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A Niche space
Clusters emerge in models where species belong in a niche space, typically a one-dimensional line,
and their competitive impact on one another is a function of their mutual distances in that space.
The definition of niche space here is abstract and operational: it is the set of aspects of organism
performance that affect competition; species sufficiently far apart in that space can stably coexist.

For example, in a model of birds competing for two substitutable food types, say pollen and
insects, a species’ niche is the amount of time it spends foraging for each food. Assuming the
total foraging time is fixed, the niche space is a one-dimensional axis, with points on that axis
indicating how long the species spend on one of the resources—the time spent on the other food is
then set, as both times need to add to a fixed amount. If there are three substitutable resources,
say pollen, insects, and seeds, then niche space is a two-dimensional plane, and so on. The classical
MacArthur-Levins (1967) model assumes a continuous resource axis with an indefinite number of
food types—say, seeds falling on a size continuum—which in principle makes niche space infinite-
dimensional. However, the number of dimensions drops if there are further constraints on the
amount of time a bird can spend on each food. MacArthur and Levins (1967) considered the extreme
scenario where the relative time spent on one of the resources fixes the time spent on all others:
they assumed every species share a resource utilization curve that differs only by what resource it
peaks on, i.e. the seed they eat the most. In that case, niche space collapses onto a single axis.

Under this operational definition, a species’ niche is not necessarily a resource, measurable trait,
or the environment where it lives. Those are only associated with the niche to the extent that they
affect competition. In the example of birds competing for seeds falling on a size continuum, the
assumption of same-shape resource utilization curves across all species means a species’ favorite
resource suffices to determine its niche. In this case the niche itself can be equated with the favorite
seed size. More generally the niche would be a list of numbers reflecting the amount of time spent
on seeds of each size. A relevant trait such as beak size will correlate with its favorite food (Schluter
and Grant, 1984), but even in this idealized example of a one-dimensional niche axis the correlation
between niche and trait need not be one-to-one, as birds’ beaks are also shaped by other functions
such as singing (Huber and Podos, 2006).
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B Competition for essential resources leads to tail noise, and min-
imum distances in niche space are a good predictor of compet-
itive interactions

Consider a resource-consumer model with two resource axes. Resources grow logistically in the
absence of consumers. Consumers’ niche strategies determine their resource preference along each
resource axis, but they need resources from both axes to grow. One example is animals that thrive
on a diet containing both plant and animal foods. We implement this by having consumer growth
rates depend multiplicatively on resources from both axes (Saito et al., 2008):

dA
dt = µ−mA+

(
R∑
i=1

exγAXiXi

R∑
i=1

eyγAYiYi

)
A (1)

where A is the abundance of the consumer, m is its intrinsic mortality, µ is the immigration rate,
R is the number of resources on each axis, Xi are the abundances of the x-resources, γAXi quantifies
the consumer preference for the i-th x-resource, and ex is the conversion efficiency—similarly for the
y resources. The product in the consumption derives from the law of mass action in chemistry, in
this case representing a reaction that needs three components to occur (the consumer and the two
resource types). In our biological context, the term reflects a situation where each resource type
offers nutrients not found in the other type, and the consumption of both types are linked together
because the consumer will lack the energy to forage if it lacks either.

The corresponding resource equations are

dXi

dt = ν +Xir

(
1− Xi

K

)
−

 S∑
N=1

γNXiN
S∑
j=1

γNYjYj

Xi (2)

dYi
dt = ν + Yir

(
1− Yi

K

)
−

 S∑
N=1

γNYiN
S∑
j=1

γNXjXj

Yi (3)

where r is the resource intrinsic growth rate, K the carrying capacity, ν the resource immigration
rate, and S the number of consumers. Notice that these equations reflect the abovementioned linked
consumption of both resource types.

We note that this type of resource-consumer interaction is not the only way to model colimitation
by more than resource; another common approach is Liebig’s law of the minimum1 (Saito et al., 2008).
Empirically, consumers show a variety of responses to addition of essential resources, compatible
with different models (Harpole et al., 2011). Our model predicts that consumers will respond to
addition of either resource in isolation, and will respond maximally to addition of both resources.
This has been observed in communities of bacteria (Danger et al., 2008), plankton (Harpole et al.,
2011), and plants (Craine and Jackson, 2010).

For simplicity, we set µ, ν, r,K, ex, ey identical across species and resources, so that we can focus
on the competitive effect of differences in resources preferences. We set the preference of consumer A
for resource xi to be a declining function of the difference between the resource and the consumer’s
favorite resource xA along that axis, γAXi = exp(−((xA − xi)/wx)4). Similarly for y-resources.

1Our multiplicative model corresponds to chemicals in a vat where the reaction is C + A + B → C + C, i.e. both
substances A and B must be present at the same time for C to generate a new C; in contrast, the Liebig scenario
corresponds to a reaction like C + A → CA; CA + B → C + C, i.e. where there is a stable intermediate state such
that C does not need to encounter A and B at the same time, but still needs both to generate a new C. In biological
terms, Liebig’s law corresponds to a case where the consumer acquires each resource independently of the other but
will not grow without both, whereas in the multiplicative model the consumer’s ability to acquire one of the resources
depends on having access to the other.
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Competition kernel

Consumer-resource interactions do not map trivially to Lotka-Volterra competition coefficients that
depend only on trait distances. In general, this mapping might only be valid in the vicinity of an
equilibrium (Schoener, 1974, 1976). In fact, expansions of small perturbations around equilibria is
the traditional approach to converting resource-consumer models to Lotka-Volterra form, and thus
extracting competition coefficients valid in that regime (MacArthur, 1972; Abrams, 1980). This is
the approach we adopt here.

The competition kernel, which quantifies the competitive impact of consumers on one another,

is comprised of the matrix elements αAB = − ∂
∂B

(
1
A

dA
dt

)∣∣∣∣
A∗B∗X∗Y ∗

, where the asterisk denotes

equilibrium abundances. We calculate it explicitly via linearization around the equilibrium:

A(t) = A∗ + a(t); Xi(t) = X∗i + xi(t); Yj(t) = Y ∗j + yj(t)

Substituting in the consumer equation and discarding higher order terms:

dA
dt = µ− (A∗ + a)m+ (A∗ + a)exey

∑
i

∑
j

γAXiγAYj (X∗i + xi)(Y ∗j + yj)

≈ −a µ
A∗

+A∗exey
∑
ij

γAXiγAYj (Y ∗j xi +X∗i yj)

The competition coefficients are then

αAB = − ∂

∂B

( 1
A

dA
dt

)
= δAB

µ

A∗2
− exey

∑
ij

γAXiγAYj

(
Y ∗j

∂xi
∂B

+X∗i
∂yi
∂B

)

= δAB
µ

A∗2
+ exey

(
(AY∗) ·

(
−∂xi
∂B

)
+ (ATX∗) ·

(
−∂yi
∂B

))
(4)

where in the last line we used compact matrix notation, with Aij ≡ γAXiγAYj , and the dot indicating
internal product between the vectors.

To proceed we must write x and y in terms of the consumer abundances. We do so by assuming
resources undergo faster dynamics than consumers:

0 = dXi

dt = ν + r(X∗i + xi)
(

1− X∗i + xi
K

)
− (X∗i + xi)

∑
N

∑
j

γNXiγNYj (N∗ + n)(Y ∗j + yj)

= − ν

X∗i
xi − rX∗i

xi
K
−X∗i

∑
N

∑
j

γNXiγNYj (N∗yj + Y ∗j n)

→ xi = − 1
ν
X∗2i

+ r
K

∑
N

∑
j

γNXiγNYj (N∗yj + Y ∗j n)

We can write this expression in compact matrix notation:

x = P xy +QxY∗

where P xij = −εxi
∑
N N

∗γNXiγNYj , Qxij = −εxi
∑
N nγNXiγNYj , and εxi = 1/(ν/X∗2i + r/K). Notice

that matrix P x is a constant whereas matrix Qx depends on the consumer perturbations.
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We get an analogous expression for the y resources:

y = P yx +QyX∗

with parameters mirroring those of the x resources.
Solving this linear system for x and y, we get

x = (1− P xP y)−1(P xQyX∗ +QxY∗)
y = (1− P yP x)−1(P yQxY∗ +QyX∗)

Substituting these in Eq. (4) and defining Bx
ij ≡ εxi γBXiγBYj and By

ij ≡ ε
y
i γBYiγBXj , we obtain our

competition kernel:

αAB = δAB
µ

A∗2

+ exey(AY∗) · ((1− P xP y)−1(P xByX∗ +BxY∗))
+ exey(ATX∗) · ((1− P yP x)−1(P yBxY∗ +ByX∗)) (5)

Results

First, we note that if we unplug the y resources from consumer dynamics, such that only the x
resources regulate those species, then differences in x-niche strategies are almost perfect predictors
of pairwise competitive relations. In other words, if niche space is one-dimensional, niche strategies
fully determine competitive interactions, and we therefore have no process noise.

Next, we add the y resources back in. Fig. S1A shows a community obtained by numerical
simulation of this model, with species arranged by their x-niche. Despite niche space being two-
dimensional, with both x and y resources modulating species dynamics, the clustered abundance
pattern is visible along the x-niche axis, as confirmed by our clustering metric (results summarized
in the legend of the plot). Thus, even if the y-niche strategies of these species were entirely unknown,
we would still be able to infer niche dynamics from the x-axis alone. The competition kernel, as
calculated via Eq. (5), correlates with x-niche distances (Fig. S1C), but the relationship is noisy
because of the contribution of the y-niche. The hidden y-niche adds process noise.

To determine whether the noise was higher in the core or tail of the kernel, we fitted a cubic
spline to each row of the kernel—which for each species in the community describes the competitive
impact of all other species—and compared the expected kernel values from the spline against the
observed values. Species pairs were deemed to be in the core or tail based on whether they were
below or above the niche distance at which the splined kernel is at the community-level mean.
Using the chi-squared statistic χ2

i =
∑
j(αij − α̂ij)2/α̂ij , we found that the noise is higher in the

tail (χ2
core = 0.04, χ2

tail = 0.07).
The minimum of the niche distances on either axis is a better predictor of the competition

coefficients (Fig. S1D). In particular, the minimum distance is a much better predictor of the kernel’s
tail than the x-distance: unlike the x-distance, a large minimum distance is a reliable sign of low
competitive interactions.

These results support our assumptions in the main text that essential resource axes may lead to
noise in the tail of the kernel, and that the pairwise competitive relations are strongly associated
with the minimum distance in the full niche space.

To summarize our findings regarding competition for essential resources: when niche space is
one-dimensional, niche strategies fully determine competitive interactions—i.e. there is no process
noise. When niche space is multidimensional, the map from competition to niche strategies is noisy,
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but the minimum distance in niche space is a good approximation. If we have no information on
one of the niche dimensions, this process noise is compounded, particularly in the tail.

Figure S1: Generalized process noise. A. Species abundances by their x-niche. Legend shows number
of clusters (K), z-score of the gap statistic (Z), and corresponding p-value (P); B. Resource abundances along
each resource axis; C. Pairwise competition coefficients calculated from consumer and resource abundances
using Eq. (5), plotted against species differences in x-niche strategies. There is a visible negative correlation.
Legend shows rank correlation (Spearman’s ρ); D. Competition coefficients plotted against the minimum
between dx and dy (scaled by the width of the respective resource use functions γ). Parameters used in the
simulation: S = R = 100; ex = ey = 1; K = 0.1; r = 100; m = 1; µ = 10−5; ν = 0.1; wx = 0.11; wy = 0.08.
All species and resources start with identical abundances, and we run the simulation until abundances are no
longer changing.
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C Competition for available space in two niche dimensions leads
to core noise, and Euclidean distances are a good predictor of
competitive interactions

Consider a community of plants in a heterogeneous landscape. Plants compete for space, and the
landscape is composed of patches, each of which can contain one individual. The local environment
in each patch is characterized by two independent indices (for instance, soil humidity and salinity),
and different species are optimally adapted to different suites of environmental conditions (i.e.
different combinations of humidity and salinity). In this situation, the resource is available space
with specific environmental conditions. Niche space is two-dimensional, in the sense that species
niche strategies pertain to their affinities for these two independent environmental properties.

We can model such a scenario as follows:

dNikl

dt = −mNikl + b TiklXklNi (6)

Xkl = c−
∑
i

Nikl (7)

where Nikl is the abundance of species i in patches with humidity k and salinity l, and Xkl is the
number of currently unoccupied patches with those conditions. The first term in Eq. 6 represents
death, which for simplicity we assume occurs at the same rate m for all individuals in all patches.
The second represents births, which are mediated by the species affinity for the local environmental
conditions, Tikl. We assume no dispersal limitation: all individuals of species i contribute offspring
equally to all patches (hence the factor Ni in the birth term, as opposed to a weighted combination
of Nikl). The birth rate b is the same for all species and patches, but varies over time depending on
abundances and site occupancy, such that the total number of births balances the total number
of deaths. This portrays a community with a seed bank that enables newly available sites to be
quickly colonized, but where births are limited by available space, which is in turn provided by
deaths. The number of available patches of humidity k and salinity l is equal to the total number of
patches c in the community with those conditions, minus the total occupancy in these sites. For
simplicity, we assume c is the same for all environmental conditions.

We can sum Eq. 6 over the patches to find the dynamic equation for species abundances:

∑
kl

dNikl

dt = dNi

dt = −mNi + bτiNi (8)

where τi =
∑
kl TiklXkl. Note that in order to match total births and deaths, b = m(

∑
iNi)/(

∑
i τiNi).

This dependence of the birth rate on deaths reflects offspring’s need for available gaps to recruit,
and provides a stabilizing mechanism that prevents populations from growing indefinitely.

Substituting Eq. 8 in the usual definition of the competition coefficients, αij = − ∂
∂Nj

(
1
Ni

dNi
dt

)∣∣∣∣
N∗

,
we get

αij = −
(
∂τi
∂Nj

b+ τi
∂b

∂Nj

)
(9)

Before we can calculate those derivatives, we must note that τi and b are defined in terms of patch-
specific subpopulations. Therefore we must convert ∂/∂Nj into ∂/∂Njkl. This conversion depends
on how an increment to the population Nj is distributed across the different patches. The natural
assumption is that it will occur in proportion to the species affinity for the local environment in these
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patches, reflecting local filters. In other words, dNjkl = 1∑
k′l′ Tjk′l′

TjkldNj . The proportionality

constant ensures that
∑
kl dNjkl = dNj . It then follows that ∂

∂Nj
= 1∑

k′l′ Tjk′l′

∑
kl Tjkl

∂
∂Njkl

.
Applying the derivatives in Eq. 9 and using Eq. 7, we obtain

αij = b
∑
kl

Tikl
Tjkl∑
k′l′ Tjk′l′

− m∑
i′ Ni′τi′

+ m
∑
i′ Ni′

(
∑
i′ Ni′τi′)2

(
τj −

∑
i′

Ni′
∑
kl

Tikl
Tjkl∑
k′l′ Tjk′l′

)
(10)

This expression is not particularly illuminating, but we note that it contains terms like
∑
kl TiklTjkl,

which represent the overlap in environmental preferences between species i and j. This is in the
same spirit as the classical work by MacArthur and others (MacArthur and Levins, 1967; MacArthur,
1972).

To complete the model, we must specify the environmental preferences of our different species.
Suppose species i has a preferred humidity level xi and salinity level yi. Those preferences define
the species niche strategy. Its affinity for a patch with humidity xk and salinity yl will then be

Tikl = exp

−
∣∣∣∣xi − xkwx

∣∣∣∣2 +
∣∣∣∣∣yi − ylwy

∣∣∣∣∣
2
2


In words, the affinity is a declining function of the (two-dimensional) difference between the local
environment and the species’ preferred environment. The weighting factors wx and wy set the
relative scales of the x- and y-environmental dimensions. For instance in the limit where wy � wx,
species are indifferent to the y-dimension relative to the x-dimension. This will occur for example if
they have similar tolerance to all salinity levels within the landscape’s range. In that case, niche
space is one-dimensional.

Results from numerical implementation of this model are shown in Fig. S2. Species cluster
along their x-environmental preferences (the x-niche, Fig. S2A), even though competition does
not correlate perfectly with differences in x-preference (Fig. S2B). The noise, visible as a scatter
in the cloud of points, occurs mostly between species with similar x-preferences. In other words,
the noise is greater in the core than in the tail. (Contrast this with the tail-heavy noise from the
resource-consumer model of competition for essential resources, Appendix B.) The correlation
with differences in y-preference is also imperfect (Fig. S2C). It is only when we plot competition
coefficients against the Euclidean distance that we see a tight relationship (Fig. S2D).

In summary, when we ignore either niche dimension, we face noise in the correspondence between
competitive interactions and the observed niche strategies. That noise is concentrated in the core of
the competition kernel. This is because if all we know is that two species are similar with respect to
their x-preference, we may overestimate how strongly they compete because they may compensate
for their x-similarity with very dissimilar y-niche requirements. On the other hand, the Euclidean
distance in the two-dimensional niche space is an excellent predictor of competition. These results
support our simple Lotka-Volterra model for complementary resources presented in the main text.
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Figure S2: Competition for available space in two niche dimensions leads to core noise. A.
Species abundances by their x-niche. Legend shows number of clusters (K), z-score of the gap statistic (Z),
and corresponding p-value (P); B. Pairwise competition coefficients calculated from consumer abundances
using Eq. (10), plotted against species differences in x-niche strategies. There is a visible negative correlation,
but it is noisy, especially in the core; C. Competition coefficients plotted against differences in y-niche
strategies show a similar pattern. D. Plotting competition against the Euclidean distance (with dx and
dy scaled by the respective weighting factors) resolves the core noise. Parameters used in the simulation:
S = 100 species; R = 10 different environmental levels in each dimension; m = 0.01; wx = 0.1; wy = 0.38.
Both x- and y-niche strategies range from 0 to 1, as do environmental levels. All species start with identical
abundances, totaling the carrying capacity of the community, such that community size does not vary. We
then run the simulation until abundances are no longer changing.
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D Generalized process noise
In the main text we showed how process noise arises from incomplete access to full niche space
in an example where niche space is two-dimensional. Here we generalize this model, assuming an
indeterminate number of unseen niche axes and other contributing factors which collectively add
noise to the relationship between competition and x-niche differences. We thus set

Aij = exp(−(|xi − xj |/w)4) + εij ,

where the noise term εij is a normally distributed random variable with mean 0. We vary the
magnitude or amplitude of the noise by tuning the variance parameter. By analogy with the
two-dimensional scenario, where we observed that different types of relationship between the niche
axes (complementary or essential) lead to more noise in specific regions of the kernel, here we
consider three cases: noise can be stronger between species with small x-niche differences, large
x-niche differences, or irrespective of x-niche differences. We call these core noise, tail noise, and
uniform noise, in reference to the part of the kernel where most of the noise is concentrated. We
achieve these different cases by allowing the variance of the noise to depend on distances dij on the
x-niche axis (see Fig. S3B-D for visual representations of each). Because a noisy kernel is unique,
we simulated 100 replicates (runs) for each noise type and magnitude to ensure robust results.

We impose nonnegative competition coefficients between all species pairs, and positive intraspe-
cific competition for all species in order to ensure self-regulation and thus avoid unchecked growth.
(If the noise term brings the coefficient below zero, we set it to zero if off-diagonal, or redraw
it otherwise.) Once all competition coefficients are drawn we rescale the matrix by its mean,
A → µA A/A, in order to ensure that the average competitive impact between species pairs is
the same across runs and scenarios. The rescaled mean µA affects final community size. We use
µA = 0.2, which combined with our other parameter choices leads to community sizes between 600
and 35,000 individuals, depending on the noise scenario and magnitude. We use a circular niche
axis to avoid edge effects. This isolates the contribution of niche differences to pattern (further
testing revealed this assumption is not critical for the validity of our results).

Fig. S3 shows examples of kernels and simulation outcomes in each case. When there is no noise,
the kernel is perfectly monotonic on x-niche distances (Fig. S3A), and the resulting community is
visibly clustered (Fig. S3E). As process noise is added in the form of core, tail, and uniform noise,
the kernel lose monotonicity in the respective region while retaining a statistical trend (Fig. S3B-
D). The resulting communities, despite the noise, are still clustered, albeit less distinctively so
(Fig. S3F-H). Notice the parallels between core (tail) noise in this generalized process noise model
and complementary (essential) niche axes in the two-dimensional model (cf. Fig. S3 and Fig. 3 in
the main text).

The probability of clustering decreases as the noise increases (Fig. S4). For the same degree of
overall monotonic relationship between competition and x-niche differences, core noise seems to
degrade pattern the most, and tail noise the least, with uniform noise in between (cf. blue, red, and
green curves in Fig. S4A). Again, this is similar to what we observed in the two-dimensional case
regarding complementary and essential niche axes. The core-tail structure predicts the probability
of clustering consistently, whether the noise is in the core, tail, or across the kernel (Fig. S4B). This
is also similar to our observations for the two-dimensional model (cf. Fig. S4 and Fig. 4 in the main
text).

The similarity between the results of our two-dimensional niche model and our generalized noise
model indicates that higher niche dimensions add no qualitatively new phenomena to pattern along
a single niche axis. The fact that uniform noise shows intermediate behavior between core and tail
noise suggests that process noise originating from a combination of complementary and essential
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“hidden” niche axes will produce intermediate effects between strictly complementary and strictly
essential niche axes.

Figure S3: Generalized process noise. A-D: Competition coefficients between a focal species near the
center of the niche axis and all other species, plotted against niche difference between them. In the noise-free
case (A), the kernel peaks at zero niche difference and decreases monotonically with absolute niche differences.
In the noise scenarios the noise is concentrated in the core (B), tail (C), or uniform across the kernel (D). All
kernels have the same average, A = S−2∑

ij Aij = 0.2. Legend numbers show the noise scores according to
each of our two metrics, namely Spearman’s ρ and π(A) (see main text). E-H: Species abundance plotted
against niche values. (y-axis clipped at N = 15 to emphasize abundance structure in the gaps between
high-abundance species.) Clusters are quite distinctive in the noise-free scenario (E). In the noisy scenarios
(F-H) the pattern is less regular but clustering still occurs—all examples shown are significant at statistical
level p ≤ 0.01. Legend shows the estimated number of clusters and the z-score of the clustering statistic.

●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●

●

●●
●
●
●

●
●
●

●

●

●
●

●

●

●

●

●●

●●●
●
●

●●●●●●●●●●●●●●●●●●

●
●
●
●

●
●

●

●

●●
●

●

●●

●

●●
●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−0.4 −0.2 0.0 0.2 0.4

0.0

0.2

0.4

0.6

0.8

1.0

Noise−free

dtrait

A
[, 

10
0]

A

ρ = −1.00

π = −1.00

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

trait

N

E

K = 7 Z = 10.7 **

●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●
●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−0.4 −0.2 0.0 0.2 0.4

0.0

0.5

1.0

1.5

2.0
Core noise

dtrait

A
[, 

10
0]

B

ρ = −0.99

π = −0.96

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

trait

N

F

K = 8 Z = 3.7 **

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●
●
●

●● ●●●
●
●

●

●●
●
●

●
●
●

●

●●
●
●

●

●●●

●
●●●

●
●● ●●●●●●●●●●●●●●

●●●●
●●●
●

●
●
●●
●

●●
●
●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●

●
●●●●●
●●

●

●●●●●●●●●●●●●●●●● ●
●●●
●●
●
●
●●
●
●
●
●

●

●●●●●●●●

●

●
●

●

●●●●

●

●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

−0.4 −0.2 0.0 0.2 0.4

0.0

0.5

1.0

1.5

2.0

2.5

Tail noise

dtrait

A
[, 

10
0]

C

ρ = −0.38

π = −0.75

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

trait

N

G

K = 8 Z = 3.7 **

●●●●

●

●●

●

●

●
●

●

●

●

●

●●●
●
●

●
● ●●

●

●

●
●
●●●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●●●●●●

●

●

●

●

●
●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●●
●
●●●

●

●●
●

●

●

●

●●●

●

●

●

●●●

●

●

●

●
●
●
●●
●

●

●●

●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●●●

●

●

−0.4 −0.2 0.0 0.2 0.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

General noise

dtrait

A
[, 

10
0]

D

ρ = −0.55

π = −0.78

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

trait

N

H

K = 8 Z = 3.7 **

Species niche value

A
bu

nd
an

ce
K

er
ne

l

10



Figure S4: Probability of clustering by magnitude of noise. The probability of clustering is estimated
as the percentage of runs of each noise scenario where clustering was statistically significant (p ≤ 0.05), out
of a total 100 replicates each. The noise is measured as the degree of randomness between the kernel and the
x-niche axis (process noise) or the trait axis (measurement noise), using two indices: A: Monotonic decline of
competition with species differences, measured with Spearman’s rank correlation coefficient ρ. B: Core-tail
structure, defined as the difference between the proportion of tail and core elements that exceed the kernel
mean. Scenarios shown are process noise with complementary niche axes (blue curves), process noise with
essential niche axes (red), and measurement noise (black). Compare with Fig. 3 in the main text.
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E Estimating the niche value through multiple proxy traits
In the main text we wrote

tai = baxi + ca + εai , (11)

where tai is species i’s trait value on trait axis a, xi is species i’s niche strategy, ba and ca are
constants, and εai is the measurement noise. Written this way, it looks like we are assuming the
niche causes the trait. However, this is not so.

In general, species i’s niche strategy along a niche axis will be a function of its trait values along
n functional trait axes: xi = f(T 1

i , T
2
i , . . . , T

n
i ). Our example in the main text corresponds to the

particular case where that function is linear in all of the trait values, xi = k0 +
∑n
j=1 k

jT ji . This
expression can be easily inverted to write the species trait along a given trait axis as a linear function
of its niche strategy and all other trait values: T ai = 1/kaxi− k0/ka−

∑
j 6=a k

j/kaT ji . This makes it
clear that the measurement error εai between trait axis a and the niche axis in Eq. 11 stands for
the combined contribution of the unmeasured trait axes. Assuming no correlation between trait
values along different trait axes, we can find a linear transformation of T ai that recovers Eq. 11,
with Mean

i
(εai ) = 0 and Var

i
(εai ) = σ2

a. Parameter σa reflects the amplitude of the noise between
trait axis a and the niche axis x. This noise amplitude will be small when the contribution of the
unmeasured traits is small.

In the main text we assume furthermore that the noise is normally distributed, unbiased, and
uncorrelated. In other words, εai ∼ N(0, σa), cov(xi, εai ) = 0, and cov(εai , εbj) = 1 if i = j and a = b,
and 0 otherwise. In these circumstances, the first principal component of such a set of proxy traits
will typically predict species niche values better than most proxy traits individually. An example is
shown in Fig. S5.

Consider the special case where the expected value of each trait is the true niche value (ba = 1
and ca = 0, for each a = 1, 2, . . . , L). The coefficient of determination between the niche axis and

11



trait axis a is defined as R2
x,a = cov2(x, ta)

σ2
xσ

2
a

, where σ2
x, σ2

a, and cov(x, ta) are respectively the variance
in niche values, variance in trait values, and covariance between niche and trait values across species.
Substituting we get

R2
x,a = cov2(x, x+ εa)

σ2
xσ

2
a

= cov2(x, x)
σ2
x(σ2

x + σ2
a)

= σ2
x

σ2
x + σ2

a

We define a species’ consensus trait zi as the average across its proxy traits: zi = 1/L
∑
a t
a
i =

xi +
∑
a ε

a
i /L = xi + εai . It is also a random variable whose expected value is the true niche value,

with the advantage that it has a lower-magnitude error: εai ∼ N(0,
√
σ2
a/L). By analogy with

the calculation above, the R2 between the niche values and the consensus trait is R2
x,z = σ2

x

σ2
x+σ2

a/L
.

Therefore the consensus trait will have a higher R2 against the niche axis than a given trait ta
if σ2

a/L < σ2
a. If all traits have the same noise amplitude, then σ2

a = σ2
a and the condition is

trivially met for any number of trait axes L > 1. When the noise amplitudes differ across traits, the
consensus trait will still have a higher coefficient of determination that then “typical” trait with
noise amplitude σ2

a.
In the more general case where ba and ca differ across proxy traits, the first principal component

replaces the simple trait average as the best predictor of the niche value. In Fig. S5 we show results
for an example with 8 proxy traits where the constants ba and ca were respectively drawn from
a normal distribution centered at 1 and 0: ba ∼ N(1, σb), ca ∼ N(0, σc). We used σb = σc = 0.5.
The amplitude of the measurement noise σa for each trait was drawn from a uniform distribution
between 0.05 and 0.25.

In the example shown in Fig. S5, most trait axes fail to reveal the existing clustering pattern
along the niche axis, even those with high R2 (Trait 7 and Trait 8). In contrast, the first principal
component is clustered (clustering z-score = 3.0, p-value < 0.01). Note that in this example the first
principal component is a better predictor of the niche than seven of the eight traits (R2 = 0.94),
but is a poorer predictor than Trait 1, which is tightly linked to the niche (R2 = 0.99) and is the
only clustered trait (z-score = 3.3, p-value < 0.01). In general, the first principal component will
typically have a higher coefficient of determination with the niche axis than individual trait axes,
and is also more likely to be clustered.
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Figure S5: Example showing relationship between the trait value of each species (x-axis) and the niche
value (y-axis) for 8 proxy traits that predict the niche value with varying degrees of precision, plus the first
principal component (ninth panel). The legend in each panel shows the coefficient of determination between
the niche and trait values R2, the estimated number of species clusters along that trait axis K, and the
clustering z-score Z, with the number of stars indicating significance (2 stars for p ≤ 0.01, 1 star for p ≤ 0.05,
zero stars for p > 0.05).
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F Clustering metric — the gap statistic via k-means clustering
Here we describe a metric to identify and quantify clustering between species on a niche or trait
axis2, based on a method developed by Tibshirani et al. (2001). The metric receives as input the
species abundances and their niche (trait) values, and then estimates the number of clusters that
best fits the data. It also provides an index—the gap statistic—that quantifies the degree to which
the species assemblage fits that number of clusters better than a set of reference (null) assemblages.

For each candidate number of clusters k within a provided range [kmin, kmax], we calculate the
goodness of fit of k clusters to our species assemblage, fk, as well as the goodness of fit of k clusters
to each of the null assemblages f̃k,i, where i = 1, 2, . . . , Nnulls and Nnulls is the total number of

2The method also applies in general to a niche or trait space with any number of dimensions, as long as that space
allows a meaningful definition of “distance” between species—such as Euclidean distance.
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null assemblages. We then record the difference (the gap) between the former and the average of
the latter: ∆k = fk − f̃k. The estimated number of clusters k̂ is the k that maximizes the gap,
∆k̂ = max

k
(∆k), and the maximum gap itself is the gap statistic, Gap = ∆k̂.

The method is quite general, and both the null assemblages and the measure of goodness of fit
must be specified. We generate our null assemblages by shuffling abundances among species, i.e.
we randomly redistribute observed species abundances to observed niche (trait) values. This keeps
both the set of abundances and the set of traits, while randomizing the map between them.

As for the goodness of fit, following (Tibshirani et al., 2001) we use the k-means clustering
algorithm (see MacQueen 1967). This method partitions individuals into a specified number of groups
such that the so-called dispersion between individuals within the same group is minimized. Let Dr

be the total pairwise squared distance between members of group r, that is, Dr =
∑
i,j(xi − xj)2,

where xi is the niche or trait value of individual i. The dispersion Wk is then the sum of those
numbers across all k groups, Wk =

∑k
r=1Dr. The k-means algorithm consists in assigning each

individual to one of the k groups so that Wk is as low as possible3,4.
We then set fk = log(1/Wk) as the goodness of fit, and feed it into the gap statistic algorithm to

estimate the number of clusters k. Notice that it does not make sense to compare the goodness of fit
fk directly across different k’s because fk necessarily increases with k, as the average within-cluster
distance is always lower for higher numbers of clusters. By comparing against null assemblages, the
gap method finds the biggest increase in goodness of fit beyond what is expected from the increase
in k. The reason we use log(1/Wk) rather than simply 1/Wk is that the expected increments in
1/Wk with increasing k are multiplicative rather than additive. See (Tibshirani et al., 2001) for
more details. Our metric is then defined as Gap = max

k

(
log(1/Wk)− log(1/W̃k)

)
, and the value of

k at which the quantity in the parenthesis is maximal is the estimated number of clusters k̂.
If we knew the expected distribution of this statistic under the null hypothesis where species

niches (traits) and abundances are unrelated to each other, we could stop here, as the value of Gap
would tell us about both degree of clustering and statistical significance. Because we do not know
that distribtution, we must compare it with a null set of values. We therefore calculate the metric
on each of our null assemblages, and from that we obtain a z-score and a p-value. Those are defined
as z = (Gap− G̃ap) / σ(G̃ap) and p = 1

Nnulls

∑Nnulls
i=1 I(G̃api ≥ Gap) where G̃api is the gap statistic

obtained for the i-th null assemblage, G̃ap and σ(G̃ap) are the mean and standard deviation across
those values, and I is the index function, equal to 1 if its argument is true and zero otherwise.
The z-score and p-value quantify respectively the degree to which the gap statistic returned by our
species assemblage exceeds null expectations, and whether that result is statistically significant.

G Kernel structure in the trait-noise scenario
In the trait-noise scenario, the competition coefficients plotted against proxy trait values resemble
the core-noise kernel, with most of the noise occurring for pairs with small trait difference (compare
Figs. 3A and 5H in the main text). However, a closer look reveals that the measurement-noise

3Dispersion can be defined in different ways, depending on how one wishes to weigh the number of members per
group. While Tibshirani et al. (2001) choose to scale the squared distances by the number of individuals in the group,
Yan and Ye (2007) argue that scaling it by the number of pairs in the group is a a better choice in some cases. In our
study we saw no qualitative difference between those different scaling options, and opted to use the simpler unweighted
sum of squared distances.

4In our model, all conspecific individuals have the same niche (trait) value, and therefore necessarily belong in
the same cluster. Species are therefore trivial clusters of individuals. Ecologists are of course interested in clustering
beyond the obvious grouping of individuals into species.
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kernel is more structured (Fig. S6): unlike the core-noise scenario, the matrix is symmetric and
the noise is autocorrelated. We note that there is a permutation of the rows and columns of the
competition matrix in the trait noise scenario that restores the noise-free matrix. This is not the
case with any of the kernel noise scenarios presented in the main text.

Figure S6: Comparison between the competition kernel from the core-noise scenario and the trait-noise
scenario. Left: Core-noise competition coefficients between species pairs plotted against their respective niche
values, with darker shades of gray representing stronger competition. Coefficients tend to be higher when
species have similar niche values (the top-left and bottom-right corners are continuations of the diagonal,
as the niche axis is circular). The noise is manifested in the fine-grained pixelation of the grey band, and
lacks any visible structure. Right: Trait-noise competition coefficients plotted against trait values. As
in the core-noise scenario, the noise is concentrated in the diagonal band where competition is stronger.
However, unlike the core-noise scenario, the matrix is symmetric and the pixel sizes are larger, indicating
autocorrelation in the noise.

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Niche value

N
ic

he
 v

al
ue

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Proxy trait

P
ro

xy
 tr

ai
t

Core noise Trait noise

References
Abrams, P. (1980). Are Competition Coefficients Constant? Inductive Versus Deductive Approaches.

The American Naturalist, 116(5):730–735.

Craine, J. M. and Jackson, R. D. (2010). Plant nitrogen and phosphorus limitation in 98 North
American grassland soils. Plant and Soil, 334(1):73–84.

Danger, M., Daufresne, T., Lucas, F., Pissard, S., and Lacroix, G. (2008). Does Liebig’s law of the
minimum scale up from species to communities? Oikos, 117(11):1741–1751.

Harpole, W. S., Ngai, J. T., Cleland, E. E., Seabloom, E. W., Borer, E. T., Bracken, M. E., Elser,
J. J., Gruner, D. S., Hillebrand, H., Shurin, J. B., and Smith, J. E. (2011). Nutrient co-limitation
of primary producer communities. Ecology Letters, 14(9):852–862.

Huber, S. K. and Podos, J. (2006). Beak morphology and song features covary in a population of
Darwin’s finches (Geospiza fortis). Biological Journal of the Linnean Society, 88(3):489–498.

15



MacArthur, R. H. (1972). Geographical ecology; patterns in the distribution of species. Harper &
Row.

MacArthur, R. H. and Levins, R. (1967). The Limiting Similarity, Convergence, and Divergence of
Coexisting Species. The American Naturalist, 101(921):377–385.

MacQueen, J. B. (1967). Some Methods for classification and Analysis of Multivariate Observations.
5th Berkeley Symposium on Mathematical Statistics and Probability 1967, 1(233):281–297.

Saito, M. A., Goepfert, T. J., and Ritt, J. T. (2008). Some thoughts on the concept of colimitation:
Three definitions and the importance of bioavailability. Limnology and Oceanography, 53(1):276–
290.

Schluter, D. and Grant, P. R. (1984). Determinants of Morphological Patterns in Communities of
Darwin’s Finches. The American Naturalist, 123(2):175–196.

Schoener, T. W. (1974). Resource partitioning in ecological communities. Science (New York, N.Y.),
185(4145):27–39.

Schoener, T. W. (1976). Alternatives to Lotka-Volterra competition: models of intermediate
complexity. Theoretical population biology, 10(3):309–33.

Tibshirani, R., Walther, G., and Hastie, T. (2001). Estimating the number of clusters in a data set
via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
63:411–423.

Yan, M. and Ye, K. (2007). Determining the number of clusters using the weighted gap statistic.
Biometrics, 63(4):1031–1037.

16


