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Appendix S2: Notes on the three novel methods for inferring regional biodiversity patterns from 
fine-scale samples. 

 

This appendix includes detailed formulation and model description, as well as computer 
code, for the three Hui models presented in the manuscript. 

 

The challenge of drawing valid inferences about multi-scale species richness within a region or 
other large area based on a representative sample of fine-scale surveys is an important 
unresolved challenge in macroecology. A number of approaches have been explored to date (see 
text), but there remain a wide range of potentially productive avenues that have not yet been 
explored. Here we set out three such novel approaches. The main aspects have been provided in 
the main text, and we provide here additional notes for the calculation using these three methods. 
Before running the following models, the study area (of the 32 datasets) was first divided into 
grids of particular resolution/scale (e.g. 100km2, 400km2 and so on). The following models were 
run for each grid cell based on samples therein. Fig.S1 provides an illustration of the grid 
systems applied to the dataset. 

To reduce computational demand, we only ran the models for five cells with the most number of 
records (i.e. most intensely sampled cells) for each scale and reported the average estimates for 
comparison. Due to the limited number of grid cells at extremely large scales, we only reported 
the average estimates of two most-sampled 40000km2 cells and, when relevant, estimates of the 
most sampled 90000km2 cell.  The following models also require a reasonable number of 
samples within the grid cell (say, >10~15) so that a reliable sampling pattern of species 
occupancy, frequency and turnover emerges.  This requirement normally cannot be fulfilled for 
the WT and ND subsamples for scales <2500km2 or for the rest for scales <900km2.  As such, 
estimates for these fine scales were interpolated from second order splines based on estimates 
from other scales (largely between 2500km2 and the full extent) and observed values (at 200m2 
for X-only plots and 210m2 for X+Linear plots). 
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Fig.S1. Examples of grid systems used. From left to right, top to bottom: the grid system 
at the scale of 20 × 20 km, 50 × 50 km, 100 × 100 km, and 200 × 200 km for the full size 
X+Linear data. 
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Hui 1: Occupancy Rank Curve (ORC) 

The occupancy rank curve for samples (the number of occupied samples by species rank) 
generally follows closely a truncated power law (Hui 2012):  

𝑂𝑂 = 𝑐𝑐1𝑒𝑒𝑐𝑐2∙𝑅𝑅𝑅𝑅𝑐𝑐3, 

where O and R represent the occupancy and the ranking of a species (R = 1 for the most common 
species); c1, c2 and c3 are three coefficients. This is the sampling occupancy rank curve (ORC). 
Such a form of ranked occupancies consists of two components: a power-law function (𝑐𝑐1𝑅𝑅𝑐𝑐3) 
depicting the scale-free structure that no particular scales stand out in the relationship between 
species ranks and their occupancies, and an exponential cut-off (𝑒𝑒𝑐𝑐2∙𝑅𝑅) depicting a Poission 
random process of species occupancy. The power-law component is largely applicable to 
common species, with their distributions reflecting the spatial partitioning (or sharing) of 
heterogeneous, often fractal, habitat, whilst the exponential cut-off reflects the chance events of 
the flickering presence/absence of rare species in a homogeneous habitat (or at least perceived as 
such). The Countryside Survey data fit the truncated power law extremely well (e.g. see Fig.S2).  

We begin with a set of n samples with the grain and extent of sampling being a and A, 
respectively (A/a = m >> n; sampling effort = n/m). Assuming that the true and sampling ORCs 
are of the same shape (i.e. a species with a true occupancy of U at the scale of a having a 
sampling occupancy of O = U·n/m; meaning that the sampling is sufficient and representative), it 
should be possible to obtain the true ORC by replacing the coefficient c1 with C1 = c1·m/n. The 
number of species can thus be estimated as the solution for R of the nonlinear equation, 

1 = 𝐶𝐶1𝑒𝑒𝑐𝑐2∙𝑅𝑅𝑅𝑅𝑐𝑐3. 

This method essentially blows up the sampling ORC to the true ORC, with the true occupancy 
then estimated as the sampling occupancy divided by the sampling effort and the maximum 
ranking for the blown-up ORC thus the true number of species in the sampling extent. 

 

Hui 2: Hypergeometric Discovery Curve (HDC) 

Sampling patterns do not necessarily have the same shape as the true macroecological patterns. 
This is especially true as the probability of discovering a species in a sample does not correlate 
linearly with species true occupancies. The sampling theory of species abundances that connects 
true relative abundance distributions to ones emerged from samples has been extensively studied 
(Dewdney 1998; Green and Plotkin 2007). We here develop a simple method of species 
occupancies, instead, and its continuation approximation for random sampling. This method is 
based on assessing how incomplete sampling biases the set of species encountered: the 
probability of encountering very rare species is near zero, with probability rising with occupancy 
in a sigmoid fashion and approaching one for very common species.   
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The probability of discovering a species with a true occupancy of j occupying i sites amongst a 
total of n samples with the sampling grain a over the extent A (m = A/a) follows a 
hypergeometric distribution,  

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖|𝑗𝑗) = 𝐶𝐶𝑗𝑗𝑖𝑖𝐶𝐶𝑚𝑚−𝑗𝑗
𝑛𝑛−𝑖𝑖 /𝐶𝐶𝑚𝑚𝑛𝑛  

Non-random sampling or species distributions will obviously complicate the discovery 
probability, and their effects are ignored here for simplicity. For large m, the hypergeometric 
discovery probability can be approximated by a continuous normal density function 𝑁𝑁(𝑖𝑖|𝜇𝜇, 𝜎𝜎) 
with the mean 𝜇𝜇 = 𝑗𝑗𝑗𝑗/𝑚𝑚 and standard deviation 𝜎𝜎 = 𝑛𝑛𝑛𝑛(1 − 𝑗𝑗/𝑚𝑚)/𝑚𝑚. We then assess how 
sampling could affect the shape of observed occupancy frequency distribution (OFD). Let 𝑓𝑓(𝑖𝑖) 
be the number of species with the sampling occupancy i and 𝐹𝐹(𝑗𝑗) the number of species with the 
true occupancy j; that is, the true species richness in an area  

𝑆𝑆 = �𝐹𝐹(𝑗𝑗)
𝑚𝑚

𝑗𝑗=1

. 

As the sampling OFD 𝑓𝑓(𝑖𝑖) is known while the true OFD 𝐹𝐹(𝑗𝑗) unknown, we have the inverse 
problem of solving the following Fredholm equation of the first kind, 

𝑓𝑓(𝑖𝑖) = �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖|𝑗𝑗)𝐹𝐹(𝑗𝑗)
𝑚𝑚

𝑗𝑗=1

≈ � 𝑁𝑁(𝑖𝑖|𝜇𝜇, 𝜎𝜎)𝐹𝐹(𝑗𝑗)𝑑𝑑𝑑𝑑
𝑚𝑚

𝑗𝑗=1
. 

Theoretically, we could assume different parametric forms for the true OFD (e.g., Hui and 
McGeoch 2007a, b) – a bounded frequency distribution between zero and m. In practice, the 
extremely large number of m for this dataset means that we could relax the upper bound and 
make it simply a nonnegative distribution. One widely-applied nonnegative distribution is 
lognormal, and for simplicity we thus assume the true OFD follows a lognormal distribution,  

𝐹𝐹(𝑗𝑗) = 𝑆𝑆 ∙ 𝐿𝐿𝐿𝐿(𝑗𝑗|𝜇𝜇′, 𝜎𝜎′). 

Species richness 𝑆𝑆 as well as 𝜇𝜇′ and 𝜎𝜎′ can be simultaneously determined by minimising  

�ln(𝑓𝑓(𝑖𝑖)/𝑓𝑓(𝑖𝑖))2
𝑛𝑛

𝑖𝑖=1

, 

where 𝑓𝑓(𝑖𝑖) is the predicted OFD. To substaintly reduce the computational demand, we took the 
unbiased, symmetric lognormal distribution, with 𝜇𝜇′ = ln(𝑚𝑚) /2 (the lognormal OFD is 
centralised around the middle of the possible occupancy at logarithmic scale) and 𝜎𝜎′ =
ln(𝑚𝑚) /3.92 (the width of the 95% confidence interval spreads the entire possible occupancy at 
logarithmic scale), making the species richness the sole variable to be estimated from the 
minimisation.  
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Hui 3: Zeta diversity 

Zeta diversity is a term coined recently to represent the overlap in species across sets of multiple 
samples (Hui and McGeoch 2014). Unlike pairwise beta diversity which lacks the ability to 
express the full set of diversity partitions among multiple (≥3) sites, zeta diversity can express 
the full spectrum of compositional turnover and similarity. Let 𝜁𝜁𝑗𝑗  be the number of shared 
species (intersection) of 𝑗𝑗 randomly selected sites (without replacement) among a total of 𝑚𝑚 
sites. In practice, we first fit the zeta diversity decline (i.e. the decline of 𝜁𝜁𝑗𝑗  with the increase of 
zeta order 𝑗𝑗) to a specific parametric form. As power law and negative exponential are the two 
most common forms of zeta diversity decline, the use of a truncated power law (exponential 
power law) will guarantee a good fit. Based on fitted zeta diversity decline, we can estimate the 
number of species observed in 𝑚𝑚 sites by 

𝑆𝑆𝑚𝑚 = �(−1)𝑗𝑗+1𝐶𝐶𝑚𝑚
𝑗𝑗 𝜁𝜁𝑗𝑗

𝑚𝑚

𝑗𝑗=1

. 

When 𝑚𝑚 is large, we could use the integral to approximate this (with binomial coefficients 
replaced by the manipulation of Gamma functions). This allows us to extrapolate zeta diversity 
with higher orders, and to calculate 𝑆𝑆𝑛𝑛 based on the above formula; notably, it collapses to the 
Chao II estimator when zeta diversity declines exponentially. When m is large, approximation in 
the above formula often leads to overflowing errors. Instead, we could estimate the number of 
new species encountered when adding one extra sample (Hui and McGeoch 2014),  

𝑆𝑆𝑛𝑛 − 𝑆𝑆𝑛𝑛−1 =
∑ (−1)𝑗𝑗+1𝐶𝐶𝑛𝑛−1

𝑗𝑗−1𝜁𝜁𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑛𝑛
≈ 𝑆𝑆𝑛𝑛−1𝑓𝑓𝑛𝑛−1, 

where 𝑓𝑓𝑛𝑛 represents the portion of species to be discovered in the extra sample and follows a 
power law with a negative exponent. That is, we have  

𝑆𝑆𝑚𝑚 = 𝑆𝑆𝑚𝑚−1(1 + 𝑓𝑓𝑚𝑚−1) = 𝑆𝑆1� (1 + 𝑓𝑓𝑗𝑗)
𝑚𝑚−1

𝑗𝑗=1
 

We estimate the form of 𝑓𝑓𝑗𝑗 based on estimated 𝑆𝑆𝑛𝑛. Finally, we calculate the integral of ln (𝑆𝑆𝑚𝑚) so 
that the above iteration can be simplified into the integral over 1 and 𝑚𝑚. The R implementation 
of zeta diversity analysis and related multi-site generalised dissimilarity modelling is available in 
the zetadiv package (Latombe et al. 2017a, 2017b). 
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Fig.S2. An illustration of key figures when using the three Hui models for the X-Only 
WT1 dataset for the full Britain extent. Top left: Occupancy-rank curves (dots: observed; 
red curve: fitted truncated power law). Top right: Occupancy frequency distributions 
(dots: observed; red curve: OFD for estimated species richness and the specified true 
lognormal distribution. Bottom left: Zeta diversity declines (dots: observed mean from 
100 combinations; red curve: fitted exponential power law). Bottom right: Portion of 
species discovered in one extra site (dots: observed; red curve: fitted power law). 
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Computer code 

We implemented the models in Wolfram Mathematica 11.0 with annotations in (* *). 

(*Data preparation*) 

a2 = a; (*a is a dataframe of all records located within a focal cell*) 

(*headers of each column were included in the first row*) 

xm1 = Dimensions[a2][[1]]; (*# records*) 

sit = Tally[Table[a2[[i, 5]], {i, 2, xm1}]]; (*5th col: Rep_ID*) 

ns = Dimensions[sit][[1]]; (*# sites*) 

site = Table[sit[[i, 1]], {i, 1, ns}]; (*site vector*) 

b = Tally[Table[a2[[i, 15]], {i, 2, xm1}]]; (*15th col: Spp_ID*) 

sp = Dimensions[b][[1]]; (*# species*) 

 

(*Hui 1: Occupancy Rank Curve*) 

b2 = Transpose[a2]; 

c = Drop[Tally[b2[[15]]], 1]; 

cc = Sort[Table[c[[i, 2]], {i, sp}], Greater]; 

data = Table[{i, cc[[i]]}, {i, 1, sp}]; (*ORC*) 

nlm = NonlinearModelFit[data, c1 Exp[-c2 z] z^c3, {c1, c2, c3}, z,  

   Weights -> Range[Dimensions[c][[1]]]]; 

Flatten[NSolve[(nmax/ns)*nlm[z] == 1, z]][[1, 2]]; (*# species estimated*) 

 

(*Hui 2: Discovery Curve*) 

(*Define Discovery probability*) 

cov[i_, j_, n_, m_] :=  

  PDF[NormalDistribution[j*n/m, Sqrt[n*j (1 - j/m)/m]], i]; 

(*Define true OFD*) 

ff[j_, u_, v_] := PDF[LogNormalDistribution[u, v], j]; 

m = 10; (*Only consider the OFD for species with occupancies ≤ m*) 

ux = Log[nmax]/2; vx = Log[nmax]/3.92; (*parameters assumed*) 

oc = Sort[Table[b[[i, 2]], {i, 1, sp}], Less]; (*Species occupancies*) 

ofd = Tally[oc]; (*OFD*) 

data = Table[{s,  
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    Sum[(Log[ 

         s NIntegrate[ 

           cov[i, j, ns, nmax] ff[j, ux, vx], {j, 1, nmax}]] -  

        Log[ofd[[i, 2]]])^2, {i, 1,  

      Min[Dimensions[ofd][[1]], m]}]}, {s, 100, 5000, 100}]; (*SS for given # species*) 

fx = Interpolation[data]; 

FindMinimum[{fx[x], 100 <= x <= 5000}, {x, 300}][[2, 1, 2]]; (*# species estimated*) 

 

(*Hui 3: Zeta Diversity*) 

Do[{sbs[i, j] = 0}, {i, 1, sp}, {j, 1, ns}]; 

Do[{sbs[Position[b, a2[[i, 15]]][[1, 1]],  

    Position[site, a2[[i, 5]]][[1, 1]]] = 1}, {i, 2, xm1}]; (*Species-by-Site Matrix*) 

(*calculating zeta for 100 combinations*) 

Do[{ 

   Do[{sam = RandomSample[Range[ns], k1];  

     samm[tt] =  

      Total[Table[Product[sbs[i, j], {j, sam}], {i, 1, sp}]]}, {tt, 1, 100}]; 

   zeta[k1] = Mean[Table[1.0 samm[tt], {tt, 1, 100}]];}, {k1, 1, Min[10, ns]}];  

(*Calculating zeta declines using weighted regression*) 

nlm = NonlinearModelFit[Table[{k1, zeta[k1]}, {k1, 1, Min[10, ns]}],  

   c1 *Exp[-c3*x] x^c2, {c1, c2, c3}, x, Weights -> Range[Min[10, ns]]^4]; 

(*Calculating # species in n sites*) 

Do[{ssm[n] =  

    Sum[(-1)^(k1 + 1) Gamma[ 

       n + 1] nlm[k1]/(Gamma[k1 + 1] Gamma[n - k1 + 1]), {k1, 1,  

      n}]}, {n, 1, 100}]; 

(*Calculating proportion of gained species with one extra sample*) 

nlm2 = NonlinearModelFit[ 

   Table[{n, ssm[n]/ssm[n - 1] - 1}, {n, 20, 50}], c4*x^c5, {c4, c5}, x]; 

(*Estimated # species*) 

Exp[Log[ssm[1]] +  

    NIntegrate[Log[1 + nlm2[i]], {i, 1, nmax}, MaxRecursion -> 1000]]; 
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