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Abstract

Trait variation and similarity among coexisting species can provide a window into the
mechanisms that maintain their coexistence. Recent theoretical explorations suggest that
competitive interactions will lead to groups, or clusters, of species with similar traits. However,
theoretical predictions typically assume complete knowledge of the map between competition
and measured traits. These assumptions limit the plausible application of these patterns for
inferring competitive interactions in nature. Here we relax these restrictions and find that the
clustering pattern is robust to contributions of unknown or unobserved niche axes. However, it
may not be visible unless measured traits are close proxies for niche strategies. We conclude
that patterns along single niche axes may reveal properties of interspecific competition in nature,
but detecting these patterns requires natural history expertise firmly tying traits to niches.
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Introduction

How does competition shape the distribution of species traits in nature? The classic answer, based
on the idea that similarity breeds competition, is that coexisting species will be more different
than expected by chance (MacArthur and Levins, 1967; Abrams, 1983). Although intuitive, this
prediction of limiting similarity lacks widespread empirical support (Chase and Leibold, 2003;
Götzenberger et al., 2012) despite extensive research (D’Andrea and Ostling, 2016). Recent studies
have found that trait-mediated competition can actually lead to the emergence of clusters, or groups
of similar species (Bonsall et al., 2004; Scheffer and van Nes, 2006; Hernández-García et al., 2009;
Sakavara et al., 2018). Although contradictory on the surface, clusters are a natural extension
of limiting similarity. If left alone, competitive sorting culminates in maximally differentiated
species, each occupying a niche. But an influx of new individuals and species due to speciation or
immigration may keep the number of extant species above the number of local niches (D’Andrea
et al., 2018). In that case, species whose traits place them near a niche will persist longer (Scranton
and Vasseur, 2016; D’Andrea and Ostling, 2017), and species in between are quickly excluded as they
are not well adapted to any niche (Barabás et al., 2013; Vergnon et al., 2013). The incorporation of
species clusters to traditional trait-pattern theory may help explain the mixed evidence for limiting
similarity, and may help understand coexistence in species-rich systems such as tropical forests.

Nevertheless, clusters are not a widely observed phenomenon in nature outside specific communi-
ties (Scheffer and van Nes, 2006; Scheffer et al., 2015; Segura et al., 2011, 2013; Vergnon et al., 2009;
Yan et al., 2012). While this can in part be due to clusters having only recently been connected with
competition in the theoretical literature (D’Andrea and Ostling, 2016), it is not clear that clusters
should occur outside idealized models. Theoretical studies typically make two critical assumptions
that do not hold in real communities, thus limiting their applicability. First, they assume that
species can be arranged on a line such that distances between their relative positions on the line
determine how strongly they compete with one another (MacArthur and Levins, 1967). In reality, it
is unlikely that positions along a single line can fully predict the degree of competition. For example,
birds that eat very distinct foods may still compete strongly for nesting sites, or may be under
apparent competition because they share predators or parasites. Knowledge of the birds’ diets will
predict degree of competition better than chance, but the relationship will appear noisy because
of the contribution of these other factors. In this study we will refer to the line as a niche axis,
such that separation on that axis predicts the degree of competition between species. From the
vantage point of the food-niche axis, the unknown contributions of the nesting site axis, predator
axis, etc loosen the link between diet and competition. While there is theoretical evidence that
multidimensional niche space may cause multidimensional niche clustering (Fort et al., 2010), it is
unclear whether any pattern should be expected along a single niche axis in the presence of these
other unobserved factors.

The second assumption is that measurable traits such as body size and leaf tissue density are
actual niche axes, so patterns driven by competition should be visible as patterns in the distribution
of these traits. However, there is a conceptual distinction between aspects of phenotype directly
responsible for competitive interactions and aspects of phenotype that are typically measured.
The former may form niche axes, but are unlikely to perfectly coincide with easily measurable
morphological or physiological traits (Appendix A). At best, measured functional traits are good
predictors of the true causes of competitive interactions (McGill et al., 2006; Violle et al., 2007),
but that map is inevitably noisy. For example, consider plant strategies regarding light capture
and shade tolerance, or the “light-niche” axis. Leaf tissue density correlates with shade tolerance in
forests, but will not fully predict the light-niche because the latter is also affected by many other
plant traits, such as maximum plant height and wood density (Wright et al., 2010). Pattern in the
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distribution of light strategies across species will translate into pattern in the distribution of leaf
tissue density only to the extent that the latter reflects the former.

Little is known about how this inevitable uncertainty might affect our ability to detect pattern
in nature (Fig. 1). If the clusters predicted by theory are robust to uncertainty, then they are useful
for diagnosing competition based on overlap in niche strategies. But if measuring an incomplete or
inaccurate set of traits means we are unlikely to detect clusters, then there is little value in searching
for them in nature.

Here we test this robustness. We start by asking what happens when only one of the niche axes
responsible for competitive interactions is fully known. We find that pattern on one niche axis is
surprisingly robust to the contributions of other niche axes. Next we ask whether this niche pattern
translates well into trait pattern, given that traits are imperfect predictors of niches. We find that
the pattern is quite sensitive to this error, and its detectability quickly fades as we loosen the link
between niche axis and measured trait. We then show that measuring multiple traits can provide
more accurate estimates and thus reduce measurement noise, but ultimately a tight functional
relation between traits and niche strategies is key.

Materials and Methods

Niche dynamics

Many ecological communities consist of multiple species competing for resources, and often these
resources are thought of as falling on a continuous gradient. One such example is seed-eating birds
that may feed on seeds of various sizes. The species niche reflects its resource preferences within the
gradient, so that similarity in niche values denotes the amount of overlap between those strategies
(MacArthur and Levins, 1967; Leimar et al., 2013).

We represent this scenario using a Lotka-Volterra model of competitive dynamics.

dNi

dt
= ri



1 −
∑

j

Aij

Nj

Ki



Ni + mi

where Ni, ri, Ki are the abundance, intrinsic (maximal) growth rate, and carrying capacity of species
i, and the competition coefficients Aij quantify the per-capita competitive impact of species j on
species i. Steady immigration mi maintains all abundances above zero.

We use S = 200 species in our simulations, and let species differ only by niche strategy, affecting
Aij . We set parameters r = 1, K = 100, and m = 0.2 immigrating individuals per species per year,
identical across all species. These parameter choices lead to equilibrium community sizes between
600 and 35,000 individuals. As a reference point, the 50-hectare forest plot in Barro Colorado Island
has approximately 300 species, 20,000 trees, and an estimated m = 0.1 immigration event per birth
(Hubbell, 2001). We verified that our results are robust to a four-fold change in immigration rates.
All simulations are performed using library deSolve in the R language (R Core Team, 2017).

Competition coefficients—the kernel

We will refer to the matrix of competition coefficients Aij as the competition kernel, by analogy
with continuous formulations. We set

Aij = a0 exp(−d4

ij)
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where dij is the distance in niche space between species i and j, and the scaling factor a0 is some
constant. This quartic function is a generic monotonic shape commonly used in competition models
(Pigolotti et al., 2010; Leimar et al., 2013). A plot of this function reveals two distinct zones: a
plateau of intense competition between similar species, and a steep drop-off beyond a threshold
niche distance (Fig. S3A). We refer to the inner region as the “core” of the kernel, and the outer
region as its “tail”. As we will show, this core-tail structure is instrumental in pattern-formation.
The threshold distance is somewhat arbitrary, and here we take it to be the niche distance where
the kernel is equal to its mean value. Other choices do not qualitatively change our results.

Process noise: competition in two-dimensional niche space

Consider a case where competitive interactions are collectively determined by species strategies
along two niche axes, e.g. two different types of resources such as food and nesting sites, or two
different types of food such as seeds and insects. Suppose also we only have access to one such
axis. The contributions of the unknown niche axis add randomness (i.e. noise) to the otherwise
monotonic relationship between competition kernel and niche differences on the known axis (Fig. 2).
We call this process noise.

Two different niche axes can interact in various ways to determine niche overlap (Holt, 1987). For
example, the two niche axes may reflect strategies for acquiring complementary resources. In this
case, similarity on one niche axis (e.g. similar preferences in insect prey) can be compensated via
differences along the other axis (foraging for very different seeds). Alternatively, the niche axes may
represent fundamentally different needs such as food and nesting sites for birds, or water and light
for plants. In this case, no amount of niche differences on one axis can compensate for similarity on
the other. We term these scenarios complementary and essential niche axes, respectively.

In our model, these different scenarios define the two-dimensional niche separation between
species. In the case of complementary niche axes, we set

dij =

√

√

√

√

(

xi − xj

wx

)2

+

(

yi − yj

wy

)2

where xi (xj) is the x-niche strategy of species i (j), which can range from 0 to 1, wx is a scaling
factor that weighs the x-niche difference relative to the y-niche difference, and vice-versa for y-based
parameters. Notice that if niche differences on either axis are large, dij will be large, and therefore
the competition coefficient will be small, regardless of differences on the other.

In the essential niche axes case, we set

dij = min

(

∣

∣

∣

∣

xi − xj
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∣
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∣

,

∣

∣

∣

∣
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∣

∣

∣

∣

∣

)

In this case, dij will be small if either the x- or y-niche separation is small, regardless of how large
the other niche separation may be. Here species cannot compensate for similarity on one axis by
dissimilarity on another, and the limiting resource is the one for which they compete the most.

The constants wx and wy define the relative weight of each niche axis to the overall niche
separation. In the complementary niche axes scenario, the y-contribution vanishes when wy is very
large relative to wx, and dominates the coefficient when it is very small. In the essential niche axes
scenario, the reverse is true. If we can measure the x-niche strategies of our species but have no
access to the y-niche, we anticipate that pattern on the x-axis should be likely to the extent that
the x-niche dominates competitive interactions—i.e. when the process noise from the perspective
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of the x-niche is sufficiently low. To quantify this, we fix wx = 0.1, and test the x-axis for species
clustering as we dial wy up or down.

Species x- and y-niche values are drawn from a uniform distribution between 0 and 1, with the
latter being redrawn for every new run. We simulate 100 replicates of each scenario to ensure that
results are robust. In each replicate we tune the scaling factor a0 to ensure that the community-wide
average intensity of competition is the same in all our simulations.

Lotka-Volterra equations approximate more complex dynamics near equilibrium (Schoener, 1974,
1976), hence their widespread use in ecological theory. However, true consumer-resource interactions
do not map trivially onto niche differences. We therefore tested our approach against models
where species dynamics are explicitly based on their use of resources. Rather than prescribe the
competition coefficients, we obtain them from simulation outcomes of the model, and then compare
with distances in niche space. In Appendix B we present a resource-consumer model with two
types of essential resources, such as different nutrients. The results confirm that the minimum
niche distance is a good predictor of pairwise competitive impacts. In Appendix C we present a
model of complementary niche axes: plants compete for space in a heterogeneous landscape, and
high competition due to similar affinity for one environmental property (e.g. humidity) can be
compensated by dissimilar affinities for another property (e.g. salinity). Results confirm that the
Euclidean niche distance accurately predicts competitive interactions.

Measurement noise

Even if niche space consists of a single niche axis, niche axes are typically not directly measurable;
traits are. Whether clustering on a niche axis (e.g. competence in acquiring and processing light)
translates as clustering on a measurable trait axis (e.g. maximum height) depends on how close
is the relation between the trait and the niche axis (Fig. 2). We call the noise in this relation
measurement noise.

To examine the impact of this type of noise, here we assume a simpler niche space than above,
consisting of a single niche axis. The niche axis fully determines competitive interactions (i.e. there
is no process noise), and we now assume that competition coefficients are monotonically tied to
niche differences. This leads to strong clustering along the niche axis.

Knowing that the niche axis is clustered, we want to assess the probability of clustering along
a measurable trait axis, given that the trait is statistically associated with the niche. We then
arrange species on a proxy trait axis such that trait values are random variables correlated with
the niche values (Fig. 5A-D). Because of measurement noise, species relative positions on the niche
axis will not be entirely preserved on the trait axis. As a result, competition will not be a strictly
monotonic function of trait separation (Fig. 5E-H), and the clustered niche pattern will be somewhat
randomized on the trait axis. Mathematically, we write ti = xi + εi, where ti is the trait value of
species i, xi is its niche value, and εi is the measurement noise between the two. The εi are normally
distributed random variables with mean 0 and whose variance determines the magnitude of the
noise. Note that trait noise does not affect species dynamics, as the noise here is at the level of how
we measure species and not at the level of their interactions.

Using multiple traits to mitigate measurement noise

In nature, a single niche axis will correlate with multiple trait axes. For example, niche strategy
regarding competition for light in forests will reflect on specific leaf area, leaf nitrogen content, twig
length, maximum plant height, etc. Individually, each trait will be an imperfect predictor of the
species’ light-related niche strategy, but together they may provide a better estimate. Combining
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multiple traits associated with the same niche axis may lead to a better estimate of the true niche
values, and therefore clustering that is lost on any individual trait axis may appear on an aggregate
axis.

We test this idea using a simulated set of n proxy traits, and their first principal component as
the aggregate axis. The trait value ta

i of species i on trait axis a (i = 1, 2, . . . , 200; a = 1, 2, . . . , n)
is a random variable linearly related to its niche value xi. We then write ta

i = baxi + ca + εa
i , where

ba and ca are constants specific to trait axis a and εa
i is the measurement noise, which is normally

distributed with mean 0 and variance σ2
a. This variance can be different for different trait axes, as

the niche axis may be more tightly linked to some traits than others—e.g. the light-niche may be
more directly influenced by maximum height than wood density.

Although we write the trait as a function of the niche, we are not assuming the latter determines
the former, but merely that they are correlated (see discussion in Appendix E). We also distinguish
between multidimensional niche space and the present scenario of a one-dimensional niche axis
that maps to multiple traits. An example of the former is competition based on the combined
overlap in strategies for capturing light and strategies for acquiring water, whereas an example
of the latter is when the light-niche strategy fully determines competitive interactions (possibly
because all species involved have identical strategies in all other niche axes), and maps to various
traits such as maximum height and specific leaf area. Finally, we note that our multiple traits
correlate with each other through their association with the niche strategy, as is common in nature
(Litchman and Klausmeier, 2008; Wright et al., 2010; Shoval et al., 2012), but we are assuming no
further correlation between these traits. This leads to the best-case-scenario where every new trait
adds maximal information about the niche; were there any further correlations between the traits,
new traits added to the analysis could be partially predicted by the existing ones, and therefore we
would gain less information by incorporating them.

Quantifying the noise

Without process or measurement noise, competition will be strong between similar species, and
weak between dissimilar ones. We therefore quantify noise as the degree of departure from this ideal
scenario. We do so using two summary statistics.

Spearman’s rank correlation coefficient, ρ(A, d), quantifies the degree to which competition
coefficients are monotonically related to pairwise distances on the niche or trait axis (McDonald,
2009). The index ranges from −1 (perfectly monotonic relationship) to 0 (no relationship).

As noted above, the kernel has a core (competition coefficients of species with small niche or trait
differences) and a tail (large differences). We quantify the degree to which this core-tail structure
predicts competitive relations by calculating the difference in proportion of tail and core elements
that are greater than the kernel mean, π(A) = P (Atail > A) − P (Acore > A). In the noise-free
scenario, the first proportion is 0 and the second is 1, leading to a difference of −1, while in a
completely random matrix both proportions are the same and the expected difference is 0.

As these metrics put both process and measurement noise in the same footing as degrees of
kernel disorder, they allow comparison of the relative impact of each.

Quantifying clustering

To determine whether or not a species assemblage is clustered, we use a metric based on the k-means
clustering algorithm and the gap statistic method (MacQueen, 1967; Tibshirani et al., 2001). The
metric takes into account the niche or trait values of each species as well as their abundances,
and estimates the number of clusters that best fits our species assemblage by comparing each fit
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against randomized null assemblages. The fit itself is based on pairwise distances along the niche
or trait axis between all species in the community, weighted by their abundances (we represent
each species by its average niche/trait value). Upon comparing results between the assemblage of
interest and the null assemblages, we obtain a z-score and a p-value, which tell us the degree to
which the assemblage is clustered, and whether the result is statistically significant. We provide the
mathematical details of the metric in Appendix F.

Results

Briefly, we found that the kernel’s core-tail structure is key for pattern emergence, and the clustering
pattern is robust to a substantial amount of noise between competition and niche strategies (process
noise). On the other hand, clustering is sensitive to noise between niche strategies and measured
trait values (measurement noise); this is because measurement noise effectively reshuffles species
along the axis, thus randomizing the community. Finally, a large set of functional traits may help
circumvent the issue, as combined they serve as a more accurate window into the biological niche
than an individual trait is likely to be.

Process noise

Fig. 3 shows an example of each kind of process noise. In the complementary niche axes case, the
noise is concentrated in the core of the kernel (Fig. 3A). In other words, competition is consistently
low at large x-niche distances, but noisy at small distances. This is because some species pairs
at short x-niche distances are far apart on the y-niche axis, thus bringing down the competition
coefficient which would otherwise be high. Our clustering metric confirms that species are distinctly
clustered in the xy-niche plane (Fig. 3B), as expected. However, even when the y-niche dimension is
lost, clustering is still visible on the x-niche axis (Fig. 3C). Some distinct clusters collapse onto each
other with the loss of the y-dimension, leading to detection of a lower number of clusters, but the
general clumpy structure is preserved despite the noise.

The essential niche axes scenario has the opposite type of noisy kernel (Fig. 3D): competition
between species in the core is reliably high, while the tail is noisy because some species pairs that
are far apart on the x-axis are close on the y-axis, bringing competition up. Again the xy-niche
space is strongly clustered as expected (Fig. 3E), and again collapsing the y-dimension does not
erase the clustering pattern, which is still visible from the x-niche axis alone (Fig. 3F).

In both of these examples, the process noise onto the x-niche produced by the unacknowledged
y-niche contributions is not sufficient to dissipate the pattern on the x-niche axis. However, as
the contribution of the y-niche to the competitive relations increases, so does the process noise
between the competition coefficients and distances on the x-niche axis, and the clustering on the
x-axis weakens and eventually disappears (Fig. 4).

As the rank correlation between competition coefficients and niche differences degrades from
ρ = −1 (fully monotonic) to ρ = 0 (no correlation), the probability of clustering declines (Fig. 4A).
In the case of complementary niche axes the drop is fast, but only reaches background levels near
ρ = −0.5. With essential resource axes, clustering remains very likely until ρ ≈ −0.5, at which point
it quickly falls off, but only drops to background levels near ρ = −0.2.

The strength of the core-tail structure in the kernel predicts clustering in the face of process
noise reasonably well, whether the niche axes are complementary or essential (Fig. 4B). In both
scenarios, that probability drops below 50% when π ≈ −0.7 (Fig. 4B).

In Appendix D we present a generalized process-noise model where we assume an indeterminate
number of niche axes and other contributing factors adding noise to the relationship between

8This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



competition and the known niche axis. We find similar results as the two-dimensional niche space
model, indicating that higher niche dimensions add no qualitatively new phenomena.

These results indicate that even when niche space is multidimensional and part of it is unknown,
we can expect clustering along a single niche axis to the extent that, on average, species with high
niche similarity compete more than dissimilar species. A fully monotonic relationship between
competition and niche difference is not strictly required.

Measurement noise

When the noise is between niche strategies and measured trait values (measurement noise), the
probability of clustering on the trait axis quickly drops to zero; faster in fact than with noise between
competition and niche strategies (process noise), as one can see by comparing the black curve to the
colored curves in Fig. 4. A glance at the correspondence between niche and trait values (Fig. 5A-D),
compared with the pattern on the trait axis (Fig. 5I-L), shows that the pattern quickly fades to
oblivion even while the coefficient of determination between niche and trait values is still very high
(R2 > 0.9). This occurs not because species are not sorting into clusters, but because our imperfect
access to their true niche values misaligns them on the x-axis (Fig. 5I-L). In doing so, measurement
noise effectively brings the species assemblage closer to the null model against which we compare it.
Not only does statistical significance vanish, but the clustering metric also fails to recognize the
true number of clusters (compare legend on Fig. 5I-L).

This bodes ill for the prospects of finding niche-assembly patterns in nature, as the exact aspects
of phenotype responsible for interactions are unlikely to be known or knowable, and proxy traits
will often be our best resource to estimate them (Appendix A).

We note that the plot of competition coefficients against trait differences (as opposed to niche
differences) shows visible core-tail structure (Fig. 5E-H). Indeed, it resembles process noise with
complementary niche axes (cf. Fig. 3A). And yet, the corresponding patterns are very different.
A closer look reveals that the measurement-noise kernel is more structured than the core-noise
kernel (Appendix G): unlike the process noise scenario, the matrix is symmetric and the noise is
autocorrelated. In fact, the measurement-noise kernel contains the same set of elements as the
noise-free kernel, and one can recover the latter via a permutation of the rows and columns of
the former. We believe this non-random structure relative to the core-noise scenario is key to
understanding the difference in the respective patterns, but at present we lack mathematical proof.

Using multiple traits to estimate niche values

When multiple traits are related to the niche axis and are otherwise uncorrelated with each other,
their first principal component is a better proxy for the niche axis than most of the individual traits.
Other things being equal, clustering on the first component is stronger as more traits are used
(Fig. 6A), reflecting the fact that the quality of the first component as a proxy for the niche axis
increases with the number of traits measured. However, the number of traits required for statistically
significant clustering on the first component can be very high. Even when the average R2 between
niche and trait values is as high as 0.9, we needed at least 5 traits for significant clustering at the
p ≤ 0.1 level and 7 traits at the p ≤ 0.05 level. For lower R2, denoting looser ties between trait and
niche levels, that minimum number quickly rises (Fig. 6B).

We note that although the first component is typically a better proxy than an individual trait
axis, it will not necessarily be better than every single trait (see Fig. S5 in Appendix E). If one
knows that a given trait is a much better proxy for species niche values than all other traits, it
may be better to use that trait alone rather than to run principal component analysis on a set of
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traits. Realistically, however, such cases would be exceptional, as ecologists have only imperfect
knowledge of the connection between measurable traits and niche strategies. Compared to traits
with a moderate to high association with the niche axis, the first principal component has a higher
chance of revealing niche pattern (Fig. S5); and the more traits, the higher that advantage. Of
course, no number of traits is a substitute for high-quality traits, i.e. traits demonstrated to reflect
species niche strategies. This is especially true given the high sensitivity of pattern to measurement
noise, as seen above.

In general, the number of traits required for detecting pattern will depend on their relation with
the niche, which may be more complicated than presented here. Our linear model illustrates how
even in a simple case, many traits may be necessary to parse the pattern.

Discussion

Understanding how competition drives biodiversity patterns remains a challenge in ecology. The
hypothesis of self-organized similarity or emergent neutrality (Scheffer and van Nes, 2006; Holt,
2006) states that competing species may sort into groups of species with similar traits. This concept
may generalize classical limiting similarity theory (D’Andrea and Ostling, 2016) and reconcile it
with contrasting empirical findings (Chase and Leibold, 2003; Götzenberger et al., 2012). However,
the relevance of these ideas for field ecologists is limited by assumptions idealizing the connection
between competition and niche strategies, and between niche strategies and measurable traits. Here
we tested how uncertainty in these connections impacts the prospects of detecting the pattern in
nature.

When we introduced noise in the link between competition and niches, we found considerable
robustness. Clustering remains likely as long as the kernel has a distinctive core-tail structure. In
other words, competition between species far apart on the niche axis must be on average lower
than between those close together. That the required trend is statistical rather than strict makes
clustering on a single niche axis a distinct possibility in nature, even when competition is the product
of multiple niche axes. Of course, probing multiple niche axes will make any pattern even clearer
as it should minimize process noise. However, this is not automatically achieved by measuring
multiple traits. Trait space is constrained by traits’ roles in ecological performance (Shoval et al.,
2012), and in fact a large set of traits may collapse into a single niche axis (Wright et al., 2004).
To properly assess multidimensional niche space, one must use traits related to different niche
dimensions. Knowledge of these dimensions and their relationship to traits requires natural history
expertise. Absent that, process noise is inevitable.

In contrast, we found high sensitivity to measurement noise. This is because measurement noise
randomizes species positions along the true niche axis. In doing so, it brings the data closer to
the null model. One cannot connect the distribution of species along an axis to mechanism if that
distribution is random. Therefore, to stand a chance at finding pattern one must keep measurement
noise at a minimum. This requires a tight link between niche axes and the actual traits measured in
field studies, such that the proxy traits provide high-accuracy estimates of species niche strategies.
A large set of traits with a demonstrated role in niche strategies is better than a few traits with
weak functional connections. Demonstrating such roles requires explicit theory (Pacala and Rees,
1998; Kohyama, 2006), and extensive empirical work (Violle et al., 2007; Litchman and Klausmeier,
2008; Sterck et al., 2011; Herben and Goldberg, 2014).

The kernel contains all information about species interactions, and hence holds the key to
pattern. Mathematical proofs connect kernel and trait patterns in simpler models lacking noise
(Hernández-García et al., 2009; Fort et al., 2009; Leimar et al., 2013). However, more general kernels
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are less amenable to analytical proofs, and as yet have only been studied via simulations. Our
results indicate that core-tail kernel structure is critical for trait pattern, but a more complete theory
predicting the pattern from the shape of the kernel is still missing. Providing a low-dimensional
representation of the kernel that predicts pattern in realistic noisy systems remains an open challenge.

Our study is a step towards more realistic models of trait-based patterns of niche assembly.
Our results complement previous explorations of trait-based niche patterns that considered other
forms of noise such as demographic or environmental stochasticity (Tilman, 2004; Gravel et al.,
2006; Ernebjerg and Kishony, 2011; D’Andrea et al., 2018). Attempts at higher realism would also
require dedicated multidimensional niche models. Multidimensional niche space, despite having long
been recognized as part and parcel of niche theory (May, 1975; Tilman, 1982; Holt, 1987), remains
understudied in theoretical ecology (but see Fort et al. 2010; Geange et al. 2011; Eklöf et al. 2013),
and essentially untouched in the trait pattern literature. Finally, our models neglect non-competitive
interactions, and require restorative forces such as immigration to replenish otherwise transient
clusters. However, our results provide insight into the prospects of finding clusters in systems where
both competition and dispersal are known to play a large role in community assembly, such as
grasslands (Tilman, 1994) and tropical forests (Vellend, 2016).

To our knowledge, we are the first to examine how uncertainty about the drivers of species
interactions impacts ecologists’ ability to detect their effect on community structure. Our findings
highlight that theoretical results are only useful to field work when they are robust to uncertainty.
More broadly, our work can initiate a more general picture of this robustness or lack thereof across
different patterns and processes.
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Figures

Figure 1: Causal links between traits and community structure. In nature (top), the full set of
functional traits completely determines strategies in niche space; the latter in turn consists of multiple niche
axes, the full set of which completely determines the competitive interactions between species; competition
drives clustering in niche space, which translates as measurable clustering in trait space. A complete model of
nature would require impossibly complete knowledge and measurement of all the relevant elements and links.
An effective model (bottom) focuses on a subset of trait and niche axes, and treats the unmeasured/unmodeled
contribution of all other factors as noise. As an example, we show an effective model where a single niche axis
(light-related strategy) is an imperfect predictor of competitive interactions, with the unknown contribution
of all other niche axes comprising process noise; in turn, a single functional trait (maximum height) is an
imperfect predictor of the light-niche strategy, and the unknown contribution of all other functional traits
enters as measurement noise.

Figure 2: Hidden niche dimensions add process noise; imperfect traits add measurement noise.
Process noise A: Hypothetical niche space formed by two complementary niche axes, with species labeled in
order of Euclidean xy-distance to the black species. B: Intensity of competition with black species has a
monotonic relationship with the two-dimensional distance. C: Positions of the same species along the x-niche
axis, with species labeled in order of x-distance to black. D: Plot of competitive interactions with black as
a function of x-distance shows a non-monotonic relationship. The mismatch between B and D is process
noise, which is commensurate with the relative importance of the unknown contributions of the y-niche.
Measurement noise E: Measured traits estimate unseen niche strategies, but the map is imperfect, and relative
positions may switch between niche and trait axes. F: Arranging species in increasing order of niche-distance
to species 1 gives a monotonic relationship with competition. G: Arranging species in increasing order of
trait-distance to species 1 yields an overall decreasing but noisy relationship. The mismatch between F and
G is measurement noise, which is commensurate with the imperfections in the niche-trait map.

Figure 3: Process noise. A, D: Competition coefficients between a focal species and all other species,
plotted against the difference in x-niche values. Although competition strictly declines with distances in the
xy-niche plane, the relationship with x-niche differences alone is noisy. In the complementary niche axes case
(A), most of that noise is between similar species—i.e. the core of the kernel. Conversely, in the essential
niche axes case (D), most of the noise is between distinct species—i.e. the tail of the kernel. B, E: Simulation
outcomes plotted in the xy-niche plane. Each disk represents a species, with disk size proportional to species
abundance. In both the complementary niche axes case (B) and the essential niche axes case (E), there is
strong clustering, as evidenced by the standardized magnitude of the clustering metric (Z in the legend) and
the significant p-value (P). C, F: Same outcomes plotted on the x-niche axis only, with loss of the y-niche.
Clustering is still visible, although the number of clusters is smaller because some distinct clusters cannot be
resolved without the y-dimension. Notice also the lower magnitude of the clustering metric.

Figure 4: Probability of clustering by magnitude of noise. The probability of clustering is estimated
as the percentage of runs of each noise scenario where clustering was statistically significant (p ≤ 0.05), out
of a total 100 replicates each. The noise is measured as the degree of randomness between the kernel and the
x-niche axis (process noise) or the trait axis (measurement noise), using two indices: A: Monotonic decline of
competition with species differences, measured with Spearman’s rank correlation coefficient ρ. B: Core-tail
structure, defined as the difference between the proportion of tail and core elements that exceed the kernel
mean. Scenarios shown are process noise with complementary niche axes (blue curves), process noise with
essential niche axes (red), and measurement noise (black). Compare with Fig. S4.
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Figure 5: Measurement noise. A-D: Species niche values plotted against their proxy trait values.
Measurement noise increases from A to D, leading to progressively lower coefficient of determination R2

between niche and trait values. E-H: Competition coefficients between a focal species near the center
of the niche axis (marked by the red dot in A-D) and all other species, plotted against trait difference
between them. When niche and trait values are perfectly correlated, the kernel decreases monotonically
with absolute trait differences (E); as the niche-trait connection loosens, the kernel becomes noisy (F to
H). Legend numbers show the noise scores according to each of our two statistics, Spearman’s ρ(A, d), and
π(A) = P (Atail > A) − P (Acore > A). I-L: Species abundance plotted against trait values. Distinct clusters
are visible when niche and traits match (I), but the pattern quickly fades as R2 drops below 1 (J to L).
Legend shows the estimated number of clusters and the z-score of the clustering statistic. Stars indicate
statistical significance (∗∗ : p ≤ 0.01; ∗ : p ≤ 0.05).

Figure 6: Using multiple traits to mitigate measurement noise. A: Degree of clustering on a first
principal component axis increases with the number of independent traits used in the principal component
analysis (PCA). Curves represent scenarios with different degree of measurement noise, with an average R2

between trait and niche values across species ranging from 0.5 (lightest shade of gray) to 0.9 (darkest), at
intervals of approximately 0.05. Values shown are averaged across 100 runs of each scenario. Red line shows
the clustering z-score on the niche axis. B: Lowest number of traits required to detect significant clustering
on the first component axis, as a function of the average R2 between trait and niche values. Black and red
curves show results using significance threshold α = 0.05 and 0.1, respectively. Values shown are averaged
across 100 runs of each scenario.
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