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Running head Upscaling biodiversity

Abstract

The challenge-dbiodiversity upscalinggstimating the species richness of a large area from scattered
local surveys.within it has attracted increasing interest in recent years, producing a wide range of
competing approaches. Such methods, if successful, could have important applicatigitissicale
biodiversity estimation and monitoringdere we tesi9techniquesisingahigh quality plant dataset:

the GB Countryside Survey 1999, detailed surveya sfratified random sample of British landscapes.

In addition to the full dataset, a set of geographical and statistical subsets was created, allowing eacl
method to be testash multiple datasets with different characteristics. The predictions of the models
were tested against the “true” speeagsa relationship fdsritish plants, derived from

contemporaneously surveyed national adlaim This represents a far more ambitious test than is
This article is protected by copyright. All rights reserved
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usually employed, requiring 5 — 10 orders of magniiandgoscaling. The methods differed greatly in
their performance; while there ardZ5focal planttaxarecorded in the focal region, ggaled species
richnessestimates ranged from 62 to 11,593. Several models provided reasonably reliatsl@cessit
the 16 testlatasets: the ShemdHe and theUlrich and Qli k models provided the most robust

estimates of total species richnesgh the former generally providing estimates within 10% of the true
value. The:methods tested proved less accurate at estimating the shape of the\SgaeBiekationship

as a whole; the besingle methodvas Huis Occupancy Rank Curve approach, which erred on average
by <20%. Ahybrid'method combining a tosplecies richness estimate (frtime ShenandHe mode)

with a downscaling approach (the Sizling model) proved more accurate in predictB®Rlfmean

relative error 15.5%thanany of the pure upscaling approaches tested. There remains substantial roo
for improvement in upscaling methods, but our results suggest that several existing iatecasigh
potential forgpractical applicaticio estimating species richness at seapatialscales The methods
should greatly fa@itate biodiversity estimation in pooHstudied taxa and regions, and the monitoring

of biodiversity change at multiple spatial scales.

Keywords: spatial scale; Specigsrea Relationship; species richness; biodiversity estimation;

monitoring; upscaling; methods comparision

Introduction

Biological diversity is intrinsically scaldependent. While the issue of spatial scaling has only recently
become prominent in many othemeas of scientific research, the appreciation of scale issues in
biodiversity research dates back to the foundations of the discipline. The mdgtwsiele tool for
describing hioediversity scaling remains the Speéiessa Relationship (SAR), first deviseabre than a
centuy ago(Watson 1835, Arrhenius 1921, Gleason 1922). The SAR represents species richness
explicitly as'a function of sample area, which is to say, as a function of spatial scale. The scale
dependence of biadiversity esfected in the SARepresents theombined effects of statistical

sampling and ecaological process&s one examines communities across ever wider expanses, the
number of Species inevitably rises for a number of reasons: larger samples eteonpane individuals
(allowing more species toe sampled)theyencompassa wider range of habitats and environmental
conditions, and bridgearriers to dispersal (Shmidad Wilson 1985, Drakare et al. 2006), The wide
interest in SARs ovanany decades (e.g. Preston 1960, Connor and McCoy 1979, Rosenzweig 1995,
Scheiner et al. 201He and Hubbell 2011, Storch 201stifies to the longtanding appreciation by
ecologists of the centraliyf scaling issues.
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Classically, SARs have been drawn by conducting intensive biological surveys oindlifieszl areas,
which may be nested (e.g. a quadrat within a field, within a county, within a nation) or rmappvey
samples (e.g. a series of islandpaoilitical entities of different sizes), and may be ecological isolates
(e.g. islands or discrete forest patches) or arbitrarily defined samples from a larger wholea(ajsq
or politicakentities)a great deal of discussion has focussed on the proparsRs composed in
these different ways (e.g. Rosenzweig 1995, Scheiner 2003, Tjgrve and Turnes@gffer et al.
2011). The shape'of'SARs has also been hotly contested, and after decades aftaelvadke relative
merits of power law antbgarithmicmodels (e.g. Connor and McCoy 1979), in recent yeaisi@
range of other functional forms have been explored (reviewed byela®03, 2009see also Scheiner

et al. 201). ‘More'than 80 yearsafter its birth, the SAR remains an active topic of ecoldgiesearch.

The reason for the continued popularity of the SAR is obvious: it provides a clear lafguage
expressingpeciesichnesgnformation across the full range of ecologically relevant scales. As such, i
hasgreatpotential as a tool for describing and monitoring msdile aspects of biodiversitiolicy is
often concerned with the preservation of biodiversity at national, continental ¢hgern®urg targets,
2001) or global (exg. CBD, 2008rales whereas most biodiversity monitoring is conducted at very fine
spatial scales (sometimes rif). This mismatch between the scales of our policies and of our data
creates serioushallenges, especially when asseg biodiversity changelt has recenyl become
apparent, for example, that environmental changes may affect biotic diversitgrdiffeat different
scales $mart'etal. 2006&eith et al 2009, Keilet al 2011); biotic homogenization for example may
increase locald) diversity while decrasing diversity at coarsep @ndy) scalegSocolar et al2016);
conversely some invasive species may decreaggile increasing-scale richness (Rosenzweig 2001,
Powell et al2013) SARsreflect biodiversity across a wide range of scéesorporating a, 3, y and
coarser scalegind so should provide an efficient tool for examining and communicating such
complexities. Global biodiversity monitoring needs have further increased the interest in SARs and
biodiversity.scaling, due to the need to infer biodiversity patterns from growing globbhdas of

point locations'to'the regional scale; that is, biodiversity upscaling. Coomlioatd sampling

schemes, together with reliable/robust upscaling methods, are critical for the integndtion
generalisation’ of biodiversity information at large scales. Efficient tools for building reliable and
accurate SARmay provencreasinglyuseful for predicting the response of biodiversity to
environmental changes across scales, and to assess gludivation policy options (Pereira et al
2013, Geijzendorffer et al. 2016).

However, one serious problem prevents the widespread application of SARs tecaleltbiodiversity

monitoring. The requirement for exhaustive surveys over large areas makasdtioal to survey
This article is protected by copyright. All rights reserved
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SARs repeatedly over a short period of time. Indeed, for many poorly studied taxgiand, rie would
be difficult to amass sufficient information to provide even a single coarse scale biodiversity estimate
with confidence (e.g. Erwin 1982, May 1990f the SAR is to fulfil its promise, we need to develop

new approaches to parameterising it with finite investments of surveying effor

Harteand Kinzig«(1997) were the first to explore a method for upscaling biodiversity daah |

samples. Their approach was based on the idea that the SAR shouldetseifasirea if dissimilarity

in species oceurrences in small plapdcies turnover @ diversity) increases more rapidly with

distance between plots (Harte et al., 1999; Krishnamani et al. 2004). Unfortunatabttioel

involved strong implicit assuaptions that limited its applicabilityMore recery Harteand colleagues
have proposed more sophisticated and geapmioachebased on the maximum entropy inferential
method (Harte etial. 2008, 2009; Harte and Kitzes, 20I5¢. pastl5 years have seen a proliferation of
other new methods to address this problem, based on approaches rangimigpfiveabundance
distributions (Ulrichand Ollik 2005), species accumulation curves (Shen and He 2008), least distance
spanning paths (Smith 2009nulti-site zeta diversity of compositional turnover (lAndMcGeoch

2014) and 3imersional manifolds (Polce 20D9 This sudden flowering of alternative approaches
brings with it a.new challenge: how do we best choose a method for a particular apdliddany of

the models have been tested against data, of course, but each against a different dataset, and in ma
cases theteststhave been relatively modest: attemptingstmalgpby only 1 or 2 orders of magnitude,

or even less. This paper addressesitisige by testing a wide range of biodiversity upscaling
approachesonasingle high quality dataset across a substantial range of gbaleswell studied
system. By working in an area with a “known” SAR, eanjudge the effectiveness of the varsou

methods in estimating coarseale biodiversity.
Methods

The CSdataset

We make use-ofth&B Countryside Survey (CS), a periodic botanical survey programme organised b
the NERC Centre for Ecology and Hydrology (CEH). Thef@Sisses om stratified random sample of

1 km cells within Britain, chosen to represent the full range of British landscapes (for further details o
CS methods'see Firbaekal 2003). Specifically, we will rely on the CS survey of 1998/1999
(hereafter “CS1999"), which coincides with the survey period foN#ye Atlas of the British and Irish

Flora (Prestoret al.2002), which we can use to generate our “true” SAR (see below). A total of 569 1
km? cells were examined in CS1999, scattered over the whole of Britain and its infmais (but
excluding Northern Ireland and more distant island groups). Within each 1 km calk sange of

surveyswasconducted, which can be roughly divided inteadrsurveys (various sized surveys of
This article is protected by copyright. All rights reserved
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habitat blocks) and linear surveys (1 x 10 m surveys of linear features such assydasiderows and
banks of waterways). For our purposes, the most statistically “representative” surveys \sere the
called“X” pl ots, five of which are sited at random (one in each of 5 Bgsled subsections) within

each surveyed 1 km cell. The only departure from truly random placement is that X plots were not
allowed to overlap with linear features (but see below). X plots have the added adyf@nttue

work) in being-multiscaled: each consists of a nested series of quadrat8&tsD, 100 and 200°m
scales. Species presence/absence is measured at all five scales, and estimates of cover for each sy
are recordeat'thé finest (2 x 2 s 4 nf) and coarsest (14.14 x 14.14 m = 209 scales. We made

data from all 5 scales available to researcfiarsost cases: the authors of upscaling methods),

although most used only the coarsest scale (Zp@ata in fitting heir models.

The fact that"X plets were not allowed to overlap linear features arguably makes them less diverse ir
species composition than truly random quadrats would be, as the inclusion of (ppteisgahilar)
vegetation from such strips would ligeenhance diversitySmart et al2006b). Consequently, we
developed a synthetic second set of samples, which we termed “X+Linear” samples (for clarity, the
original surveys are hereafter referred to asoty” samples). These composite samples were created
by choosing the linear feature closest in space to each X plot, and merging #s spécthose in the
coarsest (200 fn X plot sample to produce an aggregate sample representing’24@enfrigure 1)

Where the'same-linear sample was the neaegghbour of more than one X plot, it was assigned to the
X plot in closest-proximity, and others were paired with th&in8arest linear surveys. If theofily
analysesirguably underestimate local richness, these X+Licaaupositeplots are likey to

overestimate it, as they tacitly assume that all X plots would have included linear features had they b
placed truly"atrandom. We feel confident that a truly representative saoylkdfall somewhere

between these two.

Subsamples

To provide a richer test of the various methods available, we developed a totadstidbfaisets. The
largest of thesesis:the “Full” sample, which covers all 569 CS survey c#iis Wie surveyed area, and
all five X plots.within each. We also developfac regonal subsamples, covering the “North”,
“Centre”, “East”, “West” and “South” of Britain (Figur®. These were neaverlapping regions,
chosen to roughly correspond to natural divisions of the area, and as such they were notespual
More importantly, they were also not equal in biodiversity, with pronounced regidieaédces in both
a andp diversity between regions (encompassing e.g. dotd2-ange in mean species richness at 100
km? scalec.f. Lennon et al. 2001). We also developed two sdis@étatisticalsutsamples from the

full dataset. “Wideshallow” (WS) samples covered thdlfset of sampling locations, but included only

one X plot (or X+linear sample) of thiwe generally available at each site. By contrast, “Nardewp”
This article is protected by copyright. All rights reserved



155 (ND) samples included all five X plots at each site, but included only 1/5 of theysite®, choseas a
156 stratified random sample following the original CEH landscape stratification. Both WS and ND samj
157 sets were nowverlapping, so that the sum of all five salnples in either set constituted the Full

158 British CS sample.

159

160 Each of the L6-samples (full set + 5 regions + 5 WS + 5 ND) were assessed fordmbyraXd

161 X+linear sample strategies, making a total of 32 potential tests for edlcbdmmployed. However,
162 the stratified nature of the statistical samples tended to thekanultiple runs quite similar to each
163 other, and thus treating them as five separate estimates would both ovieestatelé¢pendence and
164 give them undue weight in the overall analysis. Consequently, to simplify reporting, each set of
165 statistical subsamples (WS and Niere summarisely a single (mean) performance scdteis

166 leaving 16 tests'(full set + 5 regions + WS mean + ND mean = 8, for eanly¥nd X+linear

167 datasets).

168

169 The challenge

170  The task we set ourselves was to estimate the SAR for scales ranging frem?1Q0 x 10 km the

171 minimum mapping unit of Prestat al.2002 to the whole of Britairfor of a specific subregion) using
172 only the CSisutvey data. Even the finest of these scales was 50@8€oarser than the 200°m

173  scale of an®plot'survey (or 47890times larger than th210 nf of anX+linear sample). For the

174  purpose of this.eXercise, we will treat the area of Britain as the summed area of all thé &6llskm
175 covering Britain‘itself and the major outlying islands of the Shetland, Orkneilemuitlean Islands, a
176  total of 278,500 krh This is almost 14 billion times larger than scale of a singhkoX and

177 approximatély’500,000 times larger than the full set of survey sites combined (maselpré03,799
178 times the area of the full set ofpfots, or 479,808 times the area of the full X+linear sampleyels of
179 upscaling in statistical subsamples (with only 1/5 as many samples used) were five times greater stil
180 (2,518,995-fold for Xenly analyses; 2,399,040Id for X+Linear). Theregional subsamples cover
181 areas between 46;100 and 77,206, knith correspondingly smaller numbers of samples, giving
182 upscaling levelsseomparable to those for the full national dataset. Several etlioelsrconsidered
183 here have been.tested before, in particular using tropical forest survey datal&tbraly small €.9g50
184 ha, Shen ands«He 20pglots Such applications involve ontglatively modestipscaling; the challenge
185 presented here.is substantially more ambitious and more typical of thétsska practical upscaling
186 approach would be asked to perfanre.g. regional or national biodiversity estimatido our

187 knowledge, onha few paspapers (Uglanét al 2003, Krishnamani et al. 200darteet al.2009) have
188 attempted comparable legadf upscaling, each for ony a single model.

189

190 Upscaling methods
This article is protected by copyright. All rights reserved
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As noted in the introduction, there has been a proliferation of novel methods for upscalingrbitydiv

in recent years. We have brought together most of the global community of researclessragithis
issue, presenting each with the same CS dataetensure high levels &miliarity with themodek
employed most nethods were fit by their original proponents, with the exception of the three variants
of the Ugland model and the Lomolino model, which were prepared by a working group composed o
ET, AS, RTJ:Kid and WU, and the power and logarithmic models, fit byaw® WEK. Further

details of the models are given in the sections below.

Harte MaxEnt method

The maximum entropy theory of ecology (METE) predicts the shape of metricshdeppattens in

the spatial distribution, abundance, and energetics of species (Harte, et alH2®82011; Harte and
Newman, 2014)"sMETE is a state variable theory in which the maximum entromnicégorocedure
(Jaynes, 1982), coupled with constraints arising from knowledge of quantities such ashbeafum
species and the number of individuals at plot scigsrmine unique and testable macroecological
metrics across all scales. METE predicts apoweriaw but universal form for the SAR; in partien)

if the local laglog slope of the SAR at each spatial scale is plotted against the average abundance pe
species at each seale, then all SARs are predicted to fall on a universal curve (Harte et al., 2009).
Upscaling species richness can either waexbout from knowledge of the number of spes and the
number of individuals at any one spatial scatglternativelyfrom knowledge of the number of species
at two spatial scales (from which information the abundance at each of those scales can be inferred
METE). The"CS'dataset provides abundance information in terms of % cover, but not the number of
individuals (which is hard to assess in many plant speciésj.that reason we can upscale using the X-
only plot data, which does include measured values of species richness at sevsizgktales, but

we cannot use the X+linear plot data, as only one scalaible.

The capacity of METE to upscale has been tested successfully for tree species in the Western Ghat:
where species richness was upscaled over a scale range of 24 million, from % ha plots where censu
data are availablesto the entire 60,007 kiome (Harte et al., 2009). Other tests of upscaling with this
method havesbeen carried out for arthropods and trees in a Panamanian Preseres ianthére

Amazon (Harte.and Kitzes, 2015). An important limitation of the MaxEnt method, hquete it is
designed onlysfor uspscaling species richness within contiduloaks of similathabitat. Moreover,
accumulatingrevidence (Harte, 2011; Harte and Newman, 2014), suggedtsethaits reliance on
equilibrial statistical outcomeédETE'’s successes are restricted to relatively undisturbed ecosystems,

with failures observed in habitats strongly infuenced by human activity.

Ugland TS loglinear method

This article is protected by copyright. All rights reserved
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If METE is designed for uniform habitat, Ugland and colleagues’ (2003) TS model wastlxpli
designed for surveys covering multiple potentially dissimilar communikisst assemblages have a
complex covariance structure between species and subarealeats to a largely unrecognized aspect
of predicting the number of species by upscaling: with the addition of new subarebgaistie

observed species accumulation curve (across regions or habitiat)t only extend the previous
within-habitataeeumulation curve, but also tend to lie above the accumulation curves forsmalle
subareasThg rate of (vertical) increase of the spe@esumulation curves provides the best estimate of
total species richnessJgland et al (2003) derived an exact dyt#cal expression for the expectance

and variance of the species accumulation curve in all random subsets from aegven s method

the whole area is divided into subareas, and an increasing sequence of accumulation curves is
constructed as follosv The first accumulation curve (the bottom curve) is obtained by taking the
average of all single subareas. The second accumulation curve is obtained by taking the average of
accumulation‘curves based on two randomly chosen subareas. For examgte,af¢ five subareas,

the total number of subsets of two subareas is the binomial coefficient 5*4/2*1 &-th@, s2cond
accumulation curve will be the average of 10 curves. In the same way the thirdiedimmcurve is

the average of accumulation ¢as based on all possible subsets of three subareas. This procedure is
repeated until we.end up with the last accumulation curve which is obtained by raattmmoz all
available samples in the data set.

It is the terminal points of this increasing semgenf species accumulation curves that contain the
crucial informatien of the accumulation rate of new species as sampling effort is increased to new
subareas. Thetotal species curve (thetiye) is then defined as the curve connecting these end
points In a semilogarithmic plot these curves frequently appear linear, and Ugland’s estimator is ther
simply the linearextrapolation of the Tarve to the whole area in the semilog plot.

Ugland Tentat-a-time method

We also used a variant of the method presgm Ugland et al. (2003), where the mean number of
species in a set shmplesvith the same number of plots is regressed with a-gmgfunctionagainst

the log of summed plarea In this case, we used 10 groups of 10 plots, 20 plots, 30 plots, and so on,
until the last.group contained the entire set of plots (of which there is but one groegxawined

groups of 504100, 150, etc. plots, but the results were similar to the method using multiplpots 10

at a time.

Ugland PAM"method

A third method of applying the Ugland approach was pioneered by Jobe (2008), using the non-
hierarchical clustering method algorithm known as partitioning around medoids (@AMermine the
subclasses of sites for computing species accumulation curliesoriginal Ugland estimation method
requires am priori grouping of observations, so the introduction of PAM clustering allows such group

assignments to be done on an objective basis in cases where no such classification is avaiable.
This article is protected by copyright. All rights reserved
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are no hard and fast rules for selecting these groups, but this fivajroups to contain ecologically
distinct observations (e.g. communities, assemblages, &)Yl makes the grouping process more
objective by using compositional similarity among séesefleted in the clustering algorithto select

both the optimal number of groups and the membership of each group.

Shen andHe:method

There is a growing literature of methods devoted to estimating species richness in an area from rand
samples taken"fromiiin it (e.g. Palmer 1990, Chao 2005, Magnussen 2086), often using
resampling techniques with replacemeWthile these methods are not designed to estimate the full
SAR, they can be used to upscale from a set of point data to estimate the overall species richness of
area from which they were drawn, and thus to estimate at least one point (the tegARthMany of
these methodsghowever, have been shown to overestimate richness (e.g. Xu et al. 2012). Shen anc
(2008) developed a novel approach based on sampling without replacement, using information on
presence/absence data on species incidence, based on a modified Beta distrithéiorethod is not
spatially explicitand provides a single estimate for the specamass of the fubampled areaTo

derive finer'scale estimates, the area to be estimated was doited/ards (but seeifcussion).In the
X-only datasets, the Shen and He model fittesl both to data from the full 2007survey plots, but

also to the finest scale (4jrsurvey data, allowing the model’s sensitivity to sample plot size to be

assessed:

Sizling method

Arnost Sizling and David Storch (Appendi&1) have developed a method using the frequency
distribution ofspecies’ occupancids estimate the shape of the SAR between two fixed scales, based
on their “finite area model” of the SAR (Sizlimmd Storch 2004); different species-occupancy
distributions produce SARs with different degrees of curvature, with the standéaticteof

occupancy playing a key role (see ApperiX. Thisapproach is 'scaling between methodather

than an upscalingsmethqer se; that is,it estimategheincrease in speciggchness as one moves from

a unit surveysplot(her@200 or 210 hCS sampliup to apredeterminednaximumvalue. Thust
requiresan estimate of “known” global species richness for the area in question and trdarfranm

local samplessto estimate species richness at scales in between these two known points on the curvi
would have been unfair to provide this model with more information than its competitors, and so the
modeler had to make an arbitrary global richness estimate (1000) to implement his model; but in
practice, the method mighestbe combined with other methottst make effective global richness
estimates in order to estimate the SAR as a whole (see Discussion). The method is based on the fac
if we assume aggregated distributions, the proportional occupancy constraine thfetsizmaximum

gap in a spees distribution (the "area of saturatidrSizlingand Storch 2004), which in turn
This article is protected by copyright. All rights reserved
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determines the number of species sampled within given size window, igpecific areaAs that and
occupancy of the unit area together determine the slope &A&)z), one could compose the SAR for
any given number addpeciesandomlychoserfrom the observed frequency distribution of occupancies,

and thus estimate species richness of any area between the unit and total areas.

Hui models

Cang Hui developed three additional new approaches for this paper; each willridgeddsiefly here,
with full detailsand*computer codes given in Appen8ix

Hui 1: Occupancy Rank Curve(ORC)

This approach proportionally scales up a sampling occupancy rank curve (ORC) by assatine t
sampling is'sufficient and representative of the wider area from which the samples were drawn.
Specifically,q4f one plots the number of sites occupied by species in order of ubtig@itgsulting ORC
for samples follows closely a truncated power law (Hui 2002¥: ¢, e2’RR¢s, whereO andR represent
the occupancy and the ranking of a species. This shape consists of two componentsiawpower-
function depicting the scale-free relationship between species ranks and ¢hparazies, and an
exponential‘cubff depicting a Poission random process of species occupancy. Thelpower-
component igargely applicable to widespread/common species, with their distributions reflecting the
spatial partitioning (or sharing) of heterogeneous, often approxinfedaetal, habitat, whilst the
exponentil'cutoffrreflects the chance events of flickering presence/absence of rare species. This
method therscales upgthe sample®RC toestimatethe true ORC proportionally according to the
sampling effor{replacingc; from the sampling ORC with; = ¢, /s, where0 < s < 1 represents
sampling effortjand the maximumanking for the enlarge@RC(i.e. solvingl = C;e>'RR¢s for R)

then represents the true number of species in the community.

Hui 2: Hypergeometric Discovery Curve (HDC)

Sampling patterns do not necessarily follow the same si&tpe true biodiversyt patternsbecause the
probability of discoverying a species in a sample does not correlate linearly wsthettiestrue
occupancy.ithe probability of encountering very rare spéti@snoderatehsized samplés near zero,
with probability=rising wih occupancy in a sigmoid fashion and asymptoting near 1 for very common
species. Thessampling theory of species abundances has been extensively studiedy(2898;
Greenand Pletkin 2007), andui hasdevelogdan equivéent sampling theory of speciescupancies,
together with'its,contimus approximation for random sampling (Appen8B. In particularwe need
the sampling probabilitypg-ob(i|j)) of discovering a speci@s i samplegjiven a specifid¢rue
occupancy of. For random sampling withoueplacementthis follows a hypergeometric distribution.
Importantly, sampling can affect the shape of observed occupancy frequency distrid&in (

f(@@) = XL prob(i|j)F (j), wheref is observed OFLF, true dbeit unkown OFD, andhthe sample

extent divided by the grain. This formulation follows the discrete Fredholm equasorM@lterral
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integral equation) of the first kind (Arfken 1985), withob(i|j) the kernel function and a solvable
positive vectorDespitethe divese parameteric forms of OFDs (Hand McGeoch 2007), weduce
the computational demand for parameter optimisation by using a lognormal distrithidjipe=(S -
LN(jlu', ")) centredat the middle of the possible logarithmic occupanpéy=In(m) /2) such thatts
95% confidence intervancompasses the entire range of occupancy at logarithmic stale (

In(m) /3.92),/"making species richness the sole variable to be estimated from the parameter
optimisation.

Hui 3: Zeta diversity

Zeta diversity represents the overlap in species across multiple samplesdHicGeoch 2014).
Unlike pairwise beta diversity which lacks the ability to express the full set of diversity partitions amol
multiple &3)samples, zeta diversity can express and potentially explain the full spectrum of
compositional turnover and similarity (Latombe et al., 2017), with power law and neggporential
the most common forms of zeta diversity declines (with increasing numberuwdeadctamples). We
use a trunated power law to ensure a good fit to zeta diversity decline and then estienatertber of
new species that are expected to occur when adding extra samples (i.e. the level of completeness) k
on fitted zeta diversity decline. The expected numbepefiss in an area can then be estimated
according to.the.generic estimator developed in Hui and McGeoch (2014); note, the Ghamatbeis
only a special case for exponentially declining zeta diversity. As the formulati@séed on
combinatorial profbilities, to reduce the overflow error (a combination of floapo@t inaccuracy in
any numerical.eomputation platforms and combinatorial explosion [of formulation ewityphvith
increasing number of samples), we first estimate the number of newspacountered when adding

one extra sample and then calculate the expected number of species using integral approximation.

Ulrich and Qllik method

Ulrich and Ollik (2005)made use o& different method based on Relative Abundance Distributions
(RADSs), which was originally designed to estimate the upper and lower limits of species richness in a
focal region:. Undeér the assumption that the occupaspegcies rank order distribution is either a
lognormal orarlegseries and that the least abundant species has an occupancy of2@fendylithey
estimated upperspecies richness boundaries from the logseries by

A Int +In N, —In Ng,
slope 1)

S

and lower species richness boundaries from the lognormal distribution by

E - 2Inint+In N, —2In Ng,
S slope @)
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where Inint and Inslope are natural logarithm of the interceptt] and the slope of an exponential
regression through the middle 50 percentile of the respective abundance distrimdionS< and In

Na1 are thenatural logarithms of the numbers of individuals of the most abundant species of the whols
community within the are&.s and of the sample of arda, respectivelyNa; comes from proportional

upscaling of the sample area to total aM@:= Ng Aotal /As.

Smith method
A speciesdistancerrelationship (SDR) was explored by Smith (2008) as a method for estithati
SAR from peint survey data. The SDR slope was found to be highly correlated witbpb®sthe
SAR for the US Breeding Bird Survey datialarge geographic scales. The SDR is calculated by
estimating the path of shortest length connecting a set of localities, then estimating cumulative distar
and cumulativeddiversity along the path. In the present analysis, data fooalkKxlinear plots were
lumped within‘a given 1 kisampling cell (except for the Wieghallow subsamples, as these only
contained one X plot per cell). This is because localitymezee was found not to have a significant
influence on the slope of the SDR, whereas sample size (which affects number of individuals survey:
per locality did.

SDRs.were calculated for all subsets of the Countryside Survey data usiAgdllkras
localities. No.carrection was made for sample size. Distance was calculated as Cartesian distance
between the'midpoints of the cells. Mean slopes of the SDR are based on 200 values (188gbaths
containing 10 cells and measured in forward and reverse directions). To edtiensitgpe of the SDR,
linear regression and standardized major-axis regression were perfoattiexd then the slope of the
SDR to equal the slope of the SAR, diversity estimates were made for trentglertions of Britain by
assuming twalifferent values for alpha diversity. First, average alpha diversity was calculated for the
plots (200 Mor 210 nf for X- and X+linear plots, respectively). Second, average alpha diversity per
cell (1 knf) was calculated by combining all plots in a samptell; this will underestimate diversity
for a 1km? area.

Polceand Kuninsmethod

The SAR rises.for two reasofsee e.g. Scheiner et al. 2014 Jarger arebothencompasses more
environmentaland spatidiversity than a small areandit includes moreotal individuals(and thus
constitutes alarger sampleJhese two component processesteased sample size and increased
spatial differentiation, may be expected to behave rather differently with $imogearea. In order to

factor out these two component processesandomly sampled (a) different numbers of quadrat
surveys from constant sizédindows” of focal aregto estimate the pure sample size effect), and (b)
constant numbers of quadsstmples chosen from different sized windows (to estimate the pure spatial

scale effect), and tested the fit of a range of convex and sigmoid curves (from2Z(@8)eo each
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component process. Note that in these analystatsample sizéor a set of quadrais expressd in
units of area (total frsurveyed), as that is essential for later steps of the analysis. We then constructe
a 3dimensional manifold model as a multiplicative combination of thefiigaty samplesize and
scale models (see Polced®). Pilot wok suggested that the MMF mod¥$ (a Samplesize®)/(b +
Samplesize®)] provided the best fit to the pusample size compone(gampled within a fixed window
size), whereassaspower laW £ d Scale®) performed best for pure spatial differences (at constant sample
size). These two component models could then be combined multiplicatively, to diénaenaodel:

Y = (a+Scale’s Samplesize®)/(b + Samplesize°) (3)
Fitting this 3dimensional modedb the dataset, the SAR can be estimated ahéhealue of Y over the
diagonal line wher&mplesize = Scale.

Lomolino medel

We also fit a'suite of models commonly fit to SAR® to the plobased speciesccumulation curve
(SAC) from each dataset (see Tjgrve 2003 for modé&lgliminary results here indicated that in most
cases the “Lomolino” model worked best (S = a / (18", where S is number of species, A is
areg and a,'b, and c are model parameters fit using the Gauss-Newton methodlfieearoregression
(Myers 1990)._ln.most cases the AIC weight of the Lomolino model was ~1, and wherendatwias
was equallytied with other models that were nested wiléromolino model.Therefore, we used

only the LLemolinemodel to fit each dataset.

Power-lawandLogarithmic models

To complement the range of recently-derived methods, we have included a fewastalolhied”
approachesto"SAR estimation. Arrhenius (1921) proposed a powes aAf) as the best descriptor
of the SAR,/and Preston (1962) suggested that the “canonical” SAR would have an expaiénb.
Subsequent work (e.Gonna and McCoy 1979, Rosensweig 199as suggested somewhat less steep
z-values predominate in many continersiggtems, with a consensuef approximately 0.2. Thus, we
generated SAR estimates by simply computing mean species richness at tHes2@i@ diplot
samples (and-2107for the X+Linear samples) and scaling ugtarser resolutions using powaw
curves with these two slopes. We also took advantage ofutiescaled nature of the CSplot
surveys, fittingrtboth power and semi-logarithmic (after Gleason 1922) modelsdiositred species
richness of each plot at the 5 scaleseasuremer(®, 25, 50, 100, and 200°mand extrapolating
median estimates for each. As the X+Linear data are available only at a single scale, these

extrapolations of powdaw and semlogarithmic curves can be done only on theoKly datasets.

Model summary
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Altogether, we have assembled thirteen different models for upscaling biogivansitseveral of them
(the power-law, Shen and He, Ugland’s TS and Ulrich and Ollik’s methods) have beenemtglem
multiple forms, for a total of nineteen sets of predictions. These methods may be grouped clbnceptuc
based on the approaches they take to the challenge of estimating coarse scale species richness fror
scale samples (Rige 2). Three of the methods (power law, logarithmic and Lomolino) involve
parameterizingind extrapolating a well-studied SAR curve from the obsestaéal This is an entirely
phenomenaological approach to upscalifigvo other modelsHarte’s MaxEnt model and Hui's HDC)

also extrapolatefunctiongut with curves that are built on a strong underlying rationale concerning the
patterns expected from random community patterns under constraints. Three neoblatedron

sampling processes frospecies occupancy (Hui OR8)zling) or abundance (Ulrich ar@llik)
distributions.. Two additional models (Shen and He, Ugland’s TS) focus specificallynptirga
processes andthe resulting accumulation of species. Thedadlé@inin model is similar to Ugland’s
sampling proeess approach, but with an explicit emphasis on spatial turnover proceskespatal
turnover in species is central to Hui's Zeta model, and plays a substamtia tioeé Smith model as

well, which in turn links back to @momenological curve estimation approaches.

Estimating the “True SAR”

The quality of the various SAR predictions can only be tested by comparing thenitta¢h&AR for

the focal region:This was estimatedsing data from thBlew Atlas of the British and Irish Flora

(Preston et al. 2002; hereafteNABIF”), which was compiled based on surveys from the late 1990s,
thus approximately at the same time as thd@®sample. In contrast to an earlier attempt at a UK
floral atlas (PerringandWalters 1962), th&lABIF’'s compilers made a concerted effort to ensure a
relatively even'survey effort across the area in a fairly narrow time window, and in particular to avoid
false negatives due to the underreporting of common species and the falsespbsitivesult from the
compilation of records over long periods of time. While no biodiversity survey can lesltesat

perfect, theNABIF is arguably one of the highest quality biodiversity atlases currently available
anywhere, In additioto vascular fants the CS survey included a predefined settGii relatively

common andkdistictive bryophyte and lichhara (species or species groym®nsequently distribution
maps for these.taxa were acquired from the bryophyte and lichen recording scbhepeesively(M.O.

Hill, pers. comm.J Simkin pers. comm). The true SAR was composed by superimposing a series of
coarser grid$(with resolutions from 400%tm 90000 krf) over the distributional dataset. Only grid
cells containing >7% land area wer@cluded in our analyses for each scale; at coarse scales, grid cell
were shifted somewhat (following drive et al 2008, Keil et al. 20J)1to maximise the area fitting this

criterion. Our NABIF SAR calculations are being posted online (Polce and Kunin 2017).

Assessing model performance
This article is protected by copyright. All rights reserved
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To assess the quality of the predictions of each model, we examined two quality, @gpropriate to
somewhat different applications. One goal of diversity upscaling is to estimeaietal Species
RichnesqTSR)in a focal region, whilst for other applications, it is valuable to estimate species richne:
acrossa range of scales within the region, providing an estimate of the region’s Sfesaes
Relationship (SAR). We assessed model predictions against both of these criteria: S/AR&tw
To assessithe-quality of SAR fits, we examined the mean absolute value of the difference between
predicted and true species richness vati@sgiven scale, expressed relative to the true richness value
at that scalewhich'we term the “mean relative error” (or MRE)

MRE = (1/n) Zi(|Spredicted,i— Srue.il/Strue.) (4)
WhereSyaictesi 1S.the number of species predicted at sgalge; is the number observed at that scale
in the true SAR, and the summation is acroebserved scales (9 scales in the regional analyses, 10 in
the full national‘and statistical subsample analyses). Note that we normalise errors by dividing them
the trie SAR value at each scale, so that, e.g., a 100 species error is tebeethrger mistake when
the true value is 100 thainis when the true value is 1000. This has the additional advantage of
allowing model fit to be expressed as a dimensionlessidn: the mean proportional error in
estimation. “We have also calculated model fits using a number of other popies (eeg. RMSE,
Pearsory’; see.Data 91 but there is little qualitative effect on our findings; the same models perform
well by any sensible measure, with at most slight rearrangements of the orbenvahrers.
The quality'ofTotal Species Richness (TSR) predictions was assessed using this same metric, but
evaluated only.at'the coarsest scale considered (278,500 kiatioral analyses, and the area of each
region in regional analyses)n addition, we examinetthe correlation between true TSR and estimated
values across datasetsing the nomparametric Spearman’s rank correlation, to test how consistently
high richness @snates were provided in highly speciésh regionsA similar correlation test was
performed for the full SAR fit, comparing the overall slppéthe estimated SA&Ron logarithmic
axes) over the range of scales examifi®® — 278,500 k) with theslopes of thetrue SARs over
those scales.

Results

The models.tested differed greatly in their predictions for British plant richness; whitag¢&R
value was 226, the mode¢stimates based on theaxly dataset rargffrom only 62(Median semi
logarithmic curve extrapolationjp to 11,593Smith modelspecies. A somewhat narrower range of
predictions for the X+Linear dataset (1136 to 8647) was largely due to the fasartiebf the more
extreme value models could not be appt@this dataset (g. the fitted semiegarithmicand power-
law models, which needed multiple scales of diversity survéygamples of the true and estimated

SARsfor the full Britishdatasetsre shown in Figure 3 (full data are providedata S).
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Fit scores for Total Species Richness predictions are giveigume 4. Threéamilies of models stand
out as the most reliable predictafsTSR thetwo applications of Shen and He’s method (2008;
hereafter “S&H") thepaired upper and lower estimatddJIrich and Ollik (2005; hereafter: “U&QO?)
and the Hui ORC modelsThe best predictive accuracy came from the S&H maedéh, estimates
generally within=10% of the corre€SR value (mean relative error = 0.0270.085) when
parameteriséd with 200 (840 for X+Linear samples) Tulata; interestingly, the model performed
almost as well'{mean relative error = 0.#10.091) when parameterised from much smaller{¢ m
vegetation samples. The U&O metrodl Hui's ORC modelerethenext best approachese upper
(log-series) U&Q,model had mean relative errasf 0.155 ¢ 0.083), vhereaghe lower (lognormal)
U&O modelhad.amean relative errasf 0.211 ¢ 0.080) While these two methods are meergerve
as upper and lower estimates, even the upper estimate was usually less than the tHig'$ ERC
model performeahearly as well as the best U&O modehccuracymean relative error = 056+
0.089). The Ugland model, applied using theat@-time algorithm, performed reasonably WMIRE

= 0.210+ 0.162)yas did Hui's HDC mod@IRE=0272 + 0.173) no other approach came cldske
next best wasrthesPolce & Kunin (P&K) model, MRE = 0.378.158). Judging by th¢Spearman’s
rank)correlation coefficients between true and predicted species richness across sample sets, a simi
picture emerges, with the S&H rheids p=0.825 and 0.805, when parameterised with 200 antl 4 m
data, respectivelyand the HUHDC, Zeta andDRC moded (p=0.800, 0.752 and 0.697 respectiyely
showingthe*highest correlation with true TS&png with the Ugland (in particular, the &6a-time
version withp=0.788), RK (p=0.728) andJ&O ( bothp=0.655) models.

Thefull SARfits"of the models are givenkigure 5 Accuracy was not as good as for SD¥erall,
but one of Hui'ssmodels the clear favouriten predicting the curve as a whole: the KDRRC model
was wellwithin 20% of correct SAR values on average (MRE = 0407/059).Thelower (lognormal)
U&O modelperformed reasonably well (MRE = 0.2¥2.094), as did the HiHDC model (MRE =
0.304+ 0.202).._The upper (logeries) U&O approach and tR&K method competefbr fifth place
(P&K: MRE =0.358+ 0.118; U&0O2: MRE = 0.36%2 0.217). Theonly other models that averaged
within 50% ofithecorrect SAR were thEui Zeta model (MRE = 0.408 0.134), thes&H model (MRE
= 0.418+ 0.222), the Lomolino model (MRE = 0.4420.110) andhe power law model with= 0.2
(MRE=0.451+ 0.179) orz= 0.25 (MRE = 0.496+ 0.444). As noted above, several other models were
tested only on X-only data, but none of them performed well enough to chalenigading methods.
The slopes of the estimated SARs were generally uncorrelated with the true SARgtobs scales
consideed hereonly the median logarithmic model showed a significant positive cooelti=

0.756, n = 8, p = 0.015).
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Sometimes consensus models can be constructed that perform more relrablyytibae approach by
itself, especially when different modéiave contrasting weaknesses (e.g. Gritti et al. 201®) P&K

and W&O methods tended to makentasting errors, with the P&Kodel predidhg a lower and

steeper SAR than was found in many cases, whilst &@ bhethod predieda higher and flatter SAR
than that ebservealver the relevant range of scales thathere was an inverse correlation between the
performance of the two models (Pearson r 4740. Consequently, the mean of these two estimates
often provided a bett§and more reliable) SAR estimate than either model by itis#¥H = 0.222 +
0.081). Aneven more successful combined SAR model could be constructed byeS8dH

estimate off SR and then downscaling to finer scales using3tzing method MRE = 0.156 + 0.062),

combining the strengths of both models. This combination provides our best SARigmedic

The replicate runs of statistically subsampled datasets allow estimates of the variance in index value
holding sample effort constant (at 1/5 of the total sample). Figure 6 shows theieoesffof variation

in these replicated analyses. Most models showed acceptable levels of variation in estimates, althou
the Smith (2009) model, Hui's Zeta moaeld approaches based on median fits of classical SAR
models (Powerdaw and setaigarithmic) showed muchigher variation than the others tested. For
many ofthe models (most strikingly in the two UlriemdOllik models), variation between runs was
substantially higher in the “Narrodeep” analyses than in the “Wide-shallow” runs, presumably
because the latter allowed higher levels of statistical indepeatetween samples. For soafehe
models (most notably the Lomolino, UglaRAM and UlrichandOllik models) these statistical sub
samples also tended to produce systematically lowscaled biodiversity predictions than resulted

from the full datasegven though each set of five (non-overlapping) subsarophagrisedhe full

sample set, and all were being used to estimate the same full British SAR.

Discussion

The challeng'ef'upscaling biodiversity from plot to regional or national scale is an importarfgoal
spatial ecolegyyone with the potential for important practical vadiuge could reliably estimate coarse
scale species'richness from fine scale samples, it vatlola biodiversity estimation in poorly studied
regions and taxay.and facilitate the monitoring of multi-scale biodiversity chadgbeascalingip of
experimentaftesults. A range of methods have been proposed to address this issue, but therateas to
been no clear consensus as tartfedative strengths and weaknesses. To test these methods, we set &
much more ambitious test than hesially been appliedequiring species richness to be estimated at
scales some 500,000 times larger than thedatthiseused — and 14 billion times larger than a single

sample plo(the scale of resolution from which richness was extrapolated by most of the mefhioels)
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models considered varied greatly in their performance in this test, but thed themm did well enough

to suggest that they have the potential for useful application in the neaNematheless urther tests

of these methodshould be attemptesh datasets covering other taxa and regions, so that the generalit
of our conclusions can be aseened. Many of the models (especially those with relatively inflexible
shapes) may be expected to fit much better in some areas than in others; differences in species richi
evennesshabitat diversity and spatial patchiness may all affect the f8/Re({Tjarve et al. 2008),

and thus may improve the relative success of some models over others. Similarly, different models r
be differentially'sensitive to differences in the structure and intensity of sani@B perhaps a best
case scenaripyvhich may again affect relative performance. Only by examining a wide range of

datasets with differently diversity patterns can we be certain of the generality of our results.

Specific modelperformance

Harte and colleagues (Harte et al. 1999, 2005, 2007) pioneered the study of biodiversitgg)Esuali
their MaxEnt approach (Harte et 2008, 2009)s an important conceptuativance.As expected in the
fragmented and human-influenced habitats of the UK, the METE model performed pamnhtiials,
greatly underestimating coarseale species richness despite its record of success in upscaling within
relatively undisturbed and contiguous habitat (Harte et al. 2009; &laditétzes, 2015). Harte’'s
MaxEnt approach can be estimated using surprisiitjeyinformation (see Methods), which makes it a
strikingly iefficienttool, but also a very inflexible on@hat property is a virtue when applying the
model to the sort of homogeneous natural community for which it was designed, but it may create
difficulties in"applying the model to more anthropogenic landsca@dé&sLE relies on natural
communities displaying statistical patterns that maximize entropy within ecological constratataspat
which may beslow to stablise (Harte 2011). It would be useful to conduct future tésMETE
upscaling method within contiguous extents of UK biomes that are relatively ubdistoy human

activity, such as within large areas of heathland.

After Harte et al.’sioriginal (1999) papenetTS method proposed by Ugland et al. (2693ayguably
one of the lengest established d@s$t supported methsdh the literature. For example, Jobe (2008)
found it to have.a' reasonable predictive accuveogn applied tdree diversity in the southeastern
USA. Extrapelation of the semilagithmiccurve fitted to the terminal points of the species
accumulationscurveis a robust approadhatis designed for heterogeneous environmentsitaisd
insensitiveto shifts in species abundanes only presence/abserinérmation is taken into account.
This is a great advantage in most applications as thefterssubstantialariability in the assessment
of numbers of individuals, and in madgitasets (as hgrdata on population sizes are not availatle
all. The TScurveestimateshe accumulation rate of new species as more subareas are cthugsed

only species’spatial distributiom affectthe curve.
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We testedthree different implementations ofgland’s approach, but none of th@nedicted the SAR
verywell. The approacheshowed more thatwo-fold differences between the highest (PAM) and
lowest (10at-a-time) estimatedyutall three curves wersubstantially higher and flattéhan the true

SAR over the scales considered hérbe discrepancy is probably the result of the large number of
species that'occur in just a few pléesg. 24.6% of all species were found in just one plot in the X-only
dataset), which causes the TS cuxvase veryseepy initially, and then overshoot. his steepness
occurs at relatively-fine scales (between the 268aale of the survey plots and the scale of the finest
Atlas grid, 100 krf), but when extrapolated to the scales investigated here the curves flatten out and
have lower slopes than the actual SAR. The differences in performance between the 3 implementati
of Ugland’s'TS approach were instructive. While the PAM approach formed groups af gioik, the
10-at-a-time approach assembled sets at random, and predicted fewer species at every scale. This
occured because'PAM groups were more divergent in composition between groups, iadakieg

species accumulation curve asgps are combined.

The TS model’s prediction of high, shallow SARs over the scales considereddsesbared by several
other models witheut explicit spatial structeeg. theUlrich and Ollik 2005 and Shen aite 2008
approacks.  Indeedjn the case of S&Hhe SAR approached an asymptata value close to the true

S value(seesbelow) By ignoring spatial structure in species occupancy, these approaches tend to brir
in more new species with each added sample initially, but rapidly exhaust the getjeso that few
speces remainttorbe added at coarser sog@ekbeiner et al. 2011)The spatial structure of natural biotic
communities means that expanding the sample continues to bring in new environments amwd thus ne

species even'@barse spatial scales.

Another time-honoured approach to upscaling is curve extrapolation. We explored af rapigens

here, including traditional canonical powaws, but alsseveraimethods (median powdésw,

logarithmic and Lemolino curvgshatmade use of the mulseale nature of the field survdgta to
estimate the.slope of species accummulation. None performed particularly auglicomparisons, yet
some fared almost as well as some of the more complex appro@lcbdsomolino model was the best

of a suite of 14smodels (Tjgrve 2003) commonly fit to speares:-relationships, but its accuracy was
sensitive to'the spatial dispersion and density of plots. When extrapolated from the entire dataset, tr
Lomolino model sometimes gave accurate estimates of the total number of species, but underestima
species number by several hundred when data subsets were used. The model displayedasymptoti
behaviour, rising very little abova.100 knf. Our results suggest a cautious approach should be use

when fitting asymptotic models to SARs, even when the nfadelell at the fine scale of survey plots
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The classical powdaw relationship provided a surprisingly good fit to some of the datasets, although
different values of the exponentit different cases. However, the more variable slopes fit using the
median value of fitted from the multiscale plot surveys (from 4 to 200 scales)produced

generally lower slopes, with very poor predictive ower. sEf@w fittedslopesare probably affected by
the uniformity of land management at these fine scekgsecially in the >0nly plotswhich were
constrained net-teross linear featuretheseresulted in particularly low SAR curves fitre fitted
logarithmic model; whiclpredicted a t@tl of only 62 species for all of Britain, despite the presence of
more than 1000°species in the overall sample Getthe other hand, despite its abysmal performance in
estimating tetal S, the fitted logarithmic model was the only one of all those tiestestiowed a
significant pasitive correlation with the slope of the true SAR across datdse¢sr extrapolation
methods may predicinrealisti@ally high total species richesghen the true underlying species
accumulatiomn curves reach an asymptote within the extrapolation domain. For example, in a
investigation“of arthropods in the Azorean Laurisilva forests, Hortal é20fl6] found very lovbeta
diversityand a rapidly darating total richness, so thiatear extrapolation became heavily biased. In
the UK, howeverunderlying heterogeneity sufficientthat 55% of sampled species were found in 7 or
fewer sampling quadrats. This large fraction of species with a narrow geogtalstidaution prevents

the species accumulation curfvem flattening out, and thus favours straight line extrapolation.

Several otherrmodels showed relatively poor performance. The Smith (2008) model not oely ahow
low predictive accuracyof bothTSRand SAR shape, it also displayed extreme variability in richness
predictions across the multiple replicate subsamples, suggesting that its estimates are lhskadde.
those problems can be addressed, there is little to recommend iuferdpplications. On the other
hand, the péorperformance of the Sizling mqdeeAppendixS1) is not surprising, as it has been used
here for a task rather different from the one for which it was designed. The Siplifej isidesigned to
downscale the SAR from a known value of total species richness, based pecikeacupancy
distribution ebserved within a sample of cells. As such, its application heresgkthe choice of an
arbitrary estimatesof totalchness (1000), which was not very accurate. The method is included here,
however, assitsprovides a valuable component of a mixed modelling framework, if uséetogdt a

companion medel for estimating total richness (see below).

The best perfernrace in our tests came from a series of relatively recent madelSherandHe

(2008), Ulrich and Ollik (2005) and Polce (2009) models, and the three Hui modelikmgiiSodel
introduced hereEachhad distinctivestrengths andreaknesses. The Shand He model performed
both well and consistently in estimating total S, fmatved to bell -suited to assessing the shape of the
SAR, presumablyecausét ignores the spatial structure of samples. Clearly, the development of a

spatially explicit versio of this model should be a priority for future researthe Hui ORC and HDC
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models performed more consistently, providing credible TSR estirmatethe best estimates of the

SAR as a whole@RC) of any model considered; they certainly mérither attention.HDC requires
reliable numbers of observed rare species in samples, while ORC relies on robust/representative
estimates of sampling occupancies for common species. The CS data obvioustiiduHitler of these
requirements (sampling commaopegies) very well, but even a survey of this scale (and expense)
samples only-astiny fraction of rare species. This may help explain the supeivompace of the

ORC modeldin our, analyse3.he Ulrich andOllik method provedhird-best in total richness estimation,
and provided theecond besFAR fit of the models tested, suggesting it may be a useful alternative.
However, its performance wasly moderaten either regard, and the two versions of the model did not
consistently bracket the true valae, they were meant to do (in most cases, both estimates were above
thetrue value of species richnessJhis suggests that the true occupanspecies rank order

distribution is'notia symmetric lognormal lslkiewed in the lower part to have more ré&@ntabundant

species.

The S&H and U&O methods are both exales of a broader literature devoted to estimating overall
species richness in an area based on representative samples (see also e.g. Palmer 1990, Chao 200
Magnussen et aP006). These methods have been desigmedtimag¢ TSR, but they aneot explicitly
aimed at SAR estimatiothus it is not surprising that they both perform the former task more
effectivelythan-the latter Many of the methods developed for TSR estimation require large proportion
of the focal biota'to be observed (see Ulrich and Ollik 2005), making them inappropriaigéscale
applications'such as the one attempted here. Moreover, systematic biases in most such estimates h
been documented in the past (reviewed in Shen and He 2008), further undermining theirilggplicab
The twomethods employed here were both explicitly developed witdirato increasing the accuracy
ard range of such projections. While these models differ fundamentally in their dpgsqadth S&H

using sampling theory, wheredg&O extrapolate relative abundance distributions), our results here
suggest that they have bdiben quite successful this respect

The Polce& Kuninsmodelwas explicitly designed for the more difficult task of SAR estimation. &Vhil
it performedmaeoderatelywell in our tests, itéiner scale estimate@n particular)were often substantially
lower than expected. One potential reason for this is the clustered natur€8fsaenpleet with 5
samples taken in eadtcal 1 knf site. The RK method involved sampling random sets of
observations from varying sized sampling windowkew small numbers of samples were drénom
relatively small areage.g. 40ckm? or less) there was consequently a high probability of drawing
multiple samples in close proximity to one another, sampdisg diversity thaexpected o truly
random sample of that siz&Vhile thelogic of the method (separating pure sample armmkpure spatial

extent effects) is compelling, there clearly remains considerable scdpgforements.
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Two of most accurate individual methods for SAR estimation were developedsfpatier: Hui'sORC

and HDC methods. Both made use of the distribution of occupancy vatass gpecies in the sample.
The models differed in what they did with those values: the ORC method extrapbatadve of

species occence frequencies using a truncated power law to assess how many species would be
expected taeeupy 1 or more 200 Tplot, had all of Britain been surveyed; the HDC method examines
the number ©f species represented by different levels of occupancy in the sample, and estimates frol
observationprobabilities how many other such gsewsie likely to have been missedlhe SAR
downscaling approach developed by Sizling and Storch, whiclideweven better SAR extimates

when married to_the Shen and He (2008RTestimate, was also based on species occupancy
distributions.. The success of these threelelhere spotlights this general approach as one of great

promise for future,SAR research.

Considering the diverse classes of models tdsteel (Figure 2), shows a high level of performance for
those based aspecies occupancy (Hui ORC, Sizling) and related (Ulrich & Ollik, Hui HDC)
approaches.,_ Conversely, methods based around extrapolating specific curvedg®Rola@garithmic,
Lomolino, and.even MaxEnt) were far less successful. There was mixed success in approaches bas
on subsampling and spatial species turnover, and there remains significant Ifoteftitner

developing'suchrapproaches.

Combining models

As noted above, consensus models combining more than one of the more promising approaches oft
outperformed any single “best” model for predicting the total species richness or SAR shape. This
generally occurred because different methods showed contrasting errors. Suchteomslioee at a
cost(Levins, 1966)there is often a tradeff in mocelling between precision (which requires
complexity)'and insight (which requires simplicity). Developing hybrids of muliq@emmensurate
approachesiruns the risk of producing a method that works well, but which has no compelling logic.
Such approaches-may prove useful, but they are intellectually ugly. We can only hope thét bigey w
supplanted in.timée by models that are both accurate and meaningful.

There are additional unexplored opportunities for methodological hybrids amongst tioelsnet
presented here, given the wide differences in approach set out above. Note for thatatheeSizling
model requires the user to have a prior estimate,adh® total species richness in the focal region (as
does the original Hartet d. (2008) MaxEnt approach), while the SreerdHe (2008) model estimates
that quantity but cannot estimate diversity at finer scales with any accuracy. Feeding thedbteen

(2008) TSR estimate into theewSizling or Harte et al. (2008) model wouldeth provide credible
This article is protected by copyright. All rights reserved
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estimates of both. Thus for example, if we incorporate the Shen & He estimaiatoftBe $zling
approach and then downscale, the resulting SAR has a mean relative error score substantially bettet

any of the individual modekested(Figure 5).

Reducing survey effort

Our focal dataset:may represent a tiny fraction of the whole British landesréaghly ongoart in
500,000), but it nenetheless requires an impressive investment in time and money to sueeaid It
obviously be"advantageous to have methods that could be nearly as effective with muchitesyer
effort. We explored this issue at three spatial scalesedaking the total number of 1 km cells

surveyed (represented by the “Narrdeep”’subsamples), (b) reducing the number of quadrats samplec
in each focal 1 kmedl (represented by the “Widghallow” subsamples), and in one case (c) surveying
smaller totalsareafor each quadrat (ShedHe’s 4 nf analysiscompared to the 200%analyses of the
same model)® Our results clearly suggest that reducing local sampling intensity is far less serious th.
reducing the number of sites examined. Wide-shallow sub-samples showed muchd#es ia
estimates and (in many cases) notably less bias (relative to the full dataset) than did the equally larg
(but coarsescale) Narrowdeep sample@-igure §. Reducingsamplesize at still finer scale@y

changing the_sizerof the local sample plot) may have even less impact: for the one model that was tr
at multiple scales/(Sheand He 2008), therpdictive accuracy of the modehsvirtually identicalwhen

fit using 4mnfscale occupzcy data than wheifit using 200 ridata, despite the 50id smaller area

surveyed.

One issue with reduced sampling intensity in many models was the introduction ofradngf the
methods made systematically lower species richness predictions when fit to randanpsegséthe
dataset than when fit to the set as a whole, despite the fact thabeawinedset of 5 subsamples
comprised the full dataset. This behaviour was displayed by most methods considerén w

exception of the Power-law and Logarithmic epilations and thidui ODC model (where subsample
estimates and full'set estimates were virtually identical), and the Snatklui Zetanodels (which
behaved incensistently in this regard). Two possible explanations for the gesredauggest

themseles: one.statistical, the other biological. On one hand, the smaller datagéts naasier

(relative to their'information content), and this will tend to flatten the regression relationships for sma
samples [a possible solution would be to use Model Il regressiequivalent techniquesA more
biologically meaningful explanation is that one needs relatively large saropasdunter rare species,
and it is the rarer species that cause the SAR to rise, especially at the coarser scales (see e.gl.Tjorv
2009).

Ideal and empirical models
This article is protected by copyright. All rights reserved
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Looking back over the full set of methods explored here, one wdbtitpost hoc distinction is

between “ideal” and “empirical” SAR models. Ideal models are based on theoretical attempts to
understandhe appropriate shape that the SAR should be expected to take in natural commusities. A
such, they have the potential to provide mechanistic insight into potential poadselying SAR

shape, but they tend to be most appropriately applied to naturedityiy@atterns (rather than
anthropogenie-ones) where such mechanisms may be thought to determine diversity pdéarns

SAR modelpredictions tend to be relatively inflexible in shape, and as a consedoeycequire
relatively little"datarto paraeterise; examples range from traonicalpowerlaw SAR (Arrhenius

1921, Preston 1962) to the recent development of Maximum Entropy models (Harte et al. 2008, 200!
The inflexibility of such models makes them intrinsicallysillited to monitoring, e.g. changes of
biodiversityin response to managemenbther human interventionsince they are insensitive (by
design) to precisely the sorts of shifts in SAR shape that we would wish to détéoe. other extreme

are models designed to assess the empirical SAR whatever its shape happens to be. Such approac
pay for their flexibility by requiring substantially more information. Nonethelessfléxibility is

needed for some applications; for example, if upscaling methods are to be useltifecateu

biodiversity ‘monitoring (see introduction) they wikked to be flexible enough to allow anthropogenic

shifts in biodiversity scaling to be reflected in their results.

It is not surprising; given the highly anthropogenic nature of the British larelsitegh the best

performing maodels in this analysis (Shen and He 2B08s HDC and ORC model$JIrich andOllik

2005 were all'empirical approaches. It would be interesting to see how the relative performance of t
various approaches explored here washift were they to be tested on data from more natural
landscapes 'Several of the methods that performeldtively poorly here have already been shown to
behave quite welliin such applications (e.g. Ugland et al 2003, Krishnamani et al. 2004, Jobe 2008)
Indeed, the contrasts between ideal and empirical models may be instfugéiteaested methods for
each can be employed. In well studied areas with good historical species richness records, a reasor
estimate of the natural SARight be computed using an ideal modelgh as that of Harte et 2008).

This may thensbe-compared to a current SAR computed using one of the empirical modeds based
current monitering data. The difference between the two could be interpsetes “footprint” of
anthropogenieactivities dsiodiversity acrosspatialscales.

Conclusions

The topic of biodiversity upscaling has been largely of theoretical interest to date, but it is an area the
has tremendous potential practical value. Robust and igs$eding methods would allow the
assessment of species richness in poorly studied regions and taxa; they would also make it possible

monitor multiscale biodiversity change over time, and might allow the camale-implications of
This article is protected by copyright. All rights reserved
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environmental or management changes to be inferred from (necessarggdlagexperimental results

if replicated across multiple sites. To do so we need methods that can be fit using sets of point surve
data, and that will be responsive to any anthropogenic changes in local richnesgiahtispzver,

giving robust and accurate prediction® test these methods, we need excellent growtded

biodiversity survey data from diverse natural and anthropogenic communitiestaergishe. We

have brought:tegether most existing methods for biodiversity upscaling, and have set thetiansa
target: to estimate the total species richness and Sygee@selationship of a sizeable land mass, using
scattered point'biodiversity samples from only a tiny fraction of the total arbde kvethods differed
dramatically.in their performance, the best of thenrdasonably well. Despiteca.500,000-fold

increase in scale from the total area surveyed to the area to be assessed, thechsgprafathes

reliably predictedotal species richnesgthin about 10%, and estimaté#uk full speciesarea

relationship within about8% of the true values. Combining contrasting methods allowed even better
accuracy, allowing th8AR to ke estimated within 6. While there is stibubstantial room for
improvemen{in particular, in estimating SAR slopahd additional tests on other datasets (ideally
involving contrastingeegions and taxa) would be welconoer results suggest that biodiversity

upscaling has begun to come of affes notable that of the three best methods for SAR estimation, 2 ¥
(Hui’'s ORC andHDC and methods, and Sizling’s downscaling) are novel methods published here for
the first time, suggesting that the field is progressing rapltiditional toolsare stil in development,

but our results'suggest that existing methods can begin being applied with some confidence.
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Figure legends:

Figure 1. The location of CS survey sitasd Atlas cellsand of the regional subsets used in
theanalyses.The number of samples in each region are indicated in the legend.
hypothetical 2,X1 km focal landscape ghown at higher magnification on the right,
containing xplots and Linear samples (not to scas)d the nature of (mulgealed) “x

only” and (ecomposite) “X+Linear” samplesdssplayed.

Figure 2. Conceptual groupings of the methods employ@ee text for furtheexplanation.

Figure 3. Modelpredictions for the full UK dataset, based on (a, b) X-only samples, (c)
X+Linear samples, and (d) randomised subsets. For clarity, a subset of tfiitgst

models are plotted in (b), with an expanded Y-axis. Note that several mod&EntyViand

fitted versions.ofiPower and Logarithmic models) could not be estimated on X#Linea
samples (see text and Figudeand 5). Plots in (d) represent means afify and X+Linear
data from'both"W'S and ND samples. Error distributions around each curve (with matching
line color) represent trimmed ranges: the central 18 of the 20 datapoints (roughly
corresponding to 90% confidence intervals). The true SAR is indicated by bolahligssh
pane] for clarity.

Figure 4. Compilation of Total Species Richndts of the various upscaling models

tested. Figures represent proportional absolute errersifi@— Sruel /Sruel, With

dataset. \€Cembined models are underscored relative to the set of individual models.
Shading represents fit, with cutoff values 0.05, 0.1, 0.25, 0.5, and 1. Rank correlation
coefficients'(Spearmanis) for the relationship between true and estimated richness are

listed in the'final row.

Figure 5. Quality of SAR fit, as indicated by mean relative absolute error. Underscores
indicate the best and second best models for each datasefjgag@4. Shading is as in
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Figure 4, to aid comparison. The final row lists Spearman’s rank corretatdicients
between true and estimated SAR slopes across the different datasets tested.

Figure 6mVariation in statistical subsample runs. For each model, the Coefficient of
Variation (Standard error/mean) is given for both \Wstlallow and Narrovdeepsubsample
sets. Shading reflects CV values, with cutoff values of 0.01, 0.03, 0.1 and 0.3. “Ratio
WS:ND” indicates the CV of Narrowdeep divided by that of Widghallow samples. The
mean value.of dassample projections relative to those of the full sangeit are indicated as

“relative
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