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Abstract  1 

 2 

The challenge of biodiversity upscaling, estimating the species richness of a large area from scattered 3 

local surveys within it, has attracted increasing interest in recent years, producing a wide range of 4 

competing approaches.  Such methods, if successful, could have important applications to multi-scale 5 

biodiversity estimation and monitoring.  Here we test 19 techniques using a high quality plant dataset: 6 

the GB Countryside Survey 1999, detailed surveys of a stratified random sample of British landscapes.  7 

In addition to the full dataset, a set of geographical and statistical subsets was created, allowing each 8 

method to be tested on multiple datasets with different characteristics. The predictions of the models 9 

were tested against the “true” species-area relationship for British plants, derived from 10 

contemporaneously surveyed national atlas data.  This represents a far more ambitious test than is 11 
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usually employed, requiring 5 – 10 orders of magnitude in upscaling.  The methods differed greatly in 12 

their performance; while there are 2326 focal plant taxa recorded in the focal region, up-scaled species 13 

richness estimates ranged from 62 to 11,593.  Several models provided reasonably reliable results across 14 

the 16 test datasets: the Shen and He and the Ulrich and Olli k models provided the most robust 15 

estimates of total species richness, with the former generally providing estimates within 10% of the true 16 

value.  The methods tested proved less accurate at estimating the shape of the Species-Area Relationship 17 

as a whole; the best single method was Hui’s Occupancy Rank Curve approach, which erred on average 18 

by <20%.  A hybrid method combining a total species richness estimate (from the Shen and He model) 19 

with a downscaling approach (the Šizling model) proved more accurate in predicting the SAR (mean 20 

relative error 15.5%) than any of the pure upscaling approaches tested.  There remains substantial room 21 

for improvement in upscaling methods, but our results suggest that several existing methods have a high 22 

potential for practical application to estimating species richness at coarse spatial scales.  The methods 23 

should greatly facilitate biodiversity estimation in poorly-studied taxa and regions, and the monitoring 24 

of biodiversity change at multiple spatial scales. 25 

 26 

Keywords: spatial scale; Species-Area Relationship; species richness; biodiversity estimation; 27 

monitoring; upscaling; methods comparision 28 

 29 

 30 

Introduction  31 

 32 

Biological diversity is intrinsically scale-dependent.  While the issue of spatial scaling has only recently 33 

become prominent in many other areas of scientific research, the appreciation of scale issues in 34 

biodiversity research dates back to the foundations of the discipline.  The most widely-used tool for 35 

describing biodiversity scaling remains the Species-Area Relationship (SAR), first devised more than a 36 

century ago (Watson 1835, Arrhenius 1921, Gleason 1922).  The SAR represents species richness 37 

explicitly as a function of sample area, which is to say, as a function of spatial scale.  The scale-38 

dependence of biodiversity as refected in the SAR represents the combined effects of statistical 39 

sampling and ecological processes. As one examines communities across ever wider expanses, the 40 

number of species inevitably rises for a number of reasons: larger samples incorporate more individuals 41 

(allowing more species to be sampled), they encompass a wider range of habitats and environmental 42 

conditions, and bridge barriers to dispersal (Shmida and Wilson 1985, Drakare et al. 2006), The wide 43 

interest in SARs over many decades (e.g. Preston 1960, Connor and McCoy 1979, Rosenzweig 1995, 44 

Scheiner et al. 2011, He and Hubbell 2011, Storch 2016) testifies to the long-standing appreciation by 45 

ecologists of the centrality of scaling issues.   46 
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 47 

Classically, SARs have been drawn by conducting intensive biological surveys of different sized areas, 48 

which may be nested (e.g. a quadrat within a field, within a county, within a nation) or non-overlapping 49 

samples (e.g. a series of islands or political entities of different sizes), and may be ecological isolates 50 

(e.g. islands or discrete forest patches) or arbitrarily defined samples from a larger whole (e.g. quadrats 51 

or political entities); a great deal of discussion has focussed on the properties of SARs composed in 52 

these different ways (e.g. Rosenzweig 1995, Scheiner 2003, Tjørve and Turner 2009, Scheiner et al. 53 

2011).  The shape of SARs has also been hotly contested, and after decades of debate about the relative 54 

merits of power law and logarithmic models (e.g. Connor and McCoy 1979), in recent years a wide 55 

range of other functional forms have been explored (reviewed by Tjørve 2003, 2009, see also Scheiner 56 

et al. 2011).  More than 180 years after its birth, the SAR remains an active topic of ecological research. 57 

 58 

The reason for the continued popularity of the SAR is obvious: it provides a clear language for 59 

expressing species-richness information across the full range of ecologically relevant scales.  As such, it 60 

has great potential as a tool for describing and monitoring multi-scale aspects of biodiversity.  Policy is 61 

often concerned with the preservation of biodiversity at national, continental (e.g. Gothenburg targets, 62 

2001) or global (e.g. CBD, 2002) scales, whereas most biodiversity monitoring is conducted at very fine 63 

spatial scales (sometimes <1 m2

 80 

).  This mismatch between the scales of our policies and of our data 64 

creates serious challenges, especially when assessing biodiversity change.   It has recently become 65 

apparent, for example, that environmental changes may affect biotic diversity differently at different 66 

scales (Smart et al. 2006a, Keith et al. 2009, Keil et al. 2011); biotic homogenization for example may 67 

increase local (α) diversity while decreasing diversity at coarser (β and γ) scales (Socolar et al. 2016); 68 

conversely some invasive species may decrease α while increasing γ-scale richness (Rosenzweig 2001, 69 

Powell et al. 2013).  SARs reflect biodiversity across a wide range of scales (encorporating α, β, γ and 70 

coarser scales) and so should provide an efficient tool for examining and communicating such 71 

complexities.  Global biodiversity monitoring needs have further increased the interest in SARs and 72 

biodiversity scaling, due to the need to infer biodiversity patterns from growing global databases of 73 

point locations to the regional scale; that is, biodiversity upscaling. Coordinated local sampling 74 

schemes, together with reliable/robust upscaling methods, are critical for the integration and 75 

generalisation of biodiversity information at large scales. Efficient tools for building reliable and 76 

accurate SARs may prove increasingly useful for predicting the response of biodiversity to 77 

environmental changes across scales, and to assess global conservation policy options (Pereira et al. 78 

2013, Geijzendorffer et al. 2016). 79 

However, one serious problem prevents the widespread application of SARs to multi-scale biodiversity 81 

monitoring.  The requirement for exhaustive surveys over large areas makes it impractical to survey 82 
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SARs repeatedly over a short period of time.  Indeed, for many poorly studied taxa and regions, it would 83 

be difficult to amass sufficient information to provide even a single coarse scale biodiversity estimate 84 

with confidence (e.g. Erwin 1982, May 1990).  If the SAR is to fulfil its promise, we need to develop 85 

new approaches to parameterising it with finite investments of surveying effort. 86 

 87 

Harte and Kinzig (1997) were the first to explore a method for upscaling biodiversity from local 88 

samples.  Their approach was based on the idea that the SAR should rise faster with area if dissimilarity 89 

in species occurrences in small plots (species turnover or β diversity) increases more rapidly with 90 

distance between plots (Harte et al., 1999; Krishnamani et al. 2004).   Unfortunately the method 91 

involved strong implicit assumptions that limited its applicability.  More recently Harte and colleagues 92 

have proposed more sophisticated and general approaches based on the maximum entropy inferential 93 

method (Harte et al. 2008, 2009; Harte and Kitzes, 2015).  The past 15 years have seen a proliferation of 94 

other new methods to address this problem, based on approaches ranging from relative abundance 95 

distributions (Ulrich and Ollik 2005), species accumulation curves (Shen and He 2008), least distance 96 

spanning paths (Smith 2009),  multi-site zeta diversity of compositional turnover (Hui and McGeoch 97 

2014) and 3-dimensional manifolds (Polce 2009).   This sudden flowering of alternative approaches 98 

brings with it a new challenge: how do we best choose a method for a particular application?  Many of 99 

the models have been tested against data, of course, but each against a different dataset, and in many 100 

cases the tests have been relatively modest: attempting to up-scale by only 1 or 2 orders of magnitude, 101 

or even less.  This paper addresses this issue by testing a wide range of biodiversity upscaling 102 

approaches on a single high quality dataset across a substantial range of scales, within a well studied 103 

system.  By working in an area with a “known” SAR, we can judge the effectiveness of the various 104 

methods in estimating coarse-scale biodiversity. 105 

 106 

Methods 107 

 108 

The CS dataset 109 

We make use of the GB Countryside Survey (CS), a periodic botanical survey programme organised by 110 

the NERC Centre for Ecology and Hydrology (CEH).  The CS focusses on a stratified random sample of 111 

1 km cells within Britain, chosen to represent the full range of British landscapes (for further details on 112 

CS methods see Firbank et al. 2003).   Specifically, we will rely on the CS survey of 1998/1999 113 

(hereafter “CS1999”), which coincides with the survey period for the New Atlas of the British and Irish 114 

Flora (Preston et al. 2002), which we can use to generate our “true” SAR (see below).  A total of 569 1 115 

km2 cells were examined in CS1999, scattered over the whole of Britain and its inshore islands (but 116 

excluding Northern Ireland and more distant island groups).  Within each 1 km cell, a wide range of 117 

surveys was conducted, which can be roughly divided into areal surveys (various sized surveys of 118 
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habitat blocks) and linear surveys (1 x 10 m surveys of linear features such as roadsides, hedgerows and 119 

banks of waterways).  For our purposes, the most statistically “representative” surveys were the so-120 

called “X” pl ots, five of which are sited at random (one in each of 5 equally-sized subsections) within 121 

each surveyed 1 km cell.  The only departure from truly random placement is that X plots were not 122 

allowed to overlap with linear features (but see below).  X plots have the added advantage (for this 123 

work) in being multi-scaled: each consists of a nested series of quadrats at 4, 25, 50, 100 and 200 m2 124 

scales.  Species presence/absence is measured at all five scales, and estimates of cover for each species 125 

are recorded at the finest (2 x 2 m = 4 m2) and coarsest (14.14 x 14.14 m = 200 m2) scales.  We made 126 

data from all 5 scales available to researchers (in most cases: the authors of upscaling methods), 127 

although most used only the coarsest scale (200 m2

 129 

) data in fitting their models. 128 

The fact that X plots were not allowed to overlap linear features arguably makes them less diverse in 130 

species composition than truly random quadrats would be, as the inclusion of (potentially dissimilar) 131 

vegetation from such strips would likely enhance diversity (Smart et al. 2006b).  Consequently, we 132 

developed a synthetic second set of samples, which we termed “X+Linear” samples (for clarity, the 133 

original surveys are hereafter referred to as “X-only” samples).  These composite samples were created 134 

by choosing the linear feature closest in space to each X plot, and merging its species with those in the 135 

coarsest (200 m2) X plot sample to produce an aggregate sample representing 210 m2 (see Figure 1).  136 

Where the same linear sample was the nearest neighbour of more than one X plot, it was assigned to the 137 

X plot in closest proximity, and others were paired with their 2nd

 143 

 nearest linear surveys.   If the X-only 138 

analyses arguably underestimate local richness, these X+Linear composite plots are likely to 139 

overestimate it, as they tacitly assume that all X plots would have included linear features had they been 140 

placed truly at random.  We feel confident that a truly representative sample would fall somewhere 141 

between these two.  142 

Subsamples 144 

To provide a richer test of the various methods available, we developed a total of 16 test data sets.  The 145 

largest of these is the “Full” sample, which covers all 569 CS survey cells within the surveyed area, and 146 

all five X plots within each. We also developed five regional subsamples, covering the “North”, 147 

“Centre”, “East”, “West” and “South” of Britain (Figure 1).  These were non-overlapping regions, 148 

chosen to roughly correspond to natural divisions of the area, and as such they were not equal in area.  149 

More importantly, they were also not equal in biodiversity, with pronounced regional differences in both 150 

α and β diversity between regions (encompassing e.g. a > 2-fold range in mean species richness at 100 151 

km2 scale c.f. Lennon et al. 2001).  We also developed two sets of five statistical subsamples from the 152 

full dataset.  “Wide-shallow” (WS) samples covered the full set of sampling locations, but included only 153 

one X plot (or X+linear sample) of the five generally available at each site.  By contrast, “Narrow-deep” 154 
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(ND) samples included all five X plots at each site, but included only 1/5 of the survey sites, chosen as a 155 

stratified random sample following the original CEH landscape stratification.   Both WS and ND sample 156 

sets were non-overlapping, so that the sum of all five subsamples in either set constituted the Full 157 

British CS sample.   158 

 159 

Each of the 16 samples (full set + 5 regions + 5 WS + 5 ND) were assessed for both X-only and 160 

X+linear sample strategies, making a total of 32 potential tests for each method employed.  However, 161 

the stratified nature of the statistical samples tended to make their multiple runs quite similar to each 162 

other, and thus treating them as five separate estimates would both overstate their independence and 163 

give them undue weight in the overall analysis.  Consequently, to simplify reporting, each set of 164 

statistical subsamples (WS and ND) were summarised by a single (mean) performance score, thus 165 

leaving 16 tests (full set + 5 regions + WS mean + ND mean = 8, for each X-only and X+linear 166 

datasets). 167 

 168 

The challenge 169 

The task we set ourselves was to estimate the SAR for scales ranging from 100 km2 (10 x 10 km, the 170 

minimum mapping unit of Preston et al. 2002) to the whole of Britain (or of a specific subregion) using 171 

only the CS survey data.  Even the finest of these scales was 500,000 times coarser than the 200 m2 172 

scale of an X-plot survey (or 476,190 times larger than the 210 m2 of an X+linear sample).  For the 173 

purpose of this exercise, we will treat the area of Britain as the summed area of all the 100 km2 cells 174 

covering Britain itself and the major outlying islands of the Shetland, Orkney and Hebridean Islands, a 175 

total of 278,500 km2.  This is almost 14 billion times larger than scale of a single X plot, and 176 

approximately 500,000 times larger than the full set of survey sites combined (more precisely: 503,799 177 

times the area of the full set of X plots, or 479,808 times the area of the full X+linear sample).  Levels of 178 

upscaling in statistical subsamples (with only 1/5 as many samples used) were five times greater still 179 

(2,518,995-fold for X-only analyses; 2,399,040-fold for X+Linear).  The regional subsamples cover 180 

areas between 46,100 and 77,200 km2

 189 

, with correspondingly smaller numbers of samples, giving 181 

upscaling levels comparable to those for the full national dataset.   Several of the methods considered 182 

here have been tested before, in particular using tropical forest survey data from relatively small (e.g 50 183 

ha, Shen and He 2008) plots.  Such applications involve only relatively modest upscaling; the challenge 184 

presented here is substantially more ambitious and more typical of the sort of tasks a practical upscaling 185 

approach would be asked to perform in e.g. regional or national biodiversity estimation. To our 186 

knowledge, only a few past papers (Ugland et al. 2003, Krishnamani et al. 2004, Harte et al. 2009) have 187 

attempted comparable levels of upscaling, each for ony a single model. 188 

Upscaling methods 190 
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As noted in the introduction, there has been a proliferation of novel methods for upscaling biodiversity 191 

in recent years.  We have brought together most of the global community of researchers addressing this 192 

issue, presenting each with the same CS datasets.  To ensure high levels of familiarity with the models 193 

employed, most methods were fit by their original proponents, with the exception of the three variants 194 

of the Ugland model and the Lomolino model, which were prepared by a working group composed of 195 

ET, AS, RTJ, KIU and WU, and the power and logarithmic models, fit by VV and WEK.  Further 196 

details of the models are given in the sections below. 197 

 198 

Harte MaxEnt method 199 

The maximum entropy theory of ecology (METE) predicts the shape of metrics describing patterns in 200 

the spatial distribution, abundance, and energetics of species (Harte, et al., 2008; Harte, 2011; Harte and 201 

Newman, 2014).  METE is a state variable theory in which the maximum entropy inference procedure 202 

(Jaynes, 1982), coupled with constraints arising from knowledge of quantities such as the number of 203 

species and the number of individuals at plot scale, determine unique and testable macroecological 204 

metrics across all scales.  METE predicts a non-power-law but universal form for the SAR; in particular, 205 

if the local log-log slope of the SAR at each spatial scale is plotted against the average abundance per 206 

species at each scale, then all SARs are predicted to fall on a universal curve (Harte et al., 2009).   207 

Upscaling species richness can either be carried out from knowledge of the number of species and the 208 

number of individuals at any one spatial scale, or alternatively from knowledge of the number of species 209 

at two spatial scales (from which information the abundance at each of those scales can be inferred from 210 

METE).  The CS dataset provides abundance information in terms of % cover, but not the number of 211 

individuals (which is hard to assess in many plant species).  For that reason we can upscale using the  X-212 

only plot data, which does include measured values of species richness at several plot-sized scales, but 213 

we cannot use the X+linear plot data, as only one scale is available.    214 

The capacity of METE to upscale has been tested successfully for tree species in the Western Ghats, 215 

where species richness was upscaled over a scale range of 24 million, from ¼ ha plots where census 216 

data are available to the entire 60,000 km2

 224 

 biome (Harte et al., 2009).  Other tests of upscaling with this 217 

method have been carried out for arthropods and trees in a Panamanian Preserve and trees in the 218 

Amazon (Harte and Kitzes, 2015).  An important limitation of the MaxEnt method, however, is that it is 219 

designed only for uspscaling species richness within contiguous blocks of similar habitat.  Moreover, 220 

accumulating evidence (Harte, 2011; Harte and Newman, 2014), suggests that due to its reliance on 221 

equilibrial statistical outcomes METE’s successes are restricted to relatively undisturbed ecosystems, 222 

with failures observed in habitats strongly infuenced by human activity.  223 

Ugland TS loglinear method 225 
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If METE is designed for uniform habitat, Ugland and colleagues’ (2003) TS model was explicitly 226 

designed for surveys covering multiple potentially dissimilar communities.  Most assemblages have a 227 

complex covariance structure between species and subareas. This leads to a largely unrecognized aspect 228 

of predicting the number of species by upscaling: with the addition of new subareas or habitats the 229 

observed species accumulation curve (across regions or habitats) will not only extend the previous 230 

within-habitat accumulation curve, but also tend to lie above the accumulation curves for smaller 231 

subareas. The rate of (vertical) increase of the species-accumulation curves provides the best estimate of 232 

total species richness.  Ugland et al. (2003) derived an exact analytical expression for the expectance 233 

and variance of the species accumulation curve in all random subsets from a given area. In this method 234 

the whole area is divided into subareas, and an increasing sequence of accumulation curves is 235 

constructed as follows. The first accumulation curve (the bottom curve) is obtained by taking the 236 

average of all single subareas. The second accumulation curve is obtained by taking the average of all 237 

accumulation curves based on two randomly chosen subareas. For example, if there are five subareas, 238 

the total number of subsets of two subareas is the binomial coefficient 5*4/2*1 = 10, so the second 239 

accumulation curve will be the average of 10 curves. In the same way the third accumulation curve is 240 

the average of accumulation curves based on all possible subsets of three subareas. This procedure is 241 

repeated until we end up with the last accumulation curve which is obtained by randomization of all 242 

available samples in the data set. 243 

It is the terminal points of this increasing sequence of species accumulation curves that contain the 244 

crucial information of the accumulation rate of new species as sampling effort is increased to new 245 

subareas. The total species curve (the TS-curve) is then defined as the curve connecting these end 246 

points. In a semilogarithmic plot these curves frequently appear linear, and Ugland’s estimator is then 247 

simply the linear extrapolation of the TS-curve to the whole area in the semilog plot. 248 

Ugland Ten-at-a-time method 249 

We also used a variant of the method presented in Ugland et al. (2003), where the mean number of 250 

species in a set of samples with the same number of plots is regressed with a semi-log function against 251 

the log of summed plot area.  In this case, we used 10 groups of 10 plots, 20 plots, 30 plots, and so on, 252 

until the last group contained the entire set of plots (of which there is but one group).  We examined 253 

groups of 50, 100, 150, etc. plots, but the results were similar to the method using multiples of 10 plots 254 

at a time. 255 

Ugland PAM method 256 

A third method of applying the Ugland approach was pioneered by Jobe (2008), using the non-257 

hierarchical clustering method algorithm known as partitioning around medoids (PAM) to determine the 258 

subclasses of sites for computing species accumulation curves.  The original Ugland estimation method 259 

requires an a priori grouping of observations, so the introduction of PAM clustering allows such group 260 

assignments to be done on an objective basis in cases where no such classification is available.  There 261 
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are no hard and fast rules for selecting these groups, but the goal is for groups to contain ecologically 262 

distinct observations (e.g. communities, assemblages, etc).  PAM makes the grouping process more 263 

objective by using compositional similarity among sites as reflected in the clustering algorithm to select 264 

both the optimal number of groups and the membership of each group. 265 

 266 

Shen and He method 267 

There is a growing literature of methods devoted to estimating species richness in an area from random 268 

samples taken from within it (e.g. Palmer 1990, Chao 2005, Magnussen et al. 2006), often using 269 

resampling techniques with replacement.  While these methods are not designed to estimate the full 270 

SAR, they can be used to upscale from a set of point data to estimate the overall species richness of the 271 

area from which they were drawn, and thus to estimate at least one point (the top) of the SAR.  Many of 272 

these methods, however, have been shown to overestimate richness (e.g. Xu et al. 2012).  Shen and He 273 

(2008) developed a novel approach based on sampling without replacement, using information on 274 

presence/absence data on species incidence, based on a modified Beta distribution.   The method is not 275 

spatially explicit, and provides a single estimate for the species richness of the full sampled area.  To 276 

derive finer scale estimates, the area to be estimated was shifted downwards (but see Discussion).  In the 277 

X-only datasets, the Shen and He model was fitted both to data from the full 200 m2 survey plots, but 278 

also to the finest scale (4 m2

 281 

) survey data, allowing the model’s sensitivity to sample plot size to be 279 

assessed. 280 

Šizling method 282 

Arnošt Šizling and David Storch (Appendix S1) have developed a method using the frequency 283 

distribution of species’ occupancies to estimate the shape of the SAR between two fixed scales, based 284 

on their “finite area model” of the SAR (Šizling and Storch 2004); different species-occupancy 285 

distributions produce SARs with different degrees of curvature, with the standard deviation of 286 

occupancy playing a key role (see Appendix S1). This approach is a 'scaling between method', rather 287 

than an upscaling method per se; that is, it estimates the increase in species richness as one moves from 288 

a unit survey plot (here a 200 or 210 m2 CS sample) up to a predetermined maximum value. Thus it 289 

requires an estimate of “known” global species richness for the area in question and information from 290 

local samples to estimate species richness at scales in between these two known points on the curve.  It 291 

would have been unfair to provide this model with more information than its competitors, and so the 292 

modeler had to make an arbitrary global richness estimate (1000) to implement his model; but in 293 

practice, the method might best be combined with other methods that make effective global richness 294 

estimates in order to estimate the SAR as a whole (see Discussion). The method is based on the fact that 295 

if we assume aggregated distributions, the proportional occupancy constrains the size of the maximum 296 

gap in a species’ distribution (the "area of saturation," Šizling and Storch 2004), which in turn 297 
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determines the number of species sampled within given size window, i.e. in a specific area. As that and 298 

occupancy of the unit area together determine the slope of log-SAR (z), one could compose the SAR for 299 

any given number of species randomly chosen from the observed frequency distribution of occupancies, 300 

and thus estimate species richness of any area between the unit and total areas. 301 

 302 

Hui models 303 

Cang Hui developed three additional new approaches for this paper; each will be described briefly here, 304 

with full details and computer codes given in Appendix S2.  305 

Hui 1: Occupancy Rank Curve (ORC) 306 

This approach proportionally scales up a sampling occupancy rank curve (ORC) by assuming that the 307 

sampling is sufficient and representative of the wider area from which the samples were drawn. 308 

Specifically, if one plots the number of sites occupied by species in order of ubiquity, the resulting ORC 309 

for samples follows closely a truncated power law (Hui 2012): � = �1��2∙���3, where O and R represent 310 

the occupancy and the ranking of a species.  This shape consists of two components: a power-law 311 

function depicting the scale-free relationship between species ranks and their occupancies, and an 312 

exponential cut-off depicting a Poission random process of species occupancy. The power-law 313 

component is largely applicable to widespread/common species, with their distributions reflecting the 314 

spatial partitioning (or sharing) of heterogeneous, often approximately fractal, habitat, whilst the 315 

exponential cut-off reflects the chance events of flickering presence/absence of rare species. This 316 

method then scales up the sampled ORC to estimate the true ORC proportionally according to the 317 

sampling effort (replacing �1 from the sampling ORC with �1 = �1/�, where 0 ≤ � ≤ 1 represents 318 

sampling effort) and the maximum ranking for the enlarged ORC (i.e. solving 1 = �1��2∙���3 for R) 319 

then represents the true number of species in the community. 320 

Hui 2: Hypergeometric Discovery Curve (HDC) 321 

Sampling patterns do not necessarily follow the same shape as the true biodiversity patterns, because the 322 

probability of discoverying a species in a sample does not correlate linearly with the species’ true 323 

occupancy: the probability of encountering very rare species in a moderately-sized sample is near zero, 324 

with probability rising with occupancy in a sigmoid fashion and asymptoting near 1 for very common 325 

species. The sampling theory of species abundances has been extensively studied (Dewdney 1998; 326 

Green and Plotkin 2007), and Hui has developed an equivalent sampling theory of species occupancies, 327 

together with its continuous approximation for random sampling (Appendix S2). In particular, we need 328 

the sampling probability (����(�|�)) of discovering a species in i samples given a specific true 329 

occupancy of j. For random sampling without replacement, this follows a hypergeometric distribution. 330 

Importantly, sampling can affect the shape of observed occupancy frequency distribution (OFD), 331 �(�) = ∑ ����(�|�)�(�)��=1 , where f is observed OFD, F true albeit unkown OFD, and m the sample 332 

extent divided by the grain. This formulation follows the discrete Fredholm equation (also Volterral 333 
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integral equation) of the first kind (Arfken 1985), with ����(�|�) the kernel function and F a solvable 334 

positive vector. Despite the diverse parameteric forms of OFDs (Hui and McGeoch 2007), we reduce 335 

the computational demand for parameter optimisation by using a lognormal distribution (�(�) = � ∙336 ��(�|�′,�′)) centred at the middle of the possible logarithmic occupancy (�′ = ln(�) /2) such that its 337 

95% confidence interval encompasses the entire range of occupancy at logarithmic scale (�′ =338 

ln(�) /3.92), making species richness the sole variable to be estimated from the parameter 339 

optimisation. 340 

Hui 3: Zeta diversity 341 

Zeta diversity represents the overlap in species across multiple samples (Hui and McGeoch 2014). 342 

Unlike pairwise beta diversity which lacks the ability to express the full set of diversity partitions among 343 

multiple (≥3) samples, zeta diversity can express and potentially explain the full spectrum of 344 

compositional turnover and similarity (Latombe et al., 2017), with power law and negative exponential 345 

the most common forms of zeta diversity declines (with increasing number of included samples). We 346 

use a truncated power law to ensure a good fit to zeta diversity decline and then estimate the number of 347 

new species that are expected to occur when adding extra samples (i.e. the level of completeness) based 348 

on fitted zeta diversity decline. The expected number of species in an area can then be estimated 349 

according to the generic estimator developed in Hui and McGeoch (2014); note, the Chao II estimator is 350 

only a special case for exponentially declining zeta diversity. As the formulation is based on 351 

combinatorial probabilities, to reduce the overflow error (a combination of floating-point inaccuracy in 352 

any numerical computation platforms and combinatorial explosion [of formulation complexity] with 353 

increasing number of samples), we first estimate the number of new species encountered when adding 354 

one extra sample and then calculate the expected number of species using integral approximation. 355 

 356 

Ulrich  and Ollik  method 357 

Ulrich and Ollik (2005) made use of a different method based on Relative Abundance Distributions 358 

(RADs), which was originally designed to estimate the upper and lower limits of species richness in a 359 

focal region. Under the assumption that the occupancy - species rank order distribution is either a 360 

lognormal or a logseries and that the least abundant species has an occupancy of one cell (200 m2

slope

NNInt
E SA

S
11 lnlnln −+=

), they 361 

estimated upper species richness boundaries from the logseries by  362 

        (1) 363 

and lower species richness boundaries from the lognormal distribution by 364 

slope

NNInt
E SA

S
11 ln2lnln2 −+=

      (2) 365 
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where ln Int and ln slope are natural logarithm of the intercept (Int) and the slope of an exponential 366 

regression through the middle 50 percentile of the respective abundance distributions and ln NS1 and ln 367 

NA1 are the natural logarithms of the numbers of individuals of the most abundant species of the whole 368 

community within the area Atotal and of the sample of area A1, respectively. NA1 comes from proportional 369 

upscaling of the sample area to total area: NA1 = NS1Atotal /A1

 371 

.  370 

Smith method 372 

A species–distance relationship (SDR) was explored by Smith (2008) as a method for estimating the 373 

SAR from point survey data. The SDR slope was found to be highly correlated with the slope of the 374 

SAR for the US Breeding Bird Survey data at large geographic scales. The SDR is calculated by 375 

estimating the path of shortest length connecting a set of localities, then estimating cumulative distance 376 

and cumulative diversity along the path. In the present analysis, data for all X- or X+linear plots were 377 

lumped within a given 1 km2

 SDRs were calculated for all subsets of the Countryside Survey data using 1 km

 sampling cell (except for the Wide-Shallow subsamples, as these only 378 

contained one X plot per cell). This is because locality size per se was found not to have a significant 379 

influence on the slope of the SDR, whereas sample size (which affects number of individuals surveyed) 380 

per locality did. 381 
2 cells as 382 

localities. No correction was made for sample size. Distance was calculated as Cartesian distance 383 

between the midpoints of the cells. Mean slopes of the SDR are based on 200 values (100 paths, each 384 

containing 10 cells and measured in forward and reverse directions). To estimate the slope of the SDR, 385 

linear regression and standardized major-axis regression were performed. Setting then the slope of the 386 

SDR to equal the slope of the SAR, diversity estimates were made for the relevant portions of Britain by 387 

assuming two different values for alpha diversity. First, average alpha diversity was calculated for the 388 

plots (200 m2 or 210 m2 for X- and X+linear plots, respectively). Second, average alpha diversity per 389 

cell (1 km2) was calculated by combining all plots in a sampling cell; this will underestimate diversity 390 

for a 1-km2

  392 

 area.   391 

Polce and Kunin  method 393 

The SAR rises for two reasons (see e.g. Scheiner et al. 2011): a larger area both encompasses more 394 

environmental and spatial diversity than a small area, and it includes more total individuals (and thus 395 

constitutes a larger sample).  These two component processes, increased sample size and increased 396 

spatial differentiation, may be expected to behave rather differently with increasing area.  In order to 397 

factor out these two component processes, we randomly sampled (a) different numbers of quadrat 398 

surveys from constant sized “windows” of focal area (to estimate the pure sample size effect), and (b) 399 

constant numbers of quadrat samples chosen from different sized windows (to estimate the pure spatial 400 

scale effect), and tested the fit of a range of convex and sigmoid curves (from Tjørve 2003) to each 401 
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component process.  Note that in these analyses, total sample size for a set of quadrats is expressed in 402 

units of area (total m2 surveyed), as that is essential for later steps of the analysis.  We then constructed 403 

a 3-dimensional manifold model as a multiplicative combination of the best-fitting sample-size and 404 

scale models (see Polce 2009).  Pilot work suggested that the MMF model [Y =  (a Samplesizec)/(b + 405 

Samplesizec)] provided the best fit to the pure sample size component (sampled within a fixed window 406 

size), whereas a power law (Y = d Scalez

Y = (a 

) performed best for pure spatial differences (at constant sample 407 

size).  These two component models could then be combined multiplicatively, to derive a final model:  408 

*  Scalez 
*  Samplesizec)/(b + Samplesizec

Fitting this 3-dimensional model to the dataset, the SAR can be estimated as the the value of Y over the 410 

diagonal line where Samplesize = Scale.   411 

)    (3) 409 

 412 

Lomolino model 413 

We also fit a suite of models commonly fit to SARs and to the plot-based species-accumulation curve 414 

(SAC) from each dataset (see Tjørve 2003 for models).  Preliminary results here indicated that in most 415 

cases the “Lomolino” model worked best (S = a / (1 + b log10(c/A)

 421 

 ), where S is number of species, A is 416 

area, and a, b, and c are model parameters fit using the Gauss-Newton method for non-linear regression 417 

(Myers 1990).  In most cases the AIC weight of the Lomolino model was ~1, and where it was not, it 418 

was equally tied with other models that were nested within the Lomolino model.  Therefore, we used 419 

only the Lomolino model to fit each dataset. 420 

Power-law and Logarithmic models 422 

To complement the range of recently-derived methods, we have included a few “old-fashioned” 423 

approaches to SAR estimation.  Arrhenius (1921) proposed a power law (S = cAz) as the best descriptor 424 

of the SAR, and Preston (1962) suggested that the “canonical” SAR would have an exponent (z) of 0.25.  425 

Subsequent work (e.g. Connor and McCoy 1979, Rosensweig 1995) has suggested somewhat less steep 426 

z-values predominate in many continental systems, with a consensus z of approximately 0.2.  Thus, we 427 

generated SAR estimates by simply computing mean species richness at the 200 m2 scale X plot 428 

samples  (and 210 m2 for the X+Linear samples) and scaling up to coarser resolutions using power-law 429 

curves with these two slopes.  We also took advantage of the multi-scaled nature of the CS X plot 430 

surveys, fitting both power and semi-logarithmic (after Gleason 1922) models to the observed species 431 

richness of each plot at the 5 scales of measurement (4, 25, 50, 100, and 200 m2

 435 

), and extrapolating 432 

median estimates for each.  As the X+Linear data are available only at a single scale, these 433 

extrapolations of power-law and semi-logarithmic curves can be done only on the X-only datasets. 434 

Model summary 436 
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Altogether, we have assembled thirteen different models for upscaling biodiversity, and several of them 437 

(the power-law, Shen and He, Ugland’s TS and Ulrich and Ollik’s methods) have been implemented in 438 

multiple forms, for a total of nineteen sets of predictions.  These methods may be grouped conceptually, 439 

based on the approaches they take to the challenge of estimating coarse scale species richness from fine 440 

scale samples (Figure 2).  Three of the methods (power law, logarithmic and Lomolino) involve 441 

parameterizing and extrapolating a well-studied SAR curve from the observed data.  This is an entirely 442 

phenomenological approach to upscaling.  Two other models (Harte’s MaxEnt model and Hui’s HDC) 443 

also extrapolate functions, but with curves that are built on a strong underlying rationale concerning the 444 

patterns expected from random community patterns under constraints.  Three models are based on 445 

sampling processes from species occupancy (Hui ORC, Šizling) or abundance (Ulrich and Ollik) 446 

distributions.   Two additional models (Shen and He, Ugland’s TS) focus specifically on sampling 447 

processes and the resulting accumulation of species.  The Polce and Kunin model is similar to Ugland’s 448 

sampling process approach, but with an explicit emphasis on spatial turnover processes.  Such spatial 449 

turnover in species is central to Hui’s Zeta model, and plays a substantial role in the Smith model as 450 

well, which in turn links back to phenomenological curve estimation approaches.   451 

 452 

Estimating the “True SAR”  453 

The quality of the various SAR predictions can only be tested by comparing them to the “true” SAR for 454 

the focal region.  This was estimated using data from the New Atlas of the British and Irish Flora 455 

(Preston et al. 2002; hereafter: “NABIF”), which was compiled based on surveys from the late 1990s, 456 

thus approximately at the same time as the CS 1999 sample.  In contrast to an earlier attempt at a UK 457 

floral atlas (Perring and Walters 1962), the NABIF’s compilers made a concerted effort to ensure a 458 

relatively even survey effort across the area in a fairly narrow time window, and in particular to avoid 459 

false negatives due to the underreporting of common species and the false positives that result from the 460 

compilation of records over long periods of time.  While no biodiversity survey can be treated as 461 

perfect, the NABIF is arguably one of the highest quality biodiversity atlases currently available 462 

anywhere.  In addition to vascular plants, the CS survey included a predefined set of 160 relatively 463 

common and distictive bryophyte and lichen taxa (species or species groups); consequently distribution 464 

maps for these taxa were acquired from the bryophyte and lichen recording schemes, respectively (M.O. 465 

Hill, pers. comm., J Simkin pers. comm).   The true SAR was composed by superimposing a series of 466 

coarser grids (with resolutions from 400 km2 to 90000 km2

 471 

) over the distributional dataset.  Only grid 467 

cells containing >75% land area were included in our analyses for each scale; at coarse scales, grid cells 468 

were shifted somewhat (following Tjørve et al. 2008, Keil et al. 2011) to maximise the area fitting this 469 

criterion.  Our NABIF SAR calculations are being posted online (Polce and Kunin 2017). 470 

Assessing model performance 472 
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To assess the quality of the predictions of each model, we examined two quality criteria, appropriate to 473 

somewhat different applications.  One goal of diversity upscaling is to estimate the Total Species 474 

Richness (TSR) in a focal region, whilst for other applications, it is valuable to estimate species richness 475 

across a range of scales within the region, providing an estimate of the region’s Species-Area 476 

Relationship (SAR).  We assessed model predictions against both of these criteria: SAR and TSR fits.   477 

To assess the quality of SAR fits, we examined the mean absolute value of the difference between 478 

predicted and true species richness values at a given scale, expressed relative to the true richness value 479 

at that scale, which we term the “mean relative error” (or MRE): 480 

 MRE = (1/n) Σ i(|Spredicted,i – Strue,i|/Strue,i

Where S

)     (4) 481 

predicted,i is the number of species predicted at scale i, Strue,i is the number observed at that scale 482 

in the true SAR, and the summation is across n observed scales (9 scales in the regional analyses, 10 in 483 

the full national and statistical subsample analyses).  Note that we normalise errors by dividing them by 484 

the true SAR value at each scale, so that, e.g., a 100 species error is deemed to be a larger mistake when 485 

the true value is 100 than it is when the true value is 1000.  This has the additional advantage of 486 

allowing model fit to be expressed as a dimensionless fraction: the mean proportional error in 487 

estimation.   We have also calculated model fits using a number of other popular metrics (e.g. RMSE, 488 

Pearson χ2

The quality of Total Species Richness (TSR) predictions was assessed using this same metric, but 491 

evaluated only at the coarsest scale considered (278,500 km

; see Data S1), but there is little qualitative effect on our findings; the same models perform 489 

well by any sensible measure, with at most slight rearrangements of the order of  the winners.     490 

2 in national analyses, and the area of each 492 

region in regional analyses).  In addition, we examined the correlation between true TSR and estimated 493 

values across datasets, using the non-parametric Spearman’s rank correlation, to test how consistently 494 

high richness estimates were provided in highly species-rich regions. A similar correlation test was 495 

performed for the full SAR fit, comparing the overall slopes of the estimated SARs (on logarithmic 496 

axes) over the range of scales examined (100 – 278,500 km2

 499 

) with the slopes of the true SARs over 497 

those scales. 498 

Results 500 

 501 

The models tested differed greatly in their predictions for British plant richness; while the true TSR 502 

value was 2326, the model estimates based on the X-only dataset ranged from only 62 (Median semi-503 

logarithmic curve extrapolation) up to 11,593 (Smith model) species.  A somewhat narrower range of 504 

predictions for the X+Linear dataset (1136 to 8647) was largely due to the fact that some of the more 505 

extreme value models could not be applied to this dataset (e.g. the fitted semi-logarithmic and power-506 

law models, which needed multiple scales of diversity surveys).  Examples of the true and estimated 507 

SARs for the full British datasets are shown in Figure 3 (full data are provided in Data S1). 508 
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 509 

Fit scores for Total Species Richness predictions are given in Figure 4.  Three families of models stand 510 

out as the most reliable predictors of TSR: the two applications of Shen and He’s method (2008; 511 

hereafter “S&H”), the paired upper and lower estimates of Ulrich and Ollik (2005; hereafter: “U&O”), 512 

and the Hui ORC models.  The best predictive accuracy came from the S&H model, with estimates 513 

generally within 10% of the correct TSR value (mean relative error = 0.097 ± 0.085) when 514 

parameterised with 200 (or 210 for X+Linear samples) m2 data; interestingly, the model performed 515 

almost as well (mean relative error = 0.110 ± 0.091) when parameterised from much smaller (4 m2) 516 

vegetation samples.    The U&O method and Hui’s ORC model were the next best approaches: the upper 517 

(log-series) U&O model had a mean relative error of 0.155 (± 0.083), whereas the lower (log-normal) 518 

U&O model had a mean relative error of 0.211 (± 0.080). While these two methods are meant to serve 519 

as upper and lower estimates, even the upper estimate was usually less than the true TSR.  Hui’s ORC 520 

model performed nearly as well as the best U&O model in accuracy (mean relative error = 0.156 ±  521 

0.089).  The Ugland model, applied using the 10-at-a-time algorithm, performed reasonably well (MRE 522 

= 0.210 ± 0.162), as did Hui’s HDC model (MRE=0.272  ±  0.173); no other approach came close (the 523 

next best was the Polce & Kunin (P&K) model, MRE = 0.375 ±  0.158).  Judging by the (Spearman’s 524 

rank) correlation coefficients between true and predicted species richness across sample sets, a similar 525 

picture emerges, with the S&H methods (ρ=0.825 and 0.805, when parameterised with 200 and 4 m2

 530 

 526 

data, respectively) and the Hui HDC, Zeta and ORC models (ρ=0.800, 0.752 and 0.697 respectively) 527 

showing the highest correlation with true TSR, along with the Ugland (in particular, the 10-at-a-time 528 

version with ρ=0.788), P&K (ρ=0.728) and U&O ( both ρ=0.655) models. 529 

The full SAR fits of the models are given in Figure 5.  Accuracy was not as good as for SDR overall, 531 

but one of Hui’s models is the clear favourite in predicting the curve as a whole: the Hui ORC model 532 

was well within 20% of correct SAR values on average (MRE = 0.177 ± 0.059). The lower (log-normal) 533 

U&O model performed reasonably well (MRE = 0.272 ± 0.094), as did the Hui HDC model (MRE = 534 

0.304 ± 0.202).  The upper (log-series) U&O approach and the P&K  method competed for fifth place 535 

(P&K: MRE = 0.358 ± 0.118; U&O2: MRE = 0.369 ± 0.217).    The only other models that averaged 536 

within 50% of the correct SAR were the Hui Zeta model (MRE = 0.408 ± 0.134), the S&H model (MRE 537 

= 0.418 ± 0.212), the Lomolino model (MRE = 0.442 ± 0.110) and the power law model with z = 0.2 538 

(MRE = 0.451 ± 0.179) or z = 0.25 (MRE = 0.496 ± 0.444).  As noted above, several other models were 539 

tested only on X-only data, but none of them performed well enough to challenge the leading methods.  540 

The slopes of the estimated SARs were generally uncorrelated with the true SAR slopes over the scales 541 

considered here; only the median logarithmic model showed a significant positive correlation (ρ = 542 

0.756, n = 8, p = 0.015). 543 
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 544 

Sometimes consensus models can be constructed that perform more reliably than any one approach by 545 

itself, especially when different models have contrasting weaknesses (e.g. Gritti et al. 2013). The P&K 546 

and U&O methods tended to make contrasting errors, with the P&K model predicting a lower and 547 

steeper SAR than was found in many cases, whilst the U&O method predicted a higher and flatter SAR 548 

than that observed over the relevant range of scales, so that there was an inverse correlation between the 549 

performance of the two models (Pearson r = -0.470).  Consequently, the mean of these two estimates 550 

often provided a better (and more reliable) SAR estimate than either model by itself (MRE = 0.222  ± 551 

0.081).  An even more successful combined SAR model could be constructed by using the S&H 552 

estimate of TSR and then downscaling to finer scales using the Šizling method (MRE = 0.156  ± 0.062), 553 

combining the strengths of both models.  This combination provides our best SAR predictions. 554 

 555 

The replicate runs of statistically subsampled datasets allow estimates of the variance in index values 556 

holding sample effort constant (at 1/5 of the total sample). Figure 6 shows the coefficients of variation 557 

in these replicated analyses. Most models showed acceptable levels of variation in estimates, although 558 

the Smith (2009) model, Hui’s Zeta model and approaches based on median fits of classical SAR 559 

models (Power law and semi-logarithmic) showed much higher variation than the others tested.  For 560 

many of the models (most strikingly in the two Ulrich and Ollik  models), variation between runs was 561 

substantially higher in the “Narrow-deep” analyses than in the “Wide-shallow” runs, presumably 562 

because  the latter allowed higher levels of statistical independence between samples. For some of the 563 

models (most notably the Lomolino, Ugland PAM and Ulrich and Ollik models) these statistical sub-564 

samples also tended to produce systematically lower up-scaled biodiversity predictions than resulted 565 

from the full dataset, even though each set of five (non-overlapping) subsamples comprised the full 566 

sample set, and all were being used to estimate the same full British SAR.   567 

 568 

Discussion 569 

 570 

The challenge of upscaling biodiversity from plot to regional or national scale is an important goal of 571 

spatial ecology, one with the potential for important practical value.  If we could reliably estimate coarse 572 

scale species richness from fine scale samples, it would allow biodiversity estimation in poorly studied 573 

regions and taxa, and facilitate the monitoring of multi-scale biodiversity change and the scaling up of 574 

experimental results.  A range of methods have been proposed to address this issue, but there has to date 575 

been no clear consensus as to their relative strengths and weaknesses.  To test these methods, we set a 576 

much more ambitious test than has usually been applied, requiring species richness to be estimated at 577 

scales some 500,000 times larger than the full dataset used – and 14 billion times larger than a single 578 

sample plot (the scale of resolution from which richness was extrapolated by most of the methods).  The 579 
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models considered varied greatly in their performance in this test, but the best of them did well enough 580 

to suggest that they have the potential for useful application in the near term.  Nonetheless, further tests 581 

of these methods should be attempted on datasets covering other taxa and regions, so that the generality 582 

of our conclusions can be ascertained.  Many of the models (especially those with relatively inflexible 583 

shapes) may be expected to fit much better in some areas than in others; differences in species richness, 584 

evenness, habitat diversity and spatial patchiness may all affect the form of SARs (Tjørve et al. 2008), 585 

and thus may improve the relative success of some models over others.  Similarly, different models may 586 

be differentially sensitive to differences in the structure and intensity of sampling (CS is perhaps a best-587 

case scenario), which may again affect relative performance.  Only by examining a wide range of 588 

datasets with differently diversity patterns can we be certain of the generality of our results. 589 

 590 

Specific model performance 591 

Harte and colleagues (Harte et al. 1999, 2005, 2007) pioneered the study of biodiversity upscaling, and 592 

their MaxEnt approach (Harte et al. 2008, 2009) is an important conceptual advance.  As expected in the 593 

fragmented and human-influenced habitats of the UK, the METE model performed poorly in our trials, 594 

greatly underestimating coarse-scale species richness despite its record of success in upscaling within 595 

relatively undisturbed and contiguous habitat (Harte et al. 2009; Harte and Kitzes, 2015).   Harte’s 596 

MaxEnt approach can be estimated using surprisingly little information (see Methods), which makes it a 597 

strikingly efficient tool, but also a very inflexible one.  That property is a virtue when applying the 598 

model to the sort of homogeneous natural community for which it was designed, but it may create 599 

difficulties in applying the model to more anthropogenic landscapes.  METE relies on natural 600 

communities displaying statistical patterns that maximize entropy within ecological constraints, patterns 601 

which may be slow to stablise (Harte 2011).  It would be useful to conduct future tests of the METE 602 

upscaling method within contiguous extents of UK biomes that are relatively undisturbed by human 603 

activity, such as within large areas of heathland.   604 

 605 

After Harte et al.’s original (1999) paper, the TS method proposed by Ugland et al. (2003) is arguably 606 

one of the longest established and best supported methods in the literature.  For example, Jobe (2008) 607 

found it to have a reasonable predictive accuracy when applied to tree diversity in the southeastern 608 

USA.  Extrapolation of the semilogarithmic curve fitted to the terminal points of the species 609 

accumulation curves is a robust approach that is designed for heterogeneous environments and it is 610 

insensitive to shifts in species abundance, as only presence/absence information is taken into account. 611 

This is a great advantage in most applications as there is often substantial variability in the assessment 612 

of numbers of individuals, and in many datasets (as here) data on population sizes are not available at 613 

all. The TS-curve estimates the accumulation rate of new species as more subareas are covered; thus 614 

only species’ spatial distributions affect the curve.   615 
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 616 

We tested three different implementations of Ugland’s approach, but none of them predicted the SAR 617 

very well.  The approaches showed more than two-fold differences between the highest (PAM) and 618 

lowest (10-at-a-time) estimates, but all three curves were substantially higher and flatter than the true 619 

SAR over the scales considered here. The discrepancy is probably the result of the large number of 620 

species that occur in just a few plots (e.g. 24.6% of all species were found in just one plot in the X-only 621 

dataset), which causes the TS curve to rise very steeply initially, and then overshoot.  This steepness 622 

occurs at relatively fine scales (between the 200 m2 scale of the survey plots and the scale of the finest 623 

Atlas grid, 100 km2

 630 

), but when extrapolated to the scales investigated here the curves flatten out and 624 

have lower slopes than the actual SAR. The differences in performance between the 3 implementations 625 

of Ugland’s TS approach were instructive. While the PAM approach formed groups of similar plots, the 626 

10-at-a-time approach assembled sets at random, and predicted fewer species at every scale.  This 627 

occured because PAM groups were more divergent in composition between groups, resulting in faster 628 

species accumulation curve as groups are combined. 629 

The TS model’s prediction of high, shallow SARs over the scales considered here was shared by several 631 

other models without explicit spatial structure (e.g. the Ulrich and Ollik 2005 and Shen and He 2008 632 

approaches).  Indeed, in the case of S&H, the SAR approached an asymptote at a value close to the true 633 

S value (see below).  By ignoring spatial structure in species occupancy, these approaches tend to bring 634 

in more new species with each added sample initially, but rapidly exhaust the species pool, so that few 635 

species remain to be added at coarser scales (Scheiner et al. 2011).  The spatial structure of natural biotic 636 

communities means that expanding the sample continues to bring in new environments and thus new 637 

species even at coarse spatial scales. 638 

 639 

Another time-honoured approach to upscaling is curve extrapolation.  We explored a range of options 640 

here, including traditional canonical power-laws, but also several methods (median power-law, 641 

logarithmic and Lomolino curves) that made use of the multi-scale nature of the field survey data to 642 

estimate the slope of species accummulation.  None performed particularly well in our comparisons, yet 643 

some fared almost as well as some of the more complex approaches. The Lomolino model was the best 644 

of a suite of 14 models (Tjørve 2003) commonly fit to species-area relationships, but its accuracy was 645 

sensitive to the spatial dispersion and density of plots.  When extrapolated from the entire dataset, the 646 

Lomolino model sometimes gave accurate estimates of the total number of species, but underestimated 647 

species number by several hundred when data subsets were used.  The model displayed asymptotic 648 

behaviour, rising very little above ca. 100 km2

 651 

.   Our results suggest a cautious approach should be used 649 

when fitting asymptotic models to SARs, even when the model fits well at the fine scale of survey plots.   650 
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The classical power-law relationship provided a surprisingly good fit to some of the datasets, although 652 

different values of the exponent z fit different cases.  However, the more variable slopes fit using the 653 

median value of z fitted from the multiscale X-plot surveys (from 4 to 200 m2

 669 

 scales) produced 654 

generally lower slopes, with very poor predictive ower.  These low fit ted slopes are probably affected by 655 

the uniformity of land management at these fine scales, especially in the X-only plots which were 656 

constrained not to cross linear features; these resulted in particularly low SAR curves for the fitted 657 

logarithmic model, which predicted a total of only 62 species for all of Britain, despite the presence of 658 

more than 1000 species in the overall sample set!  On the other hand, despite its abysmal performance in 659 

estimating total S, the fitted logarithmic model was the only one of all those tested that showed a 660 

significant positive correlation with the slope of the true SAR across datasets.  Linear extrapolation 661 

methods may predict unrealistically high total species richess when the true underlying species 662 

accumulation curves reach an asymptote within the extrapolation domain.  For example, in an 663 

investigation of arthropods in the Azorean Laurisilva forests, Hortal et al. (2006) found very low beta 664 

diversity and a rapidly saturating total richness, so that linear extrapolation became heavily biased.  In 665 

the UK, however, underlying heterogeneity is sufficient that 55% of sampled species were found in 7 or 666 

fewer sampling quadrats. This large fraction of species with a narrow geographical distribution prevents 667 

the species accumulation curve from flattening out, and thus favours straight line extrapolation. 668 

Several other models showed relatively poor performance.  The Smith (2008) model not only showed a 670 

low predictive accuracy for both TSR and SAR shape, it also displayed extreme variability in richness 671 

predictions across the multiple replicate subsamples, suggesting that its estimates are unstable.   Unless 672 

those problems can be addressed, there is little to recommend it for future applications.  On the other 673 

hand, the poor performance of the Šizling model (see Appendix S1) is not surprising, as it has been used 674 

here for a task rather different from the one for which it was designed.  The Šizling model is designed to 675 

downscale the SAR from a known value of total species richness, based on the species-occupancy 676 

distribution observed within a sample of cells.   As such, its application here required the choice of an 677 

arbitrary estimate of total richness (1000), which was not very accurate.  The method is included here, 678 

however, as it provides a valuable component of a mixed modelling framework, if used together with a 679 

companion model for estimating total richness (see below).  680 

 681 

The best performance in our tests came from a series of relatively recent models: the Shen and He 682 

(2008), Ulrich and Ollik (2005) and Polce (2009) models, and the three Hui models and Šizling model 683 

introduced here.  Each had distinctive strengths and weaknesses.  The Shen and He model performed 684 

both well and consistently in estimating total S, but proved to be ill -suited to assessing the shape of the 685 

SAR, presumably because it ignores the spatial structure of samples.  Clearly, the development of a 686 

spatially explicit version of this model should be a priority for future research.  The Hui ORC and HDC 687 
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models performed more consistently, providing credible TSR estimates and the best estimates of the 688 

SAR as a whole (ORC) of any model considered; they certainly merit further attention.  HDC requires 689 

reliable numbers of observed rare species in samples, while ORC relies on robust/representative 690 

estimates of sampling occupancies for common species. The CS data obviously fulfill the latter of these 691 

requirements (sampling common species) very well, but even a survey of this scale (and expense) 692 

samples only a tiny fraction of rare species.  This may help explain the superior performance of the 693 

ORC model in our analyses.  The Ulrich and Ollik method proved third-best in total richness estimation, 694 

and provided the second best SAR fit of the models tested, suggesting it may be a useful alternative.  695 

However, its performance was only moderate in either regard, and the two versions of the model did not 696 

consistently bracket the true value, as they were meant to do (in most cases, both estimates were above 697 

the true value of species richness).   This suggests that the true occupancy - species rank order 698 

distribution is not a symmetric lognormal but skewed in the lower part to have more rare than abundant 699 

species.  700 

 701 

The S&H and U&O methods are both examples of a broader literature devoted to estimating overall 702 

species richness in an area based on representative samples (see also e.g. Palmer 1990, Chao 2005, 703 

Magnussen et al. 2006).  These methods have been designed to estimate TSR, but they are not explicitly 704 

aimed at SAR estimation; thus it is not surprising that they both perform the former task more 705 

effectively than the latter.  Many of the methods developed for TSR estimation require large proportions 706 

of the focal biota to be observed (see Ulrich and Ollik 2005), making them inappropriate for large-scale 707 

applications such as the one attempted here.  Moreover, systematic biases in most such estimates have 708 

been documented in the past (reviewed in Shen and He 2008), further undermining their applicability.  709 

The two methods employed here were both explicitly developed with an aim to increasing the accuracy 710 

and range of such projections. While these models differ fundamentally in their approaches (with S&H 711 

using sampling theory, whereas U&O extrapolate relative abundance distributions), our results here 712 

suggest that they have both been quite successful in this respect.   713 

 714 

The Polce & Kunin model was explicitly designed for the more difficult task of SAR estimation.  While 715 

it performed moderately well in our tests, its finer scale estimates (in particular) were often substantially 716 

lower than expected.  One potential reason for this is the clustered nature of the CS sample set, with 5 717 

samples taken in each focal 1 km2 site.  The P&K  method involved sampling random sets of 718 

observations from varying sized sampling windows; when small numbers of samples were drawn from 719 

relatively small areas (e.g. 400 km2 or less), there was consequently a high probability of drawing 720 

multiple samples in close proximity to one another, sampling less diversity than expected of a truly 721 

random sample of that size.  While the logic of the method (separating pure sample size and pure spatial 722 

extent effects) is compelling, there clearly remains considerable scope for improvements.    723 
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 724 

Two of most accurate individual methods for SAR estimation were developed for this paper: Hui’s ORC 725 

and HDC methods.  Both made use of the distribution of occupancy values across species in the sample.  726 

The models differed in what they did with those values: the ORC method extrapolated the curve of 727 

species occurence frequencies using a truncated power law to assess how many species would be 728 

expected to occupy 1 or more 200 m2

 736 

 plot, had all of Britain been surveyed; the HDC method examines 729 

the number of species represented by different levels of occupancy in the sample, and estimates from 730 

observation probabilities how many other such species were likely to have been missed.   The SAR 731 

downscaling approach developed by Šizling and Storch, which provided even better SAR extimates 732 

when married to the Shen and He (2008) TSR estimate, was also based on species occupancy 733 

distributions.  The success of these three model here spotlights this general approach as one of great 734 

promise for future SAR research.  735 

Considering the diverse classes of models tested here (Figure 2), shows a high level of performance for 737 

those based on species occupancy (Hui ORC, Sizling) and related (Ulrich & Ollik, Hui HDC) 738 

approaches.  Conversely, methods based around extrapolating specific curves (Power-law, Logarithmic, 739 

Lomolino, and even MaxEnt) were far less successful.  There was mixed success in approaches based 740 

on subsampling and spatial species turnover, and there remains significant potential for further 741 

developing such approaches. 742 

 743 

Combining models 744 

As noted above, consensus models combining more than one of the more promising approaches often 745 

outperformed any single “best” model for predicting the total species richness or SAR shape.  This 746 

generally occurred because different methods showed contrasting errors.  Such combinations come at a 747 

cost (Levins, 1966); there is often a trade-off in modelling between precision (which requires 748 

complexity) and insight (which requires simplicity).  Developing hybrids of multiple incommensurate 749 

approaches runs the risk of producing a method that works well, but which has no compelling logic.  750 

Such approaches may prove useful, but they are intellectually ugly.  We can only hope that they will be 751 

supplanted in time by models that are both accurate and meaningful.   752 

 753 

There are additional unexplored opportunities for methodological hybrids amongst the methods 754 

presented here, given the wide differences in approach set out above.  Note for instance that the Šizling 755 

model requires the user to have a prior estimate of S0, the total species richness in the focal region (as 756 

does the original Harte et al. (2008) MaxEnt approach), while the Shen and He (2008) model estimates 757 

that quantity but cannot estimate diversity at finer scales with any accuracy.   Feeding the Shen and He 758 

(2008) TSR estimate into the new Šizling or Harte et al. (2008) model would then provide credible 759 
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estimates of both.  Thus for example, if we incorporate the Shen & He estimate of S0 

 763 

into the Šizling 760 

approach and then downscale, the resulting SAR has a mean relative error score substantially better than 761 

any of the individual models tested (Figure 5). 762 

Reducing survey effort 764 

Our focal dataset may represent a tiny fraction of the whole British land surface (roughly one part in 765 

500,000), but it nonetheless requires an impressive investment in time and money to survey.  It would 766 

obviously be advantageous to have methods that could be nearly as effective with much lower survey 767 

effort.  We explored this issue at three spatial scales: (a) reducing the total number of 1 km cells 768 

surveyed (represented by the “Narrow-deep” subsamples), (b) reducing the number of quadrats sampled 769 

in each focal 1 km cell (represented by the “Wide-shallow” subsamples), and in one case (c) surveying a 770 

smaller total area for each quadrat (Shen and He’s 4 m2 analysis compared to the 200 m2 analyses of the 771 

same model).  Our results clearly suggest that reducing local sampling intensity is far less serious than 772 

reducing the number of sites examined.  Wide-shallow sub-samples showed much less variation in 773 

estimates and (in many cases) notably less bias (relative to the full dataset) than did the equally large 774 

(but coarse-scale) Narrow-deep samples (Figure 6).  Reducing sample size at still finer scales (by 775 

changing the size of the local sample plot) may have even less impact: for the one model that was tried 776 

at multiple scales (Shen and He 2008), the predictive accuracy of the model was virtually identical when 777 

fit using 4 m2 scale occupancy data than when fit  using 200 m2

 780 

 data, despite the 50-fold smaller area 778 

surveyed.  779 

One issue with reduced sampling intensity in many models was the introduction of a bias: many of the 781 

methods made systematically lower species richness predictions when fit to random subsamples of the 782 

dataset than when fit to the set as a whole, despite the fact that each combined set of 5 subsamples 783 

comprised the full dataset.  This behaviour was displayed by most methods considered, with the 784 

exception of the Power-law and Logarithmic extrapolations and the Hui ODC model (where subsample 785 

estimates and full set estimates were virtually identical), and the Smith and Hui Zeta models (which 786 

behaved inconsistently in this regard).  Two possible explanations for the general trend suggest 787 

themselves: one statistical, the other biological. On one hand, the smaller datasets may be noisier 788 

(relative to their information content), and this will tend to flatten the regression relationships for small 789 

samples [a possible solution would be to use Model II regression or equivalent techniques].  A more 790 

biologically meaningful explanation is that one needs relatively large samples to encounter rare species, 791 

and it is the rarer species that cause the SAR to rise, especially at the coarser scales (see e.g. Tjorve et al. 792 

2009).   793 

 794 

Ideal and empirical models 795 
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Looking back over the full set of methods explored here, one useful albeit post hoc distinction is 796 

between “ideal” and “empirical” SAR models.  Ideal models are based on theoretical attempts to 797 

understand the appropriate shape that the SAR should be expected to take in natural communities.  As 798 

such, they have the potential to provide mechanistic insight into potential processes underlying SAR 799 

shape, but they tend to be most appropriately applied to natural diversity patterns (rather than 800 

anthropogenic ones) where such mechanisms may be thought to determine diversity patterns.  Ideal 801 

SAR model predictions tend to be relatively inflexible in shape, and as a consequence, they require 802 

relatively little data to parameterise; examples range from the canonical power-law SAR (Arrhenius 803 

1921, Preston 1962) to the recent development of Maximum Entropy models (Harte et al. 2008, 2009). 804 

The inflexibility of such models makes them intrinsically ill-suited to monitoring, e.g. changes of 805 

biodiversity in response to management or other human interventions, since they are insensitive (by 806 

design) to precisely the sorts of shifts in SAR shape that we would wish to detect.  At the other extreme 807 

are models designed to assess the empirical SAR whatever its shape happens to be.  Such approaches 808 

pay for their flexibility by requiring substantially more information.  Nonetheless, this flexibility is 809 

needed for some applications; for example, if upscaling methods are to be used for multi-scale 810 

biodiversity monitoring (see introduction) they will need to be flexible enough to allow anthropogenic 811 

shifts in biodiversity scaling to be reflected in their results. 812 

 813 

It is not surprising, given the highly anthropogenic nature of the British landscape, that the best 814 

performing models in this analysis (Shen and He 2008, Hui’s HDC and ORC models, Ulrich and Ollik  815 

2005) were all empirical approaches.  It would be interesting to see how the relative performance of the 816 

various approaches explored here would shift were they to be tested on data from more natural 817 

landscapes.  Several of the methods that performed relatively poorly here have already been shown to 818 

behave quite well in such applications (e.g. Ugland et al 2003, Krishnamani et al. 2004, Jobe 2008).   819 

Indeed, the contrasts between ideal and empirical models may be instructive if well tested methods for 820 

each can be employed.  In well studied areas with good historical species richness records, a reasonable 821 

estimate of the natural SAR might be computed using an ideal model (such as that of Harte et al. 2008).  822 

This may then be compared to a current SAR computed using one of the empirical models based on 823 

current monitoring data.  The difference between the two could be interpreted as the “footprint” of 824 

anthropogenic activities on biodiversity across spatial scales.   825 

 826 

Conclusions 827 

The topic of biodiversity upscaling has been largely of theoretical interest to date, but it is an area that 828 

has tremendous potential practical value.  Robust and tested upscaling methods would allow the 829 

assessment of species richness in poorly studied regions and taxa; they would also make it possible to 830 

monitor multi-scale biodiversity change over time, and might allow the coarse-scale implications of 831 
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environmental or management changes to be inferred from (necessarily fine-scale) experimental results 832 

if replicated across multiple sites.  To do so we need methods that can be fit using sets of point survey 833 

data, and that will be responsive to any anthropogenic changes in local richness and spatial turnover, 834 

giving robust and accurate predictions.  To test these methods, we need excellent ground-truthed 835 

biodiversity survey data from diverse natural and anthropogenic communities across the globe.  We 836 

have brought together most existing methods for biodiversity upscaling, and have set them an ambitious 837 

target: to estimate the total species richness and Species-area relationship of a sizeable land mass, using 838 

scattered point biodiversity samples from only a tiny fraction of the total area.  While methods differed 839 

dramatically in their performance, the best of them did reasonably well.  Despite a ca. 500,000-fold 840 

increase in scale from the total area surveyed to the area to be assessed, the best of the approaches 841 

reliably predicted total species richness within about 10%, and estimated the full species-area 842 

relationship within about 18% of the true values.  Combining contrasting methods allowed even better 843 

accuracy, allowing the SAR to be estimated within 16%.   While there is still substantial room for 844 

improvement (in particular, in estimating SAR slope) and additional tests on other datasets (ideally 845 

involving contrasting regions and taxa) would be welcome, our results suggest that biodiversity 846 

upscaling has begun to come of age.  It is notable that of the three best methods for SAR estimation, 2 ½ 847 

(Hui’s ORC and HDC and methods, and Šizling’s downscaling) are novel methods published here for 848 

the first time, suggesting that the field is progressing rapidly.  Additional tools are still in development, 849 

but our results suggest that existing methods can begin being applied with some confidence.   850 
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Figure legends: 1047 

 1048 

Figure 1.  The location of CS survey sites and Atlas cells, and of the regional subsets used in 1049 

the analyses.  The number of samples in each region are indicated in the legend.  A 1050 

hypothetical 1 × 1 km focal landscape is shown at higher magnification on the right, 1051 

containing X-plots and Linear samples (not to scale), and the nature of (multi-scaled) “X-1052 

only” and (composite) “X+Linear” samples is displayed. 1053 

 1054 

Figure 2. Conceptual groupings of the methods employed.  See text for further explanation. 1055 

 1056 

Figure 3.  Model predictions for the full UK dataset, based on (a, b) X-only samples, (c) 1057 

X+Linear samples, and (d) randomised subsets.  For clarity, a subset of the best-fitting 1058 

models are plotted in (b), with an expanded Y-axis. Note that several models (MaxEnt, and 1059 

fitted versions of Power and Logarithmic models) could not be estimated on X+Linear 1060 

samples (see text and Figures 4 and 5).  Plots in (d) represent means of X-only and X+Linear 1061 

data from both WS and ND samples.  Error distributions around each curve (with matching 1062 

line color) represent trimmed ranges: the central 18 of the 20 datapoints (roughly 1063 

corresponding to 90% confidence intervals). The true SAR is indicated by bold lines in each 1064 

panel, for clarity. 1065 

 1066 

Figure 4. Compilation of Total Species Richness fits of the various upscaling models 1067 

tested.  Figures represent proportional absolute errors [|Spredicted – Strue| /Strue], with 1068 

underscored numbers indicating the best

 1074 

 and second-best fitting model for a particular 1069 

dataset.  Combined models are underscored relative to the set of individual models.  1070 

Shading represents fit, with cutoff values 0.05, 0.1, 0.25, 0.5, and 1. Rank correlation 1071 

coefficients (Spearman’s ρ) for the relationship between true and estimated richness are 1072 

listed in the final row. 1073 

Figure 5.  Quality of SAR fit, as indicated by mean relative absolute error.  Underscores 1075 

indicate the best and second best models for each dataset, as in Figure 4.  Shading is as in 1076 
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Figure 4, to aid comparison.  The final row lists Spearman’s rank correlation coefficients 1077 

between true and estimated SAR slopes across the different datasets tested. 1078 

 1079 

Figure 6.  Variation in statistical subsample runs.  For each model, the Coefficient of 1080 

Variation (Standard error/mean) is given for both Wide-shallow and Narrow-deep subsample 1081 

sets.  Shading reflects CV values, with cutoff values of 0.01, 0.03, 0.1 and 0.3. “Ratio 1082 

WS:ND” indicates the CV of Narrow-deep divided by that of Wide-shallow samples.  The 1083 

mean value of subsample projections relative to those of the full sample set are indicated as 1084 

“relative  1085 
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se
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shallow 
0.952 0.282 0.145 0.402 0.973 0.400 0.335 0.454 0.566 0.811 0.049 0.069 0.714 13.533 1.987 0.195 1.629 0.185 0.090 0.058 0.010 0.138 

Narrow- 
deep 

0.951 0.242 0.143 1.144 0.973 0.508 0.425 0.453 0.566 0.808 0.023 0.003 0.735 3.813 1.578 0.111 1.424 0.179 0.084 0.091 0.044 0.132 
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South 0.955 0.282 0.219 0.035 0.976 0.558 0.580 0.617 0.003 0.862 0.051 0.051 0.738 0.848 1.365 0.067 1.391 0.258 0.159 0.155 0.105 0.209 

East * 0.014 0.135 0.357 0.980 0.571 0.493 0.758 0.363 0.856 0.245 0.148 0.772 0.191 1.330 0.055 1.309 0.327 0.215 0.238 0.182 0.271 

West 0.951 0.033 0.215 0.488 0.974 0.519 0.478 0.560 0.158 0.857 0.166 0.132 0.740 0.673 1.161 0.004 1.282 0.302 0.228 0.217 0.180 0.265 

Centre 0.946 0.026 0.322 0.527 0.971 0.282 0.307 0.511 0.289 0.830 0.091 0.029 0.699 0.313 1.614 0.130 1.634 0.189 0.091 0.109 0.060 0.140 
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t Wide- 
shallow 
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Narrow- 
deep 
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North  0.300 0.174 0.134  0.439 0.485 0.192 2.234   0.041 0.637 3.574 0.967 0.225 1.898 0.125 0.042 0.042 0.0004 0.084 

Overall: Mean 
(SD) 
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(0.145) 
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0.972 
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0.400  
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(0.080) 

0.155 
(0.083) 

0.122 
(0.070) 

0.100 
(0.093) 

0.183 
(0.063) 

Rank correl.  0.074 0.800 0.697 0.752 0.146 0.576 0.728 0.121 0.261 0.122 0.805 0.825 0.600 0.661 0.764 0.788 0.679 0.655 0.655 0.782 0.764 0.655 
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Full British 1.296 0.125 0.238 0.400 0.956 0.601 0.294 0.553 0.168 0.809 0.808 0.669 0.683 1.042 2.446 1.094 4.470 0.446 0.848 0.088 0.647 0.168 

S
ta
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al
 

Wide-
shallow 0.927 0.100 0.137 0.473 0.957 0.405 0.335 0.548 0.168 0.807 0.548 0.473 0.765 3.357 2.503 0.725 2.995 0.229 0.336 0.159 0.275 0.137 

Narrow-
deep 0.926 0.335 0.218 0.580 0.957 0.381 0.466 0.548 0.168 0.808 0.449 0.377 0.779 0.998 2.063 0.608 2.686 0.232 0.341 0.198 0.281 0.169 
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South 0.944 0.182 0.144 0.378 0.968 0.399 0.520 0.670 0.230 0.864 0.199 0.148 0.779 0.519 1.525 0.302 2.108 0.176 0.170 0.315 0.165 0.200 
East * 0.249 0.180 0.380 0.972 0.400 0.555 0.786 0.500 0.861 0.216 0.171 0.810 0.580 1.550 0.237 2.072 0.231 0.200 0.367 0.205 0.289 
West 0.932 0.094 0.253 0.573 0.963 0.358 0.441 0.600 0.137 0.813 0.236 0.198 0.769 0.447 1.484 0.330 1.929 0.211 0.214 0.269 0.211 0.206 
Centre 0.922 0.150 0.284 0.642 0.954 0.429 0.244 0.529 0.108 0.837 0.351 0.337 0.721 0.379 2.166 0.600 2.784 0.237 0.328 0.161 0.276 0.102 
North 0.860 0.700 0.252 0.270 0.913 0.440 0.358 0.193 0.873 0.646 0.619 0.494 0.678 0.709 1.741 0.792 2.170 0.411 0.525 0.268 0.463 0.098 
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Narrow-
deep  0.447 0.128 0.393  0.392 0.383 0.289 0.726   0.547 0.726 0.990 2.267 0.854 3.160 0.225 0.308 0.183 0.257 0.095 
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South  0.209 0.145 0.546  0.377 0.487 0.457 0.285   0.208 0.730 0.451 1.446 0.448 1.384 0.189 0.171 0.303 0.172 0.134 
East  0.130 0.219 0.406  0.337 0.400 0.594 0.144   0.206 0.760 0.526 1.897 0.443 1.396 0.236 0.200 0.294 0.207 0.189 
West  0.210 0.167 0.422  0.338 0.374 0.392 0.432   0.254 0.721 0.446 1.638 0.498 2.176 0.214 0.212 0.249 0.211 0.108 
Centre  0.450 0.103 0.224  0.502 0.175 0.263 0.728   0.506 0.654 0.352 2.434 0.854 3.266 0.230 0.320 0.164 0.267 0.059 
North  0.721 0.125 0.137  0.478 0.289 0.207 1.819   0.634 0.615 1.347 1.829 0.988 4.608 0.440 0.565 0.281 0.497 0.115 

Overall: Mean 
(SD) 

0.972 
(0.145) 

0.304 
(0.202) 

0.177 
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(0.134) 

0.955 
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0.358 
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(0.069) 

0.428 
(0.219) 
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(0.212) 

0.721 
(0.056) 

1.024 
(1.000) 

2.020 
(0.438) 

0.691 
(0.309) 

2.816 
(1.043) 

0.272 
(0.094) 

0.369 
(0.217) 

0.222 
(0.081) 

0.315 
(0.155) 

0.156 
(0.062) 

Slope correl.  -0.037 -0.576 -0.497 -0.164 0.756 0.261 -0.146  0 0 0.244 -0.195 -0.176 -0.115 -0.361 -0.036 -0.042 -0.194 -0.194 -0.006 -0.097 -0.152 -0.115 
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CV: 

Wide-
shallow 

0.0133 0.1186 0.1716 0.4156 0.0661 0.0243 0.0522 0.0448 0.0448 0.1271 0.0134 0.0182 0.0477 0.1608 0.0221 0.0160 0.0611 0.0170 0.0073 

Narrow-
deep 

0.0266 0.0989 0.2063 0.3275 0.0419 0.1389 0.1260 0.0336 0.0336 0.1181 0.0774 0.0780 0.0655 0.1688 0.1081 0.0779 0.0730 0.0742 0.0767 

Ratio ND:WS 1.9938 0.8334 1.2024 0.7881 0.6345 5.7163 2.4123 0.7495 0.7495 0.9289 5.7947 4.2958 1.3751 1.0501 4.8800 4.8769 1.1941 4.3605 10.477 

Rel. 
to 
whole 

Wide-
shallow 

0.9901 1.0000 1.1743 0.8662 1.0044 0.7346 0.9629 1.0098 1.0000 1.0073 0.8556 0.8821 0.7470 2.1438 1.0168 0.8216 0.7276 0.7753 0.7093 

Narrow- 
deep 

1.0058 1.1977 1.0261 0.8918 1.0040 0.6041 0.7691 1.0099 1.0001 1.0000 0.7982 0.8237 0.7041 0.9692 0.8878 0.7655 0.6712 0.7817 0.7138 

X
+

Li
ne

a
r 

CV: 

Wide-
shallow 

 0.1350 0.0829 0.2541  0.0423 0.0443 0.0169 0.0169   0.0200 0.0150 0.4212 0.0199 0.0109 0.0412 0.0086 0.0037 

Narrow-
deep 

 0.1352 0.1449 0.2969  0.0922 0.0973 0.0341 0.0341   0.0595 0.0558 0.1624 0.0783 0.0593 0.1185 0.1327 0.1652 

Ratio ND:WS  1.0021 1.7482 1.1686  2.1787 2.1972 2.0198 2.0198   2.9760 3.7108 0.3857 3.9284 5.4218 2.8795 15.467 44.585 

Rel. 
to 
whole 

Wide-
shallow 

 1.1440 1.1367 0.9677  0.7394 0.9500 1.0000 1.0000   0.8911 0.7842 2.9627 1.0483 0.8584 0.7714 0.7947 0.7162 

Narrow- 
deep 

 1.1190 0.9285 0.8895  0.6105 0.7576 1.0000 1.0000   0.8415 0.7589 1.2934 0.9115 0.8025 0.7461 0.7664 0.6863 
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