A Graph and its Complement with Specified Properties. IV. Counting Self-Complementary Blocks

Jin Akiyama
NIPPON IKA UNIVERSITY
KAWASAKI, JAPAN
Frank Harary
THE UNIVERSITY OF MICHIGAN
ANN ARBOR, MICHIGAN

Dedicated to Robert W. Robinson

Abstract

In this series, we investigate the conditions under which both a graph G and its complement \bar{G} possess certain specified properties. We now characterize all the graphs G such that both G and \bar{G} have the same number of endpoints, and find that this number can only be 0 or 1 or 2 . As a consequence, we are able to enumerate the self-complementary blocks.

1. NOTATIONS AND BACKGROUND

In the first paper [1] in this series, we found all graphs G such that both G and its complement \bar{G} have connectivity 1, and other properties. In the second paper [2], we determined the graphs G for which G and \bar{G} are obtained from some graph by the same unary operation. More recently [3] we characterized the graphs such that both G and \bar{G} have the same girth and the same circumference 3 or 4 .

An endpoint of graph has degree 1 . We denote the number of endpoints in G by $e=e(G)$ and in \bar{G} by \bar{e}. We characterize all the graphs G with $e=\bar{e}(\geq 2)$ in the next section, and count the number of selfcomplementary blocks in the last section.

[^0]Following the notation and terminology of [5], we define the join $G_{1}+G_{2}$ of two graphs to be the union of G_{1} and G_{2} with the complete bigraph having point sets V_{1} and V_{2}, and the corona $G \circ H$ of two graphs G with p points v_{i} and H is obtained from G and p copies of H by joining each point v_{i} of G with all the points of the i th copy of H. For our result later we need a ternary operation written $F+G \circ H$ which is defined in [3] as the union of the join $F+G$ with the corona $G \circ H$. Thus this resembles the composition of the path P_{3} not with just one other graph but with three graphs, one for each point, for example, Figure 1 illustrates the graph $A=K_{1}+K_{2} \circ K_{1}$.

2. ENDPOINTS

Let g_{p} be the number of graphs of order p.
Lemma 1. For $n \geq 1$, the mapping $F \rightarrow F+K_{n} \circ K_{1}$ which takes graphs F of order p to graphs $G=F+K_{n} \circ K_{1}$ of order $p+2 n$ is one-to-one.

Proof. Suppose G can be written in the form $F+K_{n} \circ K_{1}$. We will show that F is uniquely recoverable from G. Let S be the set of points of G which are adjacent to endpoints. Clearly S is the point set of the distinguished subgraph K_{n}. Let H be the subgraph induced by $V(G)-S$. Then H has at least n isolates, and removing exactly n isolates from H leaves F.

Lemma 2. If G has two endpoints, then \bar{G} has at most two endpoints.
Proof. Let v_{0} and v_{1} be two endpoints of G, adjacent to u_{0} and u_{1}, respectively. Then obviously the only candidates for endpoints in \bar{G} are u_{0} and u_{1}.

Theorem 1. A graph G of order $p \geq 4$ has $e=\bar{e}=2$ iff G is of the form $F+K_{2} \circ K_{1}$, where F is a graph of order $p-4$.

FIGURE 1. $A=K_{1}+K_{2} \circ K_{1}$

Proof. If $e=\bar{e}=2$, then G has exactly two points v_{0} and v_{1} of degree $p-2$ and exactly two points u_{0} and u_{1} of degree 1 , where u_{0}, u_{1} are not adjacent to v_{0}, v_{1}, respectively. Since $\operatorname{deg} v_{0}=\operatorname{deg} v_{1}=p-2, v_{i}$ is adjacent to every point other than u_{i} for $i=0,1$. On the other hand, u_{i} is not adjacent to any point other than v_{1-i} for $i=0,1, \operatorname{since} \operatorname{deg} u_{0}=\operatorname{deg} u_{1}=$ 1. Denote by F the subgraph of G induced by the point set $V(G)-$ $\left\{v_{0}, v_{1}, u_{0}, u_{1}\right\}$. Then in G any point v of F must be adjacent to both v_{0} and v_{1} which are adjacent to each other by the above observations. Thus G is a graph of the form $F+K_{2}{ }^{\circ} K_{1}$.
The converse follows immediately from the proof of Lemma 1. I
Corollary 1. The number of graphs of order p with $e=\bar{e}=2$ is g_{p-4}.
Proof. By Theorem 1, G is of the form $F+K_{2}{ }^{\circ} K_{1}$ where F has $p-4$ points. Hence by the $1-1$ correspondence of Lemma 1, the number of graphs G with $e=\bar{e}=2$ is g_{p-4}.

Corollary 2. All graphs with $e=\bar{e}=2$ have diameter 3.
Proof. The maximum distance between two points of $F+K_{2}{ }^{\circ} K_{1}$ is 3 , as this is the distance between the two endpoints.

3. SELF-COMPLEMENTARY GRAPHS

A graph G is self-complementary (or briefly, s -c) if it is isomorphic to its complement \bar{G}. The isomorphism between G and \bar{G} can be represented as a permutation, α, on $V(G)$. We will write $\alpha(G)=\bar{G}$ and call α a complementing permutation for G as in Gibbs [6]. We will assume that all permutations are expressed as the product of disjoint cycles. We first state the result obtained independently by Ringel [8] and Sachs [10], which gives the cycle structure of a complementing permutation.

Theorem RS. If G is $s-c$ of order p and $\alpha(G)=\bar{G}$, then if $p \equiv 0(\bmod 4)$, each cycle of α has length divisible by 4 and if $p \equiv 1(\bmod 4), \alpha$ has exactly one cycle of length 1 and all other cycles have length divisible by 4.

We begin with the result concerning the number of endpoints of a s-c graph, which was communicated to us by R. W. Robinson and proved nicely by one of the referees.

Lemma 3. A self-complementary graph does not have exactly one endpoint.

Proof. Suppose G is s-c with a unique point of degree 1. Then G must have a unique point of degree $p-2$ and these observations hold for \bar{G} as well. In G let $\operatorname{deg} v_{1}=1$ and $\operatorname{deg} v_{2}=p-2$. Hence in $\bar{G}, \operatorname{deg} v_{1}=$ $p-2$ and $\operatorname{deg} v_{2}=1$. But v_{1} and v_{2} are adjacent in exactly one of G and \bar{G}, a contradiction.

We now characterize all s-c graphs with two endpoints.
Lemma 4. All s-c graphs of order $p+4$ having two endpoints can be constructed using the ternary operation $G=F+K_{2} \circ K_{1}$, where F is a s-c graph of order p.

Proof. Let G be any s-c graph of order $p+4$ having 2 endpoints. Since $G \cong \bar{G}$ and G has exactly 2 endpoints, we know that G is of the form $F+K_{2} \circ K_{1}$ for some graph F of order p by Theorem 1. On the other hand, it is easy to see that $G=F+K_{2} \circ K_{1}$ is s-c iff F is s-c. Thus, G can be constructed using the ternary operation $G=F+K_{2} \circ K_{1}$ for some s-c graph F of order p. I

We denote by s_{p} the number of all s-c graphs of order p and by $s_{p}^{\prime \prime}$ the number of s-c graphs of order p which have 2 endpoints. Since the ternary operation $G=F+K_{2} \circ K_{1}$ is $1-1$ as proved in Lemma 1, we have the following equality from Lemma 4.

Lemma 5. For any positive integer p,

$$
s_{p+4}^{\prime \prime}=s_{p} .
$$

Recall [5, p. 24] that G is a block if G is connected and has no cutpoint. The number of blocks was determined by Robinson [9]. Our object is to derive the number of self-complementary blocks.
Lemma 6. If G is a $s-c$ graph with no endpoints, then G is a block.
Proof. Assume that G is s-c with no endpoints but has a cutpoint v. The removal of v from G results in a subgraph with at least 2 components. Let G_{1} be a component of $G-v$ and let $G-v=G_{1} \cup G_{2}$. Thus $G-v$ contains a complete spanning bigraph B whose point sets are $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$. The cardinalities of both $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ are at least 2 by the hypothesis that G has no endpoints. Therefore \bar{G} is 2 -connected and hence $G=\bar{G}$ cannot have a cutpoint, a contradiction.

Read [7] found a formula for the number of self-complementary graphs s_{p}. Frucht and Harary [4] derived an alternative equation. We now see how to count $s-c$ blocks in terms of the numbers s_{p}.

Theorem 2. For any positive integer $p \geq 5$, the number of $s-c$ blocks of order p is $s_{p}-s_{p-4}$.

Proof. Let G be a self-complementary block of order p, so that $p \geq 5$. By Lemmas 3 and 6, the number of s-c blocks equals s_{p} less the number of $\mathrm{s}-\mathrm{c}$ graphs with $e=2$. But this is $s_{\mathrm{p}-4}$ by Lemma 5 .

ACKNOWLEDGMENT

We thank Geoffrey Exoo for several helpful comments.

References

[1] J. Akiyama and F. Harary, A graph and its complement with specified properties I: Connectivity. Internat. J. Math. and Math. Sci. 2 (1979) 223-228.
[2] J. Akiyama and F. Harary, A graph and its complement with specified properties II: Unary operations. Nanta Math. To appear.
[3] J. Akiyama and F. Harary, A graph and its complement with specified properties III: Girth and circumference. Internat. J. Math. and Math. Sci. 2 (1979) 685-692.
[4] R. Frucht and F. Harary, Self-complementary generalized orbits of a permutation group. Canad. Math. Bull. 17 (1974) 203-208.
[5] F. Harary, Graph Theory. Addison-Wesley, Reading, MA (1969).
[6] R. A. Gibbs, Self-complementary graphs. J. Combinatorial Theory Ser. B 16 (1974) 106-123.
[7] R. C. Read, On the number of self-complementary graphs and digraphs. J. London Math. Soc. 38 (1963) 99-104.
[8] G. Ringel, Selbstkomplementäre Graphen. Arch. Math. 14 (1963) 354-358.
[9] R. W. Robinson, Enumeration of non-separable graphs. J. Combinatorial Theory 9 (1970) 327-356.
[10] H. Sachs, Über selbstkomplementäre Graphen, Publ. Math. Debrecen 9 (1962) 270-288.

[^0]: Journal of Graph Theory. Vol. 5 (1981) 103-107
 © 1981 by John Wiley \& Sons, Inc. CCC 0364-9024/81/010103-05\$01.00

