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Introduction 
Species richness patterns are inevitably linked to the patterns of species spatial distribution as the 

number of species in a site is given by the number of species ranges that overlap there. However, 

these kinds of patterns have been studied mostly separately from each other, with only few attempts 

to make an explicit connection between them. The most prominent example of such interrelated 

patterns concerns the species-area relationship (SAR, i.e. the relationship between species number 

and area on which the number has been counted), and the frequency distribution of species 

occupancies (hereafter species-occupancy distribution). Although both patterns have been studied 

from the beginning of 20th century (Raunkiaer 1910, Arrhenius 1921), and although species relative 

occupancies apparently affect the slope of the SAR at least in the extreme cases (if all species occurred 

everywhere, the number of species would not increase with area, whereas if all species occupied only 

one site, mean species number would increase almost linearly with area), the exact connections 

between them have remained unexplored. The reason is that the formal theory connecting both 

patterns was either unrealistic (Ney-Nifle and Mangel 1999, Maurer 1999) or missing. 

 The SAR can be often well expressed as a power-law, which indicates scale invariance or self-

similarity (Gisiger 2001). This has led to the formulation of a theory explicitly relating the power-

law to the self-similarity at the community level (Harte et al. 1999). Although Harte et al. (2001) and 

Lennon et al. (2002) claimed that this is not compatible with the self-similarity revealed at the level 

of spatial distribution of individual species, Šizling and Storch (2004) have shown that within finite 

areas the power-law can be actually attributed to the self-similarity in individual species distributions, 

and that this effect is responsible for the slope and shape of the SAR in central European birds. Here 

we show that assuming the self-similarity of species spatial distributions, the slope and shape of the 

SAR can be derived using only the distribution of species relative occupancies. 

 Our following explorations are based on the finite area model of the SAR (Šizling and Storch 

2004), which comes out from the knowledge that the mean number of species within an area can be 

calculated by summing species occupancy probabilities, occp , for area A. In self-similarly distributed 

species these probabilities increase approximately linearly with area in the log-log scale, up to the 
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point satA  where 1=occp . The satA  represents the “area of saturation”, i.e. the minimum area of a 

study plot that is necessarily occupied by the species, regardless of its location. The satA  therefore 

depends on the area and shape of the largest distributional gap (see Figure 1 in Šizling and Storch 

2004), and thus on the number of occupied sites and their spatial arrangement. Then the species 

number can be calculated according to the formula 
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where [ ]AS  is the mean number of species observed within a sample plot of area A randomly placed 

within the total area totA  (i.e. the area of the whole study plot within which the sample plots can be 

laid), totS  is the total number of species occurring within the totA , and [ ]ASsat  is the number of species 

whose relationship between occp  and A has reached saturation (i.e. the number of species with 

AAsat ≤ ). Parameters iπ  and iz  correspond to the probability of occupancy in 1=A  and to the rate 

of increase of occp  with area, respectively. 

 According to the model (Figure S1), three parameters for each species spatial distribution (π

, satA  and z) are required to predict the resulting SAR. However, we will show that these parameters 

are so closely related to each other that the SAR can be ultimately predicted just by one of them. 
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Fig S1: Graphical representation of 

the simple finite-area model. Log occp  

increase linearly with log A, up to the 

satA  when 1=occp . The slope z is 

determined by the satA  and π  

(probability of occupancy of the unit 

area). 
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The interdependence between parameters of the finite area model 

As satA  and π  represent two points defining a line, and z is the slope of the line (Figure S1), it is 

clear that one of the parameters is redundant. The relationship between them follows formula 

isatii Az lnlnπ−=  (S2) 

In the following text we will therefore deal only with the relationship between the parameters  satA  

and π , since – assuming that the self-similarity is accurately captured by the finite area model - these 

are sufficient for characterizing species spatial distributions, and thus the resulting SAR.  

The satA  and π  are not dependent on each other in a strict sense (as they would be if just one 

value of satA  could be assigned to each π ), but they constrain each other in the following way. 

Imagine a spatial distribution of a species represented by a lattice with some occupied cells (Figure 

S2). The π  can be estimated as the proportion of the total number of cells occupied, and satA  is given 

by the maximum possible gap, i.e. by the largest possible square that does not contain any occupied 

cell. The possible range of satA  is therefore determined by the number and potential arrangements of 

unoccupied cells. The minimum and maximum possible satA  (let us call them the geometric 

constraints of satA , GMinsatA  and GMaxsatA ) can be calculated as follows: 

Minimum possible satA  can be obtained in the case of regular spatial distribution, simply because in 

that case changing a location of any occupied cell cannot make the satA  smaller (Figure S2). As the 

shape of the sample plot is square, the size of minimum satA  follows the formula 

( )( )( )1TruncTrunc2 +=≥ occtotGMinsatsat AAAA  (S3) 

where Trunc is the function that truncates an argument to the integer, totA  is the total area (see Figure 

S2 where 55×=totA  grid cells), and occA  is the occupied area ( totocc AA π= ). 

 

 

Fig S2: An example of the spatial distributions of a species occupying 4 

cells within the grid of 25 cells (its relative occupancy is 16.0254 = ). 

The circles represent the distribution with maximum possible satA , the 

sharps refer to the distribution with minimum possible satA . 
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Maximum possible satA , on the other hand, cannot be higher than the unoccA , i.e. occtotsat AAA −≤ . 

The exact value of satA  depends on the shape of the sample plot and on the spatial distribution of 

occupied cells within totA , and the highest possible satA  is apparently reached when all the occupied 

cells are located along the edge of the totA  (Figure S2). For the square-shaped sample plots we can 

then write 

( )occtotGMaxsatsat AAAA −=≤ 2Trunc  (S4) 

Note that for high π  the interval [ ]GMaxsatGMinsat AA ;  is quite narrow, as the dependence of satA  on the 

location of occupied cells is relatively weak, whereas for small π  the satA  strongly depends on the 

location of occupied cells within the totA , and thus the interval of possible satA  is relatively wide. 

 These constraints are generated by simple geometric logic and emerge without any 

consideration of internal spatial structure of species distribution. But both extreme structures (i.e. the 

regular distribution and the distribution confined to the edge of the sampled area) are apparently far 

from self-similar. Although these cases can be in fact considered as extreme realizations of random 

self-similar distribution (random fractals, see Hastings and Sugihara 1993), the probability of such 

realizations is very small. The satA  for respective π  will thus most probably lie within much narrower 

interval than that given by simple geometric constraints. Let us call these new probabilistic 

constraints, imposed upon satA  due to the assumption of self-similarity, the self-similar constraints. 

The effect of variation of satA  within them on the resulting SAR must be evaluated numerically. 

 

Empirical evaluation of the sensitivity of SAR on possible satA  variation 

To evaluate the sensitivity of the SAR to the distribution of π  and to the variation of satA  between 

its two constraints, we have conducted a series of simulations. For the purpose of these simulations 

we used data on bird distribution in central Europe (Storch and Šizling 2002) from which the 

distribution of π was extracted (see Figure S3b). Then we calculated the constraints imposed upon 

satA  by each π and tested how the resulting SAR is sensitive to the variation of satA  within these 

constraints. 

The data on the distribution of birds in central Europe comprise two scales of resolution, that 

of basic grid cell size of 121.11 ×  km (Czech Republic, hereafter CR; Šťastný et al. 1996) and  

 

a) b) 
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Fig S3: The settings and results of the tests concerning the sensitivity of the SAR on the distribution of π  

and the variation of satA . (a) The two types of constraints imposed on satA  (thick line – geometric constraints, 

thin line – self-similar constraints), and the 95% confidence interval of satA  for the case of random spatial 

distribution (dotted line). Note that all observed satA  fell to the interval between the self-similar constraints, 

indicating that the real species distributions were indeed close to the self-similarity. (b) Distributions of π  for 

the Czech Republic (black squares) and central Europe (white squares). (c) The relative residuals from the 

observed SAR for SARs constructed by the random drawing of satA  from the interval given by the geometric 

constraints (white boxes) and self-similar constraints (black boxes) of satA . The dashed line refers to mean 

observed number of species, and dotted and full lines represent %95  and %50  confidence intervals of 

observed species numbers. The bias for sampled areas 1010×≥  grid cells occurring in the case of CR is an 
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artefact of the fixation of satA , which diminished when we used different procedures of calculating z. (d) The 

comparison between the relative residuals obtained using the procedure described above (black boxes) and 

those that used inappropriate distributions of π  for the prediction of species numbers (i.e. the distribution of 

π  from CE was used for the prediction of the SAR for the CR and vice versa, white boxes). In both cases the 

self-similar constraints were used. Full lines refer to maximum and minimum species numbers obtained within 

geometric constraints of satA  for appropriate distributions of π  – note that using the inappropriate 

distributions (white boxes), which are only slightly different (Figure S3b), leads to predictions that occur 

outside of these hard boundaries. 

_______________________________________________________________________________ 

 

that of basic grid cell size of 5050×  km (central Europe, hereafter CE; Hagemeijer and Blair 1997). 

Both data sets consist of 1616×  grid cells (see Figure 3 in Šizling and Storch 2004), containing the 

information about probable or confirmed breeding of each bird species within each cell (see Storch 

and Šizling 2002). 

For each species, iπ  was calculated as the intercept of the regression line of the relationship 

between log iA  and log ioccp , , within the range in which the dependency [ ]Ap iocc,  was increasing. 

This line was fixed in the point of isatA , , so that the regression line had only one free parameter. The 

isatA ,  was set as the middle point between the minimum square-shaped area which necessarily 

contained an occupied cell and the maximum empty square-shaped area.  

The possible ranges of variation of satA  for each π  were constructed in two ways (Figure S3a): 

1. Geometric constraints of satA , calculated using equations S3 and S4. 

2. Self-similar constraints. Here we constructed self-similar distributions according to the 

procedure described in Šizling and Storch (2004; Appendix 2). We performed 500 simulations 

for the fractal dimension 1.0=FD , then 500 simulations for 2.0=FD , etc., up to 9.1=FD  (note 

that 0.2=FD  means that the species occupies the whole area). For each simulation we calculated 

π  and satA  as described above, and set the boundaries for satA  as the %95  nonparametric 

confidence interval of the obtained results, i.e. the area within π - satA  biplot that contained %95  

of simulation results for each respective π . The confidence of the reliability of these intervals is 

higher than %9.99  ( 95.0>β , 001.0<γ ; Wilks 1941, Jílek 1988). 

We then performed 500 simulations of the SAR, randomly varying satA  within the constraints. In 

each simulation, (1) π  was drawn from the respective distribution of π  in number totSN = , (2) for 
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each π , satA  was randomly drawn from the interval within the calculated boundaries, and (3) after 

calculating respective iz  for each pair of iπ  and isatA ,  (equation S2), mean species number estimatedS  

was obtained using equation S1. This was performed for both types of constraints on satA . For the 

comparison of predicted and observed species numbers for each area we used relative residuals 

calculated as ( ) totestimatedobserved SSS − . These residuals are equal to the mean of iε , ε , used in the 

previous paper (Šizling and Storch 2004). 

 The residuals were low for all simulated SARs, for both CR and CE (Figure S3c). As expected, 

higher residuals were generally produced by the model where satA  could vary more widely within the 

geometric constraints. However, even in this case the predicted species numbers did not differ from 

the observed numbers by more than %10  of totS . Note that the systematic deviation between 

observed and predicted species numbers for sampled areas 66×≤  grid cells has been shown to be 

attributable entirely to the approximative nature of equation S1, which does not represent an accurate 

expression of self-similarity for small areas (Šizling and Storch 2004).  

 On the other hand, the predicted species numbers were strongly dependent on the respective 

distribution of π . When we performed the same simulations as described above (using the self-

similar constraints), but taking π  from the other distribution (i.e. taking π from the distribution for 

CE in totS  equal to the species number of CR and comparing the predicted species numbers with the 

observed numbers for CR,  and vice versa), the deviations between predicted and observed species 

numbers were much higher than the deviations calculated from the appropriate distribution of π

(Figure S3d). They were even higher than the maximum deviations that would be obtained if all 

species had the extreme spatial arrangement of occupied cells, i.e. the regularly distributed cells and 

cells located along the edge of the totA . 

 These results indicate that the SAR is not substantially sensitive to the variation of satA  within 

the constraints imposed on it by the distribution of π , but are very sensitive to the exact distribution 

of π . Relative species occupancies therefore directly affect the shape and slope of the SAR. 

 

Relationship between the species-occupancy distribution and slope and shape of the 
SAR 
According to Šizling and Storch (2004), the slope of the SAR in logarithmic space can be calculated 

using equation 

( ) ( )totitot ASZ lnln ∑= π  (S5) 
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where totA  is the total number of grid cells, which refers to the coarseness of the grid. Therefore, for 

given totA , z is determined by the mean value of the species relative occupancies π  ( toti S/∑= ππ ), 

so that ( ) ( )totAz lnln π−= . Thus, the higher the mean species relative occupancy, the lower the slope 

of the SAR, bounded at 0=z  when mean species relative occupancy is equal to 1. However, the SAR 

is not necessarily precisely linear on the log-log scale, and for highly nonlinear cases it does not make 

sense to take z as a reliable descriptor of the SAR. It is thus necessary to explore also the effect of the 

distribution of π  on the shape of the SAR. 

 For this purpose we generated 10 000 random distributions of π  ( 200=totS ), constructed as 

rank-π  relationships expressed by random third-order polynomials (i.e. three kinds of distributions - 

regular, unimodal, and bimodal - were allowed), keeping mean π  per species such that z = 0.2. For 

each distribution we calculated standard deviation, skewness and kurtosis (which correspond to the 

second, third, and fourth central moments of the distributions) and constructed the SAR according to 

the procedure described above (with the self-similar constraints of satA ). Then we analysed the effects 

of these parameters on the curvilinearity of the SAR (hereafter CL). The CL was calculated using the 

sum of squares of distances from the line defined by the two extreme points of the SAR (the maximum 

( tottot SSAA == ; ) and minimum ( ∑== iSA π;1 ); the slope of the line is equal to Z (equation S5)). 

The squared distances were calculated for all points of satA  in the log-log space and then averaged 

(Šizling and Storch 2004). 

 The CL depends strongly and negatively on the standard deviation of π  ( 87.0−=r , 

0001.0<p , see inset in Figure S4). The other parameters also have significant, but smaller, effects 

on CL ( 55.0−=r  for skewness and 0.30 for kurtosis; 0001.0<p  for both variables). These effects 

imply that the SAR is closer to the power-law in the case of bimodal (which leads to increasing 

standard deviation and decreasing kurtosis) and/or right-skewed (increasing both standard deviation 

and skewness) distributions (Figure S4). Note that the distribution of π  is bounded by zero and one, 

and so the standard deviation cannot be elevated by a simple increase in the range of values, but only 

by increasing the right-skew or bimodality. 
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Fig S4: The relationship between different types of species-occupancy distribution and the curvilinearity of 

the SAR (see text for the details of the construction). The strongly right-skewed and bimodal distributions have 

larger standard deviations and produce SARs which are very close to the power-law. The resulting SARs were 

obtained using the mean of 500 simulations for each distribution. The inset shows the relationship between the 

standard deviation of π  and the curvilinearity of the SAR, CL (N=10,000). 

 

Discussion 
The species-area relationship is strongly sensitive to the distribution of species relative occupancies, 

whereas its sensitivity to particular spatial structure of species distribution is much lower. Note, 

however, that we have shown this only for self-similar spatial distributions, because this is the only 

case in which the SAR can be predicted using the finite area model (Šizling and Storch 2004; Equation 

S1). Therefore, our results do not mean that the SAR is directly dependent on the species-occupancy 

distribution regardless on the spatial structure; they say simply that the shape and slope of the SAR 

are not dependent on the particular realizations of self-similar spatial distribution given that the 

distribution of species relative occupancies does not change. 

The shape of the SAR is close to the power-law if the species occupancy distribution is either 

bimodal or strongly right-skewed. These types of occupancy distribution are actually those most 

commonly observed in nature (Hanski 1982, Gaston and Blackburn 2000, Storch and Šizling 2002) 

and thus it is not surprising that the SAR is also commonly expressed as a power-law. However, the 

species-occupancy distribution is not scale invariant – if we considered very fine resolution where 

the size of the basic grid cell was comparable to the average home range of individuals of the given 
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taxon, the occupancy distribution would be close to the distribution of species abundances which is 

unimodal, albeit still left-skewed (Preston 1962, May 1975, Hubbell 2001). This could potentially 

affect the shape of the SAR on small scales. Indeed, there is some evidence that at very small scales 

the slope of the SAR changes (Crawley and Harral 2001, Hubbell 2001), and the SAR becomes 

curvilinear in a log-log space (Harte et al. 2009). It is therefore probable that our model works only 

within particular spatial scales. Only over this range of scales will the assumption of self-similarity 

be valid, allowing the derivation of the SAR from the species-occupancy distribution. We have 

evidence that for birds these scales comprise grids of cells larger than ca 1010×  km, but it is probable 

that this scale will differ among different taxa. Thus the shape of the SAR may be taxon-dependent 

(Crawley and Harral 2001, Marquet et al. 2004). 

Until now we have dealt with purely geometric considerations, showing that the shape and 

slope of the SAR are related to the distribution of species relative occupancies. This finding implies 

that if we want to explain the shape and slope of the SAR in terms of the mechanisms producing it, 

we have to look for the processes generating also the species-occupancy distribution. It is not a 

coincidence that the same processes have been proposed as explanations for both patterns. We can 

distinguish three major groups of explanations for both patterns: (1) sampling effect (the result of 

random location of individuals across space according to the distribution of species abundances, see 

Preston 1960, Coleman 1981, Nee et al. 1991), (2) habitat heterogeneity (the effect of the spatial 

distribution of habitats preferred by individual species, see Rosenzweig 1995, Storch and Šizling 

2002) and (3) spatial population dynamics which leads to spatial aggregation not attributable solely 

to habitat aggregation (Hanski and Gyllenberg 1997, Storch and Šizling 2002, Storch et al. 2003). In 

the case of central European birds we have already shown that neither species-occupancy distributions 

(Storch and Šizling 2002) nor the SAR (Storch et al. 2003) can be attributed only to sampling effect 

or habitat heterogeneity, and that spatial aggregation is significantly higher than expected solely from 

these effects. 

Regardless on the relative contribution of the effects of habitat heterogeneity and spatial 

population dynamics, the ultimate cause of the highly unequal occupancy distribution as well as the 

shape and slope of the SAR is spatial aggregation on various scales. This is in accord with previous 

findings concerning the importance of spatial aggregation for diversity patterns (Plotkin et al. 2000, 

He and Legendre 2002). Our approach extends these notions by explicitly relating these effects to the 

observed patterns of self-similarity of species distribution and the power-law approximation of the 

SAR. However, two questions remain open: (1) what generates the self-similarity, i.e. the similar 

pattern of spatial aggregation on various scales of resolution (Storch et al. 2008), and (2) which 

processes affect mean species occupancies responsible for the slope of the SAR. Regardless of the 
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responsible processes, the species-occupancy distribution and the species-area relationship are 

ultimately caused by the same biological phenomenon, the spatial aggregation within many spatial 

scales.  
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