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S1. Thermal Expansion in the first level cellular materials 

   All types of the 2D and 3D cellular materials shown in Figures 1 and 2 are assumed to be 

made of two different solid ingredients A and B.  Ingredient A is chosen as a ceramic with a 

Young’s modulus of 112 10AE     2/N m   and a thermal expansion coefficient of 

63 10A
 

 
 1K 

 , and ingredient B is chosen as a polymer with a Young’s modulus of 

93 10BE     2/N m   and a thermal expansion coefficient of  6200 10B
 

 
 1K  .  All the 

non-straight struts are assumed to have the same chevron shape with a span of 1.0L    and an 

amplitude of a  , and to be pin-connected with the straight struts of the cross in the middle of 

the RVEs.  In addition, all the chevron struts are assumed to have the same uniform thickness  

t  for 2D cellular materials or the same uniform square cross-section of side t  for 3D cellular 

materials.  Moreover, all the dimensions in Figures 1-3, including the x, y and z axes, are 

normalized by L .  It is noted that the geometrical structure of ingredient B in Fig. 1c is 

similar to the 4-star auxetic honeycomb
[31]

. 

mailto:zhuh3@cf.ac.uk


 Submitted to  

2 

S1.1.  Small linear deformation analysis of chevron struts 

      A temperature increase T   can result in a compressive force P at the two ends of the 

chevron struts due to the thermal mismatch between the chevron struts and the cross in the 

middle of the RVEs, as illustrated in Figure 3a.  Small deformation analysis is based on the 

initial configuration of the structure, the axial compressive strain in the longitudinal direction 

of the chevron struts can thus be obtained as 

  
cos

B

P

E A


                (S1-1)  

Where BE
 
 is the Young’s modulus of ingredient B and A is the cross-sectional area of the 

chevron struts.  Obviously, the magnitude of the axial compressive strain     can’t be larger 

than the relative thermal strain of the chevron struts ( )B AT T       .  If
 B A 

 
, the 

thermal expansion coefficients of all different types of the first level 2D and 3D cellular 

materials shown in Figures 1 and 2 would be the same as
 A

 
.  It is noted that all the straight 

struts of the cross in the middle of the 2D and 3D RVEs undergo uniaxial tension (or 

compression) due to the structural symmetry.  Thus, the effects of their tensile deformation on 

the thermal expansion are negligible because  A BE E  .   

     Taking account the combined effects of thermal expansion and bending, axial compression 

and transverse shear of the chevron struts, according to the symmetry, the following 

deformation compatibility condition in the longitudinal direction of half a chevron strut in Fig. 

3a must be satisfied
[32]
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Where  T    is the relative thermal strain of the chevron strut and    given by (S1-1) is the 

axial compressive strain in the longitudinal direction of the chevron struts,  I   is the second 

moment of the cross-sectional area of the chevron struts, the Poisson ratio B  
 of ingredient B 

(i.e. polymer) is taken as 0.5 and the transverse shear coefficient of the square cross-section of 

the chevron struts is 1.2.  In Eq. (S1-2), the first and second terms on the left hand side are 

associated to beam bending and transverse shear deformation
[32]

, respectively,  and the term 

on the right hand side is the elongation of half a chevron strut in its longitudinal direction due 

to thermal expansion and axial compression.  Substituting Eq. (S1-1) into Eq. (S1-2) leads to 

  3

1 2(1 )c T c T                       (S1-3) 

Where  
2 2 2

1 2

( 4 )

3

Aa L a
c

IL


   and  

2

2 2

14.4a
c

L
  .   Equation (S1-3) indicates that the magnitude 

of the axial compressive strain   in the longitudinal direction of the chevron struts is a 

nonlinear function of 1c , 
 2c

 
 and T  .   

     For given values of  1c , 
 2c

 
 and T  ,   can be solved from Eq. (S1-3) using the 

Newton-Raphson method, and the change of the amplitude of the chevron struts can be 

obtained as 

  
2 2( ) 4

( )
2sin cos 4

L T L a
a T

a

 
 

 

   
                (S1-4) 

     For the first level 2D cellular materials with pin-connections between the chevron struts 

and the cross in the middle, as shown in Figure 1c, the total change of the dimensionless size 

of the RVE due to the combined effects of temperature change T   and the resultant internal 

force P can be obtained as 

  2 2( )RVE A Ba T a b T                                                        (S1-5) 
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     From the dimensionless dimensions given in Figure 1c, the isotropic negative linear 

thermal expansion coefficient (NTEC) of the first level 2D cellular material can be derived as 

    



 



















 11

667.1

)21(

2

21

)(2

)21(
k

T

a

Tb

a

b

ab

Tb

BARVE
RVE

        (S1-6) 

Where the dimensionless value of /b b L   is chosen as 0.1, and a   is given by 

Equation (S1-4).  Thus 
T

a
k








667.1
1  is the approximate magnification factor of the NTEC.  

The first term in Equation (S1-6) can be neglected because its magnitude is much smaller than 

the second term.   For given values of /t L , /a L  and T  , the magnification factor of the 

linear negative thermal expansion coefficient, 1k , can be obtained from Equations (S1-3), S1-

4) and (S1-6). 

   For the first level 2D cellular materials with the geometrical structure shown in Figure 1d, 

the isotropic positive linear thermal expansion coefficient (PTEC) can be obtained in the 

similar manner and given as 
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Where the dimensionless /b b L  is again chosen as 0.1.  Similarly, the first level 2D 

cellular materials with the geometrical structure shown in Figure 1e have anisotropic linear 

thermal expansion coefficients of 1k  in one direction and  1k  in the orthogonal 

direction.  

     For the first level 3D cellular materials with the geometrical structure of the representative 

volume element (i.e. RVE) shown in Figure 2a, the isotropic negative linear thermal 

expansion coefficient can be obtained as  
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where a   is given by Equation (S1-4). 

    Similarly, the isotropic positive linear thermal expansion coefficient of the first level 3D 

cellular materials with the geometrical structure given in Figure 2b and the anisotropic linear 

thermal expansion coefficient of the first level 3D cellular materials with the geometrical 

structure shown in Figure 2c can be derived as 
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    In Equations (S1-8) and (S1-9), the dimensionless dimension /b b L  is also chosen as 

0.1 .   Thus, the magnification factor of the positive, or negative, isotropic or anisotropic 

linear thermal expansion coefficient of the first level 3D cellular materials is 
T

a
k








205.2
1 , 

which is 1.322 times that of the first level 2D cellular materials.  Here, isotropic thermal 

expansion means that  ( ) ( )RVE x RVE y   for 2D cellular materials and  

( ) ( ) ( )RVE x RVE y RVE z      for 3D cellular materials. 

Figure 4a shows the effects of the dimensionless amplitude /a L   and the aspect ratio 

/t L   of the chevron struts on the magnification factor 1k  of the positive or negative, isotropic 

or anisotropic linear thermal expansion coefficients of the first level 2D cellular materials 

with chevron struts which are pin-connected to the cross in the middle of the RVEs.  It is 

noted that the magnitude of 1k  obtained from the above theoretical analysis is almost 

independent of the value of the relative thermal strain T    when 62 10 0.02T     .  

In addition, when /a L  is smaller than 0.005, the magnitude of 1k  becomes smaller. This is 

because the ratio of / ( )T     becomes larger with the reduction of /a L .  We also found 
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that the transverse shear deformation of the chevron struts has negligible effect on the 

magnitude of the magnification factor 1k .    

Figure 4a shows that when /a L  is 0.005 and / 0.01t L  , the magnification factor 1k  of 

the first level 2D cellular materials is 41.75.  The magnitudes of the linear isotropic or 

anisotropic NTEC or PTEC of the first level 2D cellular materials can thus reach 

34

11 1035.810275.41    k 1K 
 .  This value is significantly larger than the 

positive or negative thermal expansion coefficients reported in references
3-8

.  Moreover, if the 

ingredient B is chosen as a polyacrylamide material whose thermal expansion coefficient is 

31.2 10B
    1K 

  (see reference
7
), the magnitude of the linear isotropic or anisotropic 

NTEC or PTEC of the first level 2D cellular materials could reach 

23

11 1001.5102.175.41    k 1K  , suggesting that the giant thermal expansion 

could be further improved by the thermal expansion coefficient of ingredient B.  

It is noted that the derivation of the results in Figure 4a is independent of the Young’s 

modulus of ingredient B as long as the deformation is linear elastic, as can be seen that BE
 
 is 

absent in Equations (S1-3) and (S1-4).  Although the transverse shear deformation of the 

chevron struts has negligible effect on the magnitude of 1k , the axial compression can 

significantly reduce the value of 1k .  If without the effect of axial compression (i.e. if    is 

zero in Equation (S1-4)), the magnification factor of the linear isotropic or anisotropic NTEC 

or PTEC of the first level 2D cellular materials would become )
4

(667.1
667.1 2

1
a

L
a

T

a
k 







, 

which is independent of the aspect ratio /t L  .  In this case, 35.831 k  if / 0.005a L  ; and 

68.411 k  if / 0.01a L   , being much larger than those presented in Figure 4a.   

S1.2.  Nonlinear finite deformation analysis of chevron struts 
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The analysis in S1.1 and the results shown in Figure 4a are based on the initial 

undeformed configuration and obtained from the small deformation theory using a single 

Timoshenko beam element
[32]

.  However, the thermal deformation of the chevron struts is in 

general a geometrical nonlinearity problem.  The deformed configuration of half a chevron 

strut under thermal expansion and the restraint force P acted at the pin-jointed end is shown in 

Figure S1.  The relationship between the bending curvature and the bending moment is given 

as [33, 34] 

             ds
AE

P
TPPy

ds

d
IE

S

B

b
B ]sin)cos1[(

0



                                     (S1-

10) 

Where the left hand side is the bending stiffness times the bending curvature and the right 

hand side is the bending moment. When / (2cos )S l L   , ( )
2

b l


      (see Figures 3a 

and S1), thus the angle (s)b   of the chevron strut due to the combined effects of strut 

bending, thermal expansion and axial compression can be determined as  

0
( ) [ (1 cos )sin ]

2

l s

b
s

B B

P P
s T ds ds

E I E A


              

          1
12 0

12
[ (1 cos )sin ]

2

l s

s
T ds ds

t


                                                  (S1-

11) 

In the above equation, the strut is assumed to have a square cross-section of side t and 

1 / cos
B

P

E A
    .   

The angle due to transverse shear deformation of the strut is given as 
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
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                                                (S1-

12) 

Where the Poisson ratio of the chevron material (i.e. a polymer) is chosen as 0.5. 

The total angle of the deformed half chevron strut can thus be obtained as 

(s) ( ) ( )b Ss s   
 
                                                                                                  (S1-

13) 

For a given value of the relative thermal strain T  , the function ( )s  can be 

determined using the iterative method [33, 34] and the deformation compatibility condition: 

1
0
(1 cos )cos cos / 2

l

T ds l L          
                                                        (S1-

14) 

To solve the nonlinear function ( )s , the length of half the chevron strut / (2cos )l L     

was divided into 100000  elements, the value of 1  was initially chosen as / 2T     and 

( )s as  .  Using the iterative method, the convergent solution of ( )s  was very quickly 

obtained from the following solution scheme [33, 34].  The first step is to obtain new values 

of ( )s  using Equations (S1-11), (S1-12) and (S1-13), and the initially given or the already 

obtained values of 1  and ( )s .  The second step is to check with the deformation 

compatibility condition (S1-14).  In step 3, if the left hand side of Eq. (S1-14) is larger than 

the right hand side, it suggests that the value of 1  is too small, then increase the value of 1 ;  

if the left hand side of Eq. (S1-14) is smaller than the right hand side, it suggests that the value 

of 1  is too large, then reduce the value of 1 .  Step 4 is to check the new values of ( )s  with 

the previous values, if the largest difference is smaller than 610 , convergent solution of ( )s  
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has been obtained; otherwise repeat steps 1-4 using the updated values of  1  and ( )s .   

Thus very accurate solution of ( )s  can be very quickly obtained for any given value of the 

relative thermal strain T   , and the change of the amplitude of the chevron strut, a  , can 

be obtained as 

1
0
(1 cos )sin

l

a T ds a          
                                                                  (S1-15) 

It is noted that in the analysis of S1.1 and S1.2, the combined effects of thermal expansion, 

bending, axial compression and transverse shear on the thermal deformation of the chevron 

struts are all considered.  The thermal expansion magnification factor of the 2D and 3D 

cellular materials can be obtained using the relevant equations given in section S1.1. 

 

S1.3.  Deformation analysis of pin-jointed struts 

    If the chevron strut in Figure 3a is replaced by two pin-jointed struts as shown in Figure 3b, 

for a given value of the relative thermal expansion T   , the change of the amplitude in 

Figure 3b can be obtained as 

 2 2 2 2( / 4 )(1 ) / 4a L a T L a                                                                  (S1-16) 

and the values of the thermal expansion magnification factor 1k  of the 2D cellular materials 

can be obtained using the relevant equations given in section S1.1, and presented in Figure 4b 

for 2D cellular materials.  For the first level 3D cellular materials with pin-jointed struts, the 

values of the thermal expansion magnification factor are 1.322 times those of their 2D 

counterparts. 

 

S1.4. Validation by finite element simulation 
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To verify the theoretical results given in Figures 4a and 4b for the first level 2D cellular 

materials, we have performed finite element simulation using the commercial software 

ABAQUS.  Half a chevron strut is partitioned into 800 plane stress CPS4T elements and the 

obtained results are shown in Tables S1 and S2 to validate the theoretical results of Figures 4a 

and 4b.  For the cases when the chevron struts are pin-jointed with the cross, the FEM results 

in Table S1 show quite good agreement with theoretical results although the FEM results 

indicate that the larger the value of  T   , the smaller the magnification factor 1k .    For the 

cases when the chevron struts are replaced by two pin-jointed struts, the FEM results in Table 

S2 are identical to the theoretical results.    

S1.5. Thermal expansion coefficient of hierarchical and self-similar cellular materials 

     For the nth level hierarchical and self-similar 2D cellular materials shown in Figure 1, the 

thermal expansion coefficient can be obtained as 

 n

AB

n

n kk ))(()( 11                                                                          (S1-17) 

if the shape of the RVE is convex, and  

n

AB

n

n kk ))(()( 11                                                                      (S1-18) 

if the shape of the RVE is concave. 

     For the nth level hierarchical and self-similar 3D cellular materials, the thermal expansion 

coefficient can be obtained as 1 1(1.322 ) ( ) (1.322 )n n

n B Ak k          if the shape of the 

RVE is convex, and 1 1( 1.322 ) ( ) ( 1.322 )n n

n B Ak k            if the shape of the RVE is 

concave. 

 

S2. The stiffness of 2D and 3D cellular materials 
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         When a uniaxial tensile stress  is applied to the RVEs of the first level 2D cellular 

materials with chevron struts, as shown in Figures 1c, 1d and 1e, the concentrated force 

applied at the vertex of the chevron strut on the left hand side or right hand side  is 

xx LbLF  2.1)2(  , where 0.1b L .  The chevron struts can be treated as pin-

supported beams with a span of L and the horizontal deformation of the RVEs can thus be 

approximated as 
3

43 6.0

48

2

tE

L

IE

FL

B

x

B

x


  where 

12

3t
I  .  This is because bending of the 

chevron struts is the dominant deformation mechanism.  The horizontal strain can be derived 

as 3 3/ ( 2 ) / (1.2 ) / (2 )x x x x BL b L L E t       .  Thus the Young’s modulus of the first 

level 2D cellular materials is obtained as  

   3

1 2( )x
B

x

t
E E

L




                                                                                  (S2-1) 

      For the nth level hierarchical and self-similar 2D cellular materials, the Young’s modulus 

can be obtained in the similar manner, and given as 

   
3 3

12( ) 2 ( )n n

n n B

t t
E E E

L L
                                          (S2-2) 

     Similarly, the Young’s modulus of the first level 3D cellular materials with pin-jointed 

chevron struts can be obtained as  

    
4

4

1 3

4
4.41( )

( 2 / 2 2 )

x B
B

x

t E t
E E

LL b L




  


                                          (S2-3) 

     For the nth level hierarchical and self-similar 3D cellular materials, the Young’s modulus 

is obtained as 

    
4 4

14.41( ) 4.41 ( )n n

n n B

t t
E E E

L L
                                                        (S2-4) 

     If the chevron strut in Figure 3a is replaced by two pin-jointed struts with a uniform 

thickness t for 2D cellular materials, as shown in Figure 3b, when a uniaxial tensile stress x  

is applied to the RVEs of the first level 2D cellular materials, as shown in Figures 1c, 1d and 

x
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1e, the axial tensile force in each of the two pin-jointed struts is 




sin2

)2( bL
N x 
  and the 

elongation of the struts is 




 cossin4

)2(

cos2 B

x

B tE

bLL

tE

NL 
 .  Thus the tensile strain of the 2D 

RVE in the x direction is 







cossin2sin)2(

2
2tE

L

bL
B

x
x 




 , and the Young’s modulus of 

the first level 2D cellular materials is obtained as  

              B
B

x

x E
aL

ta

L

tE
E

2/322

22

1
)4(

8cossin2









                                      (S2-5) 

      For the nth level hierarchical and self-similar 2D cellular materials, the Young’s modulus 

can be obtained in the similar manner, and given as 

   Bn

n

nn E
aL

ta
E

aL

ta
E

2/322

2

12/322

2

)4(

)8(

)4(

8





                                             (S2-6) 

     Similarly, the Young’s modulus of the first level 3D cellular materials is obtained as  

  
2 2 2 2

1 2 2 3/22 2 3/2

17.64

( 4 )( / 4 ) ( 2 / 4 )

x B
B

x

t a E t a
E E

L aL a L b




  

 
                        (S2-7) 

where 0.1 0.1b L   0.1 0.1b L  . 

     For the nth level hierarchical and self-similar 3D cellular materials, the Young’s modulus 

can be obtained as 

  
2 2

2 2 3 /2

(17.64 )

( 4 )

n

n Bn

t a
E E

L a



                                                                             (S2-8) 
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Figure 

 

Figure S1.  The deformed half chevron strut under thermal expansion and 

restraint force P. 

 

 

  

Table S1.   FEM validation for results presented in Figure 4a. 

Lt /  La /  T  (K) 
1k  (theoretical result) 1k  (FEM result) 
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01.0  005.0  1 41.763 40.225 

01.0  005.0  1.5 41.763 37.512 

025.0  05.0  5 7.943 7.578 

025.0  05.0  25 7.943 6.594 

045.0  05.0  0.5 7.028 6.9015 

045.0  05.0  5 7.028 6.7612 

 

 

 

 

Table S2.   FEM validation for results presented in Figure 4b. 

 

   La /  T  (K) 
1k  (Theoretical result) 1k  (FEM result) 

001.0  0.005 374.58 374.658 

001.0  0.5 102.36 102.38 

001.0  5 35.648 35.662 

0.05 0.5 8.375 8.376 

0.05 5 8.034 8.035 

0.08 5 5.2431 5.243 

0.1 5 4.2805 4.2806 

 

 


