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PREMISEOFTIHE STUDY: Largephylogenies can help shed light on macroevolutionary
patterns thatinforrour understanding dindamental processes that shape the tree of life. These
phylogenies also serve as tools that facilicatersystematicevolutionary, and ecological
analysesHere wecombinegenetic data fronpublic repositories (GenBant)ith phylogenetic

data Open_ Iree of Life project) to construct a dated phylogeny for seed plants.

METHODS:. We conducted a hierarchical clusterangalysis ofpublicly available molecular

data formajerclaes within the Spermatophyta. We constructed phylogeniesmjoir clades,
estimated divergence times, and incorporal&id fromthe Open Tree of Lif@roject,resulting

in a seed plant phylogenWe estimatedliversification ratesexcluding thoséaxawithout
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molecular dataWe also summarizetbpological uncertainty and data overlap for each major
clade.

KEY RESULTS: The trees constructed for Spermatophyta caerat 79,881 and 353,185
terminaltaxg the latterincluded the Open Tre# Life taxafor which we could not include
molecular datdrom GenBankThe diversification analyses demonstdatested patterns of rate
shifts throughout the phylogenpata overlap anthferenceuncertainty show significant
variation' throughout andemonstrate theontinued need for data collection across seed plants.
CONCLUSIONS: This study demonstrates a means for combining available resources to
construct @ dated phylogeny for plants. However, this appisashearly stg and more
developmentsrameeededo adddatg betterincorporating underlying uncertaintgnd improve
resolution Thermethods discussed heanalsobe applied to other major clades in the tree of

life.

KEY WORDS: clustering; divergencBme estimation; diversificatiorGenBank; Open Tred o

Life; phylogenetics; phylogenetic methods; plant tree of éiéed plants

The promise of a comprehensive view of extdinersity, whether for a singlelade or the entire
tree of life7has been a major motivation of the systematics community for decadesbly
centuriesNot only does a more complete view of the tree of life excite the imaginatimotiof
evolutionary biologists and the public, but broader and more complete phylogenies allow the
explorationrefevolutionary, biogeographic, and ecological questairesscop¢hat cannot be
achievedwith.smaller phylogenies (Smith and Beaulieu, 2009; Goldberg @040, Edwards et
al., 2010; Smith et al., 2011; Rabosky et al., 2013; Cornwell et al., 2014; Zanne et al., 2014,
Tank et al., 2015; O’'Meara et al., 2016). Individual, thoroughly stuslistéms are
fundamentally.important to evolutionary research pruvide unprecedented detditsat
facilitate indepth analyses and exploratiomrggescale phylogenetic analyses often contain
more variation and error, but provide different perspectivaisoften address entirely different
guestions. Both largendsmaltscale phylogenetic studies can be useful for addressing and
developing evolutionary hypotheses.

The first large seed plaphylogeny (Chase et al., 1993) paved the way for what would
become an important research component for plant phylogenetics and evalargen.
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phylogenetic trees have been ugeglantsto addressates of molecular evolutiofgmith and
Donoghue, 2008kcological question@Beaulieu et al., 2012; Cornwell et al., 2014), evolution
of climate toleranc€Smith and Beaulieu, 2009; Edwards and Smith, 2010; Edwards et al., 2010;
Zanre et al., 2014), flower evolutiqi®’'Meara et al., 2016; Sauquet et al., 2017), genome
duplications.(Tank et al., 2015; Smith et al., 2017), and diversification (Smith et al., 2011).
While these studiesontributed to discussions about large-scale patterns of plant evolution,
caution'needsto be practiced when interpreting them and improvements in the underlying
phylogenieswill*continue toincrease their utility and accurafeaulieu et al., 2012; Hinchliff
and Smith, 2014; Edwards et al., 2015).

Researchers have constructedseenormous phylogenies several ways. For example,
many researchers hagenducedanalyses of publicly available molecular data in NGBI
GenBank (Driskell et al., 2004; McMahon and Sanderson, 2006; Smith et al., 2011; Bocak et al.,
2013). While some focused on constructing data for specific gene regions sucli@s or
rbcL, others have constructed data sets intended for supermatrix analysis (Hiabe2G05;
Goloboff etraly2009)Tools such aBPhyLoTawere developed to automate and pagulate
clusters of‘data for clades in the tree of life araljole a means of browsing the results of these
analysegSanderson et al., 2008). Smith et al. (2009) developed PHLAWD to conduct a so-
called”baited analysis where gene regions may be identified a pherebydramatically
speethg up clustering analyses. iBlprocedure was extended with PBERto allow for
automatic updating when new sequences become avdiladpeerdo-Carrasco et al., 2014).
Several newly:dvelopedsoftware packagdsave builton thesemethods includinggUMAC
(Freyman, 2015) that incorporates batiaited analyses and singlenkage clustering methods
as well as a novel maas of determining when there are enough overlapping data, and
SUPERSMART (Antonelli et al., 2017) that includes analyses from clustering to divergence-
time estimation. Recently, analyses that can accommodate DNA barcoding sequences have also
been developefChesters, 2017).

Whilesmethods have been developed to analyze publicly available data, motEtal
arenot availabldor all taxa.To overcomehis challengevhenconstruang comprehensive
phylogenies, researchers have synthesitieer sourcesletz et al(2012)combined molecular
data available in public database$h taxonomic information for datdeficient taxao construct

a comprehensive phylogeny of Av&gaulieu et al. (2012nanually synthesized phylogenies to
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construct a trethat could be used for comparative ecological studies. More recently, the Open
Tree of Life presenteddraft tree of all life constructed from a synthetic taxonomy and a
phylogenetic synthesis analgsiased on sets of published phylogenies contributed and curated
by the communit of systematist§Smith et al., 2013; Hinchliff et al., 2015; Redelings and
Holder, 2017). The taxonomy, called OT-taxonomgsconstructed through combining
taxonomies from different sources (e.g., NCBI, dondhairspecific resourcesyhile excluding
“nonphylogeetic’ taxa (e.g., incertae selli© T-taxonomyattempts to be comprehensive and is
updated as €omponent taxonomies are updatad refinement edits are contribu{@tes and
Cranston, 2017).Ae Open Tree of Lifprojectalso has resources that allows researdioers
contribute phylegenies (McTavish et al., 2015) that can then be synthesized into a
comprehensive tree of lifglinchliff et al., 2015)In addition to the updates provided by the
community, synthesis methods that combine phylogenies and taxonomy also continue to improve
(Redelings and Holder, 2017). In this study, amed to use these resources along with other
molecular'data to construct resolved and datechprehensive” phylogenies. Here, by
“comprehensive”, we mean thisle treesnclude the taxa in the Open Tree of Life taxonomy,
regardless'of whethénese taxa have molecular data availat®vever, many clades may still
require significant taxonomic revision or examination to determine spexigzosition.Smaller
scale studies that detail the systematics within these clades will continue to improve the
taxonomies and phylogenies.

One consistent limitation of the synthetic trees produced by the Open Tree ofojgfet pr
is the lack.ef‘branch lengths, whether molecularetativeto divergence timegHinchliff et al.,
2015). Whilesbranching order infms how species are related, branch lengths are necessary for
conducting many othetownstreantomparative analyse€alibrations, in the form of fossil data
or secondary calibrations, necessary for conducting divergence time analyseslalde
through public resources such as plaéedioDB (https://paleobiodb.org; http://fossilworksg),
Fossil Calibration Btabas€Ksepka et al., 2015TimeTree(Hedges et al., 2006and DateLife
(http://datelifeorgprojects. hese may be useful for largemprehensive phylogenetic projects
such as thexOpen Tree of Liteut have yet to be incorporatddhere are other ways in which
branch lengths, relative to time, can be incorporated into large phylogenies. For exaofple
suchasCONGRUIFY (availablein the R packag&EIGERvV. 2[Harmon et al., 2008; Pennell et
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al., 2014] generate secondary calibrations from a dated tree and apply them to an undated tree
(Eastman et al., 2013).

Here, we present a dragdhylogeny forseed plants that includds/ergence times. We
useda hierarchicaldivide-and-conquer approach for constructing data sets using publicly
available melecular data and combine these sitgawith the Open Tree of Life results. We then
used existing resources to help calibrate and date the phylogenies we construchigVhile t
phylogeny'maybe used feeveralpurposesas a preliminary exploratiomwe discuss patterns of
diversification‘and areas of phylogenetic uncertamig.also discuss significant limitations in

the existing data and the need for further developments moving forward.

<HI>MATERIFALSAND METHODS
<h2>Data description—
We used thavailable information ilcenBank release 218://ftp.ncbi.nlm.nih.gov/genbank
as downloaded and processed by phlawd_db_nfakaiable at
https://githubream/blackrim/phlawd_db_makeWith some exceptions, we excludedst
sequences'with fewer than@®bBpbecausave found many of these to hawveorrect species
identificatiens orinsufficientinformation for resolution (see Discussion for more detallsis
problemwas often worse in more complex and speciose cl&deslso excluded genomic
sequencegoften in the form of mitogenomes plastomeysbecause the size of the large
sequences precludes efficient incorporation

Wewsed the Open Tret Life synthetic tree releagel and taxonomy version 3, which
researchers:ean obtain from the Open Tree of Life website
(https://tree.opentreeoflife.org/about/synthesis-release/v9.1). We swtexbrrors in the tree
that needed to be fixddr our merging procedure to wockrrectly(procedure described
below). For.example, thBapindales in release 9.1 of the Open ‘biddfe synthetic tree is
nonmonophyletic, ands a resujtmany of the taxan that clade were found at the base of the
eudicots. We'removed these taxa becanmseywould be added by molecular data. Our edited
tree can befound attps://github.com/FePhyFoFum/big_seed_plant_taémsg with the other

data used for the projed¢tmprovements and issues may be contributed at this websibatinue
updating and refining the phylogeni&ge alsoobtained the¢ime-calibratedphylogeny
comprising 798 Spermatophyta taxaMggallon et al(2015)and used the inferred divergence
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times as secondary calibrations for our analyses (more detBilgargence time estimation
below).

<h2>Data set and phylogeny construction—
To construct.a.comprehensive phylogeny, we conducted a hierarchical analysis with ihdividua
phylogenies constructed for major clades (listed in Appendis&l Supplemental Data with
this article)and placed into context based on the Open Tree of Liféagalion et al (2015).
This procedureresulted in two comprehensive seed plant phylogenies: one with the deep
branchesresolved according to Mag@alet al. (201pand one with the deep branches resolved
according tdhe,Open Tree of Life releaSel. We developed a new software package,
PYyPHLAWD, to construct datsets for each major clade of seed plants Aggeendix S1 for a
list of clades)We describe the general procedure as it relates to these analyses here (gee Fig
For eachindividual major dade,we conducted the following analyses. First,
PyPHLAWD constructed folders for each clade, identified by NCBI taxonomy, within the major
clade of interest. For example, for ApialeyPHLAWD construcedfolders for Apiineae,
GriseliniaceaeyPennantiaceae, and Torricelliaceae. Within each ofRiiE$#,AWD then
constructed.folders for their respective subclddas, within Apiineae, folders for Apiaceae,
Araliaceaey"Myodocarpaceae, and Pittosporaceae were craadest) on. Within the folder of
the nost nested clad®yPHLAWD placedall sequences of the contained taxa. For example, the
folder for genusSaniculawithin the Apiales contained a file witt¥8sequence®yPHLAWD
then conducted a clustering analysis consisting of an altijlastnanalysis followed by a
Markov clusterialgorithn(MCL) (Dongen, 2000)Here, a cluster refers to a set of sequences that
are potentially homologous (usually corresponding to a gene regimmblastn analyses, we
considered successful hits to overlap at least by 65%, haveaineeof at least0°, and to
have identity.ef.at least 20%. For MCL analyses, we used the optiahe-heg-logl0 -te 12f-
'9q(50)" -1 2:1*:0Once constructed, the clusters were placed in a folder within the clade folder
(e.q.,23 clusters were placed in a folder calletlisters within the folder forSaniculg.
Alignments‘usingdMAFFT v.7.305bwere constructed for each of these clustegoh and
Standley, 2013)These analyses were repeated for each tipward clade.
To construct clusters for each of the rootward clades (e.g., the paBaniotila

Saniuleae), we proceeded in a postorder fashion (i.e., from tips toAbegch rootward clade,
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we would conduct the following analysis. If there was one subtending clade, the clusters of the
child folder would be placed in the parent folder. If there was more than one sogteladie,

the clusters from the first subtending clade, chosen arbitrasiseplaced in the parent folder.

For each additional subtending clade, we conducted a blastn analysis of the subtadding cl
clusters and.the parent dess whichcould result in multiple clusters hitting each other (e.g., if
a cluster was split in a subtending clade because of poor overlap but was more domplete
another'set'of'sequences). We therebamestructed graphs where nodegresented clusteand,

if there was"a'successful hit between sequences in different clastedge connecting those
nodes was placedor each connected component that consisted of more than one cluster, we
merged the sequences and created a new cluster in the pedentius procedures similar to

the algorithm used to construct initial clusters, cliques, by PhyLoTA (Sanderabr2@d8) but
applied between clusteM/e then condued a profile alignment, merging the subtending and
parent clusters usingAFFT v.7.305b (Katoh and Standley, 201Blhis process was repeated
until the root of the major clade was reached (e.g., Apiales).

Oneeyclustersvereconstructed, wbuilt a supermatrix datset for each major clade
listed inAppendix S1If the cladehadmore than 100 taxa, we included clustéet contained at
least 20%»0f the taxa included in the NCBI taxonomy. If the clade had fewer than 100etaxa, w
included.the cluster if it contained at least 70% of the taxa included in tBétsBiXbnomy. This
difference in percentages was intended to compefwdtese gene regions sampled for tipward
clades that have species level sampling (and so would be expected to have a high percentage of
species ineludedAlthough this initial procedure was automatee manually examined
whether majergene regions (e.g., those sampled by the angiosperm tree of life podjisctf
al., 2011])were present in the set of clustbrg missedn the supermatrix construction given the
filters aboyeln these cases, the misggehe regionsvereadded.

For.each supermatrix, we constructed phylogenetic trees using R&#x812.11
(Stamatakis;2014) using the GTIR#olecular model partitioned by gene regibar the first
analysis, werconstrained clades, as recognized by NCBI, to be monophyletic. Many of the
rootward nodes. in the angiosperm phylogeny require genomic or transcriptomic data to be
resolved data that areot included in these speciesntric analyses. After conducting this
constrained analysis, wested constraints by calculating a quartet proportion measure (Pease et

al., 2018, in this issue) and collapsing the node if less than 30% of the quartets supported the
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clade. We then reran RAXML using the previous ML result as a constraint with the taxa from
unsupported clades removed in order that they may be estimated withcoh#traint.

Generally, ve assumethatthe taxonon was correct unless demonstratdderwise After trees
were constructed, we manually inspected the phylogenies and removed outlyiagstaxed to
be misidentified (based on branch length or position). Rooting was performed based on
information available on the most recent systematic studies (typically as referettozd in
Angiosperm Phylogeny Website version 12—-13
http://www.mobot.org/MOBOT/research/APweb/)

<h2>Calculating support and data overlap—Because we may have a series of constraints
applied to'each branch, we could not conduct traditional bootstrap aredyisgglemented in
RAXML. To ascertain the confidence in edges, we insezaployed the quartet approaches
described In this volume (Pease et 2018, in this issyeBriefly, these analyses consist&d
using the alignment and the maximum likelihood teee®n each edgelrawa random number

of quartetsrof'sequences that represent the quartets defined by the edge inrde Wieh the
likelihoods*forthat edgand the two alternative resolutions were calculaaed the resolution
that has the highest likelihooebs recorded. This procedure was done 200 times for each edge in
each subtree. We then summarized twath the Quartet Concordance (QC) measwigich
calculates the ICASalichos et al., 2014) based on the distribution of quartets that support or
conflict with theresolution found in the focélee.

Data'overlapvas measured for each of the major clades and visualized on eadh tree.
this case, data‘overlap was defined as the number of sites that had overlapping éata betw
sister cladeslo calculate overlap, we proceeded through the phylogeny in a postorder fashion
and calculatedhetotal number of sites that contained at Iebsip of overlagbetween each
subtending,sister cladé/e calculatedhis as a sitevise measure because each gene region may

contain sequences with poor overlap.

<h2>Divergence-time estimation—

As with the phylogenetic construction, we also conductei@rarchical analysifr divergence-

time estimationWe conducted divergence-time analysis using the penalized likelihood approach
as implemented in treeRSanderson, 2002; Smith and\@ara,2012). To apply constraints,
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we examined overlap between the Magpalét al. (2015) dated tree and each individisde
tree. For every clade in the individual trees that was monophyletic Mabellon et al(2015)
tree we applied a constraint with a fixed age of the node hewggt)ing in 590 constraints. We
then conducted treePL analyses with a relatively high rate smoothing penaltylogiue 10),
given the size,of the phylogenies.

<h2>Largéetreeconstruction—

We constructed fouargephylogenies: GenBank taxa with a backbone provided by Open Tree

of Life version 9.1 (GBOTB), GenBank taxa with a backbone provided by Magallén et al. (2015)
(GBMB), GenBank and Open TreéLife taxa with a backbone provided by Open Toétife

version 9. 1:(ALLOTB), and GenBank and Open Toétife taxa with a backbone praed by
Magalldén et al.(2015)(ALLMB) . To examine detailed differencbstween the two backbones,

please consult the Open Tree of Life webditépE.://tree.opentreeoflife.orghedifferencesare

too great te detail here. Primarily, the Magallén et al. (2015) and OpenfTtde backbones
weresimilarbut with the Open Tre# Life backbone providing more resolution toward the tips,
that can baiseful when there ar® molecular datd=or GBOTB and GBMB, we replacech
major cladewith thephylogeny constructed, as described ab&oe ALLOTB and ALLMB, we
replaced.the cladrepresenting each major clade (constructed as described above) with the
constructed clade and then added taxaweaé notsampled in the phylogeny but found in the
original Open Tree of Life trewith the resolutiometained Many of the taxa added bdawill be
unresolvedsThe taxonomic names found in the final tree consist of those found primiaoiih
the Open Tree'of Lifand NCBI taxonomies.

We aim to continue to improve the phylogenies constructed here. To that end, we provide

updated versionsf this treeat https://github.com/FePhyFoFum/big_seed_plant_tnets

corresponding.alignments and individual clade trees linked within. We also hogecttssues
discussed.and.noted in the issue tracking syetethis websitén order to continue improving
the resources.

<h2>Diversification analyses—We conduaddiversification rateshift analyses using

MEDUSA (vers0.951 [Harmon et al., 2008; Pennell et al., 2005]the GBOTBphylogeny.
We chose MEDUSA, primarilypecause the size and scope of the phylogenies prevented
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convergence of Bayesian methods in a timely mamtviEDUSA adds piecewise claespecific
diversification models to a timealibrated tree in a manner that best explaissig AlC)the
configurationof the treeBecausdirth—death models generally require phylogenies to be fully
bifurcating and to have narero branch lerths, we randomly resolved any polytoméesl set
minimum branch lengths to 0.1. We arrived at this number after exploring a rangelef amal
larger minimum valuebecause this value was the smallest minimumdigamotincrease
spurious rate'shiftecause larger treean suffer from stadtically spurious rate shifts simply
from the combinatorics involved, piecewise models were only added if they improvetithe A
score by more than a threshold of 15.97 units (correction calculated by ME@U8Aree with
79,882 tipssee,Pennell et ak(14]). The analysis was terminated when no subsequent

piecewise model improved the AIC beyond the threshold.

<h1>RESUL TS AND DISCUSSION

<h2>Sampling in the large phylogenies—

Therewere®19;355 species, 13,328 genera, and 2dghter taxaof seed plants recognized by
GenBank as of'releagd 8. Of these, 79,68ecies had data thaeresufficiently overlapping,
based onithe methods discussed here, to include in the analyses presented here 802 these
were notpresent in t@T-taxonomy, most probably due to mismatch in the version of NCBI
used for taxonomy merging in OT-taxonomy and that used for our GenBank anahgeses
GBOTB contained 79,88thxa(Figs. 2—4 and GBMB contained 79,874 (Appendix S2).
ALLOTB (Fig™5) contained353,185 taxa and ALLMB contained 383685taxa (Appendix S3).
The discepaney in the number of taxa weasesult of clades being lost to conflict between the
trees constructeaf major cladesnd the Open Tregf Life andMagallon et al. (2015)rees The
higher number of taxen ALLMB wasthe result of fewer input trees in the synthetic analysis
used tacreate the backbone tree with @xonomyand therefore, fewer potential conflicEsor
example, the Open Trexé Life (version 9.1) lacked a monophyletic Sapiedaand so those
taxa are removed from the Open Toéd.ife backbone. We then adda monophyletic
Sapindales'to,the backbone based on data from GenBawnletaunable to add any unplaced
taxa back. Because the Sapindalesmonophyletic in the Magah et al. (2015) backbone,
those unsampled taxauldbe placed back. The fewer input trees for Mageét al. (2015)
results infewer conflicts,moremonophyly, and thereforenore taxa that were unsampled by
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GenBank being representedthe final tree The trade-off, howevewasless resolution for
those unsampled taxa than would be found in the ALLOTB.

Some of the conflict found in the Open Tree of Life synthesis tree had to be reimoved
successfully place the major clad€le Sapindales, discussed aboigean example of this
problem, whiehis justoneof several challengeabkathighlight the need for human intervention in
these large analyses, also discussed by Beaulieu and O’'N208a8j {n this issue. Human
intervention'was also necessaryé@moving obvious outliers (based on branch lengths or
taxonomic'placement) and identifying gene regions for data set constrluhifirdata quality
issuedecreasandbr data availability increases dramatically, human intervention seems to be a
necessarelement to construct high-quality large dseds.

Data‘overlap, as measured by the overlap in sites between subtendings podssnted
on the GBOTB(Fig3). Thisanalysisprovidedan edgewise view of the distribution of data
while accommodating fahe fact that even if the same gemessampled between taxa, the sites
may not overlap significantlylhe distributioracross edge$ig. 3B) roughly approximatedn
exponentialdistributiomnvith a minimum overlap of 0 bp, maximum overlap of 29,22%NgR”n
of 2340 bp; and median of 1792 bp. The O-berlap may reflect either a constraint that has no
overlapping.data (one reason to use a constraint) or a resolution with no support{pe riizas
a randomsresolution between equal alternativeshedian value of 1792 bpuggests thahany
of the edges had some overlap in data, roughly corresponding to one or two gene regions. This
resultis not unexpected considering previously analyzed skttaof this magnitude that found
similar result§Sanderson, 2008; Hinchliff and Smith, 2014). Both the relatively low overlap
between sequences and the laclaih in GenBank for roughly 200,000 taxghlightthe need
for additionalsequencingf molecular dat&o resolve more confidently most of the phylogery
seedplants. For, despite theze of the dataetpresented herehere is still little overlapetween
speciesand.there are still unsampled taxa. In the analyses presented here, we largelyl exclude
smaller gene.regions because of misidentification problems (see discussion below). If we were to
include those'smaller gene regions (e.g., IM&,would expecthe median number of sites
overlappingat.each edg¢edecrease.

Supportwas measured as Quartet Concordance (Pease2fild8, in this issyeand
plotted on the GBOTB (Fig. 4T.he distribution of support (FigB) is relatively flat with pikes
at-1, 0, and 1 and with median of 0.29 and mean of 0.285. The spiked4.a0, and 1 reflect
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significant values for the QC measuré.reflects complete support for an alternative, 0 reflects
no support for any resolution, and 1 reflects complete support for the resolutioiMb thee
presentedThis analysis, along with the data overlap, highlights the relative low support
throughout the trebecausehe mediansupportvalue waonly slightly higher than “no support”.
This findingsmay be the result of poor data overlap, underlying conflict due to incomplete
lineage sarting‘or.other processes, or true biological uncer{@rmty saturation, lack of
informative substitutions, etc.)Nevertheless, more detailed analyses adiiadal data would
likely shed 'more light on the details of uncertainty at specific nodes.

<h2>Diversification results—

The primary goal of this study was to explore a way of construdategphylogenies using
molecular data along with resources available through the Open Tree of Lifet.grgeever,

to demonstrate one way to use the resulting phylogenies, we conducted diversiéinatyses.
Our diversification analyses found 472 distidistersification model$471 rateshifts) thatbest
describe the'seed plaplhylogeny While every clade experienced some change in the rate of
diversification;"he most extensive, in terms of number and rate, were found in the Asterales (Fig
2). Ranuneules, Gentianales, and Caryophyllales all also experienced mugtigkshifts.
Furthermeore, many of the shifts were nestéttiin other diversificatiorshifts. The observation
of nestediversificationandlag times between major clades and diversification shifts Hzeen
noted by ther author¢Donoghue, 2005; Smith et al., 2011; Donoghue and Sanderson, 2015
Tank et al#2025). A notable pattern highlighted by the resultsddrat althouglshifts were
associated'with the origin of angiosperms and mesangiosgemriarge shiftsoccurredat the
rootward internal nodes of the tré¢owever, we do not wish to ovarterpret this result
considering the uncertainty associated with large phylogenetic trees, discuesed bis
demonstration.serves as an example of the potential utility of these trees.

There.were challenges in using this phylogenetic tree for diversification analyses that are
worth examining. For exampleiversification analyses were sensitive to the munin branch
lengths chosen. The penalized likelihood dating procedures can result in zerozerodaanch
lengths where there is conflict or little information from the molecular data (i.e., zero or near
zero molecular branch lengthsthe chronograim Usually,branches with very small lengths

will be collapsed. However, MEDUSA analyses require bifurcating trees with non-aaoh br
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lengths at each edge. We set the minimum divergence time branch lengths to be 0.1 but found
that different values resulted differentdiversification inference<Often the result of smaller
minimums was an increase in the estimated diversification shifts afoeizéno branch length
edges. As a resulind to be conservative regarding our estimatedavored the large immum
branch length,valuéNevertheless, we regard these results as coarse approximatianayiegt
refined in the futte with more nuanced divergentsie estimation resultand integration over

the uncertainty'in the phylogenetic estimation of topology and branch lengths.

In addition to branch length considerations, there are persistent concernsgetgadoln
sampling and diversification analyses. Here, we used the phylogeny without the adiikanal
from the OpensTree of Life because the lackesblution in those additional taxa would require
some formof eitherandom or birtkdeath resolution (Kuhn et al., 201While the placement
of taxa based on birth—death models may be useful, the large number of unplaced taxa in the
ALLOTB tree led us to use the smaller GBOTB trigleally, the placement of these taxa should
be informed by molecular data (Rabosky, 2015). In addition to these issues, incomplasear bi
taxon sampling will also influencedhresults This problem, howevelis not specific tdarge
trees as itimpaets all diversification studieandvery few clades of large size haveen sampled
completely

The-diversification analyses presented here demonstraigaytbese phylogenies ay
be used. We highlight the potential pitfalls and caveats with thesehdataver, most of these
apply to smaller datsets as well. In the case of large or small data, uncertainties and
assumptions==i.e., unsupported relationships, incomplete sampling, and/or taxonomic
misidentificatior—need to be understood when interpreting the results of diversification and

other evolutionary comparatianalyses.

<h2>Comparison to other techniques—

Over the last few years, there have been several methodspkel/éor utilizing the publicly
available data stodan GenBankThe method presented here is similar in some Wwaydiffers

in otherimportant waysWe do not present an exhaustive comparison but instead provide a brief
discussion of a few alternatisePyPHLAWD differs from PHLAWD in tha®yPHLAWD is

more flexible PyPHLAWD, unlike PHLAWD, was developed asseries of different scripts,

any one of which can be modifiedyPHLAWD alsodoes not require the user to provide
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sequences a pridoecause clustering is part of the analyBig?HLAWD differs from Phylota
(Sanderson et al., 2008) thatPyPHLAWD only conducts a major clustering analysis tipward,
with BLAST being used to combine clusters deeper in the tree. This proatidwe for large
clusters ta be constructed BEAST can be a limiting factr given that computational
requirements.increase dramaticalythe number of taxacreases. As a resuRhylota does not
report largeclustersoward the root of the tree of lIFISUPERSMART takes a list of taxa
cladenamesand constructdated phylogenies (Antonelli et al., 2018JJPERSMARTIs,
perhaps, the'mostmilar tothat whichwe present here with some exceptioRsst, wedid na
construct @ backbone as part of the analysis presented here and insteatdaxgsting backben
(from the Open, Tree of Life). Many of the majmreageshave required genomic or
transcriptomic:data to resolve major cla¢eg., Wickett et al., 2014and analyse of those data
types often require different methods than those conducted in any of the aforementioned
packagege.g., Yang and Smith, 2014). Future developments could incorporate methods
typically used for genomic data into PyPHLAWD to facilitate the constructionegfeteedges in
the tree ofdifeAnother difference between PyPHLAWD and SUPERSMARhatwe do not
conduct Bayesian analysfs divergence times or phylogenetic reconstruction because of the
size of thexdata presentprecludes that possibilityrhis approach could be implemented within
PyPHLAWD but is not currently. The clustering analyses, merging, and other asipibets
sequence analysatsodiffer. However similarities between the methods suggestiioét could
produce similar resultsvith slight differences in the means of calculating similarity likely to
inject somevariationThis comparison should be explorkdtheras both packages continue to
develop.Finally, we integrate the information from the Open Tree of Life back into the
phylogenies. Integration with the Open Tree of Life is not a go8UHERSMART and so
unsurprisingy that is not part of the analysis.

There.are now a variety of programs that can process data from public databases to
produce clusters, alignments, and trees with and without divergence times. We wuiggest s
that PyPHLAWD is the singldoest solution for constructing moleculdrytogenies using
GenBanklInstead we feel as though PyPHLAWD is another option among a set of good
alternativesand hope that the flexibility of the software will allow for continued updating and
extensionAs new sequences are added to GenBank and other resources, and as the Open Tree of
Life continues to be updatethe alignments and trees generated here can be refined.
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Furthermore, we present these phylogenies through a framework
(https://github.com/FePhyFoFum/big_seed_plant_trias)allows forepating and tracking of

issues and improvemerike that used for software development. We are hopeful that this
frameworkwill facilitatethe enhancement of these resoulEsaus¢éhe community can
communicate.any problendsrectly. The flexibility of automated but not fully automated

procedures also facilitates the ability to intervene, for example, to remoierguabjust gene

sets, and monitor overall qualiffheneed for human intervention halksobeen highlighted by
Beaulieuand"'O’Meara 2018, in this issue). Additionally, we hope that the connection to the

Open Tree of Life will enhance those resources and those comparative analyses that benefit from

more complete,sampling.

<h2>Limitations of these data sets and analyses—Thedatasets and phylogenetic trees
presented here, while they have many benefits, are not without limitations.nQbeatiee
associated witlll largephylogenetic data sets that must be considered ancktats to
uncertainty=and lack of information discussed above and by others (Hinchliff and Smith, 2014;
Edwards et aly2015There are also issues specific to the dataand analysgsesented here.

One fundamental limitatiogpecific to this dataetis thatmanytaxain both the ALLOTB and
ALLMB_denot have molecular data associated and are placed based on taXdostspecies

of seed plants have no molecular data currenttyanBank and those that do may not have
significant' overlap with other sequenc@gile many sequencing projects focus on collecting
more genesregions, there is still a great need for more species that have no data to be collected
and sequenced. In the meantinesgarchers may choose to condeyesian analyses using a
birth—deathbefore randomly resoing polytomies (Kuhn et al., 2011), though ideally the
placement of all taxa should be informed by molecular @Rdbosky, 2015).

In addition tothe fact that mostpecieonly have taxonomic datéhere is alsgignificant
uncertainty.in.the placement of matayxa that ddave molecular dat&lere, we measure
uncertainty.using the Quart€oncordance (QC) measufeeaset al.2018, in this issue)Vhile
this measure alloweads torecordhow often the concordant quartet was inferred over the two
alternative quartets, the methddes not generate alternative resolutions. The individuakééta
are available such that users could generate a set of trees from any other set of analyses (e.qg.,
Bayesian analyses, bootstrap analydésvertheless, th@C and data overlap analyses
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presented here demonstrate that uncertainty is still a concern in these laogepleg\Vhile
datasets with a large number of taxa may present specific problems, recectiptansc and
genomic analysesave shown that increasing the number of genes will also expose the
underlying complexity of conflict inherent to genomic evolutf8alichos et al., 2014; Smith et
al., 2015; Brewn and Thomson, 2016; Shen et al., 2017). Finding better ways of incorporating
this uncertaintyn these large tregsstead of hoping to resolve it, or relying on a single
resolution;mayprove more beneficial as we move forward. Finalljilessome comparative
analyses may be robust to alternative placements ofuagartainty should be considered by
bothresearchers making use of these dataand researchers developing comparative methods

Divergence time estimation &soa major challenge for any phylogenetic stualyd the
challenge only‘increases with datt sizeLarge datasets present a computational burddrere
constrained optimizatioalgorithms become stuck in local optima, a problemithekxacerbated
as dataset size grows and heterogeneity incre§Sesth and O’'Meara, 2012). Many of the data
sets analyzeh this study are some of the largest analyzed and so likely suffer from this
problem. ln=addition to this problem inherent to optimization, there are well-knowreprsloif
rate heterogen®i that can significantly increase estimation e(@mith and Donoghue, 2008
Beaulieu‘et,a).2015).For those researchers that wish to incorporate uncertaintysetatare
made available, but how best to generate a set ofusées penalized likelihoothat represent a
credible intervahnd how best to accommodate the extensive rate heterogamamitg both be
explored further.

Finally;these analyses demonstrate a means for combining molecular datzevipen
Tree d Lifeuinto a “comprehensive” phylogeny. However, these trees are comprehensive only i
that they include the sampled and unsampled taxa represented in the taxonomi€pehthe
Tree of Life. Many clades may still require significant taxonomic work and smaller, species
level, examination before there can be confidence about species composition. So, sile the
phylogenies contain all the taxa from the Open Tree of tef@sions based on smaller scale
studies will.,eontinue to improve these data and aralys

<h2>A remark on short sequences—

We excluded most small gene regions from the skeit@onstruction in these analyses, especially
in more complex and speciose cladessomecasesthis means thagene regions that haveen
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sampled for many taxaere excludedPrimarily, theremoval was done to avoid the inclusion of
misidentified and problematsequencesnany of which were collected as part of barcoding
projects DNA barcodingaims to collect a small number of specific gene regions for many
species to_help with identification and to address other specific quesTioese effortsthough
each may have different goatesult in the submission of many sequences to GenBanétheat
researchers _caslownload and use in, among other things, pstedic analyse©ne major goal
for biologistsisto increase the completeness of phytege treesBarcodedata, whictcan
increase sampling in undersampled geographic regions, woalddsrable resourdkthey
could be incorporated into phylogermetinalyses

Despitesthese benefjtsur analyses have found many of these sequencesto be
hindrance,resulting in our attempt to exclmlestshortsequencedVhile mostshort sequences
may not suffer from any of following problems, we found that nauffered from several issues
that hindered accurate reconstructieinst, many shorsequences containéttle to no
phylogenetic information (e.g., few informative sites), whitdy be the result of the small size
of the genewregions used, slow molecular evolution of the gene, or slow molecular evolution of
the lineage: When lineages have little to no phylogenetic information, single maximum
likelihoodranalyses can be misleading as there are many nearly equally probable placements of a
specific taxonBayesian methods and likelihood methods that integrate over topological
uncertaintycan corectly report the uncertainty he placement of uninformative sequences.
However,Bayesian methods anetractable for dataets otthesizes presented hefeEhere are
ways to betterincorporate phylogenetic uncertainty in maximum likelihood andbyseke
computationalburden for these large data sets is quite high. Furthewhideesequence
similarity can be useful for taxonomic identification, having testegrate acrosthe familial or
ordinal level because of lack of phylogenetic information is not particularly useful for
phylogenetic.analyses. So, while we may be able to accommodate for the uncertainty in the
placement of these taxa, it is unclear wkethe increase in complexity and runtimevigth the
inclusion ofssuich sequences. Of course, not all barcode or small sequences have tms lpubble
the ability toridentify which do have the problem will improve these large phylogenietitsef
enormously.

The second major problem that we found, misidentificateomoredifficult to address
and,without correctionnegates our ability taccurately estimate phylogenies. In our analyses,
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we found that many of the sequences that violated the constnané misidentified. For
example, in an analysis of the available data for Lauralesoundseveral sequences such as
Litseacollina andAlseodaphne andersorthat are more probabBndiandria Beilschmiedia,
Cryptocarya or Neolitsea(Appendix S4)While these genera mawptin factbe monophyletic,
the samples.seem to fall far from their labeled taxonomic placeEigrgr taxonomic revision
may be necessary or these sequeneesmisidentified.Even when there are multiple loci that
representatan, if one sequence is egregiously misidentified, that sequence can drive the
incorrect placement of the taxofhe problem of misidentification was so egregious that we
filtered outmostshortsequencet eliminatemisidentification when possibl&@heremayalsobe
problems with=miglentification of larger sequences, but our analyses found that the exclusion of
mostshort'sequencaramatically reduced this difficultyVhile methods for correctly
identifying sequences in GenBaakebeyond the scope of this paptite use of constraint trees
aided in our ability tasolatemisidentified sequenceand future research will expand these
efforts.

Both=prablems highlight the need to address how we should proceed with short and
misidentifiedsequencesof large phylogenetic analys@here are thousands of useful sequences
that do not.suffer from thesesueghat we have excluded. However, when conducting large
analysesgsmall percentages of bad data can dramatically inhibit accurate phylogenetic estimates.
With additional developments, we hope that bad sequences may be filtered lse thahy
good short.sequences can be incluiféd.have included with PyPHLAWD lists of sequences or
taxa that may*he problematic better incorporate shorter sequent¥éshave alsdegun
documentingsproblematic sequences mae generalesourcdhat all software and researchers
canutilize(https://github.com/FePhyFoFum/séditiers). Uncertainty can be accommodatedt
perhaps for shogequences, more constrairssérches asplemented in software packages
meant for barcode identification would be more approp(Mtgsen et al.2010; Berger et al.,
2011).Misidentification may be more difficult to handle, but resources that allow for the
identificationrand correction of these sequences that could be utilized by the cheudti

software packages would be preferable.

<h2>Constraints and large phylogenies—
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One of the fundsamental challenges to constructing phylogenies araledgean the treea
problem exacerbated by complex patterns of conflict and lack of informationSalighos et
al., 2014; Smith et al., 2015; Brown and Thomson, 2016; Shen et al., 2017). The computational
challenge of constructing phylogenetic trees scales exponentially with the addiaea,cdrd
soreconstrueting deeper and deeper edges increasestipaitational burden and complexity
significantly. This challengdeads to the questiarf whethemwe need to always reconstralcese
deeper’edgeshen constructing large phylogenies. In other words, can we build on the
knowledge that'we W& accrued from other analyses? Previous studies may have successfully
analyzedootward nodes that identify major clades using genomic atrdftscriptomic data
with sophisticated analyses that can incorporaieenrsomplex evolutionary modeé/ickett et
al., 2014; Yang et al., 2015; Givnish et al., 2015; McKain et al., 2016; Comer et al., 2016;
Walker et al., 2017)Datasets withlarge numbers of taxa may not be able to take advantage of
theselarge and complex datsets or thenore complex evolutionary models simply due to the
scale of the datset.More importantly, he large phylogenetic dasets examined here
consistingsofhiousands of speciesre generally not adequate for reconstructing or testing
hypotheses regarding deep and complex evolutionary relationships due to poor dataaaderlap
computational complexitylhe approach we take here is to leave the resolution of the deeper
edges of.the tree to other analyses (summarized in the Open Tree of Life) andiatsteadir
analyses on the finer details nested within each major clade. For example, we assume that the
gymnosperms form a monophyilegroup that is sister thié angiosperms. This assumption,
while still discussedDonoghue and Doyle, 2000), is not controversial and removing the
assumptionswould not only inease the runtime significanfliput thedata we use to reconstruct
the tips may not be the optimal data to reconstruct the deeper edges. By making less
controversial assumptions, we not only reduce runtime but focus our reconstructiateffort
more uncertain parts of the tree.

One limitation of theanalyses presented helnewever s that we reliedn a single
resolution ferthese constrainBecent genomic and transcriptomic analyses have highlighted
extensive conflict across the tree of life and uncertainty associated with more than simply lack of
phylogenetic information (Salichos et al., 2014; Smith et al., 2015; Brown and Thomson, 2016;
Shen et al., 203 ®Walker et al. 201)7 Future work should explore means of incorporating the
uncertainty found in these more extensive genomics#dgainto the constraints usedlasger
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phylogeniego better reflect our knowledge of the complexatighin these parts of the tree of
life. There may not be one resolution for a part of the tree of seed plants, and we should look to
incorporating that into our analyses of these large sktta

In addition to the deeper edges in the trem ewtendedhis approach by constructing
phylogenies.wititaxonomybasedconstraints throughoutemoving them when thayere
unsupported. This approach may be controversial given the knowledge and quality of underlying
taxonomyandphylogeny. For examgtar, Fungi, due to complex taxonomic resources and data
availability, applyng more tipward constrainteay be harder thaior plants andnammals.
Furthermare, there may be genera with questionable monophyly. However, as with the deeper
nodes, wesargue that these large phylogenies consisting of thousandsaoé tazideal data
ses with whichrtotestthese hypotheses. Instead, focused studies aimed at phylogenetic
reconstruction of a particular group are the best place for taxonomic revision. These can then be
incorporated into the large phylogenetic analyses where data set coverageaochia
sampling may not be adequate to test those taxonomic hypotNesestheless, as with the
deeper nodesypthese large asafy/should be designed to accommodate the mhewaflict
underlyingthestree of life where possiblle.addition to the computational benefits,raentioned
above constraints can also lelpful when attempting to identify misidentified taxa and clades
that havesrelatively little molecular informati required for successfully resolving the cladie.
suggest further work should be done to examine whédtremgproach would be helpful,
generallyn reducing runtimesn identifying misidentified taxa, anathere researchers have

reduced the"resolution aiajor clades to a small numbafrwell-knownalternative resolutiosn

<h2>Where do we go from here?—

Here we presergset of lage phylogenies for seed plants. We do not intendéisigitto bethe
definitive view.of seed plant evolutiohnstead, we hope that these effantslerscore the
challenges.of these project$ie exercise hdsighlightedissues concerning uncertainty, data
overlap, anddata availabilitihat suggest the neéal continue to improve methods and generate
new dataThisexercisehas also underscored the need for human intervention in the process that
has been highlighted by others (Hinchliff and Smith, 2014), including most recently by authors
in this issue (Beaulieu and O’Meal4)18). While many of the analyses can be automated,

because of the complexity of the data, problems with misidentification, and other data quali
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issues, no steps canshould be fully automateblevertheless, we need places from which to
startto measure progress and build toward the goal of an accurate and resolved seed plant
phylogeny Despitethe challengeghetrees presented here will hopefully serve as resources that
will continue to be upated as new data become available and as the Open Tree of Life resources

are updated.
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FIGURE L»Waerkflow for analyses in constructing ttrees.For each clade listed lsppendix

S1, here Apiales, we clustered sequences starting at the most tipwardSaadrikahighlighted
here), and merged clusters as we moved rootward Apiales. We used the clusters at the most
rootward clade (Apialem this examplgto construct a supermatnxhere we chose clusters that
had good representation for the rootward clade or good representation for a subtendifag clade
shown by-the.gene region on the far right). Using this supermatrix, we constructed a phylogeny
and estimated divergence times. We then placed this constructed phylogeny int&bloadac
(either Open-Tree of Life or Magéh et al. [2015]asis or with the unsampled taxa from the
OT-taxonemy placed back.

FIGURE 2. (A) GBOTB tree with colors corresponding to binmates of diversification (see

text for details on analyse$jates were binned to make for easier vigaéibn of ratesRed dots
denote nedes.with shift in diversification rateand the size of the dot ceasponds to the
magnitudeof the shiftB) Lineage through time plot of the GBOTB tr@vergence times are
denoted with"€oncentric circles.

FIGURE-3. Data overlap presented on the GBOTB {#&eand(B) as a histogram summarizing
across all dataValues on the tree are displayed asddgansformed to allow for easier visual
discrimination.

FIGURE 4. Support asneasured byuartetConcordancecorespresented on theBOTB tree

(A) and(B) as a histogram summarizing across all data.
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FIGURE 5. The ALLOTB treewith some major edes labeled and 353,18ps. Divergence
times are denoted with concentric circles.
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