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      When temperature increases, the volume of an object changes. This property was 

quantified as the coefficient of thermal expansion only a few hundred years ago. Part of the 

reason is that the change of volume due to the variation of temperature is in general 

extremely small and imperceptible. In this paper, abnormal giant linear thermal expansions in 

different types of two-ingredient micro-structured hierarchical and self-similar cellular 

materials are reported. The cellular materials can be two-dimensional or three-dimensional, 

and isotropic or anisotropic, with a positive or negative thermal expansion due to the convex 

or/and concave shape in their representative volume elements respectively.  The magnitude 
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of the thermal expansion coefficient can be several times larger than the highest value 

reported in the literature.  This study suggests an innovative approach to develop 

temperature-sensitive functional materials and devices.  

 

       Most materials have a positive thermal expansion coefficient (PTEC) and they expand 

isotropically when heated.  The thermal expansion coefficient (TEC) of solid materials is usually in 

the order of 
63 10 1K  for ceramics, 

510 1K  for metals, and 
410 1K  for polymers[1, 2].  Very few 

unusual materials[3-7] have a negative thermal expansion coefficient (NTEC) and their lattice 

dimensions shrink with heating.  Large negative thermal expansion is usually anisotropic[4-6], or even 

shrinking in one direction and expanding in another direction. Although quite a large isotropic NTEC 

31.2 10    1K  has been found for a solid polyacrylamide film[7], the magnitude of isotropic 

thermal expansion coefficient of solid materials without pores is usually very limited[3, 8]. 

       Many researchers[9-14] aim to find materials with a negative thermal expansion coefficient 

because such materials are of great research interest and have important applications, e.g. 

activators or sensors, due to the coupled thermal-mechanical behaviour[15].  It has been recognized 

that the thermal expansion coefficients of one-phase or two-phase solid materials that do not 

contain a pore phase are always very limited in magnitude, and that three-phase materials[2, 16-18] 

containing a pore phase could have a much larger thermal expansion coefficient than the one-phase 

or two-phase solid materials. Thus, people have designed some cellular materials with an improved 

magnitude of NTEC[19-22].  Here we study different new types of micro-structured two-ingredient 

hierarchical and self-similar 2D and 3D cellular materials that can be not only isotropic (note that 

‘isotropic’ means yx    for 2D cellular materials and zyx    for 3D cellular materials) or 
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anisotropic, but also have either a negative or a positive linear thermal expansion coefficient with a 

magnitude significantly larger than any reported value in the literature.           

 

To enhance the magnitudes of thermal expansion coefficients, the 2D and 3D cellular 

materials in this paper are made of two different solid ingredients A and B (Figures 1 and 2).  It is 

assumed that ingredient A is a ceramic with a Young’s modulus of 
112 10AE    

2/N m  and a 

thermal expansion coefficient of 
63 10A
   1K  , and ingredient B is a polymer with a Young’s 

modulus of 
93 10BE    

2/N m  and a thermal expansion coefficient of 
6200 10B
   1K  .  

Figures 1c, 1d and 1e show the geometrical structures of the periodic representative volume 

elements (RVEs) of the first level two-ingredient 2D cellular materials with isotropic NTEC, isotropic 

PTEC and anisotropic TEC, respectively.  The two straight and inclined struts are made of ingredient 

A, perpendicular to each other, and have rigid connection in the middle.  All the other struts in the 

RVEs of the first level (i.e. level-1) 2D cellular materials are made of ingredient B.  Figure 2 shows the 

geometrical structures of the periodic representative volume elements (RVEs) of the first level two-

ingredient 3D cellular materials with isotropic NTEC, isotropic PTEC and anisotropic TEC, 

respectively.  The four straight and inclined struts are made of ingredient A and have rigid 

connection in the middle.  All the other struts in the RVEs of the first level 3D cellular materials are 

made of ingredient B.  When the effect of thermal expansion is absent, the shape of all the non-

straight struts in the RVEs of both the first level 2D and 3D materials is assumed to be a chevron with 

a span of 1.0L   and an amplitude of a , as shown in Figure 3a.  Moreover, all the dimensions in 

Figures 1-3, including the x, y and z axes, are normalized by L .  In addition, all the chevron struts are 

assumed to have a uniform thickness t  for 2D cellular materials or a uniform square cross-section of 
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side t  for 3D cellular materials.  The chevron struts (Made of ingredient B) are assumed to be pin-

connected with the straight struts of the cross (made of ingredient A) in the middle.   

 

When there is a temperature change T , the change of the amplitude a  of the chevron 

struts can be obtained from Equations (S1-3) and (S1-4) (see the Supporting Information), and the 

magnitude of the isotropic negative (Figures 1c and 2a), or isotropic positive (Figures 1d and 2b), or 

anisotropic (Figures 1e and 2c) linear thermal expansion coefficients of both the first level 2D and 3D 

cellular materials can be obtained as   11 k , where 4102  BAB   , and 

the linear thermal expansion magnification factor 1k  is defined as   /11k  and given as 

   
T

a
k








667.1
1         (1) 

for the first level 2D cellular materials, and 

   
T

a
k








205.2
1                      (2) 

for the first level 3D cellular materials.  In Equations (1) and (2), T   is the thermal strain of the 

chevron struts relative to the cross in the middle.  The detailed derivation of a , 1  and 1k  is given 

in the Supporting Information (S1.1).   

Figure 4a shows the effects of the dimensionless amplitude /a L  and the aspect ratio 

/t L  on the magnification factor 1k of the positive or negative, isotropic or anisotropic linear 

thermal expansion coefficients of the first level 2D cellular materials with chevron struts which are 

1K 
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pin-connected to the cross in the middle.   It is noted that the values of 1k  in Figure 4a obtained 

from Equations (1), (2), (S1-3) and (S1-4) remain almost the same when 100005.0  T  K.  The 

results presented in Figure 4a are obtained from the small deformation theory and a single 

Timoshenko beam element, and the combined effects of thermal expansion, strut bending, 

transverse shearing and axial compression on the deformation of the chevron struts have all been 

considered.  We also found that the transverse shear deformation of the chevron struts has 

negligible effect on the values of 1k .    

   When /a L  is 0.005 and / 0.01t L  , the magnification factor 1k  of the first level 2D 

cellular materials can have a value of 41.75.  Thus, the magnitude of the linear isotropic or 

anisotropic NTEC or PTEC of the first level 2D cellular materials can reach 

34

11 1035.810275.41    k 1K  .  This magnitude is much larger than the values of 

thermal expansion coefficient reported in references[3-8].  Moreover, if ingredient B is chosen as a 

polyacrylamide whose thermal expansion coefficient is 
31.2 10B
   1K   (see reference[7]), the 

magnitude of the linear isotropic or anisotropic NTEC or PTEC of the first level 2D cellular materials 

could reach 
23

11 1001.5102.175.41    k 1K  , suggesting that the giant thermal 

expansion could be further enhanced by a larger thermal expansion coefficient of ingredient B.   

With the increase of Lt / , the value of 1k  reduces very quickly because the ratio of the axial 

compressive strain   to the relative thermal strain T   increases rapidly with Lt / .   When 

/a L  is 0.05 and 025.0/ lt , the thermal expansion magnification factor 1k  of the first level 2D 

cellular materials can achieve a value of 7.943 and thus the effective linear thermal expansion 
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coefficient can be 
34

11 105886.1102943.7    k 1K 
over the range of 50  T  

K.   

          It is worth mentioning that the derivation of the results in Figure 4a is independent of the 

Young’s modulus of ingredient B if the deformation of the chevron struts is linear elastic, and that 

the axial compression of the chevron struts can significantly reduce the value of 1k .  For different 

types of the first level 3D cellular materials shown in Figure 2, the linear thermal expansion 

magnification factors of the isotropic or anisotropic NTEC or PTEC are 1.322 times those of their first 

level 2D cellular counterparts.  It is also noted that the thermal deformation of the chevron struts is 

in general a geometrical nonlinearity problem.  To validate the accuracy and applicability of the 

results in Figure 4a, we have performed finite deformation geometrical nonlinearity analysis (see 

Supporting Information S1.2).  The values of 1k  obtained from the geometrical nonlinearity analysis 

are almost the same as those presented in Figure 4a.  This is partly because even when 

3102  T  (i.e, 4102   1K   and 10T  K), the strain in the solid chevron struts is 

still smaller than 0.2%.  Moreover, we have also performed finite element simulation to validate the 

theoretical results using the commercial finite element software ABAQUS.  Half a chevron strut is 

partitioned into 800 plane stress CPS4T elements and the obtained results are shown in Tables S1 

and S2 (in the Supporting Information) to validate the theoretical results presented in Figures 4a and 

4b.  For the cases when the chevron struts are pin-jointed with the cross, the FEM results in Table S1 

show quite good agreement with the theoretical results presented in Figure 4a although the FEM 

results indicate that the larger the value of , the smaller the magnification factor 1k .    For 

the cases when the chevron struts are replaced by two pin-jointed struts (as shown in Fig. 3b), the 

FEM results in Table S2 are identical to the theoretical results presented in Figure 4b.   When the 

T 
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chevron struts are rigidly connected instead of pin-jointed to the cross in the middle of the 2D or 3D 

cellular materials, the values of /a L  remain unchanged, the thermal expansion magnification 

factors presented in Figure 4a are still valid when the value of Lt /2  (instead of Lt / ) are used to 

find the corresponding 1k .     

        Now, if the chevron strut in Figure 3a is replaced by two pin-jointed struts as shown in Figure 3b, 

the values of the thermal expansion magnification factor 1k  of the first level 2D cellular materials 

are obtained (see S1.3) and presented in Figure 4b.  For the first level 2D cellular materials when 

/a L  is 0.001, the thermal expansion magnification factor 1k  is 375 and the linear CTE is 

075.0102375 4

11   k 1K   if  005.0T  K ; and 1k  becomes 102.3 and 

0204.01023.102 4

11   k  if  5.0T  K.  These magnitudes are much larger 

than any reported thermal expansion coefficients in literature, including the results in references[2, 

20], which is the highest value reported to the best of our knowledge.   It is worth pointing out that 

the magnification factors of pin-jointed struts (Figure 4b) are sensitive to the dimensionless 

amplitude   and the temperature change T . On the other side, they are entirely independent 

of the aspect ratio .   When  is 0.001 and 05.0/ Lt , the single level 2D cellular 

materials still have a reasonable stiffness 
3

1 102.1 E  from Equation (S2-5) . However, if 

 is too small, the 2D cellular materials with pin-jointed struts may not have a sufficient stiffness 

to support their self-weight and to enable the expected thermal expansion function.   In general, the 

larger the range of the relative thermal strain T  (or temperature change T ), the smaller is 

the thermal expansion magnification factor 1k .  The values of 1k of the first level 3D cellular 

materials shown in Figure 2 are 1.322 times those of their first level 2D counterparts. Figure 4b 

1K 

/a L

/t L /a L

2/N m

/a L
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shows that when /a L = 0.02 and T 0.5 K, 1k  is always larger than 20 for the first level 2D 

cellular materials and larger than 26.44 for first level 3D cellular materials.  The upbound value of 1k  

depends on the specific stiffness, namely stiffness-to-weigth ratio, of the cellular structures. In other 

words, the giant thermal expansion of our proposed cellular material could be further improved by 

using  materials with higher specific stiffness and  CTE as component B. 

      Structural hierarchy can not only enhance the mechanical properties of materials[23-27], but may 

also enhance the magnitude of the linear thermal expansion coefficient of 2D and 3D cellular 

materials.  Both the two-ingredient 2D and 3D hierarchical materials are thus assumed to be self-

similar, as demonstrated in Figure 1.   To enable the expected thermal expansion function, the 

minimum mechanical stiffness of the cellular materials is assumed to be about 3100.1 nE  

 (this is because the relative density of a hierarchical cellular material is much lower than a 

normal solid material).  For a two-level hierarchical 2D cellular material with pin-jointed chevron 

struts (as shown in Figure 3a), if 045.0/ Lt  and =0.01 (or 0.05), magnification factor of the 

linear thermal expansion coefficient can be obtained as 7.4791.6)( 22

12  kk  (or 4.4903.7 2  ) 

when T 5 K.  In this case, the stiffness of the two-level hierarchical 2D cellular materials is about 

31058.1 nE .  If the dimensionless amplitude 1.0/05.0  La  and 1.0/045.0  Lt

, the magnification factor of the linear thermal expansion coefficient of a two-level hierarchical and 

self-similar 2D cellular  material shown in Figure 1 can easily achieve a value of 

25.125.3)( 22

12  kk  when T 5 K, which is significantly greater than that of its single level 

counterpart with the same /a L  and  .  It is noted that for 2D or 3D cellular materials with 

chevron struts, the magnification factor of the linear thermal expansion coefficient strongly depends 

2/N m

/a L

2/N m

/t L
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on the values of both /a L  and /t L ; in contrast, their  mechanical stiffness is mainly dependent on 

the aspect ratio /t L and entirely independent of the amplitude  /a L .   

     We have also studied the case when the chevron struts in the hierarchical and self-similar 2D and 

3D cellular materials are replaced by pin-jointed struts.   Figure 4b and Table S2 (in the Supporting 

Information) show that if 04.004.0  Lt    and 05.005.0  La   for a two-level  hierarchical and 

self-similar 2D cellular material, the magnification factor of the linear thermal expansion coefficient  

can be obtained as 14.70375.8)( 22

12  kk  when 5.0T  K, or  

55.64034.8)( 22

12  kk  when 5T  K.   In this case, the mechanical stiffness of the two-

level hierarchical 2D cellular materials can be obtained from Equation (S2-6) and given as 

39

32

22

2/322

2

10864.1103
)05.041(

)05.004.08(

)4(

)8(








 Bn

n

n E
aL

ta
E  

2/N m .  If 1.01.0  Lt  and  

06.006.0  La , for a two-level  hierarchical and self-similar 3D cellular material, the 

magnification factor of the linear thermal expansion coefficient  can be obtained as 

127.8602.7322.1)322.1( 222

12  kk , thus 0172.0102127.86 4

22   k   

when 5.0T  K, or  17.81815.6322.1)( 222

12  kk   and

0162.010217.81 4

22   k   when 5T  K.    In this case, the strain or deformation of 

the two-level hierarchical and self-similar 3D cellular materials will be 

%86.05.00172.02 T   (or %1.850162.02 T ) although the thermal strain in the 

struts is just 0.02% (or 0.2%).  The mechanical stiffness of the two-level hierarchical and self-similar 

3D cellular materials can be obtained from Equation (S2-8) and given as

39

32

222

2/322

22

1016.1103
)06.041(

)06.01.064.17(

)4(

)64.17(








 Bn

n

n E
aL

at
E

2/N m . If 15.015.0  Lt

1K 
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and 08.008.0  La , for a three-level  hierarchical and self-similar 2D cellular materials, the 

magnification factor of the linear thermal expansion coefficient  can be obtained as  

96.143241.5)( 33

13  kk (i.e., 0288.010296.143 4

33   k )  when  5T  K.   

In this case, the stiffness of the three-level hierarchical 2D cellular materials can be obtained from 

Equation (S2-6) and given as 39

5.42

32

2/322

2

1021.1103
)08.041(

)08.015.08(

)4(

)8(








 Bn

n

n E
aL

ta
E

2/N m .  For three-level hierarchical and self-similar 3D cellular materials, if 2.02.0  Lt and 

1.01.0  La ,  the magnification factor of the linear thermal expansion coefficients is obtained as 

1.18128.4322.1)322.1( 333

13  kk  (i.e., 0362.01021.181 4

33   k ) when  

5T  K, and the stiffness of the three-level hierarchical and self-similar 3D cellular materials is 

given as  39

5.42

322

2/322

22

10883.0103
)1.041(

)1.02.064.17(

)4(

)64.17(








 Bn

n

n E
aL

at
E

2/N m .      

      Lakes[2, 20] has designed isotropic single–level 2D hexagonal honeycomb and 3D 

tetrakaidecahedral open cell foam with curved struts made of two different ingredients.  They both 

could have a very large isotropic positive or negative thermal expansion coefficient given by







 


 )(]
1

)2/tan(2

1
[)](

1

)2/tan(2

1
[ 12

21

f
t

l

t

l

hh

l
RVE , where l and t  

are the length and thickness of the curved struts,   is the angle of the curved struts and   is the 

difference of the thermal expansion coefficients of the two ingredients[20].  When   , the 

magnification factors of the cellular materials designed by Lakes[2, 20]  are included in Fig. 4a for 

comparison.  It is noted that   should be smaller than 018.229  (i.e. 4 radians), otherwise the 

curved struts will overlap, and thus the maximum possible value of )(f  is smaller than 0.48.  If the 

aspect ratio 01.0/ lt , the maximum possible magnification factor of the NTEC or PNTEC of both 

1K 

1K 
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the 2D and 3D cellular materials designed by Lakes[2, 20]  can be obtained as 

48)(1 


 



f

t

l
k RVE , thus 0096.010248 4

11   kRVE  , which is 

significantly smaller than some of our above reported results for the single-level 2D or hierarchical 

self-similar 2D and 3D cellular materials in this paper (as can be seen, k can be easily much larger 

than 50 in the materials designed in this paper).    It is also noted that the aspect ratio /t l  should be 

in general larger than 0.01 in the 2D and 3D cellular materials designed by Lakes[2, 20].  This is because 

the Young’s modulus is 

 SE
L

t
E 3

1 )(3.2             (3) 

for hexagonal honeycombs[1, 20], and  

SS E
Lt

Lt
EE

2

42

1
)/(5014.01

)/(1608.0

09.11

76.0










                                                                  (4) 

for tetrakaidecahedral open cell foams[20, 28].  In the cellular materials designed by Lakes[2, 20], if the 

two ingredients are chosen as a metal and a ceramic (with a Young’s modulus 
112 10SE    

2/N m

), the cellular materials may be sufficiently stiff, but   would be in the order of 
510 1K   and the 

resultant thermal expansion coefficient would still be very small compared to our results of the 2D 

or 3D cellular materials in this paper.  If their two-ingredients are a ceramic and a polymer and 

/ 0.01t l  , the Young’s modulus of the cellular materials will be 
36.9 10  

2/N m  for honeycombs 

and 4.82  
2/N m  for open-celled foams.  Thus, the aspect ratio /t l  can’t be smaller than 0.01 , 

otherwise the single level cellular materials designed by Lakes[2, 20]  do not have a sufficient stiffness 

to support the self-weight and to enable the expected function of thermal expansion.     

1K 
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     In this report, it has been demonstrated that although structural hierarchy can enhance the 

magnitude of the linear thermal expansion coefficient for cellular materials, it is impossible to 

achieve an ‘unbounded’ value due to the limit of a required minimum mechanical stiffness.  The 

magnitude of the linear thermal expansion coefficient of an nth level hierarchical and self-similar 

cellular materials is obtained as n

AB

n

n kk ))(()( 11    for 2D and 

n

ABn kk )322.1()()322.1( 1

2

1    for 3D if the shape of the RVE is convex, and 

n

AB

n

n kk ))(()( 11     for 2D and n

ABn kk )322.1()()322.1( 1

2

1    

for 3D if the shape of the RVE is concave.   The magnitude of the isotropic NTEC, isotropic PTEC and 

anisotropic TEC of the cellular materials in this paper could achieve a value nearly 0.1 1K  and 

significantly larger than the maximum possible value of CTE reported in literature, e.g. the maximum 

possible result of the 2D and 3D cellular materials designed by Lakes[2, 20].   The Young’s modulus of 

ingredient B has no effect on the results of nk  and n , but strongly affects the stiffness of the 

cellular materials.  The normal-auxeticity mechanical phase transition has recently been found in 

graphene, an atomic-thick two-dimensional hexagonal carbon[29]. The results in this paper could 

apply to multiscale metamaterials design[30] spanning from macro- down to micro and nano scales 

and our study opens a new avenue to developing more sensitive functional materials or devices. 

Although there might be some technical challenges to manufacture the designed pin-jointed 

structures at the microscale, their broad applications could be foreseen. 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the author. 
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Figures 

 

 

 

Figure 1.   Geometrical structures of two-ingredient hierarchical 2D cellular materials. a) overview of 

the second level 2D cellular material consisting of 5 5 RVEs with non-straight struts made of the 

level-1 material shown in b.  b) overview of the first level 2D cellular material consisting of 5 5

identical RVEs shown in c (or d or e).  c) RVE of isotropic negative thermal expansion coefficient. d) 

REV of isotropic positive thermal expansion coefficient. e) REV of anisotropic thermal expansion 

coefficients.   
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Figure 2. Geometrical structures of two-ingredient 3D cellular materials.  a) RVE of isotropic negative 

thermal expansion coefficient. b) RVE of isotropic positive thermal expansion coefficient. c) RVE of 

anisotropic thermal expansion coefficients.  
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                                                    (a) 

 

 

                                                    (b) 

 

Figure 3.  (a) The configuration of the chevron struts made of ingredient B before and after thermal 

deformation;  (b) The configuration of the pin-jointed struts made of ingredient B before and after 

thermal deformation.  
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                                                       (b) 

Figure 4 . Magnification factor 1k of the positive or negative, isotropic or anisotropic linear thermal 

expansion coefficients of the first level 2D cellular materials: (a) with chevron struts which are pin-

connected to the cross; (b) with pin-jointed struts.   
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TOC 

In this paper, abnormal giant linear thermal expansions in different types of two-ingredient 

micro-structured hierarchical and self-similar cellular materials are reported. The single level 

or hierarchical cellular materials can be two-dimensional or three-dimensional, isotropic or 

anisotropic, and have a positive or negative coefficient of thermal expansion due to the convex 

or/and concave shape in their RVEs.  The magnitude of the CTE can be several times larger than 

the highest value reported in the literature.   

 

 

      

 


