99229999	-3.92407491	-2.43553562
H	-9.17475736	-3.30658540	-4.71542256
H	-8.37837332	-0.98053258	-5.16723401
H	-8.34911614	0.70243305	-3.32788003
H	-2.62954037	-1.16867867	-4.74107223
H	-3.81063922	0.12672242	-4.41717802
H	-4.29200442	-1.29308113	-5.37578636
H	-4.02572267	-2.75960897	-3.33513720
H	-3.51816056	-1.35346984	-2.37499949
H	-1.57366928	1.73804862	-3.25933052
H	-2.21227782	0.45618507	-2.19819514
H	-1.45092205	1.89990159	-1.48809403
H	-3.34567476	3.32363939	-2.38362073
H	-4.09554755	1.88395096	-3.10589737
Pd	-9.49227147	-0.41132773	1.63300775
Cl	-9.77093887	-1.66774910	3.69369728
Cl	-11.80753886	-0.89597443	1.04150558

Pd(II) complex (S, R, R)-11 88

P	-0.90564579
P	2.16806278
O	-0.95078418
O	0.26231649
C	-1.35079455
C	-0.57239852
H	0.32824982
C	-1.00182537
H	-0.40280373
C	-2.20318614
H	-2.54124877
C	-2.96190689
H	-3.87973749
C	-2.52681182
H	-3.09627699
C	-2.07811039
C	-3.31591521
H	-3.59917440
C	-4.17452960
H	-5.13153366
C	-3.79997274
H	-4.46757351
C	-2.55672563
H	-2.25008198
C	-1.69126862
H	-0.70195011
C	-1.57184049
C	-2.57753439
H	-2.97380301
C	-3.07103039
H	-3.84502743
C	-2.56317241

21.520132638 .07779970 20.990254726 .47176278 17.500924047 .78344443 $17.41601059 \quad 5.76324743$ $20.49334597 \quad 9.58341307$ $20.59778059 \quad 10.74756900$ 21.2096694310 .74427984 $19.95375836 \quad 11.91884091$ 20.0380486312 .82624115 19.2271428711 .92942193 18.7447836412 .84790900 19.1041671710 .75368338 18.5156003710 .75070386 19.720043049 .57191755 19.605493058 .65032876 22.991786138 .10870204 22.942455648 .76589386 22.057099769 .33400277 24.052327668 .71015458 $24.01991386 \quad 9.23297052$ 25.199197947 .99340370 26.061181747 .95464202 $25.24404137 \quad 7.34024500$ $26.14192128 \quad 6.80217674$ 24.144551927 .40367756 24.189746476 .94644487 20.519246436 .61029570 21.104117175 .80966925 22.082019896 .07103630 20.464948594 .66402478 20.955279004 .07220695 19.218491034 .27200935

H	-2.92556535	18.71775093	3.37372654
C	-1.57076247	18.63761675	5.06063761
C	-1.07849215	19.26307605	6.21933342
C	-0.13644549	18.24956101	6.86830331
C	-0.07712602	16.73118240	8.64616236
H	0.10333090	15.74710319	8.17271379
C	-0.73048509	16.54030308	10.01427912
H	-0.04073392	15.93589047	10.62676931
H	-0.82197094	17.52233748	10.49259318
C	-2.10007994	15.85181375	9.91914806
H	-2.78224143	16.45923472	9.30961356
H	-2.54365684	15.72250480	10.91712146
H	-2.00967130	14.85971302	9.44853023
C	-0.88281105	17.30245735	4.88677719
H	-1.54157975	16.50154626	5.27534765
C	-0.42867905	16.94448117	3.47329937
H	0.18390921	17.76809073	3.08736338
H	-1.32969555	16.88069572	2.84074421
C	0.34796931	15.61851467	3.43331392
H	1.24046857	15.68523157	4.07080849
H	0.66520449	15.37840211	2.40785480
H	-0.27268430	14.78792381	3.80501582
C	1.13189910	18.52477805	7.66037711
C	1.19002909	17.54924819	8.66917596
C	2.27780561	17.44768145	9.53640179
H	2.29901847	16.68787867	10.31862176
C	3.32751412	18.37020794	9.39845726
H	4.17769098	18.34332250	10.08059748
C	3.27809876	19.35584370	8.40480813
H	4.06599659	20.10605994	8.34966042
C	2.19103983	19.42625597	7.50254438
C	3.92621206	21.18316787	5.83375426
C	4.73532032	20.05528789	5.61476928
H	4.40086149	19.06761642	5.93196298
C	5.98559189	20.21054947	4.99472612
H	6.61778244	19.33673683	4.82913123
C	6.41732724	21.48311330	4.59112502
H	7.39053821	21.60109094	4.11210904
C	5.60085671	22.60498736	4.81000651
H	5.93869160	23.59742811	4.50950412
C	4.35332156	22.45948237	5.43211456
H	3.72870756	23.32718987	5.63638208
C	1.27434986	20.86034865	4.82956477
C	0.32560267	21.84322627	4.51388123
H	0.02905756	22.56109464	5.27864226
C	-0.22383937	21.89327637	3.22490956
H	-0.97091852	22.65059116	2.98586328
C	0.19392073	20.97612557	2.24997567
H	-0.22438864	21.02116090	1.24349056
C	1.16460265	20.01004349	2.56315947
H	1.50269242	19.30654444	1.80090692
C	1.70385045	19.94474043	3.85490949
H	2.45924527	19.19958720	4.09994906
Pd	1.30592700	22.42607994	8.12900717
Cl	3.54114409	23.30447829	8.48135910
Cl	0.51438352	23.78480381	9.99552640

Pd(II) complex of SDP 23

P	-1.03083899	21.55173105	7.79536988
P	2.06039684	20.97466813	6.28960293
C	-0.98767733	17.27059421	7.80515386
C	0.48969899	17.27541403	5.72945301
C	-1.17251147	20.64137704	9.42161851
C	-0.19336920	20.85507908	10.40490781
H	0.61803050	21.55401082	10.21023899
C	-0.28099594	20.16741362	11.62413992
H	0.48626648	20.32328689	12.38278033
C	-1.34406614	19.28218619	11.86419547
H	-1.40668141	18.74883844	12.81411744
C	-2.33370203	19.08793244	10.88660721
H	-3.16603158	18.40732435	11.07224498
C	-2.24948386	19.76984386	9.66351473
H	-3.00405613	19.60940129	8.89232618
C	-2.37400534	22.87238890	7.79650815
C	-3.56310989	22.72329959	8.52344495
H	-3.71042163	21.85588468	9.16493512
C	-4.55644256	23.71238959	8.43701482
H	-5.47684825	23.60433495	9.01278008
C	-4.36292258	24.83628667	7.61966909
H	-5.13549755	25.60405963	7.55576632
C	-3.16798370	24.98138634	6.89472715
H	-3.00368192	25.86401401	6.27527072
C	-2.16904360	24.00423565	6.98807280
H	-1.21825627	24.12638373	6.46826680
C	-1.62995039	20.35434238	6.43789451
C	-2.64632130	20.85252935	5.59049559
H	-3.12033800	21.80180167	5.82533229
C	-3.04515981	20.17503217	4.43248802
H	-3.83436917	20.59829226	3.80963759
C	-2.40782050	18.98468165	4.06529556
H	-2.67452727	18.46637950	3.14288064
C	-1.41241163	18.47079658	4.89864663
C	-1.03002399	19.11722531	6.09778147
C	-0.10218013	18.16784479	6.86441945
C	-0.05474690	16.79733495	8.94048947
H	0.37345269	15.80353583	8.72388060
H	-0.57529273	16.72957884	9.90688781
C	-0.63511182	17.19009738	4.67484001
H	-1.27933528	16.31149857	4.84780952
H	-0.24920012	17.11921210	3.64696471
C	1.00587261	18.64190236	7.78981086
C	1.03784974	17.84420493	8.95626251
C	1.99605847	18.04206580	9.95188413
H	1.98724353	17.42729632	10.85311158
C	2.95104882	19.05776303	9.78535274
H	3.69259476	19.25349626	10.56049546
C	2.94764391	19.84151370	8.62623437
H	3.66787028	20.65294431	8.51999286

\footnotetext{

Energy values and geometric parameters are described in the following tables.

	$\mathrm{G}_{\text {el }}{ }^{\text {a }}$ ($\left.\mathrm{kcal} / \mathrm{mol}\right)$	$\mathrm{H}_{\text {vib }}{ }^{\text {b }}$ (kcal/mol)	$\mathrm{S}_{\text {vib }}{ }^{\text {b }}$ (kcal/mol)	$\mathbf{G}_{\text {corr }}{ }^{\text {c }}$ ($\mathrm{kcal} / \mathrm{mol}$)
Diol (S,S,S)-7	-650274.0	230.2	148.1	-650088.0
Diol (R, S, S)-7	-650273.2	230.1	147.5	-650087.0
Diphosphine (S,S,S)SPIRAP	-1565059.2	450.3	245.8	-1564682.1
Diphosphine (S, R, R)SPIRAP	-1565058.5	449.8	238.7	-1564679.8
$\begin{aligned} & \text { Pd(II) complex } \\ & ((S, S, S)-11) \end{aligned}$	-1243189.9			
$\mathrm{Pd}(I I)$ complex $((S, R, R)-11)$	-1243184.6			
$\operatorname{Pd}(\mathrm{II})$ complex of SDP (23)	-1099473.7			

Table SI-1. Calculated values for optimized geometries. a: Gas-phase electronic energy (ω B97X-D/SMD/6-31G**). b: Vibrational, rotational, and translational entropic and enthalpic contributions (B97-D/6-31G**) at 298 K . c: Corrected free energy values at 298 K . $\mathrm{Pd}(\mathrm{II})$ complexes vibrational, rotational, and translational contributions to the total free energy were not calculated.

	$\alpha\left({ }^{\circ}{ }^{\text {a }}\right.$	$\beta\left({ }^{\circ}{ }^{\text {a }}\right.$	$\tau_{4}{ }^{\text {b }}$	$\tau_{4}{ }^{\text {c }}$	Bite angle (${ }^{\text {d }}{ }^{\text {d }}$
$(S, S, S)-11$	173.8	169.9	0.11	0.13	94.4
$(S, R, R)-11$	174.8	172.8	0.09	0.09	95.3
23	174.7	169.2	0.11	0.13	94.2

Table SI-2. Geometric parameters of $\mathrm{Pd}(\mathrm{II})$ complexes. a: Largest angles at Pd . b: geometry index parameter, calculated from $\tau_{4}=-0.00709 \alpha-0.00709 \beta+2.55 ;{ }^{[17]} \mathbf{c}$: geometry index parameter, calculated from $\tau_{4}{ }^{\prime}=-0.00399 \alpha-0.01019 \beta+2.55 ;{ }^{[18]} \mathrm{d}: \mathrm{P}-\mathrm{Pd}-\mathrm{P}$ angle.

X-Ray crystallography studies

(S,S,S)-SPIRAP(O) - CCDC Number: 1812181

(S,S,S)-SPIRAP(O)

Table SI-3. Crystal data and structure refinement for aa1711.

Identification code	aa1711
Empirical formula	C43 H38 O3 P2
Formula weight	664.67
Temperature	85(2) K
Wavelength	1.54184 A
Crystal system, space group	Hexagonal, P6(4)
Unit cell dimensions	$\mathrm{a}=15.22339(13) \mathrm{A}$ alpha $=90$ deg.
	$b=15.22339(13) A$ beta $=90$ deg .
	$\mathrm{c}=12.75692(12) \mathrm{A}$ gamma $=120 \mathrm{deg}$.
Volume	2560.35(5) A^3
Z, Calculated density	3, $1.295 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$1.472 \mathrm{~mm}^{\wedge}-1$
F(000)	1053
Crystal size	$0.190 \times 0.150 \times 0.100 \mathrm{~mm}$
Theta range for data collection	3.352 to 69.236 deg.
Limiting indices	-18<=h<=17, -18<=k<=18, -15<=\|<=15
Reflections collected / unique	$39371 / 3173$ [R (int) $=0.0574]$
Completeness to theta $=67.684$	100.00\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.82517
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	3173 / 1/224
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.109
Final R indices [$1>2$ sigma(1)]	$\mathrm{R} 1=0.0342, \mathrm{wR} 2=0.0865$
R indices (all data)	$\mathrm{R} 1=0.0343, \mathrm{wR2}=0.0866$
Absolute structure parameter	-0.130(18)
Extinction coefficient	0.0089(6)
Largest diff. peak and hole	0.191 and -0.227 e. $\mathrm{A}^{\wedge}-3$

(S,R,R)-SPIRAP(O) - CCDC: 1812182

(S,R,R)-SPIRAP(O)

Identification code	aa2393
Empirical formula	C43 H38 O3 P2
Formula weight	664.67
Temperature	225(2) K
Wavelength	1.54178 A
Crystal system, space group	Monoclinic, P2(1)
Unit cell dimension	$\mathrm{a}=10.01060$ (10) A alpha $=90 \mathrm{deg}$.
	$\mathrm{b}=31.3874(3) \mathrm{A}$ beta $=90.2490(10)$ deg .
	$\mathrm{c}=11.24650(10) \mathrm{A}$ gamma $=90 \mathrm{deg}$.
Volume	3533.69(6) A^3
Z, Calculated density	$4,1.249 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$1.422 \mathrm{~mm}^{\wedge}-1$
F(000)	1400
Crystal size	$0.12 \times 0.04 \times 0.04 \mathrm{~mm}$
Theta range for data collection	2.816 to 69.327 deg .
Limiting indices	-12<=h<=11, -37<=k<=38, -13<=\|<=13
Reflections collected / unique	$54487 / 12761[R($ int $)=0.0529]$
Completeness to theta $=67.679$	100.00\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.59423
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	12761 / 1/870
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.048
Final R indices [$1>2$ sigma(l)]	$\mathrm{R} 1=0.0481, \mathrm{wR2}=0.1318$
R indices (all data)	$\mathrm{R} 1=0.0509, \mathrm{wR2}=0.1375$
Absolute structure parameter	0.048(15)
Extinction coefficient	n/a
Largest diff. peak and hole	0.776 and -0.350 e.A^-3

Racemic

Retention Time	\% Area
15.446	50.56
17.033	49.44

(S)-2a - Using diphenyl((S)-1-((S)-1-phenylethyl)aziridin-2-yl)methanol

Retention Time	\% Area
15.912	0.09
18.161	99.91

1-(3-((benzyloxy)methoxy)phenyl)propan-1-ol (2b)
Racemic

$(R)-\mathbf{2 b}$ - Using diphenyl((R)-1-((S)-1-phenylethyl)aziridin-2-yl)methanol

Retention Time (min)	\% Area
22.623	99.43
24.154	0.57

(S)-2b - Using diphenyl((S)-1-((S)-1-phenylethyl)aziridin-2-yl)methanol

1-(3-(benzyloxy)phenyl)propan-1-ol (2c)

Racemic

$(R)-\mathbf{2 b}$ - Using diphenyl((R)-1-((S)-1-phenylethyl)aziridin-2-yl)methanol

(S)-2b - Using diphenyl((S)-1-((S)-1-phenylethyl)aziridin-2-yl)methanol

Racemic

Retention Time (min)	\% Area
10.590	49.39
15.338	50.61

Using (S,S,S)-SPIRAP

Using (S,R,R)-SPIRAP

2-(2-(1-methoxy-3-phenylpropyl)phenyl)pyridine (14)
Racemic

Peak No	\% Area	Area	Ret. Time
1	50.1819	3191.3565	7.14 min
2	49.8181	3168.2239	7.78 min

Using (S,S,S)-SPIRAP

9-methylene-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanofluorene (20)
Racemic

Peak No	\% Area	Area	Ret. Time
1	50.051	2961.0683	3.56 min
2	49.949	2955.0364	3.93 min

Using (S,S,S)-SPIRAP(O)

Peak No	\% Area	Area	Ret. Time
1	3.0506	173.7147	3.48 min
2	96.9494	5520.7245	3.84 min

Using (R,S,S)-SPIRAP(O)

Methyl acetylalaninate (22)
Racemic (GC conditions 1)

Racemic (GC conditions 2)

With ($\boldsymbol{R}, \boldsymbol{R}, \boldsymbol{R}$)-SPIRAPO (GC conditions 1)

With (S,R,R)-SPIRAPO (GC conditions 2)

With (S)-SDPO (GC conditions 1)

With (S)-BINAPO (GC conditions 2)

4-methyl-N-(2-methylene-1-(4-nitrophenyl)-3-oxobutyl)benzenesulfonamide (SI-2)
Racemic

Peak No	\% Area	Area	Ret. Time
1	50.1408	1123.648	4.03 min
2	49.8592	1117.336	4.57 min

Using (S,S,S)-SPIROMP

Peak No	\% Area	Area	Ret. Time
1	91.4147	4028.0775	4 min
2	8.5853	378.2998	4.55 min

Peak No	\% Area	Area	Ret. Time
1	14.0824	129.629	4.08 min
2	85.9176	790.8726	4.62 min

NMR spectra
3-(methoxymethoxy)benzaldehyde (1a)

3-((benzyloxy)methoxy)benzaldehyde (1b)

3-(benzyloxy)benzaldehyde (1c)

Wiley-vch

(R)-1-(3-((benzyloxy)methoxy)phenyl)propan-1-ol ((R)-2b)

(S)-1-(3-(benzyloxy)phenyl)propan-1-ol ((S)-2c)

(1S,3R,3'R)-7,7'-bis((benzyloxy)methoxy)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran] ((S,R,R)-6b)

(1R,3S,3'S)-7,7'-bis(benzyloxy)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran] ((R,S,S)-6c)

(1S,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diol ((S,S,S)-7) - ~2:1 d.r. (S,S,S)-7:(R,S,S)-7

(1R,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diol ((R,S,S)-7) - ~4:1 d.r. (R,S,S)-7:(S,S,S)-7

(1R,3S, 3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diol ((R,S,S)-7) - ~7:1 d.r. (R,S,S)-7:(S,S,S)-7 in $\mathrm{C}_{6} \mathrm{D}_{6}$

(1S,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl bis(trifluoromethanesulfonate) ((S,S,S)-8)

Wiley-vch

Wiley-vch

(1S,3S,3'S)-7'-(diphenylphosphoryl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl trifluoromethanesulfonate ((S,S,S)-9)

Wiley-vch

(200

 CDCl_{3}
500 MHz

(

(1S,3S,3'S)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl trifluoromethanesulfonate ((S,S,S)-10)

Wiley-vch

cen
(

(

WILEY-VCH

Wiley-vch

((1R,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl)bis(diphenylphosphane) ((R,S,S)-SPIRAP)

[((1S,3S,3'S)-3, 3^{\prime}-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl)bis(diphenylphosphane)]palladium(II) chloride ((S,S,S)-11)

Wiley-vch

WiLEY-VCH

[((1R,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl)bis(diphenylphosphane)]palladium(II) chloride ((R,S,S)-11)

Wiley-vch

$\overline{\left(\left(\left(1 S, 3 R, 3^{\prime} R\right)-3,3^{\prime} \text { 'diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl)bis(oxy))bis(diphenylphosphane) ((S,R,R)-SPIRAPO) }\right.\right.}$

Wiley-vch

(1S,3S,3'S)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-ol ((S,S,S)-SPIROMP)

(1R,3S,3'S)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-ol ((R,S,S)-SPIROMP)

(

(

(1S,4R,4aS,9aR)-9-methylene-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanofluorene (20)

(
$\begin{array}{lllllllllllllllllllllllllllllllll}155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20\end{array}$ Methyl acetyl-L-alaninate (22)

Wiley-vch

Wiley-vch

References

[1] K. Soai, S. Yokoyama, T. Hayasaka, J. Org. Chem. 1991, 56(13), 4264.
[2] M.-C. Wang, Y.-H. Wang, G.-W Li, P.-P. Sun, J.-X. Tian, H.-J. Lu, Tetrahedron: Asymmetry 2011, 22(7), 761.
[3] A. E. Green, V. Agouridas, E. Deniau, Tetrahedron Lett. 2013, 54(51), 7078.
[4] R. Matsubara, T. F. Jamison, J. Am. Chem. Soc. 2010, 132(20), 6880
[5] Y. Ebe, M. Onoda, T. Nishimura, H. Yorimitsu, Angew. Chemie Int. Ed. 2017, 56(20), 5607; Angew. Chem. 2017, 129, 5699.
[6] P. -S. Gao, F. Ye, X. -Y. Dong, Y. Chen, Z. -W. Gao, W. -Q. Zhang, L. -W. Xu, N. Maezaki, RSC Adv. 2015, 5(43), 33818
[7] J. H. Xie, H. F. Duan, B. M. Fan, X. Cheng, L. X. Wang, Q. L. Zhou, Adv. Synth. Catal. 2004, 346(6), 625.
[8] J. Hu, H. Hirao, Y. Li, J. S. Zhou, Angew. Chemie Int. Ed. 2013, 52(33), 8676; Angew. Chem. 2013, 125, 8838.
[9] R. Guo, T. T. -L. Au-Yeung, J. Wu, M. C. K. Choi, A. S. C. Chan, Tetrahedron: Asymmetry, 2002, 13, 2519.
[10] S. Takizawa, K. Kiriyama, K. leki, H. Sasai, Chem. Commun. 2011, 47(32), 9227.
[11] Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kuś, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A. DiStasio, H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-MoInar, A. Ghysels, A. Golubeva-Zadorozhnaya, Joseph Gomes, Magnus W.D. Hanson-Heine, Philipp H.P. Harbach, Andreas W. Hauser, Edward G. Hohenstein, Z. C. Holden, T.-C. Jagau, H. Ji, B.n Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. D. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich, Simon A. Maurer, Nicholas J. Mayhall, Eric Neuscamman, C. Melania Oana, Roberto Olivares-Amaya, Darragh P. O'Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, S. M. Sharada, S. Sharma, D. W. Small, A. Sodt, T. Stein, D. Stück, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi, V. Vanovschi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, J. Yang, S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhao, B. R. Brooks, G. K. L. Chan, D. M. Chipman, C. J. Cramer, W. A. Goddard, M. S. Gordon, W. J. Hehre, A. Klamt, H. F. Schaefer, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Warshel, X. Xu, Alán AspuruGuzik, Roi Baer, Alexis T. Bell, Nicholas A. Besley, Jeng-Da Chai, Andreas Dreuw, Barry D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong, D. S. Lambrecht, W. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik, T. V. Voorhis, J. M. Herbert, A. I. Krylov, P. M.W. Gill, M. Head- Gordon, Mol. Phys. 2015, 113, 184.
[12] A. D. Becke, J. Chem. Phys. 1997, 107, 8554. (b) S. Grimme, J. Comp. Chem. 2006, 27, 1787.
[13] (a) P. C. Hariharan, J. A. Pople, Theoret. Chim. Acta. 1973, 28, 213. (b) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654.
[14] (a) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270. (b) W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284. (c) P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 299.
[15] Discovery Studio 4.1 Visualizer: Accelrys Software Inc. San Diego, USA. 2015.
[16] (a) J.-D. Chai, M. Head-Gordon, J. Chem. Phys. 2008, 128, 084106. (b) J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 661.
[17] L. Yang, D. R. Powell, R. P. Houser, Dalt. Trans. 2007, 955.
[18] A. Okuniewski, D. Rosiak, J. Chojnacki, B. Becker, B. Polyhedron 2015, 90, 47.

[^0]: $\begin{array}{llllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & \begin{array}{l}80 \\ f 1 \\ (\mathrm{ppm})\end{array} & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40\end{array}$

