

Supporting Information

Design, Synthesis, and Application of Chiral C₂-Symmetric Spiroketal-Containing Ligands in Transition-Metal Catalysis

Alonso J. Argüelles, Siyuan Sun, Brenna G. Budaitis, and Pavel Nagorny*

anie_201713304_sm_miscellaneous_information.pdf

Table of Contents

Table of Contents	2
General information	3
Synthesis of diphosphine (S,S,S)-SPIRAP and Pd(II) complex	4
Synthesis of diphosphine (R,S,S)-SPIRAP and Pd(II) complex	23
Synthesis of diphosphinite (S,R,R)-SPIRAPO	
Synthesis of monophosphine (R,S,S)-SPIROMP and (S,S,S)-SPIROMP	
Asymmetric hydroarylation of methylated cinnamyl alcohol	
Asymmetric allylic alkylation of chalcone derivatives	
Asymmetric Heck reaction of 2-vinylphenyl triflate with norbornene	
Asymmetric hydrogenation of quinolines	
Asymmetric hydrogenation of acrylate derivatives	
Asymmetric Baylis Hillman reaction of methyl vinyl ketone and an aromatic tosylimine	
Computational models and analysis	39
X-Ray crystallography studies	
HPLC, SFC, and GC traces	47
NMR spectra	60
References	143

General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out under an atmosphere of nitrogen in flame-dried glassware with magnetic stirring, unless otherwise noted. Air-sensitive reagents and solutions were transferred *via* syringe or cannula and were introduced to the apparatus through rubber septa. Reactions were cooled via external cooling baths: ice water (0°C), dry ice-acetone (-78°C), or Neslab CB 80 immersion cooler (0 to - 60°C). Heating was achieved using a silicone bath with regulated by an electronic contact thermometer. Deionized water was used in the preparation of all aqueous solutions and for all aqueous extractions. Solvents used for extraction and column chromatography were ACS or HPLC grade. Dry tetrahydrofuran (THF), dichloromethane (DCM), toluene (PhMe), and diethyl ether (Et₂O) was prepared by filtration through a column (Innovative Technologies) of activated alumina under nitrogen atmosphere. Reactions were monitored by nuclear magnetic resonance (NMR, see below) or thin layer chromatography (TLC) on silica gel precoated glass plates (0.25 mm, SiliCycle, SiliaPlate). TLC plate visualization was accomplished by irradiation with UV light at 254 nm or by staining with a potassium permanganate (KMnO₄) or cerium ammonium molybdate (CAM) solution. Flash chromatography was performed using SiliCycle SiliaPlateh P60 (230-400 mesh) silica gel. Powdered 4 Å molecular sieves were pre-activated by flame-drying under vacuum before use.

Proton (¹H), deuterium (D), carbon (¹³C), fluorine (¹⁹F), and phosphorus (³¹P) NMR spectra were recorded on Varian VNMRS-700 (700 MHz), Varian VNMRS-500 (500 MHz), Varian INOVA 500 (500 MHz), or Varian MR400 (400 MHz). ¹H, ¹³C, ¹⁹F, and ³¹P NMR spectra are referenced on a unified scale, where the single reference is the frequency of the residual solvent peak in the ¹H NMR spectrum. Chemical shifts (δ) are reported in parts per million (ppm) relative to tetramethylsilane for ¹H and ¹³C NMR, fluorotrichloromethane for ¹⁹F, 85% phosphoric acid for ³¹P. Data is reported as (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet; coupling constant(s) in Hz; integration). Slight shape deformation of the peaks in some cases due to weak coupling (e.g. aromatic protons) is not explicitly mentioned. High resolution mass spectra (HRMS) were recorded on Micromass AutoSpec Ultima or VG (Micromass) 70-250-S Magnetic sector mass. IR spectra were collected using a Nicolet iS10 spectrometer equipped with a diamond attenuated total reflectance (ATR) accessory. IR absorption peaks were reported in wavenumbers (cm⁻¹). The enantiomeric excesses were determined by GC, SFC, or HPLC analysis employing a chiral stationary phase column and conditions specified in the individual experiment. SFC analysis was carried out in a Waters Investigator SFC instrument. HPLC experiments were performed using a Waters Alliance e2695 Separations Module instrument. GC analysis was done in a Shimadzu GC-2010 Plus instrument. Optical rotations were measured at room temperature in a solvent of choice on a JASCO P-2000 digital polarimeter at 589 nm (D-line).

Synthesis of diphosphine (S,S,S)-SPIRAP and Pd(II) complex

3-(methoxymethoxy)benzaldehyde (1a)

3-hydroxybenzaldehyde (24.0g, 196.5mmol), DCM (500mL), and N,N-diisopropylethylamine (100mL, 574mmol) were cooled to 0°C before adding chloromethyl methyl ether (23mL, 302.8mmol) over 2h with a venting needle to handle the fumes. Reaction mixture was then warmed to room temperature. After 17h at room temperature, reaction mixture was quenched with a saturated aqueous solution of NaHCO₃ (500 mL). After separating the phases, the aqueous layer was extracted DCM twice. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 20% EtOAc in hexanes) to obtain the desired product **1a** as pale yellow liquid (31.94g, 97.8% yield).

¹**H NMR** (700 MHz, CDCl₃) δ 9.98 (s, 1H), 7.57 – 7.51 (m, 2H), 7.46 (t, *J* = 7.8 Hz, 1H), 7.32 – 7.28 (m, 1H), 5.24 (s, 2H), 3.49 (s, 3H). ¹³**C NMR** (176 MHz, CDCl₃) δ 191.96, 157.76, 137.82, 130.11, 123.81, 122.83, 115.93, 94.39, 56.16. **IR** (film): v_{max} = 2956, 2923, 2849, 2730, 1699, 1585, 1463, 1454, 1389, 1248, 1152, 1077, 1008, 789 cm⁻¹

3-((benzyloxy)methoxy)benzaldehyde (1b)

NaH (60% suspension) (2.47g, 60.25mmol) was added to a solution of 3-hydroxybenzaldehyde (5.00g, 40.94 mmol) in DMF (120mL) at 0°C. After 15min, benzyl chloromethyl ether (8.54mL, 61.42mmol) was added dropwise followed by the addition of tetrabutylammonium iodide (826mg, 2.24mmol). After overnight stirring at 0°C, reaction mixture was quenched with water (80mL), and the product was extracted with DCM (4 x 70mL). Combined organic was washed with brine, dried over MgSO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 5% EtOAc in hexanes) to afford aldehyde **1b** as clear oil (9.62g, 97% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 9.98 (s, 1H), 7.60 (s, 1H), 7.54 (d, *J* = 7.5 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 1H), 7.39 − 7.28 (m, 6H), 5.36 (s, 2H), 4.74 (s, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 191.93, 157.83, 137.86, 136.96, 130.14, 128.49, 128.00, 127.98, 123.74, 122.76, 116.16, 92.24, 70.22.
IR (film): v_{max} = 2904, 2729, 1699, 1585, 1483, 1454, 1383, 1242, 1157, 1144, 1076, 1013, 989, 736 cm⁻¹

3-(benzyloxy)benzaldehyde (1c)

A solution of 3-hydroxybenzaldehyde (13.50g, 110.54mmol) and potassium carbonate (22.90g, 165.7mmol) in DMF (225mL) was treated dropwise with solution of benzylchloride (19mL, 165.1mmol) in DMF (160mL). After 15min at 50°C, reaction mixture was heated to 85°C for 24h. Reaction mixture was cooled to room temperature, diluted with DCM (150mL), and quenched with water (300mL). After separating the phases, the aqueous layer was extracted with DCM (3 x 200mL). Combined organic was washed with brine, dried over MgSO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 5% EtOAc in hexanes) to yield aldehyde **1c** as a white solid (18.77g, 80% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 9.98 (s, 1H), 7.51-7.43 (m, 5H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.37-7.32 (m, 1H), 7.27-7.23 (m, 1H), 5.13 (s, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 192.02, 159.30, 137.82, 136.30, 130.10, 128.66, 128.19, 127.53, 123.65, 122.17, 113.27, 70.22. **IR** (film): v_{max} = 2811, 2727, 1693, 1594, 1480, 1443, 1383, 1325, 1255, 1146, 1016, 990, 794, 741, 697 cm⁻¹

(S)-1-(3-(methoxymethoxy)phenyl)propan-1-ol (2a)

Alkylations using DBNE as a catalyst were based on a reported procedure.^[1] Those using aziridine catalyst **3a** or **3b** were based on another report.^[2]

a) Using (-)-DBNE

Aldehyde **1a** (31.92g, 192.1mmol), hexanes (370mL), and N,N-dibutyl-D-(-)-norephedrine (3.8mL, 13.6mmol) were cooled to 0°C before adding a 1M solution of diethylzinc in hexanes (430mL, 430mmol) portionwise over 2h. After 27h at 0°C, reaction mixture was quenched with an aqueous solution of HCl 1M (150mL) and then filtered with DCM washings. Water (400mL) was added to the filtrate. After separating the layers, the aqueous fraction was with DCM twice. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 30% EtOAc in hexanes) to obtain **(S)-2a** as pale yellow oil (36.5g, 96.8% yield, 94% ee).

¹**H NMR** (700 MHz, CDCl₃) δ 7.29 – 7.24 (m, 1H), 7.03 (t, *J* = 2.0 Hz, 1H), 6.99 (dt, *J* = 7.4, 1.2 Hz, 1H), 6.96 (ddd, *J* = 8.2, 2.6, 1.0 Hz, 1H), 5.19 (s, 2H), 4.60 – 4.55 (m, 1H), 3.49 (s, 3H), 1.85 – 1.71 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H). ¹³**C NMR** (176 MHz, CDCl₃) δ 157.36, 146.44, 129.44, 119.47, 115.15, 113.91, 94.44, 75.83, 56.01, 31.84, 10.15. **IR** (film): v_{max} = 3411 (br), 2961, 2932, 1586, 1486, 1451, 1242, 1149, 1077, 1011, 993, 923 cm⁻¹ **HPLC** (Chiralpak IA column, 96:4 hexanes/isopropanol, 1.0 ml/min), t_r = 15.4 min (minor, *R*), 17.0 min (major, *S*)

b) Using aziridine organocatalyst 3a:

Hexanes (20mL), and diphenyl((*R*)-1-((*S*)-1-phenylethyl)aziridin-2-yl)methanol **3a** (100.0mg, 0.30mmol) were cooled to 0°C before adding a 1 M solution of diethylzinc in hexanes (13.3mL, 13.3mmol) dropwise. Reaction mixture was stirred at 0°C before the addition of aldehyde **1a** (1.00g, 6.0mmol) dropwise. After 20h at 0°C and 20h at room temperature, action mixture was quenched with a saturated solution of NH₄CI (20mL). After separating the layers, the aqueous fraction was with EtOAc three times. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 20% EtOAc in hexanes) to obtain **(S)-2a** (1.14g, 96.5% yield, >99% *ee*) as pale yellow oil.

Identical spectral properties as above.

(R)-1-(3-((benzyloxy)methoxy)phenyl)propan-1-ol (2b)

Using aziridine organocatalyst 3a:

A solution of Et_2Zn (1M in hexanes) (2.7mL, 2.7mmol) was added dropwise to a cooled (0°C) solution of diphenyl((*S*)-1-((*S*)-1-phenylethyl)aziridin-2-yl)methanol **3a** (20mg, 0.06mmol) in toluene (0.5mL). After 30min at 0°C, a solution of aldehyde **1b** (300mg, 1.24mmol) in toluene (1.5mL) was added dropwise, and the reaction mixture was allowed to slowly warm to room temperature. After 24h, reaction mixture was quenched with a saturated solution of NH₄Cl (8mL), the solid was filtered, and filtrate was extracted with Et_2O (3 x 8mL). Combined organic was washed with brine, dried over anhydrous MgSO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 10% EtOAc in hexanes) to alcohol **(S)-2b** as a clear oil (307mg, 91.0% yield, 99% e.e.)

Using aziridine organocatalyst 3b:

A solution of Et_2Zn (1M in hexanes) (6mL, 6mmol) was added dropwise to a cooled (0°C) solution of diphenyl((*R*)-1-((*S*)-1-phenylethyl)aziridin-2-yl)methanol **3b** (50mg, 0.15mmol) in toluene (0.5mL). After 30min at 0°C, a solution of aldehyde **1b** (658mg, 2.72mmol) in toluene (4.5mL) was added dropwise, and the reaction mixture was allowed to slowly warm to room temperature. After 24h, reaction mixture was quenched with a saturated solution of NH₄Cl (8mL), the solid was filtered, and filtrate was extracted with Et_2O (3 x 8mL). Combined organic was washed with brine, dried over anhydrous MgSO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 10% EtOAc in hexanes) to alcohol (*R*)-2b as a clear oil (548mg, 74.1% yield, 99% *ee*).

¹**H NMR** (500 MHz, CDCl₃) δ 7.38 – 7.24 (m, 6H), 7.08 (s, 1H), 7.00 (t, *J* = 7.6 Hz, 2H), 5.30 (s, 2H), 4.73 (s, 2H), 4.57 (td, *J* = 6.6, 3.4 Hz, 1H), 1.96 (d, *J* = 3.4 Hz, 1H), 1.87 – 1.70 (m, 2H), 0.93 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 157.42, 146.43, 137.26, 129.46, 128.43, 128.01, 127.85, 119.51, 115.22, 113.99, 92.30, 75.81, 69.93, 31.84, 10.13.

IR (film): $v_{max} = 3406$ (br), 2962, 2932, 2875, 1585, 1486, 1453, 1237, 1157, 1075, 1015, 993, 785, 736, 696 cm⁻¹ **HPLC** (Chiralpak IA column, 96:4 hexanes/isopropanol, 1.0 ml/min), $t_r = 22.6$ min (major, *R*), 24.2 min (minor, *S*)

1-(3-(benzyloxy)phenyl)propan-1-ol (2c)

a) Using (+)-DBNE

Aldehyde **1c** (50mg, 0.24mmol), toluene (3mL), and N,N-dibutyI-D-(+)-norephedrine (4µL, 0.014mmol) were cooled to 0°C before adding a 1M solution of diethylzinc in hexanes (0.5mL, 0.5mmol) dropwise over 20min. After 20h from 0°C to room temperature, reaction mixture was quenched with a saturated solution of NH₄Cl (5mL). After separating the layers, the aqueous fraction was with EtOAc three times. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 20% EtOAc in hexanes) to obtain (*R*)-2c (47mg, 82% yield, 95% BRSM, 91% *ee*) as pale yellow oil.

¹**H NMR** (700 MHz, CDCl₃) δ 7.49 (d, *J* = 7.2 Hz, 2H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.37 (t, *J* = 7.3 Hz, 1H), 7.30 (t, *J* = 7.9 Hz, 1H), 7.04 (s, 1H), 6.96 (d, *J* = 7.6 Hz, 1H), 6.93 (dd, *J* = 8.1, 2.3 Hz, 1H), 5.09 (s, 2H), 4.56 (t, *J* = 6.6 Hz, 1H), 2.44 (d, *J* = 9.4 Hz, 1H), 1.87 - 1.80 (m, 1H), 1.80 - 1.73 (m, 1H), 0.96 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (176 MHz, CDCl3) δ 158.93, 146.52, 137.08, 129.44, 128.61, 127.99, 127.58, 118.71, 113.80, 112.55, 75.81, 69.99, 31.88, 10.21.

IR (film): v_{max} = 3366 (br), 3032, 2962, 2929. 2873, 1583, 1485, 1446, 1250, 1154, 1025, 994, 779 cm⁻¹

HPLC (Chiralpak IA column, 95:5 hexanes/isopropanol, 1.0 ml/min), t_r = 21.2 min (R), 24.5 min (S)

b) Using aziridine organocatalyst 3a

Aldehyde **1c** (14.2g, 66.9mmol), toluene (35mL), and diphenyl((*S*)-1-((*S*)-1-phenylethyl)aziridin-2-yl)methanol **3a** (1.32g, 4.0mmol) were cooled to 0°C before adding a 1M solution of diethylzinc in toluene (148mL, 148mmol) dropwise over 6h. Reaction mixture was allowed to warm to room temperature slowly. After 30h, reaction mixture was quenched with a saturated solution of NH₄Cl (150mL). After separating the layers, the aqueous fraction was with EtOAc three times. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 20% EtOAc in hexanes) to obtain (*S*)-2c (16.2g, quant. yield, 98% *ee*) as pale yellow oil.

Identical spectral properties as above.

Using organocatalyst 3b, (R)-2c obtained in 97.8% ee.

Lithiation studies

Before optimizing the spiroketalization reaction, we decided to study the selectivity of the *ortho*-lithiation of alcohols **2**. After treating **2** with 2 equivalents of *n*-butyllithium, aliquots were extracted at time points and then quenched with CD_3OD . After removing the volatiles, the deuterated material was analyzed by NMR. We found that selective and almost quantitative lithiation at the desired position occurred for **2a** and **2b**, and **2c** at around 2-3h in toluene. For example, for **2a**:

For **2b**:

For **2c**:

Additionally, using THF as solvent, or TMEDA as additive gave unselective lithiations.

(1R,3S,3'S)-3,3'-diethyl-7,7'-bis(methoxymethoxy)-3H,3'H-1,1'-spirobi[isobenzofuran] ((R,S,S)-6a)

Alcohol **(S)-2a** (22.84g, 116.4mmol) and PhMe (330mL) were cooled to 0°C before addition of a 2.5M solution *n*-Butyllithium in hexanes (44mL over 15min, then 50 mL over 1h, 235.0mmol). Reaction mixture was then warmed to room temperature. After 3h, the resulting suspension was dissolved using 12mL of THF and cooled again to 0°C. Diethyl carbonate (7.7mL, 63.5mmol) was incorporated over 2h at 0°C. Reaction mixture was allowed to warm slowly to room temperature overnight (12h). Glacial acetic acid (100mL) was then added slowly at room temperature. After 4h at room temperature, reaction mixture was quenched with 500mL of water, followed by careful addition of 100g of NaHCO₃. After separating the layers, the aqueous fraction was with DCM three times. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. The mixture components were purified by FCC (SiO₂): 3.34g of starting material **2a** (14.6% recovery) were obtained at 15% EtOAc in hexanes, while 15.65g of desired product

6a (67.2% yield, 78.7% BRSM) were isolated at 25% EtOAc in hexanes as pale yellow oil. Additionally, some intermediate isobenzofuranone **4a** (2.43g, 9.4% yield) was obtained at 35% EtOAc in hexanes as pale yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.29 (t, *J* = 7.8 Hz, 2H), 6.88 (dd, *J* = 7.9, 3.6 Hz, 4H), 5.40 (dd, *J* = 7.4, 3.9 Hz, 2H), 4.95 (d, *J* = 6.6 Hz, 2H), 4.82 (d, *J* = 6.6 Hz, 2H), 3.07 (s, 6H), 1.98 (dtd, *J* = 14.8, 7.3, 3.9 Hz, 2H), 1.86 (dq, *J* = 14.3, 7.3 Hz, 2H), 1.04 (t, *J* = 7.4 Hz, 6H).

 $^{13}\textbf{C} \ \textbf{NMR} \ (126 \ \text{MHz}, \ \textbf{CDCl}_3) \ \delta \ 152.44, \ 145.61, \ 130.58, \ 127.76, \ 113.99, \ 112.15, \ 93.29, \ 83.15, \ 55.60, \ 28.06, \ 9.74.$

ESI-HRMS Calcd. for $C_{23}H_{29}O_6^+$ 401.1964 [M+H]⁺, found 401.1958.

IR (film): v_{max} = 2962, 2934, 1614, 1599, 1479, 1256, 1152, 1002, 960, 928, 734 cm⁻¹

(1S,3R,3'R)-7,7'-bis((benzyloxy)methoxy)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran] ((S,R,R)-6b)

Alcohol **(S)-2b** (210mg, 0.77mmol) and PhMe (4.6mL) were cooled to 0°C before dropwise addition of a 2.5M solution *n*-Butyllithium in hexanes (690µL, 1.73mmol). Reaction mixture was stirred at room temperature for 90min. Diethyl carbonate (50µL, 0.41mmol) was incorporated over 20min at 0°C. Reaction mixture was allowed to warm slowly to room temperature overnight. After 24h, glacial acetic acid (1mL) was then added slowly at room temperature. After 5h at room temperature, reaction mixture was treated with a saturated solution of NaHCO₃ (8mL). After separating the layers, the aqueous fraction was washed with DCM three times. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. The mixture components were purified by FCC (SiO₂, 5% EtOAc in hexanes) to obtain (*S,R,R*)-6b (126mg, 59% yield, 64% BRSM) as pale yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.33 (t, *J* = 7.9 Hz, 2H), 7.28 – 7.20 (m, 6H), 7.03 (dd, *J* = 6.5, 2.8 Hz, 4H), 6.97 (d, *J* = 8.1 Hz, 2H), 6.93 (d, *J* = 7.5 Hz, 2H), 5.42 (dd, *J* = 7.4, 4.0 Hz, 2H), 5.04 (d, *J* = 6.7 Hz, 2H), 4.87 (d, *J* = 6.8 Hz, 2H), 4.27 – 4.11 (m, 4H), 1.98 (m, 2H), 1.87 (m, 2H), 1.04 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 152.53, 145.77, 136.67, 130.73, 128.28, 128.25, 128.16, 127.81, 127.78, 115.94, 114.04, 112.11, 90.33, 83.28, 69.03, 28.13, 9.85.

ESI-HRMS Calcd. for $C_{35}H_{37}O_6^+$ 553.2584 [M+H]⁺, found 553.2580.

IR (film): v_{max} = 2964, 2874, 1599, 1479, 1250, 1155, 1093, 1065, 1002, 958, 734, 697 cm⁻¹

(1R,3S,3'S)-7,7'-bis(benzyloxy)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran] ((R,S,S)-6c)

Alcohol **(S)-2c** (200mg, 0.83mmol) and PhMe (2.4mL) were cooled to 0°C before addition of a 2.5M solution *n*-Butyllithium in hexanes (300µL dropwise, then 370µL over 30min, 1.68mmol). Reaction mixture was stirred at 0°C for 3h. Dimethyl carbonate (38µL, 0.45mmol) was incorporated over 30min 0°C. Reaction mixture was allowed to warm slowly to room temperature overnight (12h). Glacial acetic acid (1.2mL) was then added slowly at room temperature. After 6h at room temperature, reaction mixture was diluted with water (20mL) and then neutralized carefully with solid NaHCO₃. The product was extracted with DCM three times. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. The mixture components were purified by FCC (SiO₂, 10% EtOAc in hexanes) to obtain (*R*,*S*,*S*)-6c (84.8mg, 42% yield, 66% BRSM) as white solid, as well as 74.1mg of (*S*)-2c.

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 (t, *J* = 7.8 Hz, 2H), 7.19 – 7.02 (m, 6H), 6.83 (dd, *J* = 14.9, 7.8 Hz, 4H), 6.75 – 6.62 (m, 4H), 5.39 (dd, *J* = 7.2, 4.3 Hz, 2H), 5.00 – 4.80 (m, 4H), 1.87 – 1.59 (m, 4H), 0.86 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 154.21, 145.84, 136.62, 130.52, 127.97, 127.50, 127.15, 126.42, 115.83, 113.51, 110.36, 83.14, 68.86, 27.79, 9.64.

ESI-HRMS Calcd. for C₃₃H₃₃O₄⁺ 493.2373 [M+H]⁺, found 493.2370.

IR (powder): v_{max} = 3030, 2963, 2933, 2872. 1735, 1612, 1597, 1480, 1451, 1284, 1267, 1027, 930 cm⁻¹

(1R,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diol ((R,S,S)-7) and (S,S,S)-7 diastereomer from 6a

The deprotection of the MOM group using AcCl in MeOH was mild enough that after 6h at room temperature the less thermodynamically stable diol (R,S,S)-7 is the major compound. However, SiO₂ and other acidic conditions epimerize it into (S,S,S)-7. These results agree with the calculated ΔG of 1.0 kcal/mol favoring (R,S,S)-7. Consequently, neutralizing the acidic conditions after 6h of reaction yields (R,S,S)-7 selectively, while performing chromatography after the reaction time gives (S,S,S)-7 enriched material, as exemplified below. In addition, acidic deprotection led to partial epimerization of (R,S,S)-6a and (R,S,S)-6b leading to formation of undesired (S,R,S)-7 diastereomer. This side reaction could be avoided by using non-acidic deprotection methods such as hydrogenolysis of (R,S,S)-6c.

(R,S,S)-selective deprotection

Spiroketal (R, S, S)-6a (21.9mg, 0.055mmol) and MeOH (0.5mL) were added to a vial. Solution was cooled to 0°C, and then acetyl chloride (8.0µL, 0.11mmol) was added slowly. Reaction mixture was warmed to room temperature. After 6h, reaction mixture was quenched with a saturated solution of NaHCO₃. Extracted three times with DCM, and then combined organic was dried with Na₂SO₄, and concentrated *in vacuo* to afford a mixture of diols 7 (17.0mg, 93% yield, d.r. 1:3.8 (S,S,S)-7:(R,S,S)-7 with 6% of undesired (S,R,S)-7).

¹**H** NMR (500 MHz, CDCl₃) δ 7.34 (t, *J* = 7.7 Hz, 1H), 6.86 (d, *J* = 7.5 Hz, 1H), 6.77 (d, *J* = 8.0 Hz, 1H), 5.41 (dd, *J* = 6.7, 4.1 Hz, 1H), 4.73 (s, 1H), 2.07 (m, 1H), 1.83 (m, 1H), 1.01 (t, *J* = 7.4 Hz, 3H). ¹³**C** NMR (126 MHz, CDCl₃) δ 151.86, 145.37, 132.30, 123.26, 115.49, 113.62, 83.07, 27.76, 9.18. **ESI-HRMS** Calcd. for C₁₉H₂₁O₄⁺ 314.1440 [M+H]⁺, found 314.1435.

(S,S,S)-selective deprotection

Spiroketal (*R*,*S*,*S*)-6a (2.82g, 7.04mmol) and MeOH (35mL) were added to a round bottom flask. Solution was cooled to 0°C, and then acetyl chloride (1.0mL, 14.1mmol) was added slowly. Reaction mixture was warmed to room temperature. After 6h, reaction mixture was concentrated *in vacuo*, and purified by FCC (SiO₂, 30% \rightarrow 40% EtOAc in hexanes) to obtain a mixture of diols **7** (2.15g, 92.1% yield 1:1.9 d.r. (*R*,*S*,*S*)-7:(*S*,*S*,*S*)-7 with 5.6% of undesired (*S*,*R*,*S*)-7).

¹**H NMR** (500 MHz, CDCl₃) δ 7.31 (t, *J* = 7.8 Hz, 1H), 6.86 (d, *J* = 7.5 Hz, 1H), 6.75 (d, *J* = 8.0 Hz, 1H), 5.27 (dd, *J* = 7.6, 4.4 Hz, 1H), 4.60 (s, 1H), 1.99 − 1.85 (m, 2H), 1.07 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 151.65, 145.24, 131.99, 123.37, 115.46, 113.84, 84.89, 30.61, 9.74.

(1S,3R,3'R)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diol ((S,R,R)-7) from 6b

Spiroketal (*S*,*R*,*R*)-6b (20.9mg, 0.04mmol) and MeOH (200µL) were added to a vial. Solution was cooled to 0°C, and then acetyl chloride (8.0µL, 0.11mmol) was added slowly. Reaction mixture was warmed to room temperature. After 3h, reaction mixture was diluted with EtOAc, and treated with a saturated solution of NaHCO₃ (1 mL). After separating layers, the aqueous fraction was extracted three times with EtOAc. Combined organic was washed with brine, dried with Na₂SO₄, and purified by FCC (SiO₂, $5\% \rightarrow 40\%$ EtOAc in hexanes) to obtain a mixture of diols 7 (11.6mg, 87% yield 1:1.3 d.r. (*S*,*R*,*R*)-7:(*R*,*R*,*R*)-7 with 11% of undesired (*R*,*S*,*R*)-7).

(1R,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diol (R,S,S-7) from 6c

Spiroketal (*R*,*S*,*S*)-6c (54mg, 0.11mmol), Pd/C (22mg, 0.022mmol), NaHCO₃ (84mg, 1mmol) and methanol (2mL) were added to a round bottom flask charged with nitrogen before purging with hydrogen balloon twice. After 2h at room temperature, reaction mixture was filtered through syringe filter and concentrated *in vacuo* to obtain a mixture of diols **7** (32 mg, 94% yield, dr =1:6.9 (*S*,*S*,*S*)-**7**:(*R*,*S*,*S*)-**7**, no undesired (*S*,*R*,*S*)-**7** was observed) as white solid. Spectral properties described above.

Diol equilibration studies

The isomeric ratio of the diols was variable, because epimerization happens in silica-containing solutions and the dr is dependent on the solvent. Most solvents, such as EtOAc/Hexanes mixtures slightly favor the (S,S,S)-7 isomer. Curiously, SiO₂ in PhMe lightly favors equilibration towards the (R,S,S)-7 isomer, this is not unreasonable given that the gas phase free energy difference between diastereomers is small.

A vial was charged with a 2.9:1 (S,S,S)-7:(R,S,S)-7 mixture (300mg), PhMe (3mL), and SiO₂ (3.0g). After stirring at room temperature for 4 days, the diol mixture was recovered quantitatively by filtration and concentration *in vacuo*, with a 1:2.4 (S,S,S)-7:(R,S,S)-7 d.r.. Similarly, a vial was charged with a 1:2.4 (S,S,S)-7:(R,S,S)-7 mixture (100mg), EtOAc (0.5mL), hexanes (0.5mL), and SiO₂ (1.0g). After stirring at room temperature for 2 days, the diol mixture was recovered quantitatively by filtration and concentration *in vacuo*, with a 1.2:1 (S,S,S)-7:(R,S,S)-7 d.r..

(1S,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl bis(trifluoromethanesulfonate) ((S,S,S)-8) from (R,S,S)-6a

The (*R*,*S*,*S*)-8:(*S*,*S*,*S*)-8 ratio was mostly conserved during the triflation, so the product ratio depended on the d.r. of the diol used. An (*S*,*S*,*S*)-8-selective preparation is shown below.

Spiroketal (*R*,*S*,*S*)-6a (12.57g, 31.4mmol) and methanol (160mL) were cooled to 0°C before dropwise addition of acetyl chloride (4.5mL, 63.3mmol). Reaction mixture was then warmed to room temperature. After for 6h, the volatiles were removed *in vacuo*, and the crude was purified by FCC (SiO₂, 30% \rightarrow 40% EtOAc in hexanes). Purified diol, DCM (150mL), and pyridine (12.5mL, 155.2mmol) were cooled to 0°C before addition of trifluoromethanesulfonic anhydride (12.0mL, 71.5mmol) over 30min. Reaction mixture was then warmed to room temperature. After 1h, a saturated aqueous solution of NaHCO₃ (150mL) was added. After separating the layers, the aqueous phase extracted with DCM twice. Combined organic was dried over Na₂SO₄ and concentrated *in vacuo*. Crude was purified by a short column (SiO₂, 10% EtOAc in hexanes) to afford a mixture of triflates as an oil which solidified on cooling (17.55g, 91% yield 1:1.9 d.r. (*R*,*S*,*S*)-7:(*S*,*S*,*S*)-7 with 6% of undesired (*R*,*S*,*R*)-7).

The ditriflates can be separated by FCC (SiO₂, 4% EtOAc in hexanes), but for convenience we chose to do a chemical resolution (*vide infra*). The spectral characteristics of the isolated ditriflates are shown below:

(1R,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl bis(trifluoromethanesulfonate) ((R,S,S)-8)

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (t, *J* = 7.9 Hz, 2H), 7.30 (d, *J* = 8.5 Hz, 4H), 5.36 (dd, *J* = 8.5, 4.0 Hz, 2H), 2.05 (m, *J* = 15.0, 7.5, 4.0 Hz, 2H), 1.97 – 1.82 (m, 2H), 1.11 (t, *J* = 7.4 Hz, 6H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -74.57.

¹³**C NMR** (100 MHz, CDCl₃) δ 147.80, 144.92, 132.21, 129.82, 122.91, 120.81, 119.72, 119.13, 116.54, 113.33, 83.64, 27.39, 10.05. **ESI-HRMS** Calcd. for $C_{21}H_{19}F_6O_8S_2^+$ 577.0426 [M+H]⁺, found 577.0415.

IR (powder): v_{max} = 2975, 2878, 1470, 1419, 1204, 1137, 936, 896, 848 cm⁻¹

(1S,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl bis(trifluoromethanesulfonate) ((S,S,S)-8)

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 (t, *J* = 7.9 Hz, 2H), 7.29 (d, *J* = 7.5 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 5.38 (dd, *J* = 7.2, 4.5 Hz, 2H), 2.07 – 1.81 (m, 4H), 1.06 (t, *J* = 7.4 Hz, 6H)

¹⁹**F NMR** (376 MHz, CDCl₃) δ -74.58.

¹³C NMR (100 MHz, CDCl₃) δ 147.33, 144.73, 132.07, 130.30, 122.92, 121.21, 119.74, 119.62, 119.60, 116.55, 114.51, 113.37, 84.77, 30.09, 9.45.

ESI-HRMS Calcd. for $C_{21}H_{19}F_6O_8S_2^+$ 577.0426 [M+H]⁺, found 577.0418.

IR (powder): v_{max} = 2973, 2880, 1470, 1422, 1207, 1137, 935, 852, 749 cm⁻¹

(1S,3S,3'S)-7'-(diphenylphosphoryl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl trifluoromethanesulfonate ((S,S,S)-9)

A flask in the glovebox was charged with a mixture of ditriflates (12.624g, 21.89mmol, 1:1.9 d.r. (R,S,S)-7:(S,S,S)-7 with 6% of undesired (R,S,R)-7), palladium(II) acetate (245mg, 1.09mmol), 1,4-Bis(diphenylphosphino)butane (466mg, 1.09mmol), and diphenylphosphine oxide (4.861g, 24.04mmol). The flask was taken outside the glovebox, and DMSO (85mL) and N,N-diisopropylethylamine (9.5mL, 54.5mmol) were added. Reaction mixture was then stirred at room temperature for 1h, before being heated to 80°C. After 8h, reaction mixture was cooled to room temperature and partitioned between EtOAc (260mL) and a half saturated aqueous solution of NaHCO₃ (260mL). After separating the layers, the aqueous phase was extracted with EtOAc twice. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 10 \rightarrow 50% EtOAc in hexanes) to yield two fractions. At 10% EtOAc in hexanes, a (R,S,S)-8 was obtained (4.82g total, 31% recovery of (R,S,S)-8 with 4% undesired (S,R,S)-8) At 50% EtOAc in hexanes, the desired phosphine oxide (S,S,S)-9 was obtained (T.71g, 54% yield of (S,S,S)-9 with 2% undesired (S,R,S)-9).

The desired product was further purified by two recrystallizations from cyclohexane with excellent recovery. The first recrystallization of 5.71g of the product mixture gave 5.33g of a 1:26 mixture of epimeric product (S,R,S)-8 and desired phosphine oxide (S,S,S)-8, respectively (97% recovery of product). A second recrystallization of 5.02g of this mixture produced 4.58g of almost pure (S,S,S)-8 (1:65 with respect to (S,R,S)-8) (93% recovery of product), as a white foam.

¹**H NMR** (500 MHz, CDCl₃) δ 7.52 - 7.42 (m, 4H), 7.42 - 7.31 (m, 4H), 7.27 - 7.21 (m, 2H), 7.21 - 7.10 (m, 4H), 7.02 (dd, *J* = 13.9, 7.5 Hz, 1H), 6.41 (dd, *J* = 7.1, 1.5 Hz, 1H), 5.56 (dd, *J* = 7.1, 4.7 Hz, 1H), 5.28 (dd, *J* = 7.2, 5.0 Hz, 1H), 1.92 (m, *J* = 13.5, 6.3 Hz, 3H), 1.83 (m, *J* = 14.3, 7.2 Hz, 1H), 1.06 (t, *J* = 7.4 Hz, 3H), 0.99 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 148.85, 146.47, 146.40, 144.19, 141.69, 141.64, 133.80, 133.77, 133.70, 132.93, 132.51, 132.14, 132.07, 131.68, 131.55, 131.53, 131.31, 131.25, 131.20, 131.18, 131.01, 130.94, 128.59, 128.49, 128.22, 128.19, 128.12, 128.09, 127.40, 125.38, 125.36, 121.89, 120.41, 119.34, 118.47, 116.80, 116.25, 85.27, 83.49, 30.60, 29.71, 26.90, 9.88, 9.66.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -75.05.

³¹**P NMR** (202 MHz, CDCl₃) δ 28.57.

ESI-HRMS Calcd. for C₃₂H₂₉F₃O₆PS⁺ 629.1375 [M+H]⁺, found 629.1366.

IR (powder): v_{max} = 2934, 1419, 1210, 1194, 1140, 931 cm⁻¹

[α]_D: -70.8 (c = 1.0 in DCM)

(1S,3S,3'S)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl trifluoromethanesulfonate ((S,S,S)-

Phosphine oxide (*S*,*S*,*S*)-9 (4.95g, 7.88mmol), PhMe (80mL), and Diisopropylethylamine (55mL, 315.7mmol) were cooled to 0°C before addition of trichlorosilane (12.5mL, 125.7mmol) over 10min. The flask was sealed with a glass stopped and heated to 80°C. After 20h, the mixture was cooled to room temperature and quenched carefully by transferring it to a flask containing a saturated aqueous solution of NaHCO₃ (120mL) at 0°C, with diethyl ether washings. Crude was filtered through Celite with diethyl ether washings, and the filtrate was dried over Na₂SO₄ and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 5% EtOAc in hexanes) to afford (*S*,*S*,*S*)-10 (3.89g, 80.6% yield) as white foam.

¹H NMR (500 MHz, CDCl₃) δ 7.32 (t, *J* = 7.5 Hz, 1H), 7.29 – 7.20 (m, 6H), 7.17 (d, *J* = 7.5 Hz, 1H), 7.13 (td, *J* = 7.5, 1.5 Hz, 2H), 7.07 (td, *J* = 7.5, 2.0 Hz, 2H), 6.89 (dd, *J* = 7.4, 4.6 Hz, 1H), 6.85 (td, *J* = 7.9, 1.4 Hz, 2H), 6.62 (d, *J* = 8.1 Hz, 1H), 5.35 (td, *J* = 6.8, 4.6 Hz, 2H), 1.96 (m, *J* = 16.9, 14.0, 5.9 Hz, 2H), 1.87 (m, *J* = 14.2, 7.2, 4.6 Hz, 2H), 1.06 (t, *J* = 7.3 Hz, 3H), 1.00 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.39, 147.37, 144.53, 143.68, 143.62, 142.55, 142.35, 137.03, 136.93, 135.49, 135.41, 133.96, 133.94, 133.63, 133.49, 133.46, 133.33, 132.58, 132.56, 132.42, 131.46, 129.59, 128.42, 128.20, 128.17, 128.12, 128.00, 127.95, 122.04, 120.56, 119.35, 118.87, 116.81, 116.51, 116.49, 84.66, 84.61, 84.05, 30.47, 29.70, 9.64, 9.43. ¹⁹F NMR (471 MHz, CDCl₃) δ -74.90.

³¹P NMR (202 MHz, CDCl₃) δ -18.88.

ESI-HRMS Calcd. for C₃₂H₂₉F₃O₅PS⁺ 613.1425 [M+H]⁺, found 613.1419.

IR (powder): v_{max} = 2970, 1738, 1421, 1211, 1140, 943 cm⁻¹

[α]_D: -44.0 (c = 1.0 in DCM)

WILEY-VCH

((1S,3S,3'S)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl)diphenylphosphine oxide ((S,S,S)-

SPIRAP(O))

A flask in the glovebox was charged with phosphine (*S*,*S*,*S*)-10 (3.89g, 6.35mmol), palladium(II) acetate (71.3mg, 0.32mmol), 1,4-Bis(diphenylphosphino)butane (135.4mg, 0.32mmol), and diphenylphosphine oxide (2.57g, 12.7mmol). The flask was taken outside the glovebox, and DMSO (25 mL) and N,N-diisopropylethylamine (5.5mL, 31.6mmol) were added. Reaction mixture was then stirred at room temperature for 1h before being then heated to 100°C. After 2h, reaction mixture was cooled down to room temperature and partitioned between EtOAc (160mL) and a half saturated aqueous solution of NaHCO₃ (160mL). After separating the layers, the aqueous phase was extracted with EtOAc twice. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 20 \rightarrow 30% EtOAc in hexanes) to yield (*S*,*S*,*S*)-SPIRAP(O) (3.95g, 93.6% yield) as white foam.

¹**H** NMR (700 MHz, CDCl₃) δ 7.45 (td, *J* = 6.3, 2.6 Hz, 1H), 7.41 – 7.29 (m, 6H), 7.29 – 7.13 (m, 13H), 7.07 (td, *J* = 7.3, 2.1 Hz, 2H), 7.02 (td, *J* = 7.7, 1.7 Hz, 2H), 6.87 (dd, *J* = 7.5, 4.8 Hz, 1H), 6.71 (dd, *J* = 13.9, 7.5 Hz, 1H), 5.35 (t, *J* = 5.2 Hz, 1H), 4.71 (dd, *J* = 8.2, 3.8 Hz, 1H), 1.93 (m, *J* = 14.8, 7.5, 3.8 Hz, 1H), 1.79 (m, *J* = 14.0, 6.9 Hz, 1H), 1.72 (m, *J* = 11.4, 3.4 Hz, 1H), 1.64 (m, *J* = 14.3, 7.4 Hz, 1H), 0.86 (t, *J* = 7.3 Hz, 3H), 0.75 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (176 MHz, CDCl₃) δ 146.70, 146.55, 146.26, 146.24, 146.21, 146.19, 144.53, 144.51, 144.50, 143.64, 143.60, 138.60, 138.53, 136.55, 136.48, 134.76, 134.17, 134.16, 134.06, 133.46, 133.42, 133.40, 133.24, 133.13, 133.05, 132.87, 132.36, 132.31, 131.56, 131.51, 131.08, 131.07, 131.03, 131.01, 130.99, 130.93, 128.79, 128.29, 128.22, 127.95, 127.93, 127.89, 127.86, 127.81, 127.76, 127.74, 127.72, 127.65, 127.27, 124.65, 124.64, 121.46, 118.68, 84.29, 83.26, 83.21, 29.93, 29.54, 9.85, 8.82.

³¹P NMR (283 MHz, CDCl₃) δ 28.63, -18.52.

ESI-HRMS Calcd. for $C_{43}H_{39}O_{3}P_{2}^{+}$ 665.2374 $[M+H]^{+}$, found 665.2366.

IR (powder): v_{max} = 2964, 1434, 1336, 1214, 998, 915, 696 cm⁻¹

[α]_D: -93.3 (c = 1.0 in CHCl₃)

Crystallographic data: CCDC **1812181** contains the supplementary crystallographic data of (*S*,*S*,*S*)-SPIRAP(O). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

((1S,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl)bis(diphenylphosphane) ((S,S,S)-SPIRAP) from

phosphine oxide (S,S,S)-SPIRAP(O)

Phosphine oxide (*S*,*S*,*S*)-*SPIRAP(O*) (106mg, 0.159 mmol), PhMe (1.6mL), and diisopropylethylamine (1.1mL, 6.3mmol) were cooled to 0°C before dropwise addition of trichlorosilane (0.25mL, 2.5mmol). The flask was sealed with a glass stopped and heated to 80°C. After 20h, reaction mixture was cooled to room temperature and quenched carefully by transferring it to a flask containing a saturated aqueous solution of NaHCO₃ (5mL) at 0°C, with diethyl ether washings. Crude was filtered through Celite with diethyl ether washings, and the filtrate was dried over Na₂SO₄, and concentrated *in vacuo*. Crude mixture was purified by FCC (SiO₂, 5% EtOAc in hexanes) to afford (*S*,*S*,*S*)-*SPIRAP* (58.2mg, 56% yield) as white foam. The yield for this reaction was variable, with a 2.9g scale giving 35% yield due to the formation of an epimeric trichlorosilane adduct as the major component of the mixture, which can be cleanly converted to its free phosphine by stirring in isopropanol with traces of acetyl chloride. For this reason, we developed a direct method of obtaining (*S*,*S*,*S*)-*SPIRAP* from monophosphine (*S*,*S*,*S*)-10. Spectral properties described below.

((1S,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl) bis(diphenylphosphane) ((S,S,S)-SPIRAP) from phosphine (S,S,S)-10

A Schlenk flask was charged with palladium(II) acetate (36.6mg, 0.163mmol) and 1,4-Bis(diphenylphosphino)butane (76.6mg, 0.180mmol). DMF (3.0mL) and diisopropylethylamine (1.8mL, 10.3mmol) were added. Solution was stirred at room temperature. After 1h, diphenyl phosphine (850µL, 4.89mmol) was added. After 5min, phosphine (*S*,*S*,*S*)-10 (1.000g, 1.632mmol) was added as a solution in DMF (3.5mL, including washings). The sealed flask was heated to 100°C. After 24h, volatiles were removed under N₂ flow. Crude was purified by FCC (SiO₂, 0 \rightarrow 15% \rightarrow 30% DCM in hexanes), and the product was then washed with hexanes to yield (*S*,*S*,*S*)-SPIRAP (977mg, 92.3% yield) as white solid.

¹H NMR (700 MHz, CDCl₃) δ 7.30 (t, J = 7.5 Hz, 2H), 7.23 (tq, J = 13.7, 7.6 Hz, 10H), 7.17 - 7.10 (m, 4H), 7.06 (td, J = 7.5, 1.8 Hz, 4H), 6.89 (dd, J = 7.5, 4.5 Hz, 2H), 6.83 (t, J = 7.4 Hz, 4H), 4.96 (dd, J = 6.8, 4.3 Hz, 2H), 1.86 (m, J = 14.6, 7.3, 4.1 Hz, 2H), 1.76 (m, J = 14.3, 7.2 Hz, 2H), 0.87 (t, J = 7.3 Hz, 6H).

¹³C NMR (176 MHz, CDCl₃) δ 145.51, 145.49, 145.36, 145.34, 144.09, 144.07, 144.05, 144.03, 138.22, 138.15, 136.81, 136.74, 134.11, 133.99, 133.72, 133.71, 133.13, 133.02, 132.59, 132.48, 129.12, 128.23, 128.02, 127.98, 127.93, 127.85, 127.82, 127.76, 121.54, 118.55, 83.29, 83.25, 29.76, 9.32. ³¹P NMR (283 MHz, CDCl₃) δ -18.71. ESI-HRMS Calcd. for C₄₃H₃₉O₂P₂⁺ 649.2425 [M+H]⁺, found 649.2417. IR (powder): v_{max} = 2970, 1739, 1433, 1365, 1217, 696 cm⁻¹

[α]_D: -227.4 (c = 1.0 in CHCl₃)

[((*1S,3S,3'S*)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl)bis(diphenylphosphane)]palladium(II) chloride ((*S,S,S*)-11)

Diphosphine (*S*,*S*,*S*)-*SPIRAP* (8.0mg, 0.012mmol), bis(benzonitrile)palladium(II) chloride (4.7mg, 0.012mmol), and benzene (0.82mL) were stirred at room temperature. After 6h, the complex was precipitated upon addition of hexanes as an orange solid, which was collected by filtration and washed with hexanes. The solid was redissolved in DCM for collection, and the volatiles were evaporated *in vacuo* to yield pure complex (*S*,*S*,*S*)-11 as a yellow-orange solid (9.9mg, 97% yield).

¹**H NMR** (700 MHz, CDCl₃) δ 7.77 (dd, *J* = 12.3, 7.4 Hz, 4H), 7.57 (s, 4H), 7.48 – 7.40 (m, 2H), 7.35 (d, *J* = 7.8 Hz, 6H), 7.24 – 7.17 (m, 4H), 7.09 (d, *J* = 7.8 Hz, 4H), 6.88 (d, *J* = 7.5 Hz, 2H), 3.75 (dd, *J* = 9.9, 4.3 Hz, 2H), 1.80 (m, 2H), 1.72 – 1.62 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (176 MHz, CDCl₃) δ 147.30, 147.26, 137.91, 137.87, 135.23, 135.16, 134.24, 134.18, 133.99, 133.93, 131.75, 131.39, 130.52, 130.30, 129.46, 129.41, 128.02, 127.95, 126.64, 126.33, 125.54, 125.42, 125.31, 116.26, 83.57, 30.49, 11.27.

³¹P NMR (283 MHz, CDCl₃) δ 32.83.

ESI-HRMS Calcd. for C₄₃H₃₈ClO₂P₂Pd⁺ 789.1070 [M-Cl]⁺, found 789.1076.

IR (powder): v_{max} = 2225, 1435, 1095, 998, 921 727, 688 cm⁻¹

[α]_D: +10.9 (c = 0.5 in CHCl₃)

Thermal stability study

Complex (S,S,S)-11 (8.0mg) was dissolved in PhMe and heated to 110°C for 12h. The material was recovered quantitatively and was

unchanged by NMR analysis.

8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 fl(ppm)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm)

Synthesis of diphosphine (R,S,S)-SPIRAP and Pd(II) complex

(1R,3S,3'S)-7'-(diphenylphosphoryl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl trifluoromethanesulfonate ((R,S,S)-9)

Recovered (R,S,S)-8 (from the coupling of (S,S,S)-8 to diphenylphosphine oxide) was recrystallized from cyclohexane. A flask in the glovebox with ditriflate (3.946g, 6.84mmol), palladium(II) acetate (154mg, 0.69mmol), was charged 1.4-Bis(diphenylphosphino)butane (321mg, 0.75mmol), and diphenylphosphine oxide (2.768g, 13.69mmol). The flask was taken outside the glovebox, and DMSO (27mL) and N,N-diisopropylethylamine (4.8mL, 27.6mmol) were added. Reaction mixture was then stirred at room temperature for 1h, before being heated to 100°C. After 24h, reaction mixture was cooled to room temperature and partitioned between EtOAc (60mL) and a half saturated aqueous solution of NaHCO₃ (60mL). After separating the layers, the aqueous phase was extracted with EtOAc twice. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Crude was purified by FCC (SiO₂, 5 → 40% EtOAc in hexanes). At 5% EtOAc in hexanes, some impure starting material was recovered (100.9mg). At 40% EtOAc in hexanes, the desired product (R,S,S)-9 was obtained as white foam (4.081g, 94.8% yield).

¹H NMR (401 MHz, CDCl₃) δ 7.51 – 7.28 (m, 13H), 7.15 (dd, *J* = 10.0, 8.0 Hz, 2H), 7.06 (dd, *J* = 13.8, 7.5 Hz, 1H), 5.33 (dd, *J* = 8.2, 4.0 Hz, 1H), 5.14 (dd, *J* = 10.0, 3.5 Hz, 1H), 2.03 (m, *J* = 14.9, 7.4, 4.1 Hz, 1H), 1.88 (m, *J* = 14.4, 7.3 Hz, 1H), 1.70 (m, *J* = 15.0, 7.5, 3.7 Hz, 1H), 1.60 – 1.44 (m, 1H), 1.08 (t, *J* = 7.4 Hz, 3H), 0.53 (t, *J* = 7.4 Hz, 3H). ³¹P NMR (162 MHz, CDCl₃) δ 29.90. ¹⁹F NMR (377 MHz, CDCl₃) δ -75.08. ESI-HRMS Calcd. for $C_{32}H_{29}F_{3}O_{6}PS^{+}$ 629.1375 [M+H]⁺, found 629.1372. IR (powder): v_{max} = 2970, 1738, 1419, 1214, 1141, 930, 695 cm⁻¹ [α]_P: -46.3 (c = 1.0 in CHCl₃)

(1R,3S,3'S)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl trifluoromethanesulfonate ((R,S,S)-

10)

Phosphine oxide (*R*,*S*,*S*)-8 (2.00g, 3.18mmol), PhMe (32mL), and Diisopropylethylamine (22.2mL, 127.5mmol) were cooled to 0°C before addition of trichlorosilane (6.80mL, 68.4mmol) over 10min. The flask was sealed with a glass stopped and heated to 80°C. After 16h, the mixture was cooled to room temperature and quenched carefully by transferring it to a flask containing a saturated aqueous solution of NaHCO₃ (70mL) at 0°C, with diethyl ether washings. Crude was filtered through Celite with diethyl ether washings, and the filtrate was dried over Na₂SO₄ and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 5% EtOAc in hexanes) to afford (*R*,*S*,*S*)-10 (870mg, 44.6% yield, 66.1% BRSM) as white foam. Starting material was recovered at 50% EtOAc in hexanes (311mg).

¹**H** NMR (500 MHz, CDCl₃) δ 7.32 (t, *J* = 7.5 Hz, 1H), 7.29 – 7.20 (m, 6H), 7.17 (d, *J* = 7.5 Hz, 1H), 7.13 (td, *J* = 7.5, 1.5 Hz, 2H), 7.07 (td, *J* = 7.5, 2.0 Hz, 2H), 6.89 (dd, *J* = 7.4, 4.6 Hz, 1H), 6.85 (td, *J* = 7.9, 1.4 Hz, 2H), 6.62 (d, *J* = 8.1 Hz, 1H), 5.35 (td, *J* = 6.8, 4.6 Hz, 2H), 1.96 (m, *J* = 16.9, 14.0, 5.9 Hz, 2H), 1.87 (m, *J* = 14.2, 7.2, 4.6 Hz, 2H), 1.06 (t, *J* = 7.3 Hz, 3H), 1.00 (t, *J* = 7.3 Hz, 3H). ¹³**C** NMR (126 MHz, CDCl₃) δ 147.39, 147.37, 144.53, 143.68, 143.62, 142.55, 142.35, 137.03, 136.93, 135.49, 135.41, 133.96, 133.94, 133.63, 133.49, 133.46, 133.33, 132.58, 132.56, 132.42, 131.46, 129.59, 128.42, 128.20, 128.17, 128.12, 128.00, 127.95, 122.04, 120.56, 119.35, 118.87, 116.81, 116.51, 116.49, 84.66, 84.61, 84.05, 30.47, 29.70, 9.64, 9.43.

 $^{19}\textbf{F}$ NMR (471 MHz, CDCl₃) δ -74.90.

³¹P NMR (202 MHz, CDCl₃) δ -18.88.

ESI-HRMS Calcd. for $C_{32}H_{29}F_3O_5PS^+$ 613.1425 [M+H]⁺, found 613.1419.

IR (powder): v_{max} = 2968, 1469, 1421, 1211, 1140, 1009, 962, 926, 848, 743 cm⁻¹

[α]_D: +47.6 (c = 1.0 in CHCl₃)

((1R,3S,3'S)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl)diphenylphosphine oxide ((R,S,S)-

SPIRAP(O)

A flask in the glovebox was charged with phosphine (*R*,*S*,*S*)-10 (83mg, 0.14mmol), palladium(II) acetate (1.52mg, 0.007mmol), 1,4-Bis(diphenylphosphino)butane (2.89mg, 0.007mmol), and diphenylphosphine oxide (54.8mg, 0.271mmol). The flask was taken outside the glovebox, and DMSO (540µL) and N,N-diisopropylethylamine (100µL, 0.57mmol) were added. Reaction mixture was then stirred at room temperature for 1h before being then heated to 100°C. After 3h, reaction mixture was cooled down to room temperature and partitioned between EtOAc (1mL) and a half saturated aqueous solution of NaHCO₃ (1mL). After separating the layers, the aqueous phase was extracted with EtOAc twice. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 35% EtOAc in hexanes) to yield (*R*,*S*,*S*)-SPIRAP(O) (84.8mg, 94% yield) as white foam.

¹**H NMR** (500 MHz, CDCl₃) δ 7.54 – 7.16 (m, 20H), 7.16 – 7.00 (m, 5H), 6.95 (dd, *J* = 13.9, 7.5 Hz, 1H), 5.19 (dd, *J* = 9.9, 3.5 Hz, 1H), 5.11 (dd, *J* = 10.1, 3.5 Hz, 1H), 1.81 (m, 1H), 1.73 – 1.62 (m, 1H), 1.55 (m, 1H), 1.40 (m, 1H), 0.83 (t, *J* = 7.4 Hz, 3H), 0.45 (t, *J* = 7.4 Hz, 3H).

³¹P NMR (202 MHz, CDCl₃) δ 29.82, -22.07.

¹³C NMR (126 MHz, CDCl₃) δ 148.72, 148.49, 147.11, 147.09, 147.04, 147.02, 144.48, 142.80, 142.74, 138.82, 138.71, 137.86, 137.75, 135.25, 135.22, 135.04, 134.93, 134.21, 134.10, 133.59, 133.55, 133.44, 132.83, 132.68, 132.59, 132.52, 131.97, 131.89, 131.16, 131.13, 131.10, 131.08, 130.47, 130.33, 128.67, 128.21, 128.11, 128.08, 128.03, 128.01, 127.97, 127.90, 127.81, 127.45, 126.62, 124.66, 124.64, 121.61, 110.00, 83.37, 82.38, 28.03, 28.00, 27.32, 10.88, 10.59.

ESI-HRMS Calcd. for $C_{43}H_{39}O_{3}P_{2}^{+}$ 665.2374 [M+H]⁺, found 665.2370.

IR (powder): v_{max} = 2969, 2842, 1435, 1217, 1007, 973, 917, 741, 694 cm⁻¹

[α]_D: -45.8 (c = 1.0 in CHCl₃)

Crystallographic data: CCDC **1812182** contains the supplementary crystallographic data of (*S*,*R*,*R*)-SPIRAP(O) made by using (*R*)-**2a**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

((1R,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl)bis(diphenylphosphane) ((R,S,S)-SPIRAP) from

phosphine (R,S,S)-10

A Schlenk flask was charged with palladium(II) acetate (21.9mg, 0.097mmol) and 1,4-Bis(diphenylphosphino)butane (46.0mg, 0.107mmol). DMF (1.9mL) and diisopropylethylamine (1.04mL, 5.97mmol) were added. Solution was stirred at room temperature. After 1h, diphenyl phosphine (510µL, 2.92mmol) was added. After 5min, phosphine (R,S,S)-10 (596mg, 0.97mmol) was added as a solution in DMF (2.0mL, including washings). The sealed flask was heated to 100°C. After 16h, volatiles were removed under N₂ flow. Crude was purified by FCC (SiO₂, 30% \rightarrow 40% DCM in hexanes) and the product was washed in hexanes to yield (R,S,S)-SPIRAP (551mg, 87% yield) as white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.37 (t, *J* = 7.5 Hz, 2H), 7.31 – 7.14 (m, 14H), 7.06 – 6.92 (m, 10H), 5.15 (dd, *J* = 10.1, 3.5 Hz, 2H), 1.70 (m, 2H), 1.30 (m, 2H), 0.66 (t, *J* = 7.3 Hz, 6H).

³¹P NMR (202 MHz, CDCl₃) δ -20.99.

¹³C NMR (126 MHz, CDCl₃) δ 145.38, 145.15, 144.72, 144.69, 144.65, 138.28, 138.18, 137.55, 137.44, 134.73, 134.14, 134.05, 133.97, 132.98, 132.90, 132.83, 132.15, 132.12, 131.98, 131.95, 129.28, 128.22, 128.19, 128.17, 128.14, 128.11, 128.09, 128.04, 128.02, 128.00, 127.97, 127.95, 127.57, 121.73, 117.51, 82.84, 27.88, 10.77.

ESI-HRMS Calcd. for $C_{43}H_{39}O_2P_2^+$ 649.2425 [M+H]⁺, found 649.2421.

IR (powder): v_{max} = 3067, 2969, 2845, 1434, 1274, 1005, 969, 917, 741, 694 cm⁻¹

[α]_D: +203.8 (c = 1.0 in CHCl₃)

[((1R,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl)bis(diphenylphosphane)]palladium(II) chloride ((R,S,S)-

11)

Diphosphine (*R*,*S*,*S*)-*SPIRAP* (12.0mg, 0.018mmol), bis(benzonitrile)palladium(II) chloride (7.1mg, 0.018mmol), and benzene (1.2mL) were stirred at room temperature. After 16h, the complex was precipitated upon addition of hexanes as an orange solid, which was collected by filtration and washed with hexanes. The solid was redissolved in DCM for collection, and the volatiles were evaporated *in vacuo* to yield pure complex (*R*,*S*,*S*)-11 as a yellow-orange solid (14.0mg, 92% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.80 (ddd, *J* = 12.3, 6.6, 2.7 Hz, 4H), 7.65 – 7.51 (m, 4H), 7.41 (dd, *J* = 12.8, 7.9 Hz, 2H), 7.36 (d, *J* = 2.6 Hz, 6H), 7.24 (t, *J* = 7.8 Hz, 2H), 7.21 – 7.14 (m, 2H), 7.05 (ddd, *J* = 18.8, 9.1, 4.8 Hz, 6H), 4.71 (dd, *J* = 9.8, 4.0 Hz, 2H), 1.50 (m, 2H), 0.94 (t, *J* = 7.3 Hz, 6H), 0.84 (m, 2H).

³¹P NMR (202 MHz, CDCl₃) δ 33.38.

¹³C NMR (126 MHz, CDCl₃) δ 148.22, 148.16, 140.26, 140.19, 135.74, 135.64, 134.11, 134.03, 133.87, 133.78, 132.70, 132.19, 130.83, 130.25, 129.57, 129.50, 128.23, 128.13, 128.08, 128.03, 127.88, 127.46, 125.78, 125.42, 124.17, 113.55, 80.36, 24.97, 10.80.

 $\textbf{ESI-HRMS} \ \text{Calcd. for} \ C_{43}H_{39}O_2P_2Pd^{^+} \ 755.1460 \ \textbf{[M-2CI+H]}^{^+}, \ \text{found} \ 755.1438.$

IR (powder): v_{max} = 2970, 1738, 1435, 1092, 998, 969, 912, 740, 688 cm⁻¹

[α]_D: +27.1 (c = 1.0 in CHCl₃)

Thermal stability study

Complex (R,S,S)-11 (10.0mg) was dissolved in PhMe and heated to 110°C for 12h. The material was recovered quantitatively and

was unchanged by NMR analysis.

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

Synthesis of diphosphinite (S,R,R)-SPIRAPO

(((1S,3R,3'R)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl)bis(oxy))bis(diphenylphosphane) ((S,R,R)-SPIRAPO)

Spiroketal (*S*,*R*,*R*)-6a (40mg, 0.10mmol) and methanol (1.0mL) were cooled to 0°C before dropwise addition of acetyl chloride (14 μ L, 0.20mmol). Reaction mixture was then warmed to room temperature. After for 6h, the volatiles were removed in vacuo. The crude diol and 4-Dimethylaminopyridine (1.2mg, 0.01mmol) were dissolved into DCM (1.0mL) at room temperature before addition of triethylamine (0.13mL, 1.0mmol) and chlorodiphenylphosphine (46 μ L, 0.25mmol) over 30min. After 12h, volatiles were removed *in vacuo*, and the crude was purified by FCC (SiO₂ treated with 5% TEA, 4% \rightarrow 9% EtOAc in hexanes) to afford (*S*,*R*,*R*)-SPIRAPO (34mg, 56% yield) and (*R*,*R*,*R*)-SPIRAPO (17mg, 26% yield) as white foams.

For purified (S,R,R)-12

¹**H NMR** (399.54 MHz, CDCl₃) δ 7.31-7.21 (m, 12H), 7.14 (t, *J* = 7.4 Hz, 2H), 7.06 (m, 6H), 6.97 - 6.90 (m, 4H), 6.86 - 6.81 (m, 2H), 5.26 (dd, *J* = 8.2, 4.2 Hz, 2H), 1.57 (m, 2H), 1.41 (m, 2H), 0.87 (t, *J* = 7.4 Hz, 6H)

¹³C NMR (100 MHz, CDCl₃) δ 152.36, 152.27, 146.31, 140.11, 139.92, 139.88, 139.72, 130.73, 130.59, 130.49, 129.74, 129.63, 129.52, 128.89, 128.39, 128.31, 128.25, 128.18, 115.33, 115.17, 115.09, 114.69, 82.94, 28.02, 10.25

 $^{31}\textbf{P}$ NMR (161.75 MHz, CDCl_3) δ 105.24

 $\textbf{ESI-HRMS} \ Calcd. \ for \ C_{43}H_{39}O_4{P_2}^{+} \ 681.2317 \ [M+H]^{+}, \ found \ 681.2316.$

[α]_D: -80.7 (c = 1.25 in THF)

For purified (R,R,R)-12

¹**H NMR** (500 MHz, CDCl₃) δ 7.34 – 7.19 (m, 12H), 7.15 (t, *J* = 7.7 Hz, 2H), 7.13 – 6.99 (m, 6H), 6.97 (t, *J* = 7.4 Hz, 4H), 6.71 (d, *J* = 7.5 Hz, 2H), 4.78 (dd, *J* = 7.2, 4.5 Hz, 2H), 1.89 – 1.72 (m, 4H), 0.99 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 145.83, 130.82, 130.63, 130.47, 130.46, 129.75, 129.61, 129.57, 129.06, 128.23, 128.17, 115.11, 114.72, 84.21, 30.06, 9.74.

³¹**P NMR** (202 MHz, CDCl₃) δ 104.37.

[α]_D: -14.8 (c = 5.25 in THF)

Synthesis of monophosphine (R,S,S)-SPIROMP and (S,S,S)-SPIROMP

(1S,3S,3'S)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-ol ((S,S,S)-SPIROMP)

Hydrolysis based on a modified reported procedure.^[3] Triflate (*S*,*S*,*S*)-10 (300mg, 0.49mmol), wet Cs_2CO_3 (800mg, 2.45mmol), and DMF (8.0mL) were added to a flask. Reaction mixture was heated to 80°C. After 8h, reaction mixture was filtered through Celite and then purified by FCC (SiO₂, 20% \rightarrow 25% EtOAc in hexanes) to obtain (*S*,*S*,*S*)-SPIROMP (224mg, 95% yield) as white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.32 (t, *J* = 7.5 Hz, 1H), 7.26 (m, 5H), 7.16 – 7.06 (m, 4H), 7.04 (t, *J* = 7.6 Hz, 1H), 6.93 (dd, *J* = 7.3, 4.4 Hz, 1H), 6.86 (t, *J* = 7.7 Hz, 2H), 6.73 (d, *J* = 7.4 Hz, 1H), 6.10 (d, *J* = 7.9 Hz, 1H), 5.42 (t, *J* = 5.4 Hz, 1H), 5.24 (dd, *J* = 7.9, 4.3 Hz, 1H), 4.13 (s, 1H), 2.04 – 1.77 (m, 4H), 1.11 (t, *J* = 7.4 Hz, 3H), 0.99 (t, *J* = 7.4 Hz, 3H).

 $^{31}\textbf{P}$ NMR (202 MHz, CDCl_3) δ -18.74.

¹³C NMR (126 MHz, CDCl₃) δ 151.04, 145.19, 145.17, 143.40, 143.35, 142.91, 142.71, 137.32, 137.22, 135.46, 135.38, 134.29, 134.27, 133.86, 133.68, 133.63, 133.53, 133.46, 133.38, 131.46, 129.56, 128.40, 128.16, 128.11, 127.88, 127.82, 126.08, 126.05, 122.12, 116.75, 116.73, 114.46, 113.09, 85.38, 85.32, 83.73, 30.96, 29.54, 10.04, 9.14.

ESI-HRMS Calcd. for $C_{31}H_{30}O_3P^+$ 481.1933 [M+H]⁺, found 481.1934.

IR (powder): v_{max} = 3306, 2962, 1606, 1474, 1297, 1005, 927, 741, 692 cm⁻¹

 $[\alpha]_{D}$: -3.7 (c = 1.0 in CHCl₃)

(1R,3S,3'S)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-ol ((R,S,S)-SPIROMP)

Triflate (*R*,*S*,*S*)-10 (112mg, 0.18mmol), wet Cs_2CO_3 (300mg, 0.92mmol), and DMF (3.0mL) were added to a flask. Reaction mixture was heated to 80°C. After 8h, reaction mixture was filtered through Celite and then purified by FCC (SiO₂, 20% EtOAc in hexanes) to obtain (*R*,*S*,*S*)-SPIROMP together with an impurity (90.1mg, 1:11.6 impurity:product). The product was further purified by recrystallization from cyclohexane (35mg, 40% yield).

¹H NMR (401 MHz, CDCl₃) δ 7.37 (t, J = 7.5 Hz, 1H), 7.32 – 7.16 (m, 8H), 7.02 (m, 5H), 6.79 (d, J = 7.4 Hz, 1H), 6.47 (d, J = 8.0 Hz, 1H), 5.41 (dd, J = 6.7, 4.0 Hz, 1H), 5.24 (dd, J = 9.6, 3.9 Hz, 1H), 4.24 (s, 1H), 2.07 (m, 1H), 1.90 – 1.77 (m, 2H), 1.77 – 1.66 (m, 1H), 1.00 (t, J = 7.4 Hz, 3H), 0.83 (t, J = 7.4 Hz, 3H).

³¹P NMR (162 MHz, CDCl₃) δ -23.06.

¹³C NMR (101 MHz, CDCl₃) δ 150.95, 145.81, 143.90, 143.84, 142.99, 142.72, 137.33, 137.20, 136.59, 136.45, 135.30, 134.12, 133.91, 133.70, 132.98, 132.80, 131.38, 130.09, 128.51, 128.18, 128.11, 127.81, 125.98, 125.95, 122.30, 115.57, 114.87, 113.10, 84.39, 84.34, 81.67, 81.63, 27.94, 27.64, 27.59, 10.70, 9.24

ESI-HRMS Calcd. for $C_{31}H_{30}O_3P^+$ 481.1933 [M+H]⁺, found 481.1929.

IR (powder): v_{max} = 3326 (br), 2959, 2853, 1604, 1473, 1295, 1005, 922, 740, 696 cm⁻¹

[α]_D: +13.2 (c = 1.0 in CHCl₃)

Asymmetric hydroarylation of methylated cinnamyl alcohol

Preparation of substrate - (E)-(3-methoxyprop-1-en-1-yl)benzene

Alkenyl ether (**15**) was prepared according a reported procedure.^[4] A flask was charged with a suspension of NaH (60%, prewashed with hexanes, 520mg, 21.7mmol) and THF (30mL) before addition of cinnamyl alcohol (1.4mL, 10.87mmol). After stirring at room temperature for 100min, methyl iodide (2.0mL, 32.6mmol) was added at room temperature. After 3h, reaction mixture was filtered through a SiO₂ pad, with 50% EtOAc in hexanes elution. The filtrate was concentrated *in vacuo* and purified by FCC (SiO₂, 5% EtOAc in hexanes) to afford the desired product (1.52g, 94.4% yield) as a colorless oil. Spectral properties match those reported in literature.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (dd, J = 8.3, 1.5 Hz, 1H), 7.31 (dd, J = 8.4, 6.7 Hz, 1H), 7.26 – 7.20 (m, 1H), 6.28 (dt, J = 16.0, 6.0 Hz, 1H), 4.09 (dd, J = 6.0, 1.5 Hz, 1H), 3.38 (d, J = 0.5 Hz, 2H). ¹³C NMR (100 MHz, cdcl₃) δ 136.70, 132.40, 128.52, 127.63, 126.44, 125.94, 73.07, 57.96. IR (film): v_{max} = 3026, 2924, 2820, 1494, 1449, 1379, 1190, 1119, 965, 734, 691 cm⁻¹

Hydroarylation procedure

(S)-2-(2-(1-methoxy-3-phenylpropyl)phenyl)pyridine

Hydroarylations were carried out according to a recently reported procedure.^[5] Bis(1,5-cyclooctadiene)diiridium(I) dichloride (3.3mg, 0.0049 mmol) and (*S*,*S*,*S*)-SPIRAP (7.6mg, 0.012mmol) were added to a Schlenk tube strictly under nitrogen. PhMe (330µL) was added and the mixture was stirred at room temperature. After 20min, sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (18.1mg, 0.0196mmol) was added. After 15min, 2-phenylpyridine **13** (30µL, 0.21mmol) and cinnamyl ether **12** (30µL, 0.196mmol) were added. Reaction mixture was then heated to 70°C. After 24h, reaction mixture was cooled to room temperature. Volatiles were removed *in vacuo* and the crude was purified by FCC (10% EtOAc in hexanes) to obtain pure product **14** (56.9mg, 96% yield, 95.4% *ee*) as colorless oil that solidifies on cooling.

¹**H NMR** (500 MHz, CDCl₃) δ 8.59 – 8.51 (m, 1H), 7.63 (td, *J* = 7.7, 5.3 Hz, 2H), 7.46 (dt, *J* = 8.2, 4.3 Hz, 1H), 7.35 (d, *J* = 4.3 Hz, 2H), 7.19 (ddt, *J* = 26.8, 14.7, 7.7 Hz, 5H), 7.11 – 7.04 (m, 2H), 4.45 (dd, *J* = 8.4, 4.2 Hz, 1H), 3.17 (s, 3H), 2.75 (m, 1H), 2.65 (m, 1H), 2.02 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 159.28, 149.05, 142.02, 140.75, 140.19, 136.06, 129.41, 128.73, 128.52, 128.18, 127.06, 126.16, 125.50, 123.99, 121.63, 78.18, 56.57, 39.61, 32.20. **ESI-HRMS** Calcd. for C₂₁H₂₂NO⁺ 304.1701 [M+H]⁺, found 304.1696. **IR** (film): v_{max} = 2924, 1585, 1425, 1100, 1022, 747, 698 cm⁻¹ **SFC** (Chiralpak OD-H, 92:8 CO₂/isopropanol, 3.5 ml/min, 40°C, 120 bar back pressure), t_r = 7.4 min (minor, *R*), 7.9 min (major, *S*)

For (S,R,R)-SPIRAP - No product observed.

For (*R*)-SDP - 82% yield, 94.9% ee.

Asymmetric allylic alkylation of chalcone derivatives

Preparation of substrate - (E)-1,3-diphenylallyl acetate

(E)-1,3-diphenylallyl acetate was synthesized following a slightly modified reported procedure.^[6] (E)-chalcone (988mg, 4.74mmol) and methanol (12mL) were cooled to 0°C before portionwise addition of sodium borohydride (365mg, 9.66mmol). Reaction mixture was then warmed to room temperature. After 1h, reaction mixture was partitioned between EtOAc (30mL) and water (30mL). After separating the layers, the aqueous solution was extracted with EtOAc twice. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. The allylic alcohol was acetylated without further purification as follows. 4-Dimethylaminopyridine (58.8mg, 48.1mmol), DCM (30mL), and triethylamine (1.7mL, 12.2mmol) were added to the crude. Reaction mixture was cooled to 0°C before dropwise addition of acetic anhydride (1.1mL, 11.6mmol). Reaction mixture was warmed to room temperature and stirred overnight. Water (30mL) was added, and after separating the layers, the aqueous solution was extracted with DCM twice. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The allylic alcohol was acetylated in the purification as follows. 4-Dimethylaminopyridine (58.8mg, 48.1mmol), DCM (30mL), and triethylamine (1.7mL, 12.2mmol) were added to the crude. Reaction mixture was cooled to 0°C before dropwise addition of acetic anhydride (1.1mL, 11.6mmol). Reaction mixture was warmed to room temperature and stirred overnight. Water (30mL) was added, and after separating the layers, the aqueous solution was extracted with DCM twice. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Pure product **15** (841.2mg, 70.3% yield) was obtained after purification by FCC (SiO₂, 10 \rightarrow 20% EtOAc in hexanes). Spectral properties match those reported in literature.

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 – 7.13 (m, 10H), 6.65 (d, *J* = 15.8 Hz, 1H), 6.46 (d, *J* = 6.9 Hz, 1H), 6.36 (dd, *J* = 15.7, 6.8 Hz, 1H), 2.15 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.97, 139.20, 136.14, 132.56, 128.59, 128.54, 128.45, 128.39, 128.29, 128.13, 128.02, 127.47, 127.01, 126.66, 76.10, 21.32.

IR (film): v_{max} = 3029, 1734, 1495, 1370, 1227, 1017, 962, 743, 694 cm⁻¹

Asymmetric allylic alkylation procedure

Dimethyl (S, E)-2-(1,3-diphenylallyl)malonate

WILEY-VCH

The asymmetric alkylation was performed following a modified reported procedure.^[7] (E)-1,3-diphenylallyl acetate (49.3mg, 0.195mmol) **15** and 1,4-dioxane (1mL) were stirred at room temperature. In a separate flask, allylpalladium(II) chloride dimer (1.8mg, 0.0049mmol), **(S,S,S)-SPIRAP** (7.6mg, 0.012mmol), and 1,4-dioxane (1mL) were stirred for 1h at room temperature. The catalyst solution was transferred to the substrate flask by syringe with dioxane washings (1mL). In another flask, dimethyl malonate **16** (45µL, 0.39mmol) and 1,4-dioxane (1mL) were cooled to 0°C, and then treated with a 1 M solution of diethylzinc in hexanes (390µL, 0.39mmol). The substrate flask was cooled with an ice bath while the reagent solution was slowly transferred via syringe with dioxane washings (1mL). Reaction mixture was then warmed to room temperature. After 90min, reaction mixture was diluted with EtOAc (5mL) and quenched with a saturated aqueous solution of NH₄Cl (5mL). After separating the layers, the aqueous solution was purified by FCC (SiO₂, gradient 0 \rightarrow 10% EtOAc in hexanes) to afford pure product **17** (59.8mg, 94% yield, 96.6% *ee*) as colorless oil. Spectral properties match those reported in literature.

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.18 (m, 10H), 6.51 (d, *J* = 15.7 Hz, 1H), 6.37 (dd, *J* = 15.7, 8.6 Hz, 1H), 4.30 (dd, *J* = 10.9, 8.5 Hz, 1H), 3.99 (d, *J* = 10.8 Hz, 1H), 3.73 (s, 3H), 3.54 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.20, 167.78, 140.20, 136.84, 131.85, 129.14, 128.74, 128.49, 127.89, 127.59, 127.18, 126.40, 57.67, 52.63, 52.46, 49.22.

IR (film): v_{max} = 3316 (br), 3026, 2861, 1494, 1091, 945, 733, 691 cm⁻¹

HPLC (Chiralpak AD column, 95:5 hexanes/isopropanol, 1.0 ml/min), t_r = 12.6 min (minor, *R*), 17.1 min (major, *S*)

For (R,S,S)-SPIRAP - 98% yield, 86% ee

Asymmetric Heck reaction of 2-vinylphenyl triflate with norbornene

Substrate synthesis

2-vinylphenyl trifluoromethanesulfonate was synthesized following a two-step procedure reported elsewhere.^[8] Methyltriphenylphosphonium bromide (3.52g, 9.85mmol) and diethyl ether (60mL) were cooled to 0°C before the addition of KO*t*-Bu (2.16g, 19.25mmol). After 15min, a solution of salicylaldehyde (1mL, 9.38mmol) in diethyl ether (30mL) was added. Reaction mixture was then warmed to room temperature. After 16h, a saturated aqueous solution of NH₄CI (30mL) was added. After separating the layers, the aqueous solution was extracted with diethyl ether twice. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, gradient 5 \rightarrow 15% EtOAc in hexanes) to afford unreacted starting material (141mg, 12% recovery) and pure 2-vinylphenol (942 mg, 84% yield) as light yellow liquid.

Vinylphenol (767mg, 6.38mmol), DCM (18mL), and pyridine (1mL, 12.77mmol) were cooled to 0°C before the dropwise addition of trifluoromethanesulfonic anhydride (1.3mL, 7.66mmol). Reaction mixture was then warmed to room temperature. After 13h, reaction mixture was filtered with DCM washings, concentrated *in vacuo*, and purified by FCC (SiO₂, hexanes) to afford 2-vinyltriflate (1.427g, 89% yield) as colorless liquid.

¹**H NMR** (401 MHz, CDCl₃) δ 7.69 – 7.59 (m, 1H), 7.39 – 7.15 (m, 3H), 6.92 (dd, *J* = 17.5, 11.1 Hz, 1H), 5.84 (d, *J* = 17.5 Hz, 1H), 5.48 (d, *J* = 11.0 Hz, 1H).

 $^{13}\textbf{C} \ \textbf{NMR} \ (101 \ \text{MHz}, \ \textbf{CDCI}_3) \ \delta \ 146.82, \ 131.01, \ 129.23, \ 128.81, \ 128.35, \ 127.21, \ 121.62, \ 120.15, \ 118.58, \ 116.97.$

¹⁹**F NMR** (377 MHz, CDCl₃) δ -73.64.

IR (film): v_{max} = 1419, 1207, 1137, 1077, 886, 792, 760 cm⁻¹

Asymmetric Heck reaction

(1S,4R,4aS,9aR)-9-methylene-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanofluorene

The asymmetric Heck reaction was performed following a modified reported procedure.**Error! Bookmark not defined.** Bis(dibenzylideneacetone)palladium(0) (4.7mg, 0.0082mmol), (*S*,*S*,*S*)-SPIRAP(O) (6.5mg, 0.0098mmol) were added to a Schlenk tube strictly under nitrogen. 1,4-dioxane (320µL) was added, and the mixture was stirred at room temperature. After 30min, 2vinyltriflate **18** (60µL, 0.32mmol), norbornene (122.1mg, 1.30mmol), and diisopropylethylamine (110µL, 0.63mmol) were added and then the mixture was heated to 70°C. After 20h, reaction mixture was concentrated *in vacuo* and purified through a short pipette column (SiO₂) with hexanes elution to afford pure product **20** (63.7mg, 99% yield, 95% ee)

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 − 7.39 (m, 1H), 7.29 − 7.12 (m, 3H), 5.51 (d, *J* = 2.4 Hz, 1H), 5.03 (d, *J* = 2.0 Hz, 1H), 3.06 (d, *J* = 7.0 Hz, 1H), 2.83 (d, *J* = 7.0 Hz, 1H), 2.36 − 2.20 (m, 2H), 1.61 (m, *J* = 18.4, 15.4, 11.6, 5.7 Hz, 2H), 1.41 (m, *J* = 18.9, 9.0, 2.4 Hz, 2H), 1.09 − 0.92 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 154.44, 148.89, 142.58, 128.54, 126.57, 125.09, 119.95, 102.93, 52.20, 52.01, 44.59, 42.49, 32.33, 29.36, 28.62.

IR (film): v_{max} = 2948, 2868, 1635, 1471, 868, 782, 756, 730 cm⁻¹

SFC (Chiralpak OJ-H, 99:1 CO₂/isopropanol, 3.5 ml/min, 40°C, 120 bar back pressure), $t_r = 3.5$ min (minor, (*1R*, *4S*, *4aR*, *9aS*)), 3.8 min (major, (*1S*, *4R*, *4aS*, *9aR*))

For (*R*,*S*,*S*)-SPIRAP(O) – 96% yield, -86% ee (enantiomer of 20)
Asymmetric hydrogenation of acrylate derivatives

Methyl acetyl-L-alaninate

The asymmetric hydrogenation of acetamidoacryllic esters was based on a reported procedure.^[9] (*S*,*R*,*R*)-SPIRAPO (11.2mg, 0.016mmol) and Rh(COD)₂OTf (7.0mg, 0.015mmol) were measured and packed into a Schlenk tube in the glovebox before the addition of dry DCM (3.0mL) to make a stock solution. Methyl 2-acetamidoacrylate (28.6mg, 0.20mmol) was added to the flask before addition of the stock solution (2.0mL). The reaction flask was placed into the hydrogenation apparatus before purging with N₂ and H₂, and the reaction was stirred under 500 psi H₂ for 3h. Volatiles were removed *in vacuo*, and the crude was purified by FCC (SiO₂, 20% EtOAc in hexanes) to afford methyl acetyl-L-alaninate (*S*)-22 (25.3mg, 87% yield, 91% ee) as clear oil.

¹H NMR (400 MHz, CDCl₃) δ 6.02 (s, 1H), 4.58 (p, *J* = 7.3 Hz, 1H), 3.74 (s, 3H), 2.00 (s, 3H), 1.38 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.62, 169.52, 52.46, 48.00, 23.15, 18.55.

IR (film): v_{max} = 3282, 2955, 1739, 1652, 1533, 1436, 1372, 1207, 1160, 1058, 733, 607 cm⁻¹

GC conditions 1:

Rt- bDExsm column (df = 0.25 μ m, 0.25 mm i.d. × 30 m, fused silica capillary column); carrier gas, He (flow 1.5 mL/min); injection temp, 230 °C; initial column temperature, 70 °C; progress rate, 2 °C /min; final column temperature, 90 °C); t_r = 28.9 min (minor, *R*), 29.3 min (major, *S*)

GC conditions 2

Rt- bDExsm column (df = 0.25 μ m, 0.25 mm i.d. × 30 m, fused silica capillary column); carrier gas, He (flow 1.5 mL/min); injection temp, 230 °C; initial column temperature, 70 °C; progress rate, 2 °C /min; final column temperature, 110 °C); t_r = 48.7 min (major, *R*), 51.2 min (minor, *S*)

For (S)-SDPO – 85% yield, 94% ee (S)-22 For (S)-BINAPO – 84% yield, -91% ee (R)-22 For (R,R,R)-SPIRAPO – 85% yield, -93% ee (R)-22

Asymmetric Baylis-Hillman reaction of methyl vinyl ketone and an aromatic tosylimine

(S)-4-methyl-N-(2-methylene-1-(4-nitrophenyl)-3-oxobutyl)benzenesulfonamide

The asymmetric Baylis-Hillman reaction was performed following a reported procedure.^[10] Imine **SI-1** (48mg, 0.16mmol), catalyst (*S*,*S*,*S*)-SPIROMP (7.9mg. 0.02mmol), activated 3Å MS, and CHCl₃ (820µL) were added to a Schlenk tube. Mixture was cooled to -78°C, then 3-Buten-2-one (41µL, 0.50mmol) was added before warming the reaction to -10°C. After 5 days, volatiles were removed *in vacuo*, and the crude was purified by FCC (SiO₂, 20→40% EtOAc in hexanes) to afford sulfonamide (*S*)-SI-2 (50.2mg, 85% yield, 83% ee).

¹H NMR (500 MHz, CDCl₃) δ 8.10 - 8.01 (m, 2H), 7.64 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.5 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 6.13 (s, 1H), 6.08 (s, 1H), 5.93 (d, J = 9.3 Hz, 1H), 5.32 (d, J = 9.4 Hz, 1H), 2.41 (s, 3H), 2.15 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 198.72, 147.18, 146.15, 145.42, 143.81, 137.36, 129.63, 127.23, 127.17, 123.61, 58.95, 26.17, 21.51.
SFC (Chiralpak IA, 70:30 CO₂/isopropanol, 3.5 ml/min, 40°C, 120 bar back pressure), t_r = 4.0 min (major S), 4.6 min (minor, *R*)

For (R,S,S)-SPIROMP - 6.8% yield, -71.8% ee (R)-SI-2

Computational models and analysis

Quantum chemical calculations were performed using the Q-Chem 4.3 package.^[11] Geometry optimizations were evaluated using the B97-D density functional.^[12] For compounds not containing transition metals, double- ζ - quality basis set with polarization functions was used on all atoms, 6-31G^{**}.^[13] For Pd-complexes, the LANL2DZ basis set^[14] was used of Pd, P, and Cl atoms, while 6-31G^{**} was used on all other atoms. Pictorial representations of we made in Discovery Studio 4.1 Visualizer.^[15] The electronic Gibbs free energy values were obtained from single point calculatings using the wB97X-D exchange functional.^[16] The final Gibbs free energy values were obtained by correcting the electronic free energy with the enthalpic and entropic contributions from vibrations, rotations, and translations at 298 K. These frequency computations were performed using the B97-D functional. For the enthalpic and entropic corrections to the free energies from the harmonic oscillator approximation, all frequencies below 50 cm⁻¹ were treated as if they were 50 cm⁻¹.

Cartesian coordinates for starting geometries, transition states, and products are described below.

Diol (S,S,S)-7

4	ł	3

С	-3.16660418	2.51676888	1.21187067
С	-3.47220673	1.73275471	0.08830678
С	-2.53030555	0.80808774	-0.40577742
C	-1.30924670	0.68440827	0.27839571
Ċ	-1.01430839	1 47044495	1 39556754
č	-1.93172027	2,40595904	1.88125011
č	-0 12997580	-0 19398482	-0.05346636
õ	0 70580487	-0.09105548	1 11598208
č	0.39861682	1 13963116	1 82881223
č	-0.37560667	-1 64951697	-0.36454275
č	0.38034724	-2 02588796	-1 47838614
č	1 15869767	-0.80975373	-1 93518700
õ	0.51272696	0.29807553	-1 24524866
č	-1 16867638	-2 57630232	0 33225338
č	-1 19723175	-3 90426804	-0 13963789
č	-0 43227714	-4 27249729	-1 25731951
č	0.37370853	-3 34325761	-1 94429854
õ	-1 91800076	-2 25264222	1 42462945
õ	-2 84906405	0.06026310	-1 50667348
č	3 41783300	0.38462186	-1 92406340
č	2 65144451	-0.89646971	-1 56304832
č	2.00144401	1 86763352	1 78200466
č	1 30725415	2 25469900	1 46328589
й	-3 91142875	3 22728152	1 57364590
н	-4 43155190	1 82694792	-0 41941506
н	-1 70717902	3 02702300	2 74812206
н	0 47683546	0.90246922	2 90277633
н	1 05154092	-0 60576479	-3 01314195
н	-1 82004054	-4 63174383	0.37983659
н	-0 47177422	-5.30695997	-1 60170327
н	0.96516968	-3 64555388	-2 80885692
н	-1 80138354	-1 30443316	1 61090982
н	-2 08996952	-0 49764490	-1 72910958
н	4 47230619	0.31117324	-1 62012042
н	3 38544103	0.57146204	-3 00921822
н	2 96579672	1 24714660	-1 41595888
н	2 71218848	-1 09304024	-0 48259783
н	3 08175872	-1 76942095	-2 08222447
н	3.54273745	2.67255686	1.49694678
н	2.97854259	1.66895187	2.85785605
н	3.12365368	0.95793215	1.23163953
н	1.28101785	2.46614191	0.38996576
н	1.10629563	3.16536281	2.01307874

Diol (R,S,S)-7

-3.76748275	-3.51818612	3.74134222
-4.04786752	-4.32271515	2.62564730
-3.45630547	-4.03988022	1.37903507
-2.58731767	-2.93968672	1.29453362
-2.33080690	-2.13637533	2.40609471
-2.90764851	-2.40726314	3.65048742
-1.75263192	-2.46918854	0.12313126
-1.33419260	-1.15283165	0.52609458
-1.39749492	-1.02425722	1.97727821
-2.41852000	-2.41568750	-1.22378468
-1.76340458	-3.25381099	-2.12681959
-0.58568313	-3.88561829	-1.41845772
-0.63347975	-3.35355276	-0.06748417
-3.54783541	-1.66657797	-1.59694885
-4.04281795	-1.82777312	-2.90574637
-3.39386045	-2.69531117	-3.79983007
-2.24066834	-3.41529605	-3.43270641
-4.17439363	-0.80788731	-0.74398872
-3.76646128	-4.84404146	0.31544995

43 С

С	-4.04786752	-4.32271515	2.62564730
С	-3.45630547	-4.03988022	1.37903507
С	-2.58731767	-2.93968672	1.29453362
С	-2.33080690	-2.13637533	2.40609471
С	-2.90764851	-2.40726314	3.65048742
С	-1.75263192	-2.46918854	0.12313126
0	-1.33419260	-1.15283165	0.52609458
С	-1.39749492	-1.02425722	1.97727821
С	-2.41852000	-2.41568750	-1.22378468
С	-1.76340458	-3.25381099	-2.12681959
С	-0.58568313	-3.88561829	-1.41845772
0	-0.63347975	-3.35355276	-0.06748417
С	-3.54783541	-1.66657797	-1.59694885
С	-4.04281795	-1.82777312	-2.90574637
С	-3.39386045	-2.69531117	-3.79983007
С	-2.24066834	-3.41529605	-3.43270641
0	-4.17439363	-0.80788731	-0.74398872
0	-3.76646128	-4.84404146	0.31544995
С	0.53095627	-6.03436956	-0.60243733
С	-0.65273218	-5.42162842	-1.36568745
С	-0.95554273	1.48604679	1.79257206
С	-1.88902753	0.38542121	2.32117428
Н	-4.24178652	-3.75594205	4.69457540
Н	-4.73073494	-5.16856809	2.70062728
Н	-2.70758831	-1.77956704	4.51933719
н	-0.38105357	-1.17187408	2.38584392
Н	0.37166407	-3.57603345	-1.87653534
Н	-4.92315513	-1.26253861	-3.20950163
Н	-3.79409634	-2.80270317	-4.80896192
Н	-1.74017002	-4.07168318	-4.14457134
Н	-3.59982713	-0.69337294	0.03439360
Н	-3.42615899	-4.43070991	-0.49806151
Н	0.44644039	-7.12979398	-0.55685303
Н	1.48529960	-5.78251220	-1.09156344
Н	0.55748647	-5.64086814	0.42266486
Н	-1.60205125	-5.70440808	-0.88514505
Н	-0.68313979	-5.79451996	-2.40318202
Н	-1.34103428	2.48445362	2.04502104
Н	0.05015853	1.38430648	2.22935637
Н	-0.86048987	1.41117827	0.70081747
Н	-2.90513296	0.50713752	1.90944932
Н	-1.98200101	0.45008968	3.41754948

Diphosphine (S,S,S)-SPIRAP

85

WILEY-VCH

Н	-8.89936938	-2.70873016	-5.66628152
Н	-8.45468321	-0.25169991	-5.59363251
Н	-8.59199231	0.97630720	-3.42701153
Н	-3.07018880	-1.80464183	-4.53924995
Н	-4.19382515	-0.44556076	-4.25707290
Н	-4.79867957	-1.96941946	-4.94991582
Н	-4.27968607	-3.14500505	-2.75648042
Н	-3.67935161	-1.61255768	-2.08224141
Н	-1.86467047	2.17860027	-3.16798376
Н	-2.36715602	0.87370143	-2.05587264
Н	-1.77079779	2.41772489	-1.40197647
Н	-3.81717628	3.58735788	-2.33851580
Н	-4.38677856	2.04683405	-3.01971212

Diphosphine (S,R,R)-SPIRAP

85

Р	-0.78415159	20.90796583	8.41079710
Р	1.44835665	20.43430813	5.41165053
0	-1.04984959	17.26105507	7.80678199
0	-0.30266885	17.20831307	5.55590269
С	-1.66600258	20.13399215	9.84495430
С	-1.09623503	20.30205435	11.12593669
Н	-0.18905620	20.89924711	11.23977342
С	-1.68127432	19.70405196	12.25082947
Н	-1.23242863	19.84458927	13.23547462
С	-2.83319146	18.91319687	12.10660070
Н	-3.28284917	18.43739840	12.97944197
С	-3.39766703	18.73140872	10.83504215
Н	-4.28555929	18.10901962	10.71593561
С	-2.81978708	19.33731675	9.71008592
Н	-3.24943097	19.17805742	8.72261144
С	-1.31874942	22.68327129	8.50317996
С	-2.15880668	23.20666114	9.50525908
Н	-2.57059359	22.54357470	10.26624302
С	-2.46775272	24.57630343	9.52951042
Н	-3.11890619	24.96770466	10.31330913
С	-1.95381877	25.43645292	8.54770159
Н	-2.19874538	26.49952954	8.56664662
С	-1.12030554	24.92154126	7.54042534
Н	-0.71441795	25.58191739	6.77222087
С	-0.79722161	23.55870422	7.52324894
Н	-0.14376871	23.16803974	6.74064575
С	-1.77123850	20.30637233	6.95544366
С	-2.80272911	21.06589082	6.36246850
Н	-3.08520489	22.01858200	6.80791271
С	-3.46127534	20.62695103	5.20081197
Н	-4.25336544	21.24283339	4.77186890
С	-3.10603661	19.41576269	4.58694232
Н	-3.60632120	19.08016497	3.67733792
С	-2.08213158	18.66129965	5.16631175
С	-1.43572263	19.09156420	6.32870521
С	-0.45011830	18.01137998	6.73664555

С	-7.90764641	4.02001391	-0.83380907
С	-8.73687968	2.88382919	-0.82809801
C	-8.19982073	1.57815228	-0.84935829
C	-0.79307735	1.4//12345	-0.87837350
c	-5.90971220	2.00520509	-0.85036631
č	-5.90792373	0.25061771	-0.97713722
õ	-4.59106596	0.73441794	-0.67744595
Č	-4.52621460	2.16693643	-0.88023199
С	-6.17256176	-0.96590450	-0.11275732
С	-6.08335956	-2.10139521	-0.92085989
C	-5.80582018	-1.68030128	-2.34138947
0	-5.97863626	-0.24283852	-2.32359121
C	-0.42850914	-1.05256265	1.27210854
C C	-6 48332319	-3 49521836	0 98946764
č	-6.23375823	-3.38431127	-0.38623589
P	-6.78078390	0.48213066	2.26531693
С	-6.98264883	-0.23098775	3.97005112
С	-5.93078373	-0.39357444	4.89360778
С	-6.17654444	-0.95213631	6.15720737
C	-7.47150586	-1.36450667	6.50908669
C	-8.52607438	-1.20765798	5.59522774
c	-5.11365286	1 28903301	2 37946729
č	-3.89754775	0.59604254	2.21516053
č	-2.67533597	1.27755487	2.29588594
С	-2.65390580	2.66017617	2.54586685
С	-3.85990152	3.35978388	2.70811059
С	-5.08302591	2.67798932	2.61664993
P	-9.24673037	0.05359405	-0.62106436
C	-10.95981583	0.77002223	-0.64094337
C	-11.42747123	1.34030649	0.50147970
č	-13.56372506	1.85516235	-0.48138255
Č	-13.11358046	1.27113343	-1.67522810
С	-11.81748872	0.73823713	-1.75841582
С	-9.13924589	-0.77089700	-2.27768337
C	-9.37509966	-2.15997856	-2.32426442
C	-9.29822771	-2.85484377	-3.54094681
c	-8 72122194	-0.78601403	-4 68035743
č	-8.80806051	-0.09071416	-3.46615752
С	-4.09030743	-1.53863732	-4.22412336
С	-4.38555316	-2.04782917	-2.80522051
С	-2.36275746	1.96149457	-2.21138747
C	-3.80347831	2.49280888	-2.20007364
Н	-8.30371900	5.01127638	-0.81/35828
н	-5 86560702	4 77455090	-0.83789391
н	-3.96614341	2.57700505	-0.02528605
Н	-6.55538974	-2.07544920	-3.04544850
Н	-6.79072764	-2.47799627	2.86382364
Н	-6.60982679	-4.48034059	1.44186675
Н	-6.17110686	-4.26957097	-1.02086764
н	-4.92247659	-0.08204485	4.62077012
н	-7 65843792	-1.80122674	7 49143592
н	-9.53596752	-1.52224537	5.86359684
Н	-9.10645234	-0.50624819	3.63096079
Н	-3.91734998	-0.47097711	1.99572448
Н	-1.74025911	0.73275036	2.15605383
Н	-1.70158551	3.18961372	2.60643515
Н	-3.84960055 _6.02110992	4.43542/65	2.89213393
п	-0.02140882 -10 77256212	3.22093431 1 37381331	2.1 100 1 133 1 42521119
Н	-13.05766320	2.34635264	1.56983298
H	-14.56961448	2.27340596	-0.42041490
Н	10 700 11 700	1 22620022	0 64770760
	-13.76841783	1.23029022	-2.34//2/33
Н	-13.76841783 -11.46941555	0.29827418	-2.69309161
H H	-13.76841783 -11.46941555 -9.59714548	0.29827418	-2.69309161 -1.40145400

C	-0.01387803	16.65003924	8.61711635
Н	0.13910922	15.60870864	8.27088828
С	-0.45802469	16.64005166	10.08296308
Н	0.37627309	16.23896695	10.68282052
Н	-0.62826443	17.67615770	10.40413394
С	-1.72308853	15.79686732	10.30075393
Н	-2.53627035	16.17476779	9.66774796
Н	-2.05086861	15.85060209	11.34866297
н	-1.54480759	14,74088983	10.04150267
C	-1.47175595	17.35675891	4.71104185
Н	-2.16325425	16.51494294	4.91083434
С	-1.03798088	17 32672629	3,24210820
Ĥ	-0.32112489	18.14124582	3.07505656
н	-1.92853948	17.53369087	2.62476451
C	-0 41765011	15 97954802	2 84489722
Ĥ	0 44671025	15 76284502	3 48662920
н	-0.07162089	16 00354784	1 80182159
н	-1 14707909	15 16104056	2 95664787
С	0.94298216	18 32973076	7 24450786
č	1 21184547	17 48143543	8.32188346
č	2 45775386	17 49231728	8 95504196
н	2 66414729	16 83238112	9 79920224
Ċ	3 43127793	18.38740700	8 48397498
й	4 41276123	18 42395247	8 95938475
C	3 15621713	19 24681701	7 40628079
н	3 92190114	19 94425583	7.06981299
C	1 90162380	19 23810159	6 76101811
č	2 81885080	21 67689055	5 55692059
č	2 79328531	22 52623338	6 68689579
й	2 02042159	22 38908734	7 44513480
С	3 76034101	23 52640402	6 84830858
й	3 73045732	24 16933122	7 72956545
С	4 75869560	23 70602320	5 87560954
й	5 50681619	24 49082982	5 99685308
Ċ	4 78771088	22 87115013	4 74871476
н	5 56366650	23 00082813	3 99221152
C	3 82783956	21 85817009	4 59107684
й	3 86448584	21.000170005	3 71875756
Ċ	1 887373/0	10/0600300	3 87551620
ĉ	1 5/030660	20 08168870	2 63/8/725
й	1.04909009	21.07010352	2.00404720
C	1 78783160	10 30680245	1 / 3513121
й	1 52278780	10 86110757	0 /8370302
C	2 34042177	18 10085080	1 45032220
ц	2.54542177	17 5700/257	0.52651538
C	2.02190944	17 51833257	2 68700860
ц	2.07330470	16 516030202	2.007.00000
C	2 15217507	18 2061200927	2.1 1723402
ц	2.40241091	17 73/60756	1 830501020
11	2.03321320	11.13400130	+.000000101

Pd(II) complex (S,S,S)-11

88

С	-7 31325408	4 25310845	-0 85667450
č	-8 28059072	3 24108705	-0 78570509
č	-7 93246512	1 87306479	-0.83350841
č	-6 56592680	1 55823475	-0.95121539
č	-0.30332000 5 60241407	2 57883528	0.04677030
č	-5.00241497	2.070000020	-0.94077030
Č	-5.95192699	3.92021340	-0.91974565
C	-5.80235929	0.25904828	-1.18699475
0	-4.46953808	0.56102088	-0.74196306
С	-4.22397977	1.97335870	-0.96471382
С	-6.20460791	-1.08161074	-0.61060131
С	-6.05771916	-2.04471358	-1.61904520
С	-5.60278464	-1.37020693	-2.88440487
0	-5.81246810	0.03811196	-2.61280113
С	-6.63842165	-1.45885458	0.66281852
С	-6.96377874	-2.81704924	0.88649366
С	-6.79154084	-3.77349867	-0.12268943
C	-6.32587692	-3 39353971	-1 39253495
P	-7 16546413	-0.32380265	2 05888680
Ċ	-6 38682004	-1 00286747	3 50038105
č	-0.3000230 4 5 26550328	1 03255208	3 47063304
č	-3.20330320	-1.93233200	4 64460050
Č	-4.01203025	-2.3/42009/	4.04102200
Č	-5.07302815	-1.97280590	5.90407583
C	-6.19098177	-1.12829268	6.00673118
C	-6.8510/26/	-0.68525327	4.85272282
С	-6.31391949	1.34702163	2.09853202
С	-4.91584006	1.43367961	2.21162113
С	-4.32023188	2.68131853	2.44001535
С	-5.11800771	3.83205463	2.56350910
С	-6.51389486	3.73556724	2.46194299
С	-7.11631737	2.48903229	2.23762135
Ρ	-9.32435365	0.62351327	-0.51425630
С	-10.85596410	1.64584230	-0.88476260
C	-11 49617429	2 29316183	0.18570072
č	-12 57591914	3 14907211	-0.06982510
č	-13 02373340	3 34333004	-1 38745467
č	-12 30005038	2 681/08/2	-2 45046100
č	11 20882030	1 83342641	2 20215058
č	-11.29002039	0.65264490	-2.20210900
č	-9.21200200	-0.00004409	-1.0/20/201
C	-9.07 151795	-1.95567625	-1.01010789
C	-9.04592498	-2.90995223	-2.03/04002
C	-9.18516828	-2.56198054	-3.91/5/950
C	-8.73835520	-1.25492923	-4.17440044
C	-8.73901121	-0.29827514	-3.14835466
С	-3.68605429	-0.95947120	-4.51823506
С	-4.13283724	-1.66674286	-3.23085743
С	-2.09229412	1.54184743	-2.30938289
С	-3.46371114	2.23190164	-2.27740697
Н	-7.63113301	5.29610331	-0.82964156
Н	-9.32554374	3.52692046	-0.68616545
Н	-5.18618099	4.70481481	-0.92297706
Н	-3.62679775	2.32103147	-0.10691819
Н	-6.25369424	-1.62320374	-3.73470222
н	-7.37771482	-3.11556068	1.84997212
н	-7.05021874	-4 81325055	0.07980392
н	-6 21410856	-4 12622044	-2 19246212
н	-4 90604542	-2 24554626	2 40002378
н	-3 74420512	-2.24004020	1 55120657
ц	4 56605605	2 31045358	6 80584430
	-4.50005095	-2.31343330	6.00504450
п	-0.00901071	-0.82137195	0.98020323
	-1.13243003	-0.05169017	4.93020940
н	-4.30415581	0.53726095	2.12415480
Н	-3.23524151	2.75288559	2.53166522
Н	-4.65058437	4.80083117	2.74651897
Н	-7.13567811	4.62582302	2.56091574
Н	-8.20055590	2.39269092	2.17264325
Н	-11.16611965	2.10027636	1.20617408
Н	-13.07863312	3.64599650	0.76096440
Н	-13.87133813	4.00200992	-1.58288924
Н	-12.74445882	2.81979047	-3.47295034
Н	-10.80667392	1.31362397	-3.02367618

Н	-9.99229999	-3.92407491	-2.43553562
Н	-9.17475736	-3.30658540	-4.71542256
Н	-8.37837332	-0.98053258	-5.16723401
Н	-8.34911614	0.70243305	-3.32788003
Н	-2.62954037	-1.16867867	-4.74107223
Н	-3.81063922	0.12672242	-4.41717802
Н	-4.29200442	-1.29308113	-5.37578636
Н	-4.02572267	-2.75960897	-3.33513720
Н	-3.51816056	-1.35346984	-2.37499949
Н	-1.57366928	1.73804862	-3.25933052
Н	-2.21227782	0.45618507	-2.19819514
Н	-1.45092205	1.89990159	-1.48809403
Н	-3.34567476	3.32363939	-2.38362073
Н	-4.09554755	1.88395096	-3.10589737
Pd	-9.49227147	-0.41132773	1.63300775
CI	-9.77093887	-1.66774910	3.69369728
CI	-11.80753886	-0.89597443	1.04150558

Pd(II) complex (S,R,R)-11

88

Р	-0.90564579	21.52013263	8.07779970
Ρ	2.16806278	20.99025472	6.47176278
0	-0.95078418	17.50092404	7.78344443
0	0.26231649	17.41601059	5.76324743
С	-1.35079455	20.49334597	9.58341307
С	-0.57239852	20.59778059	10.74756900
Н	0.32824982	21.20966943	10.74427984
С	-1.00182537	19.95375836	11.91884091
Н	-0.40280373	20.03804863	12.82624115
С	-2.20318614	19.22714287	11.92942193
Н	-2.54124877	18.74478364	12.84790900
С	-2.96190689	19.10416717	10.75368338
Н	-3.87973749	18.51560037	10.75070386
С	-2.52681182	19.72004304	9.57191755
Н	-3.09627699	19.60549305	8.65032876
С	-2.07811039	22.99178613	8.10870204
С	-3.31591521	22.94245564	8.76589386
Н	-3.59917440	22.05709976	9.33400277
С	-4.17452960	24.05232766	8.71015458
Н	-5.13153366	24.01991386	9.23297052
С	-3.79997274	25.19919794	7.99340370
Н	-4.46757351	26.06118174	7.95464202
С	-2.55672563	25.24404137	7.34024500
Н	-2.25008198	26.14192128	6.80217674
С	-1.69126862	24.14455192	7.40367756
Н	-0.70195011	24.18974647	6.94644487
С	-1.57184049	20.51924643	6.61029570
С	-2.57753439	21.10411717	5.80966925
Н	-2.97380301	22.08201989	6.07103630
С	-3.07103039	20.46494859	4.66402478
Н	-3.84502743	20.95527900	4.07220695
С	-2.56317241	19.21849103	4.27200935

Н	-2.92556535	18.71775093	3.37372654
С	-1.57076247	18.63761675	5.06063761
С	-1.07849215	19.26307605	6.21933342
С	-0.13644549	18.24956101	6.86830331
С	-0.07712602	16.73118240	8.64616236
Н	0.10333090	15.74710319	8.17271379
С	-0.73048509	16.54030308	10.01427912
Н	-0.04073392	15.93589047	10.62676931
Н	-0.82197094	17.52233748	10.49259318
С	-2.10007994	15.85181375	9.91914806
Н	-2.78224143	16.45923472	9.30961356
Н	-2.54365684	15.72250480	10.91712146
Н	-2.00967130	14.85971302	9.44853023
С	-0.88281105	17.30245735	4.88677719
Н	-1.54157975	16.50154626	5.27534765
С	-0.42867905	16.94448117	3.47329937
Н	0.18390921	17.76809073	3.08736338
Н	-1.32969555	16.88069572	2.84074421
С	0.34796931	15.61851467	3.43331392
Н	1.24046857	15.68523157	4.07080849
Н	0.66520449	15.37840211	2.40785480
Н	-0.27268430	14.78792381	3.80501582
С	1.13189910	18.52477805	7.66037711
С	1.19002909	17.54924819	8.66917596
С	2.27780561	17.44768145	9.53640179
Н	2.29901847	16.68787867	10.31862176
С	3.32751412	18.37020794	9.39845726
Н	4.17769098	18.34332250	10.08059748
С	3.27809876	19.35584370	8.40480813
Н	4.06599659	20.10605994	8.34966042
С	2.19103983	19.42625597	7.50254438
С	3.92621206	21.18316787	5.83375426
С	4.73532032	20.05528789	5.61476928
Н	4.40086149	19.06761642	5.93196298
С	5.98559189	20.21054947	4.99472612
Н	6.61778244	19.33673683	4.82913123
С	6.41732724	21.48311330	4.59112502
Н	7.39053821	21.60109094	4.11210904
С	5.60085671	22.60498736	4.81000651
Н	5.93869160	23.59742811	4.50950412
С	4.35332156	22.45948237	5.43211456
Н	3.72870756	23.32718987	5.63638208
С	1.27434986	20.86034865	4.82956477
С	0.32560267	21.84322627	4.51388123
Н	0.02905756	22.56109464	5.27864226
С	-0.22383937	21.89327637	3.22490956
Н	-0.97091852	22.65059116	2.98586328
С	0.19392073	20.97612557	2.24997567
Н	-0.22438864	21.02116090	1.24349056
С	1.16460265	20.01004349	2.56315947
Н	1.50269242	19.30654444	1.80090692
С	1.70385045	19.94474043	3.85490949
Н	2.45924527	19.19958720	4.09994906
Pd	1.30592700	22.42607994	8.12900717
CI	3.54114409	23.30447829	8.48135910
CI	0.51438352	23.78480381	9.99552640

Pd(II) complex of SDP 23

80

Р	-1.03083899	21.55173105	7.79536988
Р	2.06039684	20.97466813	6.28960293
С	-0.98767733	17.27059421	7.80515386
Ĉ	0 48969899	17 27541403	5 72945301
č	-1 17251147	20 64137704	9 42161851
č	0 10336020	20.04107704	10 /0/00781
Ц	-0.19330920	20.0001900	10.40490701
	0.01003030	21.00401002	10.21023099
C 	-0.28099594	20.16741362	11.62413992
Н	0.48626648	20.32328689	12.38278033
С	-1.34406614	19.28218619	11.86419547
Н	-1.40668141	18.74883844	12.81411744
С	-2.33370203	19.08793244	10.88660721
Н	-3.16603158	18.40732435	11.07224498
С	-2.24948386	19.76984386	9.66351473
н	-3.00405613	19.60940129	8.89232618
С	-2.37400534	22.87238890	7,79650815
Ċ.	-3 56310989	22 72329959	8 52344495
й	-3 71042163	21 85588/68	0.16/03512
Ċ	-4 55644256	23 71238050	8/3701/82
ы	-4.00044200 E 4760400E	23.71230333	0.43701402
	-0.47004020	23.00433495	9.01270000
C .	-4.36292258	24.83628667	7.61966909
Н	-5.13549755	25.60405963	7.55576632
С	-3.16798370	24.98138634	6.89472715
н	-3.00368192	25.86401401	6.27527072
С	-2.16904360	24.00423565	6.98807280
Н	-1.21825627	24.12638373	6.46826680
С	-1.62995039	20.35434238	6.43789451
С	-2.64632130	20.85252935	5.59049559
Н	-3.12033800	21.80180167	5.82533229
С	-3.04515981	20.17503217	4.43248802
н	-3.83436917	20.59829226	3.80963759
С	-2.40782050	18,98468165	4.06529556
Ĥ	-2 67452727	18 46637950	3 14288064
C	-1 41241163	18 47079658	4 89864663
č	1 03002300	10.11722531	6 00778147
č	0 10218013	18 1678//70	6 86//10/5
č	-0.10210013	16 70722405	0.00441945
	-0.05474690	10.79733495	0.94040947
н	0.37345269	15.80353583	8.72388060
Н	-0.57529273	16.72957884	9.90688781
С	-0.63511182	17.19009738	4.67484001
Н	-1.27933528	16.31149857	4.84780952
Н	-0.24920012	17.11921210	3.64696471
С	1.00587261	18.64190236	7.78981086
С	1.03784974	17.84420493	8.95626251
С	1.99605847	18.04206580	9.95188413
н	1.98724353	17.42729632	10.85311158
С	2.95104882	19.05776303	9,78535274
Ĥ	3 69259476	19 25349626	10.56049546
С	2 94764391	19 84151370	8 62623437
й	3 66787028	20 65204431	8 51000286
• •	5.00101020	20.00204401	5.51555200

С	1.99414993	19.62085026	7.60270120
С	3.86625655	20.99920877	5.76514979
С	4.66533426	19.85186794	5.90938651
Н	4.28271740	18.98077970	6.44009574
С	5.96281023	19.83578595	5.37245063
Н	6.58357362	18.94597223	5.48890700
С	6.45521834	20.95915690	4.69154949
Н	7.46505963	20.94742688	4.27859857
С	5.64944659	22.10042277	4.54584606
Н	6.03219412	22.97969317	4.02645439
С	4.35337044	22.12513843	5.07908614
Н	3.73494920	23.01604166	4.99246844
С	1.26700022	20.62682274	4.62312530
С	0.22470765	21.47042040	4.21311281
Н	-0.15955015	22.21140280	4.91352790
С	-0.31141761	21.34152882	2.92477727
Н	-1.13177921	21.98861599	2.61432776
С	0.20582017	20.38124490	2.04238014
Н	-0.21157895	20.28179575	1.03935322
С	1.27360231	19.55993966	2.44232346
Н	1.69727208	18.83230403	1.74860401
С	1.81829993	19.69351626	3.72706708
Н	2.68292733	19.09902480	4.02175109
Pd	1.08559651	22.67095635	7.60769297
CI	3.20684563	23.84515231	7.63532991
CI	0.23715372	24.18187929	9.32889567
Н	1.36983928	17.77012854	5.30232504
Н	0.80322027	16.29761799	6.12167921
Н	-1.44210045	16.44644670	7.23832794
Н	-1.79714027	17.87613280	8.22169960

Energy values and geometric parameters are described in the following tables.

	G _{el} ^a (kcal/mol)	H _{vib} ^b (kcal/mol)	S _{vib} ^b (kcal/mol)	G _{corr} ^c (kcal/mol)
Diol (S,S,S)-7	-650274.0	230.2	148.1	-650088.0
Diol (<i>R</i> , <i>S</i> , <i>S</i>)-7	-650273.2	230.1	147.5	-650087.0
Diphosphine (<i>S,S,S</i>)- SPIRAP	-1565059.2	450.3	245.8	-1564682.1
Diphosphine (<i>S,R,R</i>)- SPIRAP	-1565058.5	449.8	238.7	-1564679.8
Pd(II) complex ((<i>S,S,S</i>)-11)	-1243189.9			
Pd(II) complex ((<i>S</i> , <i>R</i> , <i>R</i>)-11)	-1243184.6			
Pd(II) complex of SDP (23)	-1099473.7			

Table SI-1. Calculated values for optimized geometries. **a**: Gas-phase electronic energy (ωB97X-D/SMD/6-31G**). **b**: Vibrational, rotational, and translational entropic and enthalpic contributions (B97-D/6-31G**) at 298K. **c**: Corrected free energy values at 298K. Pd(II) complexes vibrational, rotational, and translational contributions to the total free energy were not calculated.

	α (°) ^a	β (°) ^a	$ au_4^{b}$	τ_4	Bite angle (°) ^d
(S,S,S)-11	173.8	169.9	0.11	0.13	94.4
(<i>S,R,R</i>)-11	174.8	172.8	0.09	0.09	95.3
23	174.7	169.2	0.11	0.13	94.2

Table SI-2. Geometric parameters of Pd(II) complexes. **a**: Largest angles at Pd. **b**: geometry index parameter, calculated from $\tau_4 = -0.00709\alpha - 0.00709\beta + 2.55$;^[17] **c**: geometry index parameter, calculated from $\tau_4' = -0.00399\alpha - 0.01019\beta + 2.55$;^[18] **d**: P-Pd-P angle.

X-Ray crystallography studies

(*S*,*S*,*S*)-SPIRAP(O) – CCDC Number: 1812181

(S,S,S)-SPIRAP(O)

Table SI-3. Crystal data and structure refinement for aa1711.					
Identification code	aa1711				
Empirical formula	C43 H38 O3 P2				
Formula weight	664.67				
Temperature	85(2) K				
Wavelength	1.54184 A				
Crystal system, space group	Hexagonal, P6(4)				
	a = 15.22339(13) A alpha = 90 deg.				
Unit cell dimensions	b = 15.22339(13) A beta = 90 deg.				
	c = 12.75692(12) A gamma = 120 deg.				
Volume	2560.35(5) A^3				
Z, Calculated density	3, 1.295 Mg/m^3				
Absorption coefficient	1.472 mm^-1				
F(000)	1053				
Crystal size	0.190 x 0.150 x 0.100 mm				
Theta range for data collection	3.352 to 69.236 deg.				
Limiting indices	-18<=h<=17, -18<=k<=18, -15<=l<=15				
Reflections collected / unique	39371 / 3173 [R(int) = 0.0574]				
Completeness to theta = 67.684	100.00%				
Absorption correction	Semi-empirical from equivalents				
Max. and min. transmission	1.00000 and 0.82517				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	3173 / 1 / 224				
Goodness-of-fit on F^2	1.109				
Final R indices [I>2sigma(I)]	R1 = 0.0342, wR2 = 0.0865				
R indices (all data)	R1 = 0.0343, wR2 = 0.0866				
Absolute structure parameter	-0.130(18)				
Extinction coefficient	0.0089(6)				
Largest diff. peak and hole	0.191 and -0.227 e.A^-3				

(*S*,*R*,*R*)-SPIRAP(O) – CCDC: 1812182

(S,R,R)-SPIRAP(O)

Table SI-4. Crystal data and structure refinement for aa2393.					
Identification code	aa2393				
Empirical formula	C43 H38 O3 P2				
Formula weight	664.67				
Temperature	225(2) K				
Wavelength	1.54178 A				
Crystal system, space group	Monoclinic, P2(1)				
	a = 10.01060(10) A alpha = 90 deg.				
Unit cell dimension	b = 31.3874(3) A beta = 90.2490(10) deg.				
	c = 11.24650(10) A gamma = 90 deg.				
Volume	3533.69(6) A^3				
Z, Calculated density	4, 1.249 Mg/m^3				
Absorption coefficient	1.422 mm^-1				
F(000)	1400				
Crystal size	0.12 x 0.04 x 0.04 mm				
Theta range for data collection	2.816 to 69.327 deg.				
Limiting indices	-12<=h<=11, -37<=k<=38, -13<=l<=13				
Reflections collected / unique	54487 / 12761 [R(int) = 0.0529]				
Completeness to theta = 67.679	100.00%				
Absorption correction	Semi-empirical from equivalents				
Max. and min. transmission	1.00000 and 0.59423				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	12761 / 1 / 870				
Goodness-of-fit on F^2	1.048				
Final R indices [I>2sigma(I)]	R1 = 0.0481, wR2 = 0.1318				
R indices (all data)	R1 = 0.0509, wR2 = 0.1375				
Absolute structure parameter	0.048(15)				
Extinction coefficient	n/a				
Largest diff. peak and hole	0.776 and -0.350 e.A^-3				

HPLC, SFC, and GC traces

1-(3-(methoxymethoxy)phenyl)propan-1-ol (2a)

Racemic

Retention Time	% Area
15.446	50.56
17.033	49.44

(S)-2a - Using diphenyl((S)-1-((S)-1-phenylethyl)aziridin-2-yl) methanol

Retention Time	% Area
15.912	0.09
18.161	99.91

1-(3-((benzyloxy)methoxy)phenyl)propan-1-ol (2b)

Racemic

(S)-2b – Using diphenyl((S)-1-((S)-1-phenylethyl)aziridin-2-yl)methanol

1-(3-(benzyloxy)phenyl)propan-1-ol (2c)

Racemic

 $(S)-2b - Using \ diphenyl((S)-1-((S)-1-phenylethyl)aziridin-2-yl)methanol$

Dimethyl (E)-2-(1,3-diphenylallyl)malonate (17)

Racemic

Using (S,S,S)-SPIRAP

Using (S,R,R)-SPIRAP

2-(2-(1-methoxy-3-phenylpropyl)phenyl)pyridine (14)

Racemic

Using (S,S,S)-SPIRAP

2998 Ch1 220nm Plot

WILEY-VCH

Using (*R*)-SDP

Peak No	% Area	Area	Ret. Time
1	97.4388	18894.892 9	6.98 min
2	2.5612	496.6583	7.94 min

9-methylene-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanofluorene (20)

Racemic

Peak No	% Area	Area	Ret. Time
1	50.051	2961.0683	3.56 min
2	49.949	2955.0364	3.93 min

Using (S,S,S)-SPIRAP(O)

Using (R,S,S)-SPIRAP(O)

Peak No	k No 🧠 Area 🛛 A		Ret. Time
1	94.6937	6277.2086	3.52 min
2	5.3063	351.7551	3.9 min

Methyl acetylalaninate (22)

Racemic (GC conditions 1)

Racemic (GC conditions 2)

With (R,R,R)-SPIRAPO (GC conditions 1)

										-		
							\			-75.0	Retention Time	% Area
						_ #		<u> </u>			48.776	4.785
5	35.0	37.5	40.0	42.5 4	5.0 47	.5 50.0	52.5	55.0	57.5		51.595	95.215

With (S)-SDPO (GC conditions 1)

-2500

With (S)-BINAPO (GC conditions 2)

4-methyl-N-(2-methylene-1-(4-nitrophenyl)-3-oxobutyl)benzenesulfonamide (SI-2)

Racemic

Peak No	% Area	Area	Ret. Time
1	50.1408	1123.648	4.03 min
2	49.8592	1117.336	4.57 min

Using (S,S,S)-SPIROMP

Using (R,S,S)-SPIROMP

WILEY-VCH

NMR spectra

3-(methoxymethoxy)benzaldehyde (1a)

WILEY-VCH SUPPORTING INFORMATION — 137.82 191.96 157.76 - 130.11 - 55 --- 94.39 56.16 Ĩ. 1 1C NMR CDCl₃ 176 MHz - 50 ОМОМ - 45 റ - 40 - 35 - 30 - 25 - 20 - 15

3-((benzyloxy)methoxy)benzaldehyde (1b)

WILEY-VCH SUPPORTING INFORMATION 9.98 -- 5.36 4.74 - 5000 1H NMR OBOM - 4500 500 MHz \sim 4000 - 3500 - 3000 2500 2000 - 1500 - 1000 - 500 - 0 1.00 1.00 1.05 6.18 人 1.01-T 2.21.T 2.20H -

4.0 3.5 3.0

2.5 2.0 1.5 1.0 0.5

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5

6.0

5.5 5.0 f1 (ppm)

4.5

WILEY-VCH

3-(benzyloxy)benzaldehyde (1c)

WILEY-VCH

WILEY-VCH

(R)-1-(3-((benzyloxy)methoxy)phenyl)propan-1-ol ((R)-2b)

⁽S)-1-(3-(benzyloxy)phenyl)propan-1-ol ((S)-2c)

(1R,3S,3'S)-3,3'-diethyl-7,7'-bis(methoxymethoxy)-3H,3'H-1,1'-spirobi[isobenzofuran] ((R,S,S)-6a)

WILEY-VCH

WILEY-VCH

(1S,3R,3'R)-7,7'-bis((benzyloxy)methoxy)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran] ((S,R,R)-6b)

WILEY-VCH SUPPORTING INFORMATION ∧ 115.68 √ 113.35 √ 110.39 130.06 1328.47 128.47 126.12 126.12 126.12 146.47 ____136.92 154.33 ____ 82.88 ____68, 50 ____28.20 - 10. 08 - 45 1 13C NMR С₆D₆ 100 МНz - 40 Et 💊 `OBn Ó. - 35 ,OBn Ο' Et^{````} - 30 - 25 - 20 - 15 - 10 - 5

60

50

40

30

90

80 f1 (ppm) 70

150

140

130

120

110

100

- 0

10

20

WILEY-VCH

(1S,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diol ((S,S,S)-7) - ~2:1 d.r. (S,S,S)-7:(R,S,S)-7

WILEY-VCH

WILEY-VCH

(1S,3S,3'S)-7'-(diphenylphosphoryl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl trifluoromethanesulfonate ((S,S,S)-9)

WILEY-VCH

WILEY-VCH

(1R,3S,3'S)-7'-(diphenylphosphoryl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl trifluoromethanesulfonate ((R,S,S)-9)

WILEY-VCH

WILEY-VCH SUPPORTING INFORMATION ∕_ 29.94 √_ 28.46 3200 28.46 29.94 31P NMR 3000 CDCl₃ 202 MHz - 2800 Et - 2600 P(O)Ph₂ Ô. O' _OTf 2400 30 f1 (ppm) 29 28 32 31 Et - 2200 2000 - 1800 - 1600 - 1400 - 1200 - 1000 - 800 - 600 - 400 - 200 - 0 190 180 170 160 150 140 130 120 110 100 90 80 70 f1 (ppm) 30 0 -10 -20 -30 -40 60 50 40 20 10

WILEY-VCH

WILEY-VCH

(1S,3S,3'S)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl trifluoromethanesulfonate ((S,S,S)-10)

WILEY-VCH

WILEY-VCH

WILEY-VCH

WILEY-VCH

WILEY-VCH

WILEY-VCH

((1R,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl)bis(diphenylphosphane) ((R,S,S)-SPIRAP)

WILEY-VCH

WILEY-VCH

[((1R,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl)bis(diphenylphosphane)]palladium(II) chloride ((R,S,S)-11)

WILEY-VCH

(((1S,3R,3'R)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl)bis(oxy))bis(diphenylphosphane) ((S,R,R)-SPIRAPO)

WILEY-VCH

(1S,3S,3'S)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-ol ((S,S,S)-SPIROMP)

WILEY-VCH

WILEY-VCH

(1R,3S,3'S)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-ol ((R,S,S)-SPIROMP)

WILEY-VCH

(1S,4R,4aS,9aR)-9-methylene-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanofluorene (20)

(S)-4-methyl-N-(2-methylene-1-(4-nitrophenyl)-3-oxobutyl)benzenesulfonamide (SI-2)

References

- [1] K. Soai, S. Yokoyama, T. Hayasaka, J. Org. Chem. 1991, 56(13), 4264.
- [2] M.-C. Wang, Y.-H. Wang, G.-W Li, P.-P. Sun, J.-X. Tian, H.-J. Lu, Tetrahedron: Asymmetry 2011, 22(7), 761.
- [3] A. E. Green, V. Agouridas, E. Deniau, Tetrahedron Lett. 2013, 54(51), 7078.
- [4] R. Matsubara, T. F. Jamison, J. Am. Chem. Soc. 2010, 132(20), 6880
- [5] Y. Ebe, M. Onoda, T. Nishimura, H. Yorimitsu, Angew. Chemie Int. Ed. 2017, 56(20), 5607; Angew. Chem. 2017, 129, 5699.
- [6] P. -S. Gao, F. Ye, X. -Y. Dong, Y. Chen, Z. -W. Gao, W. -Q. Zhang, L. -W. Xu, N. Maezaki, RSC Adv. 2015, 5(43), 33818
- [7] J. H. Xie, H. F. Duan, B. M. Fan, X. Cheng, L. X. Wang, Q. L. Zhou, Adv. Synth. Catal. 2004, 346(6), 625.
- [8] J. Hu, H. Hirao, Y. Li, J. S. Zhou, Angew. Chemie Int. Ed. 2013, 52(33), 8676; Angew. Chem. 2013, 125, 8838.
- [9] R. Guo, T. T. -L. Au-Yeung, J. Wu, M. C. K. Choi, A. S. C. Chan, Tetrahedron: Asymmetry, 2002, 13, 2519.
- [10] S. Takizawa, K. Kiriyama, K. leki, H. Sasai, Chem. Commun. 2011, 47(32), 9227.
- Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kuś, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A. DiStasio, H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, Joseph Gomes, Magnus W.D. Hanson-Heine, Philipp H.P. Harbach, Andreas W. Hauser, Edward G. Hohenstein, Z. C. Holden, T.-C. Jagau, H. Ji, B.n Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. D. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich, Simon A. Maurer, Nicholas J. Mayhall, Eric Neuscamman, C. Melania Oana, Roberto Olivares-Amaya, Darragh P. O'Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, S. M. Sharada, S. Sharma, D. W. Small, A. Sodt, T. Stein, D. Stück, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi, V. Vanovschi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, J. Yang, S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhao, B. R. Brooks, G. K. L. Chan, D. M. Chipman, C. J. Cramer, W. A. Goddard, M. S. Gordon, W. J. Hehre, A. Klamt, H. F. Schaefer, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Warshel, X. Xu, Alán Aspuru-Guzik, Roi Baer, Alexis T. Bell, Nicholas A. Besley, Jeng-Da Chai, Andreas Dreuw, Barry D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong, D. S. Lambrecht, W. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipch
- [12] A. D. Becke, J. Chem. Phys. 1997, 107, 8554. (b) S. Grimme, J. Comp. Chem. 2006, 27, 1787.
- [13] (a) P. C. Hariharan, J. A. Pople, *Theoret. Chim. Acta.* 1973, 28, 213. (b) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, *J. Chem. Phys.* 1982, 77, 3654.
- [14] (a) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270. (b) W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284. (c) P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 299.
- [15] Discovery Studio 4.1 Visualizer: Accelrys Software Inc. San Diego, USA. 2015.
- [16] (a) J.-D. Chai, M. Head-Gordon, J. Chem. Phys. 2008, 128, 084106. (b) J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 661.
- [17] L. Yang, D. R. Powell, R. P. Houser, Dalt. Trans. 2007, 955.
- [18] A. Okuniewski, D. Rosiak, J. Chojnacki, B. Becker, B. Polyhedron 2015, 90, 47.