
UNIT 7.8Molecular Modeling of Nucleic Acid
Structure: Energy and Sampling

Building on the introduction to molecular modeling of nucleic acid structure presented
in UNIT 7.5, this unit discusses computational and theoretical methods aimed at giving
greater insight into the structure and energy of nucleic acids. This includes describing
means for representing the energy in model nucleic acid structures and methods for
sampling relevant conformational states.

THE ENERGY REPRESENTATION

To aid a modeler in judging the reliability of a given model structure, it is useful to include
some representation of the energy. The presumption is that structures with lower ener-
gies—such as those with less steric overlap, less distortion, and more favorable interac-
tions—will be more representative. As discussed (UNIT 7.5), adding a representation of the
energy to a physical model is difficult; however, some implementation of the energy for
a given molecular model can be easily programmed on a computer. In common use, the
level of theory applied spans the range from highly accurate ab initio quantum mechanical
(QM) to simpler, empirical molecular mechanical energy treatments. As the accuracy of
the energy increases, so does the computational cost. The increase in computational cost
is tremendous and limits the level of theory that may be applied. For calculating the energy
of a single model structure, very accurate methods can be applied; however, if one is
interested in dynamics or investigating the energy of many configurations of a given
model, less accurate energy representations are generally necessary.

Quantum Mechanical (QM) Treatments

To provide an accurate and complete theoretical description of the energy (as a function
of the atomic and electronic configuration or structure) of a molecular system, ab initio
QM treatments can be applied. Standard codes for performing QM calculations include
Gaussian, Jaguar, Q-Chem, and GAMESS (see Internet Resources). Performing calcula-
tions with these programs is fairly straightforward, even for those without a broad
theoretical background in the methods. For reviews of QM methods, see the books by
Szabo and Ostlund (1989) or Levine (1991). A serious drawback of these methods is that
they are extremely computationally demanding, which typically limits accurate QM
calculations to small model systems (<100 atoms). Recent improvements in the methods,
coupled with the availability of greater computational power, have led to more involved
and highly accurate QM calculations. Accuracy is improved with the use of larger and
higher level basis sets and with the inclusion of electron correlation. More recently there
has also been an increase in the use of density functional methods, which allow the
investigation of larger systems (and implicitly include some electron correlation); how-
ever, even with these improvements, tractable model systems are limited to individual
base pairs or stacked nucleotides. The effect of the solvent, if included at all, can only be
included implicitly (via a mean field or continuum treatment) or through the inclusion of
a very small number of explicit waters around the molecule in the QM calculation. Prior
to using these methods to investigate nucleic acid models, it would be wise to consult the
detailed literature for similar examples. Some recent examples of QM treatments of
nucleic acids include the investigation of base-pairing energetics, base stacking, the
interaction of metal ions with base pairs, and even base solvation in simulations of
individual bases surrounded by a small amount of explicit water (for review see Hobza
and Sponer, 1999). Very few QM calculations have been applied directly in macromolecu-
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lar modeling applications. An exception to this is the critical role of QM methods in the
development, evaluation, and critique of empirical potential functions (as are introduced
later in this section); this probably represents the largest use of QM methods in nucleic
acid modeling.

As mentioned in UNIT 7.5, although the QM treatments have the potential to provide a very
high level of accuracy, this level of accuracy is not always required, and faster less-accu-
rate techniques may be appropriate; however, the commonly applied approximations
come at a cost. Without a QM treatment, it is generally not possible to accurately represent
processes that involve chemical changes (i.e., chemical reaction, bond breaking, or bond
forming), excited states (i.e., electronic transitions), or electron transfer. In practice this
is not a major limitation, since with nucleic acids the investigator is most often simply
interested in the structure, dynamics, and relative importance of a given model.

The middle ground between pure ab initio QM techniques and the faster empirical
potentials (discussed in the next section; see Molecular Mechanics: Empirical Potential
Energy Functions) are semi-empirical treatments. These apply a quantum mechanical
formalism where significant approximations are applied in the calculation to decrease the
computational cost, while accuracy lost through the approximations is offset by the
addition of empirical parameters. The semi-empirical methods allow investigation of
~2500 atoms for geometry optimization or ~100 atoms for dynamics. Their use in
biomolecular simulations has been limited in part due to the difficulty in properly
representing hydrogen-bonded systems; however, the future holds promise with the
development of semi-empirical parameterizations for biomolecular systems, better meth-
ods for treating large systems (Thiel, 1997), and semi-empirical codes designed to run on
massively parallel computers (Dixon and Merz, 1997). Standard semi-empirical codes
include MOPOC, MNDO4, AMSOL, Argus, and ZINDO (see Internet Resources) among
others, and utilize various parameterizations including AM1, PM3, and MNDO. Reviews
on semi-empirical methods discuss the codes and parameterizations in greater detail
(Stewart, 1990; Zerner, 1991).

Despite the higher levels of accuracy possible with the quantum mechanical and semi-em-
pirical treatments, the most commonly applied treatment of energy uses simplified molecular
mechanical (MM) potential energy functions. Given an appropriate parameterization, these
MM potential functions are able to accurately reproduce nucleic acid structure at the atomic
level in a very computationally efficient manner. This allows rapid evaluation of not only
energy, but forces (or the first derivative of the energies with respect to the positions),
thereby allowing analysis of many configurations in a reasonable time frame.

Before leaving this discussion of ab initio and semi-empirical methods, it is important to
mention that there has been significant progress in the development of hybrid methods.
These treat part of the system quantum mechanically (the part undergoing chemical
change) and the remainder with a significantly faster molecular mechanical (empirical)
potential. The hybrid QM/MM treatments allow representation of larger systems (such
as enzymes) with explicit representation of the environment, while still treating the region
of chemical interest (such as the active site) quantum mechanically. Drawbacks of these
methods are that they are extremely computationally demanding (depending in large part
on the size of the QM region) and that there are a number of open research questions,
such as how best to merge the QM and MM regions, how best to decide what part of the
system should be represented quantum mechanically, and what level of treatment to apply
in the QM region (i.e., ab initio versus specifically parameterized semi-empirical) or MM
regions (Field et al., 1990; Stanton et al., 1995; Gao, 1996; Cummins and Gready, 1997;
Chatfield et al., 1998). Although most of the QM/MM applications have been limited to
enzyme systems or small molecules in solution, a recent application involved model
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reactions for ribozymes (Lahiri and Nilsson, 1997). Code for performing QM/MM is in
many of the standard molecular dynamics programs, including AMBER (Pearlman et al.,
1995), CHARMM (Brooks et al., 1983), and GROMOS (van Gunsteren and Berendsen,
1987).

Molecular Mechanics: Empirical Potential Energy Functions

The most commonly applied methods for describing energy use an empirically derived
or molecular mechanics (MM) potential function. This involves the application of a
simplified potential function that has been parameterized to properly model the structures
of interest. The specific parameterization, or force field, needs to represent not only the
intramolecular interactions (based on the covalent structure of the molecule) but the
intermolecular interactions between all the atoms and molecules. Most of the commonly
applied empirical derived force fields describe the intermolecular interactions in a similar
manner. The complete and true atomic energy representation, U(r1, r2,...., rN), involves
the interactions of all N atoms (at positions r1 to rN) in the system. Following Allen and
Tildesley (1987), this energy representation can be decomposed into a sum of pairs,
triples, quadruples, and higher interactions between atom centers:

U (r1,r2, . . . , rN) = ∑U

i=1

N

 (ri) + ∑ 

i=1

N

∑ 

j>i

N

U (ri,rj) + ∑ 
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N

∑ 

j>i

N

 ∑ 

k>j>i

N

U (ri,rj,rk) + . . .

Equation 7.8.1

Approximations are then applied to simplify the representation. Given that the individual
interactions for the terms from the quadrupolar interaction and higher-order interactions
are usually very small, these are often neglected. The first-order term, U(ri), involves
interactions with external fields and, therefore, is also generally not included. This leaves
the dominant terms, specifically the pair interactions (a function of the distance between
the atoms; rij) and the three-body (atom-dipolar) interactions. The three-body interactions
are less often included explicitly in biomolecular simulation at present due to the increased
cost of calculation and the nonadditivity of the energy; however, these interactions are
not completely neglected since their effect is implicitly included in the molecular
mechanical force field during the explicit parameterization of the pairwise interactions.
To summarize, the most commonly applied empirical force fields use an additive pairwise
potential (with the nonadditivity and three-body terms omitted).

Intramolecular Interactions

The intramolecular interactions describe the covalent structure of the molecule. This
includes the bonds, angles, dihedrals, and overall connectivity and flexibility of the model.
A reasonable MM representation can be obtained either with full atomic or internal
coordinate representations. Atomic representations imply that each atom center is allowed
to move independently and explicit bond, angle, and dihedral terms are added to represent
the connectivity. Two common representations are applied: all-atom force fields treat each
atom as independent, whereas united-atom force fields fold multiple atomic centers into
a single particle, such as treating a methylene group (–CH2–) as a single center. 

Internal coordinate representations, on the other hand, attempt to represent the inherent
motions and flexibility of the system via rotations about naturally rigid groups of atoms.
These can be useful since there are effectively fewer degrees of freedom, with flexibility
only included where necessary to represent the natural motion of the molecule. For
example, with nucleic acids the bases can often be treated as rigid units, as can most of
the backbone (except for ε and ζ), with rotations and translations set up to represent
deviations from a common helical axis system, such as rotations involving inclination,
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tip and twist, and translations (e.g., x- and y-displacement from the helical axis and rise
between base pairs). To include the flexibility of the sugar pucker, the bonds at the C4′-O4′
atoms can be broken, leading to two torsions and three angles to describe the ring. This
internal coordinate representation is used in the program JUMNA (junction minimization
of nucleic acids; Lavery et al., 1995). Alternative treatments may use different rotations
(e.g., twist, roll, and tilt; Gorin et al., 1990), more complicated treatments (Nesterova et
al., 1997), or could (as is done in protein simulations) consider the bonds and angles as
fixed while allowing free rotation around all the torsions. Ideally, a good internal
coordinate representation will attempt to minimize the number of degrees of freedom
while still retaining good structure and dynamics. Reduction of the number of degrees of
freedom is desirable since this has clear benefits when trying to sample the possible
conformations (as will become more apparent later).

Although the internal coordinate treatments lead to fewer degrees of freedom, using this
kind of representation in molecular dynamics simulations is difficult because accurate
treatment requires inverting the moment of inertia tensor (or mass matrix) or the applica-
tion of computationally demanding holonomic constraints (that maintain the fixed struc-
ture within rigid groups and properly equalize or propagate the forces). In all-atom or
united-atom treatments, because each atom center is free to move, the mass matrix is
diagonal and thus, trivially invertable. Even though there are approximations that
effectively treat the moment of inertia tensor when it is not diagonal with order N rather
than N3, accuracy is lost. Based on these efficiency issues, internal coordinate treatments
are generally only used with minimization or Monte Carlo simulation (as described more
fully in the next section). A further potential difficulty with the internal coordinate
representation is that it requires specification of the rigid units; if the unit is rigid, it
cannot distort structurally, in contrast to what might be the expected behavior under
certain conditions. Thus, care has to be taken not to rigidify a part of the molecule that
may not be rigid in practice. Moreover, rigid rotation about a given bond effectively leads
to higher rotational barriers since there is no coupling to other modes (i.e., the bonds or
angles cannot open up to facilitate rotation). For example, the gauche, gauche rotational
barrier for butane is roughly twice as large when the bonds and angles are held rigid. Of
course, this artifact is not a problem in practice since the force fields are parameterized
to compensate; this just points out that it is not possible to directly mix intramolecular
force fields designed for use with internal coordinates with those designed for use in
all-atom treatments.

The alternative to using an internal coordinate treatment is to not treat any of the internal
coordinates as rigid, so that each atom is free to move. In this case, to represent the covalent
structure and intramolecular energetics, explicit energetic representations for the bonds,
angles, and dihedrals need to be added. In the simplest form, this is typically done with
harmonic potentials to maintain bond lengths and angles, and Fourier terms for the torsion
angles to represent rotation about bonds (Figure 7.8.1). Either harmonic or Fourier terms are
also commonly added to maintain planarity or prevent rotation about double bonds. Higher-
order terms can also be added as necessary for more detailed representation. A common form
for the intramolecular part of the mechanical potential function is as follows:

Uintramolecular = ∑ 
bonds

kb(r − req)2 + ∑ 
angles

kθ(θ − θeq)2 + ∑ 
dihedrals

  ∑ 

η

Vη
2

 [1 + cos(ηφ − γ)] + . . .

Equation 7.8.2

The parameterization, or force field, refers to the specific equilibrium geometry values
for the various terms (such the equilibrium bond length, req) and the force constants
representing the energy (or vibrational frequency, kb) of distortion away from the equi-
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librium geometry. The parameterization is typically performed on molecular fragments
with the implicit assumption that the force field parameters are transferable to other
fragments. In other words, a carbon-carbon bond in propane is the same as a carbon-carb-
on bond in pentane. Bond lengths and bond angles are determined via experiment
(crystallography or other spectroscopic techniques) with force constants for the vibration
inferred from microwave, infrared (IR), and other spectroscopic data. In the parameteri-
zation, the least well-determined parameters (based on experimental information) are the
dihedral terms, since these terms effectively include not only the equilibrium torsion value
but 1-4 atom interactions and other implicit interactions explicitly omitted. Given this,
the dihedral part of the force field is usually the last part to be parameterized (based on
QM and empirical data) and modification of these parameters can be used to fix up
deficiencies from the other intramolecular and intermolecular interactions.

More complex molecular mechanical representations are also possible, such as those
including cubic and quartic terms for bond stretching, cubic angle terms for anharmonic
bending, bond-torsion, angle-torsion, bend-bend, and other terms. Although these higher-
order terms can aid in parameterization efforts to better represent vibrational spectra,
structure, and heats of formation in a diverse set of molecules (including strained
molecules), these are not typically included in biomolecular force fields. This is because
biomolecular force fields are primarily parameterized to represent structure and secon-
darily relative conformational energetics in as simple and transferable a means as possible.
An adequate representation is obtained without the added complexity, as will become
apparent. For more information about the more strongly parameterized class 2 and class

Figure 7.8.1 Schematic of the interactions in a pairwise additive molecular mechanics force field.
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3 force fields that include the more complicated intramolecular energy representation, see
discussions of the following force fields: MMFF94 (Halgren, 1996), MM3 and MM4
(Allinger et al., 1989, 1996), and QMFF (Maple et al., 1994).

Intermolecular Interactions

The standard form for the intermolecular pair energy involves a Lennard-Jones potential
to represent the electron cloud repulsion (rij

−12), dispersion attraction (rij
−6) interactions,

and a Coulombic term (with atom point charges qi and qj, and dielectric constant ε)
representing the electrostatic interactions between all the atom pairs (where rij is the
distance between atoms i and j).

Uintermolecular = 
Aij

rij
12 − 

Bij

rij
6  + 

qiqj

εrij

Equation 7.8.3

Note that the dielectric constant (ε) is shown in a simplified form that implicitly includes
the 4πε0 leading factor, where ε0 is the permittivity of free space. Also note that
self-interactions (1-1), interactions between bonded atoms (1-2), and interactions between
the atoms involved in angles (1-3) are most often omitted, since their interaction has
already been included in the intramolecular part of the force field. Interactions between
terminal atoms involved in a dihedral angle (1-4 interactions) are sometimes scaled.
Polarization effects are also often included implicitly in the parameterization, although
explicit polarization (as is discussed later) can be included at additional cost. The specific
parameters (Aij, Bij, qi, qj) in large part determine the reliability of the intermolecular
potential. There are many philosophies regarding how to “best” derive these parameters,
ranging from total reliance on high-level QM treatments of fragments to parameterization
based entirely on empirical data, or some combination of each. A recent trend has been
to derive the Lennard-Jones parameters for particular atom types from simulations of neat
liquids (Jorgensen et al., 1996). Like with the bond, angle, and dihedral parameters, there
is an implicit assumption that (in general) the Lennard-Jones parameters are transferable.
It should be noted that the parameters Aij and Bij for the Lennard-Jones part of the equation
above represent mixed van der Waal parameters for atoms i and j. Since the literature is
sometimes confusing with presentation of the mixed parameters as Aij and Bij (with or
without pre-exponentiation) or in terms of r* (the minimum of the potential well in Å) or
σ (the zero of the potential in Å), and since this is further complicated by application of
different combining rules, it is worth a brief digression. The two forms of the van der
Waals energy in terms of r* and σ are as follows:

ELJ = 4ε 
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Equation 7.8.4

This implies that:

r∗ = σ
6
√2

Equation 7.8.5

Given an r* value (representing the van der Waal radius) for two atoms i and j that are not
the same, it is necessary to define a mixed van der Waal radius. There are two methods in
common usage, arithmetic or Lorentz-Bertholet combining rules where:
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rij
∗ = 

ri
∗ + rj

∗

2

Equation 7.8.6

(as applied in AMBER and CHARMM) and geometric mean combining rules where:

rij
∗ = √ri

∗rj
∗

Equation 7.8.7

(as applied in GROMOS). In both cases, a geometric mean is used for the well depth.
These differences again point to the critical need to be careful when trying to adapt force
fields applied in one program for use in another or, alternatively, in mixing parameters
from different force fields.

Other forms for the intermolecular potential can also be employed to represent the
intermolecular interactions, such as replacing the repulsive (12) potential by an exponen-
tial, as in MM2 (Allinger, 1977), or replacing the Lennard-Jones potential by a buffered
7-14 potential for the van der Waal interactions and shifting the electrostatics to prevent
infinite attractive electrostatics from dominating the finite van der Waal interactions at
short range, as employed in MMFF94 (Halgren, 1996). Although these more complicated
functional forms arguably work much better for the varied small molecules of interest to
pharmaceutical companies, these force fields have not seen significant use in biomolecu-
lar simulation applied to nucleic acids.

For the electrostatic interactions, most MM methods assume fixed atomic point charges.
Polarization is only included implicitly via the construction of point charge values that
lead to effectively larger dipoles. The point charges are one part of the MM model that is
not very transferable since a given atomic charge depends critically on its environment;
therefore, charges are typically calculated for individual fragments (such as each individ-
ual nucleic acid or amino acid) rather than for specific atom types. With the lack of explicit
polarization, a major limitation of the additive pairwise force fields is in the treatment of
transition metals or multivalent ions (which may not be treated properly with standard
additive empirical force fields); in this case, accurate treatment may require the inclusion
of explicit polarization effects or even some QM treatment.

Although polarization (induced dipole) effects have often been neglected to date, these
effects can be included in the MM potential energy function. This can be done by including
inducible dipoles on each center (µi) reacting to the electrostatic field (Ei

0) on center i
arising from all other fixed charges and representing the polarization energy (Upol) as
follows:

Upol = − 
1
2

 ∑ 
i

µiEi
0

Equation 7.8.8

This is evaluated self-consistently, solving for the inducible dipole based on the po-
larizability of atom i (αi) and the total electrostatic field (Ei) at the polarizable center,
where µi = αi × Ei, noting that the total electrostatic field:

Ei = Ei
0 + ∑ 

i≠j

Tijµj

Equation 7.8.9

and Tij is the dipole tensor: 
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Tij = 
1
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



Equation 7.8.10

Additional terms can be added to represent three-body exchange repulsions (Caldwell et
al., 1990). Alternative treatments of polarization include the fluctuating charge model that
treats the charges as dynamic variables in the simulation (Rick et al., 1994). In the
published literature, the inclusion of explicit polarization effects in molecular mechanics
treatments has generally only included simulations of small polarizable molecules or ions
in polarizable water. Polarization effects were added to better represent molecule asso-
ciation or free energies of solvation. A fully polarizable treatment has not been applied
to large biomolecules in solution, in part because adding explicit polarization tremen-
dously increases the cost of the calculations, but also because a consistent polarizable
force field for nucleic acids or proteins has not been developed. This will likely change
in the near future due to the availability of faster and better methods to include explicit
polarization, which in turn will lead to the development of more reliable nucleic acid force
fields that are parameterized for use with explicit polarization.

The Total Energy

Added together, the two energy terms (Uintra + Uinter) represent the total potential energy
of the system. An important, but often overlooked, point is that it is often meaningless—
despite the use of common units for energy such as kcal/mol—to compare absolute
molecular mechanical energies between different molecules (or force fields) due to the
lack of a common zero point energy. Moreover, many of the commonly employed force
fields were not parameterized to very accurately estimate heats of formation, so even with
a complete specification of a reaction linking two molecules together, it is likely that the
relative energy between two different molecules will not be accurate. Despite this
warning, it is possible to compare the relative energies of different conformations of the
same molecule (under the same conditions, e.g., same force field, same number of explicit
waters), remembering that this energy difference is not a free energy but only a relative
energy or enthalpy. Although low energy structures are likely more representative, it is
important to remember that this is not always the case (at normal temperatures) due to
possibly large differences in entropy. For the simulation of nucleic acid systems, the most
reasonable representation of the structure comes from the force fields specifically para-
meterized to represent nucleic acids. Current all-atom force fields for nucleic acids that
perform reasonably well include the Cornell et al. (1995) and recent variants (Cheatham
et al., 1999; Wang et al., 2000), BMS (Langley, 1998), and CHARMM all-27 nucleic acid
(Foloppe and MacKerell, 2000) force fields. In addition to all-atom force fields, the
JUMNA internal coordinate force field and others previously mentioned also perform
reasonably well.

BEYOND ENERGY EVALUATION

Evaluating the energy of a given model does not suggest anything about the relative
stability or appropriateness of that model; however, differences in the relative energy
between two conformations of the same model structure can suggest which structure is
more enthalpically reasonable. Coupled with some representation of the relative entropy,
this can give insight into the relative importance of each conformation. In general,
however, it is not easy to estimate the entropy for a given conformation. Although there
are some approximate methods for estimating relative conformational free energies
(Kollman et al., 2000), these require knowing a priori what the representative structures
are.
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Ideally, the investigator would like to know the conformation that represents the lowest
energy (enthalpy) and ultimately the lowest free energy structures, since these structures
are more representative of the true conformation of the molecule. A simple way in
principle to find low-energy structures is to find the set of coordinates that minimizes the
potential energy. In practice, this is limited due to the complexity of the potential energy
hypersurface and the large number of degrees of freedom. Without exhaustive sampling
of all possible conformations of a molecule, in general, it is impossible to determine if a
given low-energy structure represents the true “global” minimum structure or whether it
is simply a “local” minimum of the potential energy (where minimum energy structure
means a structure that is at the bottom of one of many possible wells in the energy
representation). Without knowing what the global minimum is, it is impossible to
determine if a given model structure is at all representative of what might be expected at
room temperature. Even with a knowledge of the global minimum energy structure, a
molecule may have a number of other low-energy structures nearby that may be populated
at room temperature.

To find representative conformations, it may be desirable to apply methods that sample
according to the expected probability of observing a given conformation (at a given
temperature). Examples of methods that do this are molecular dynamics (MD) or Monte
Carlo (MC) methods. This is sampling according to the Boltzmann distribution and, in
the limit of infinite sampling, this gives a complete representation of all the possible
conformations and their relative probabilities of occurrence, pi, where εi is the total energy
of the ith state, T is the temperature, and kB is the Boltzmann constant.

pi = 
e−εi / kBT

∫e−εi / kBT

Equation 7.8.11

The term in the denominator is the partition function and specifies an integral over all
phase space or the complete set of possible coordinates and momenta. Of course, in
practice, sampling is limited and the sheer complexity of the accessible conformational
space may prevent finding all the low-energy conformations and, therefore, full determi-
nation of the partition function. The complexity of the potential energy hypersurface, and
the exponential explosion of the number of possible conformations as the number of
degrees of freedom increases, limit exhaustive search of this space to systems that possess
only a few degrees of freedom. In 1990, none of a variety of systematic and random
conformational search methods in both internal (torsion) and all-atom coordinate frames
was independently able to find all the relevant low-energy conformers (within 3 kcal/mol)
of the cyclically constrained cycloheptadecane molecule, which formally has 147 degrees
of freedom (all atom; Saunders et al., 1990). Although computer power has increased
tremendously in this time, order-of-magnitude computational speed advances do not
significantly improve the effective conformational sampling due to the exponential
explosion. 

A simple way to estimate the effective complexity is to assume that the number of possible
minima or low-energy conformations relates to the simplistic set of three low-energy
rotations about a given single bond (i.e., the trans, gauche+, and gauche− states) or 3n −
1, where n is the number of rotatable bonds. Although this is typically less than the total
number of degrees of freedom, it is still large! With fewer degrees of freedom, there are
less minima and sampling is easier. Moreover, minimization algorithms are less likely to
become stuck in less representative local minima; however, the complexity quickly grows;
even with the internal coordinate treatments for nucleic acids described, there are still
~20 degrees of freedom per nucleotide (representing hundreds of possible conformations
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for a given nucleotide assuming three low-energy states for each of approximately five
rotatable bonds). This places exhaustive sampling out of reach for any system with more
than a few nucleotides. This difficulty in finding the global minimum (or set of coordinates
that leads to the lowest energy) is often termed the multiple minima problem. In the
context of the effective amount of sampling attainable during MD simulation, this problem
is often termed the conformational sampling problem and relates to the improbability of
overcoming large energy barriers.

The multiple minima or conformational sampling problem is why it is desirable to choose
reasonable initial structures (i.e., experimentally derived structures or valid model struc-
tures) when modeling. With reasonable structures, likely MD or MC (see below) simula-
tion will sample reasonably well near the initial structure; however, large conformational
changes, such as B-DNA to Z-DNA transitions or RNA folding will not likely be seen in
a reasonable time. Of course, these limits in sampling imply that even with unreasonable
structures, such as the imaginary and perhaps metastable B-RNA structure, MD or MC
will likely sample reasonably well near the initial model structure. This is indeed the case,
as shown in state-of-the-art all-atom solvated MD simulations where B-RNA is stable for
>10 nsec and B-RNA to A-RNA transitions are not observed unless artificial means are
applied to force the conformational transition (Cheatham and Kollman, 1997). In the next
sections, minimization, Monte Carlo, and molecular dynamics methods will be discussed
in more detail; more detailed treatments can be found elsewhere (Valleau and Whittington,
1977; Allen and Tildesley, 1987; McCammon and Harvey, 1987; Brooks et al., 1988; van
Gunsteren and Berendsen, 1990; Leach, 1997.)

Minimization

Minimizing the potential energy corresponds to instantaneously “freezing” the system or
dropping to the bottom of the nearest potential energy well (as shown schematically in
Figure 7.8.2A). Minimization is a standard optimization problem that can be approached
using tools of various complexity ranging from simple and inefficient zero order methods,
such as grid search, which only require evaluation of the energy for a particular confor-
mation, to more efficient but complicated nth-order methods, which use information about
all the derivatives of the energy function up to the nth order. Thus, to perform minimization
with an nth-order method requires analytic derivatives of the potential energy function up
through the (n−1)th derivative (since the nth can be approximated by finite difference
methods). In practice, a variety of first- and second-order methods are typically applied
since these provide a reasonable balance between functionality (i.e., finding a minimum)
and efficiency. Finding the set of coordinates that minimizes the potential energy does
not guarantee that the conformation found represents the lowest energy structure due to
the presence of multiple minima. As discussed, the molecule can get trapped into a local
minimum, and this local minimum may not be representative of the “true” conformation.

In spite of the local minimum problem, minimization is still a useful tool for modeling,
since after making a particular modification to a given model, say the replacement of the
phosphodiester backbone of DNA by a poly-amide (PNA) backbone, the conformation
can be minimized. This will remove gross steric overlap and relax strained bonds and
angles. While this will not say much about the relative stability of this backbone
modification, it can suggest whether the backbone replacement is at least sterically
feasible for the given nucleic acid conformation. Coupled with a good chemical intuition,
this may provide sufficient information to the modeler to suggest whether this backbone
modification is potentially useful or not. For example, consider related backbone modi-
fications to PNA that include one more or one less methyl group along the backbone.
Simple minimization may suggest that the shorter backbone will strain the nucleic acid,
leading to a lower rise between base pairs, and the longer backbone will increase the
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separation between base pairs, which might suggest that these backbone modifications
are less reasonable. While some insight can be gained, it is important to remember that
entropic effects are not included (such as the likely greater configurational entropy loss
on binding for the larger PNA) and that the conformation sampled by the minimization
is only a local minimum. In addition to being a useful tool for modeling, minimization is
necessary prior to running molecular dynamics simulations to relieve any large steric
overlap or remove strained bonds or angles that might otherwise lead to initially large
forces. During the dynamics, the large forces lead to large displacements, which in turn
may lead to more overlaps and more large displacements; this cascade of events can lead
to local hot spots or failure of the integrator during MD.

There are two common first-order minimization methods in common usage: the steepest
descent (Wiberg, 1965) and conjugate gradient (Fletcher and Reeves, 1964) methods.
These use the first derivative to give information about the slope of the potential (but not
the curvature). In steepest descent, movement is made parallel to the net force. Given
reasonable step sizes, this method will not cross barriers and will readily traverse down

A

B

C

Figure 7.8.2 Schematic representations of the sampling of various methods. These plots repre-
sent the energy of the system along an arbitrary reaction coordinate. The wells represent energy
minima in the phase space. The state of the system is depicted by the location of the ball. (A)
Minimization. The system moves to the bottom of the nearest well and barriers are not overcome.
(B) Monte Carlo. Each configuration of the system is represented by a number and barrier crossing
relates to the move set and total number of moves. (C) Molecular dynamics. The state of the system
evolves due to force according to Newton’s equations of motion. In short simulations, large barriers
will not be surmounted.
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to the bottom of the nearest potential energy well. Although this method is not very
efficient, it is very stable and is therefore often used to initially minimize the structure
when there are large energies. Often this is used as the first step in modeling, particularly
when there are potentially large van der Waals overlaps to initially relax the most drastic
energetic penalties. The conjugate gradient method improves upon the steepest descent
by using the gradients from previous steps to further guide the minimization. This method
is more efficient than steepest descent and is appropriate to apply after initial minimization
(e.g., to remove the largest steric overlaps). Near the bottom of the harmonic well, or after
some initial minimization, use of second order methods (which assume an approximately
quadratic relationship to the energy) such as Newton-Raphson (TNPACK; Schlick and
Overton, 1987) can be used to speed up convergence at the expense of greater memory
usage and the need for second derivatives (either by finite difference or analytical). These
methods are typically more expensive since they require inverting the second derivative
matrix. The expense can be significantly reduced by limiting the space sampled to regions
where there is significant movement in the energy, thus limiting the size of the second
derivative matrix (which is calculated by finite difference; Brooks et al., 1983).

The key point is that minimization is a very useful tool, but that care should be taken when
analyzing the validity of a particular “low-energy” structure. Because of the limits in
sampling and the great likelihood of minimizing to a local minimum (which may or may
not be representative of the favored low-energy structures), the validity needs to be judged
based on the chemical intuition of the modeler and known reliability of the initial model.
To better sample space, Monte Carlo or molecular dynamics methods can be applied;
although these methods avoid the problem of getting trapped in local minima, limits in
sampling only allow partial sampling of conformations “near” the initial structure.
Despite the limited sampling, minimization is an extremely useful tool to characterize
model structures.

Note that care should be taken when applying restraints along with minimization, such
as when using NMR-derived distance restraints, to balance the restraint force constants
with those of the force field. If the restraint force constants are too large relative to the
force field, unrealistic distortion of the structure may result. As a final practical comment
about minimization, it is important to initially use small step sizes during the minimization
of high-energy structures. This prevents the minimizer from jumping out of the current
well to a potentially higher energy surface, which with repeated large jumps can lead to
instability. Moreover, if the step size is too large, the minimizer may effectively get
“trapped” in a cycle, jumping back and forth across the bottom of the well and preventing
the minimizer from converging.

Monte Carlo

The Metropolis Monte Carlo method is essentially an algorithm for generating a random
walk in conformational space such that the conformations obtained are distributed
according to the probabilities expected for the equilibrium Boltzmann distribution (Me-
tropolis et al., 1953; Valleau and Whittington, 1977). The algorithm is very simple and
requires a single evaluation of the potential energy (and no force calculation) for each
step (Figure 7.8.2B). At each step, a random movement is made. In an all-atom repre-
sentation, this may be the movement of a single particle; with an internal coordinate
representation, it is a movement along the normal coordinates (such as a rotation of one
of the rigid units). The potential energy difference (∆E) between the new conformation
and the old is calculated. If the energy of the new conformation is lower, the move is
accepted. If not, the move is accepted if e−∆E / kBT is less than a random number drawn from
the interval [0,1]; otherwise the old conformation is retained. The length of the simulation
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relates to the number of attempted moves or configurations. The length of the simulation
does not relate to the time scale and only represents the number of configurations sampled.

Use of this procedure leads to a representative set of structures. With sufficient sampling,
this will converge to the equilibrium distribution and in principle allow reasonable
estimation of any ensemble average, assuming the forces between particles are velocity
independent (Metropolis et al., 1953). This assumption allows one to separate out the
momenta or kinetic energy from the total energy such that only the potential energy is
evaluated in the above expression; in practice, the kinetic component is always ignored.
Since uphill moves are only accepted randomly (and not according to any deterministic
process), there is no implicit time evolution and the progression of the sampling gives no
information about the dynamics. The success of this procedure (with finite sampling)
largely relates to the “move set”, or set of possible moves. When an all-atom treatment is
applied with single particle moves, the stiff internal degrees of freedom can lead to large
energy changes and therefore a small step size needs to be used. With small step sizes,
many more configurations may need to be evaluated to generate an appropriate ensemble,
decreasing the efficiency. Moreover, for systems with disparate frequencies in different
degrees of freedom—i.e., both stiff internal degrees of freedom (bonds, angles) and softer
modes (correlated movements, dihedral rotation)—such as nucleic acids or single particle
or atom moves, this leads to poor sampling. Even for liquid simulation, small atom-based
moves lead to low acceptance ratios and poor sampling. In liquid simulation this can be
overcome by using moves along normal coordinates, such as bond rotations, coupled with
rotations and translations of the entire molecule. In general, it is desirable to avoid move
sets that overly reject moves, and a roughly 40% acceptance rate represents a reasonable
balance (Jorgensen and Tirado-Rives, 1996).

The difficulty in choosing a proper move set led to the early impression that MD
simulations were up to ten times more efficient than MC at generating conformations of
the small protein BPTI (Northrup and McCammon, 1980); however, this simulation used
an extremely inefficient move set based on movement of atomic centers. Much better
behavior is seen with a move set based on internal coordinate rotations about bonds (with
rigid bond length and angles; Noguti and Go, 1985). For liquid simulation, MC is likely
the most efficient method for generating reasonable ensembles; an excellent MC program
for liquid simulation is BOSS developed by the Jorgensen group (Jorgensen, 1995). Use
of the MC procedure for the simulation of neat liquids led to the development of very
reliable van der Waals parameters for the OPLS force field (Jorgensen et al., 1996). A
direct comparison of MC and MD simulation of liquid hexane suggests that MC is roughly
three times more efficient than MD when an appropriate move set for the MC is applied
(Jorgensen and Tirado-Rives, 1996).

Although MC is more efficient for liquid simulations, it is not clear this generalization
follows to the simulation of biomolecules, particularly in solution. For example, with
internal coordinate moves with flexible long-chain molecules (such as nucleic acids), a
small rotation about a central dihedral angle can lead to a large displacement of the end
of the chain. In explicit water, this might lead to extreme van der Waals overlap and likely
very high rejection rates (for these types of moves). Although the use of correlated moves
(such as crankshaft rotations about two bonds) can counter this effect (Dodd et al., 1993;
Deem and Bader, 1996), there has been little published use of MC methods in all-atom
simulation of nucleic acids in explicit solvent. For simulations without explicit solvent,
MC simulation is widely used for nucleic acid simulation particularly with internal
coordinate representations. Examples include its use in structure predictions as previously
mentioned (Erie et al., 1993), investigating DNA bending in polyadenine tracts (Zhurkin
et al., 1991), and investigating counterion distribution about DNA (Young et al., 1997).
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Molecular Dynamics

Molecular dynamics simulation refers to integrating numerically the classical equations
of motion (Newton’s equations) for all the atoms in the system (Figure 7.8.2C). A
simulation is started by assigning random momenta (velocities, vi) for each of the N
particles (of mass mi) from a Boltzmann distribution about a given temperature, T.

1
2

 ∑ 
i

N

mivi
2 = 

3NkBT

2

Equation 7.8.12

Then the dynamics are propagated by integrating Newton’s equations of motion, which
for the pairwise potential, Ui, and its first derivative:

∇i ∑ 
j

N

Uij

Equation 7.8.13

is represented by the following:

mi 
d2ri

dt2
 = −∇i ∑ 

j

N

Uij

Equation 7.8.14

The integration is typically performed through the use of one of a variety of first-order
integration algorithms, such as leap-frog or velocity Verlet (Allen and Tildesley, 1987).
This requires the calculation of the forces at each step, so a typical MD step involves
calculation of the energy, forces, and velocities, and integration to obtain the coordinates
for the next step. An important assumption is the ergodic hypothesis that, in the limit of
complete sampling, the time average (that obtained by molecular dynamics) is equivalent
to the ensemble average. Given sufficient sampling, it appears that the ergodic hypothesis
is valid in practice since both MD and MC lead to equivalent ensembles for liquid hexane
even though they use rather different sampling mechanisms (Jorgensen and Tirado-Rives,
1996). Also note that, unlike MC, the MD sampling is based on a dynamic propagation
of the molecular mechanical forces; therefore, it is important that the forces are analytical
or exact derivatives of the energy (i.e., the forces and energies should match). This is not
always true in practice since the force calculation in some cases may be too expensive
(particularly for nonpairwise forces), requiring some approximations. This means that the
sampling is done on a surface different than the molecular mechanical energy surface.

Issues in MD simulation include the need for stable, reversible, and ideally symplectic
(which implies loosely that the algorithm conserves energy and momentum) integrators.
The simple first-order Verlet, velocity Verlet, and leap-frog integration algorithms satisfy
these conditions in proper usage, in contrast to the more complex higher-order integrators
such as the Gear predictor. Stability of the integration directly relates to the integration
time step that in turn relates to the expected frequency of motion. A simple rule of thumb
for Verlet integrators is that the integration catastrophe, or the time step where the
integrator blows up, is the period of the highest frequency motion divided by π. For an
all-atom simulation, the highest-frequency motions involve bond stretching of bonds to
hydrogen. In the absence of rigid bond lengths (or constrained bonds), time steps are
limited to the <1 fsec range. With SHAKE (Ryckaert et al., 1977) applied to constrain the
lengths of bonds involving hydrogen, time steps in the 2 fsec range are routinely applied.
Larger time steps are possible by limiting the high-frequency motion, such as through the
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use of rigid units, which then necessitates inverting the inertia tensor as with internal
coordinate treatments or the need for imposition of iteratively solved holonomic con-
straints. Effectively larger time steps are also possible through the application of multiple
time step methods, which treat the slowly varying forces (which ideally represent the
more computationally demanding part of the energy and force evaluation) with a longer
time step, such as the long-range pairwise forces (Tuckerman et al., 1992; Biesiadecki
and Skeel, 1993). With increased masses on hydrogen atoms to limit high-frequency
motion, time steps as large as 5 fsec have been applied to systems with explicit water.

The symplectic nature of the integrator relates to preserving the Hamiltonian (or loosely
the energy representation) of the system during integration. Not only should this be a
property of the integrator, but molecular dynamics simulation in general should conserve
energy. This is an excellent test of the methods. Note that in common usage, MD programs
do not always necessarily conserve energy. This is often due to SHAKE tolerances that
are not stringent enough, integration time steps that are too large, the use of the
weak-coupling algorithm for constant pressure, and neglect of pair interactions. In order
to speed the calculation, the effective number of pair interactions is often reduced to only
those within a given range and a list of in-range pair interactions is maintained for each
atom. For speed this “pair list” is not updated every step. Unless a buffer is maintained to
not omit (include) pair interactions moving into (out of) range which is conservatively or
heuristically updated, energy conservation may not be maintained. How the pair interac-
tions are limited to finite range can also have important consequences, as can temperature
or pressure coupling for constant T,P ensembles. In order to deterministically integrate
Newton’s equations of motion, it is important that systematic force errors be avoided (such
as can occur with lack of energy conservation and temperature scaling) since these can lead
to artifactual behavior, such as violation of equipartition (Harvey et al., 1998; Chiu et al.,
2000). For example, with energy drains and the application of temperature adjustment by
uniform scaling of the velocities of all the atoms, energy accumulates in low-frequency
modes. This can lead to a growth of the center of mass translation. Given this, and since
random velocity assignment likely leads to nonzero center of mass translational motion, it is
advisable to remove this motion at the beginning of an MD run. Random force errors, such
as those resulting from the slow accumulation of errors due to finite numerical precision, do
not seem to lead to artifacts since they are equally likely to add as subtract from the total
energy. To this end, differences obtained between sequential and parallel MD runs due to
differences in the order of operations do not lead to significant differences and simply manifest
the inherently chaotic nature of the integration (Braxenthaler et al., 1997).

Variants of standard MD include Langevin and Brownian dynamics. These MD methods
are used to implicitly include the diffusive effects of solvent. In practice, this involves
adding to the standard forces stochastic forces from a heat bath (via random fluctuation
of forces) and dissipative forces to balance them. For in vacuo simulations, this represents
thermal collisions with other molecules and allows coupling of energy among the different
internal degrees of freedom. This can be very useful since, in the absence of Langevin
forces, during deterministic dynamics, memory of the initial conditions may persist in
the form of various correlated motions, and some low-frequency correlated motions may
not be able to couple back into other modes of motion (since there are no collisions with
other molecules). This can lead to poor sampling. In the limit of very high friction,
Langevin dynamics become Brownian dynamics. Brownian dynamics are purely diffusive
and effectively add a random coordinate displacement. This method is typically used to
model the diffusional motion of molecules (such as the encounter of a substrate into an
enzyme binding site). More detailed discussion of MD and its variants can be found in
the previously cited books and a very useful published discussion of stochastic dynamics
methods (Pastor, 1994).
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With molecular dynamics, each particle has a finite kinetic energy; a direct implication
is that the rate of barrier crossing will be proportional to the temperature and the length
of the simulation. This implies that the probability of crossing large energy barriers during
MD is rather small (as is represented schematically in Figure 7.8.2C). A back-of-the-en-
velope estimation of the rate of barrier crossing can be obtained from transition state
theory with some basic approximations.

k ≅ κν × e−Gact
‡

 / RT

Equation 7.8.15

The rate k is related to the transmission coefficient κ, which represents the ratio of
successful transitions over the barrier, an effective rate at the top the barrier or equivalently
a factor loosely representing collisions with the barrier, ν, times a Boltzmann-weighted
“free energy of activation,” which represents the height of the barrier. For simplicity, it
can be assumed that at the top of the barrier, the particle always crosses the barrier rather
than reflecting back, leading to κ = 1 (in contrast to expected values of 0.4 to 1.0 in
solution). By classical equipartition (E ≅ kBT) and from E = hν this barrier rate is:

ν = 
kBT

h

Equation 7.8.16

where T is the temperature, h is Plank’s constant, and kB is the Boltzmann constant. At
room temperature, RT is ∼0.6 kcal/mol and ν is ∼6.2 psec−1. Remembering that this is
only an approximation, this suggests that barriers of ∼1 kcal/mol can be surmounted in
picoseconds (∼1.2 psec−1) and ∼5 kcal/mol in nanoseconds (∼1.5 nsec−1), but that barriers
>10 kcal/mol may take microseconds or longer. This relates to the conformational
sampling problem and is a significant limitation of MD. In MC simulations, this problem
can be overcome by increasing the size of the moves (at the expense of lower acceptance
ratios) or by designing clever move sets. In a similar manner, with MD simulation various
methods can be applied to effectively lower barriers to conformational transition, such as
adding biasing potentials to lower specific torsion barriers, increasing masses, increasing
temperature, smoothing the overall potential surface, or applying mean field approxima-
tions, such as with the locally enhanced sampling (LES) methodology. The LES method-
ology shows much promise in biomolecular simulation, such as by reducing the barriers
to conformational transition and thereby allowing transition from an “incorrect” to correct
RNA hairpin loop conformation (Simmerling et al., 1998). For review of enhanced
sampling methods, see Straub (1996).

The attainable MD simulation time scale relates to the complexity of the potential (and
therefore the time required to evaluate the energy and forces) and the integration time
step. With longer time steps, longer simulations are possible. Through the deterministic
procedure and specification of an integration time step, there is a direct relationship
between the number of MD steps and the effective time scale (time step × the number of
steps = total time). The current state of the art for MD simulation of nucleic acids in
explicit solvent involves simulations of <50 nsec. Although in principle this time scale is
“accurately” represented by the dynamics or integration of the classical equations of
motion, whether a 1 nsec simulation of DNA actually accurately represents 1 nsec of real
motion depends on the empirical potential employed. For equilibrium or ensemble
properties (such as the energy, free energy, heat capacity, or density) this exact time scale
is not important, assuming independence of the forces on the velocity of a given particle.
This is implicitly the case with the standard molecular mechanics potentials. For ensemble
properties, what matters is the effective amount of sampling. In principle, one can obtain
equivalent ensemble averages even if the masses on all the hydrogens are increased. This
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will allow a larger time step and therefore a longer sampling. Although this does not affect
the ensemble properties, this will drastically affect time-averaged properties, such as
water diffusion or the rate of specific conformational transitions.

The point is that these dynamic properties are very sensitive to the potential (and
atomic masses). Since the force field is primarily parameterized to represent structure,
it is not clear how accurate the dynamic properties are. Clearly in the absence of
viscous damping forces or explicit solvent, the rate of dynamics may be enhanced
relative to simulations in explicit solvent. Similarly, under high pressure conditions,
such as in an isolated solvent droplet, the dynamics may be reduced. In explicit solvent,
MD simulations of proteins and nucleic acids display thermal parameters that are in
good accord with experiment and in general properly represent fast (picosecond) time
scale motions. Whether these methods can accurately represent longer time scale
motions is unclear since realistic MD simulation is currently limited to the nanosecond
time scale. Evidence from the simulations is that some properties are well represented;
however, there is a clear overestimation of harmonic motion in solvated proteins at
low temperature (i.e., suggesting motion that is too slow; Steinbach and Brooks,
1994). On the other hand, one of the most commonly used water models, TIP3P
(Jorgensen et al., 1983) diffuses at twice the experimental value. The point of this
discussion of time scale and dynamics is not to criticize the methods but to remind
potential modelers of the various issues and sensitivity not only to the force field but
the representation. Although in general the results are within range, it is important to
understand how the methods have been validated by comparison to experiment for a
given property before making firm claims about exact details of the time scale for
conformational transition. For example, estimating the free energy of binding for a
particular water to DNA based on the lifetime of its bound state is likely to be
inaccurate and very dependent on the specific water model. Additionally, in order to
make claims about the time scale for a given process based on MD, the time scale of
the simulation should be significantly longer than the relaxation time of the process
of interest. Likely the simulation should be at least an order, if not two orders, of
magnitude longer than the relaxation time and, when attempting to make statistically
valid claims about the rate of a given transition or specific correlation, many events
need to be observed. These and related issues regarding the validation of simulation
results are presented in a recent review (van Gunsteren and Mark, 1998).

SUMMARY

In this unit, the basic principles of the common energy representations for nucleic acid
models have been presented, and methods for exploring these energy surfaces have
been discussed in some detail. To move beyond simple energy evaluation of a single
model structure, it is fairly clear that a large number of energy (and possibly force)
evaluations will be necessary. This becomes computationally demanding, and it is
desirable to limit the computational cost as much as possible without sacrificing
accuracy. For systems of reasonable size, there is a need to use empirical potentials
as discussed; however, even with the simple pairwise potentials, the number of pair
interactions quickly grows as the number of atoms is increased. Thus, for larger
systems the authors limit the effective number of intermolecular interactions by
limiting the range of the interaction (e.g., by limiting interactions to distances less
than some cutoff or utilizing hierarchical approaches that coalesce groups of distant
atoms into an approximate single effective particle). Additional complications relate
to the representation of nucleic acids since water and associated counterion-ions (salt)
are an integral part of nucleic acid structure (see UNIT 7.9).
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Lists of available software.

http://www.msg.ameslab.gov/GAMESS/GAMESS.
html

GAMESS website.

http://www.dl.ac.uk/CCP/CCP1/gamess.html

GAMESS-UK website.

http://www.gaussian.com

Gaussian program website.

http://www.schrodinger.com

Jaguar website.

http://www.wavefunction.com,

MNDO4 is available in many different codes from
this website and others.

http://www.ccl.net

MOPAC 6.0 and 7.0 are in the public domain and
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http://www.q-chem.com

Q-chem website.

http://www.msi.com

ZINDO website.
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