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Abstract 

Nonalcoholic fatty liver disease (NAFLD) is becoming the major chronic liver disease in many 

countries. Its pathogenesis is multifactorial but twin and familial studies indicate significant 

heritability, which is not fully explained by currently-known genetic susceptibility loci. Notably, 

mutations in genes encoding nuclear lamina proteins, including lamins, cause lipodystrophy 

syndromes that include NAFLD. We hypothesized that variants in lamina-associated proteins 

predispose to NAFLD and used a candidate gene-sequencing approach to test for variants in 10 

nuclear lamina-related genes in a cohort of 37 twin and sibling pairs: 21 individuals with, and 53 

without, NAFLD. Twelve heterozygous sequence variants were identified in four lamina-related 

genes (ZMPSTE24/TMPO/SREBF1/SREBF2). The majority of NAFLD patients (>90%) had at 

least one variant, compared to <40% of controls (P<0.0001). When only insertions/deletions and 

changes in conserved residues were considered, the difference between the groups was similarly 

striking (>80% versus <25%; P<0.0001). Presence of a lamina variant segregated with NAFLD 

independent of the PNPLA3 I148M polymorphism. Several variants were found in TMPO, which 

encodes the lamina-associated polypeptide-2 (LAP2) that has not previously been associated 

with liver disease. One of these, a frameshift insertion that generates truncated LAP2, abrogated 

lamin-LAP2 binding, caused LAP2 mislocalization, altered endogenous lamin distribution, 

increased lipid droplet accumulation after oleic acid treatment in transfected cells, and led to 

cytoplasmic association with the ubiquitin-binding protein p62/SQSTM1. Conclusion: Novel 

variants in nuclear lamina-related genes were identified in a cohort of twins and siblings with 

NAFLD. One novel variant, which results in a truncated LAP2 protein and a dramatic phenotype 

in cell culture, represents the first association of TMPO/LAP2 variants with NAFLD and 

underscores the potential importance of the nuclear lamina in NAFLD.
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Introduction 

Nonalcoholic fatty liver disease (NAFLD) is now the most common form of liver disease in 

many countries and includes a spectrum from simple steatosis to steatohepatitis which can lead 

to fibrosis and ultimately cirrhosis (1-4). It is estimated that NAFLD-related cirrhosis may soon 

be the most common indication for liver transplant listing in the United States (5). Effective 

therapies for NAFLD are limited (1,6), in part due to an incomplete understanding of its 

pathogenesis. Twin and familial aggregation studies suggest up to 50% heritability which is not 

accounted for by the susceptibility loci identified to date (7-11). One possible explanation for 

this discrepancy is that there are genetic variants that predispose to development of NAFLD but 

have not yet been identified. 

 

More than 70 human diseases have been linked to mutations in genes that encode intermediate 

filament proteins (IF), with no effective targeted therapy (12-14). While there are >60 

cytoplasmic IF, the nuclear IF include the A- and B-type lamins which are encoded by three 

genes, LMNA/LMNB1/LMNB2. Lamins form the major components of the nuclear lamina, which 

is intimately associated with the inner nuclear membrane and helps maintain the nuclear 

structural integrity while providing a link between the cytoskeleton and the genome (15). 

 

At least 15 disorders are caused by mutations in the genes encoding lamins (15-17). These 

diseases affect a number of organ systems, and in some cases the same mutation results in 

different phenotypes (18,19), suggesting that genetic modifiers and/or tissue-specific regulation 

of gene expression impact disease phenotypes. A subset of patients with germline mutations in 

LMNA develop partial lipodystrophy syndromes characterized by aberrant body fat distribution, 
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hyperlipidemia, insulin resistance, and hepatic steatosis (20,21). Notably, in a French cohort of 

87 patients with metabolic syndrome, including many with NAFLD, three patients harbored 

heterozygous mutations in LMNA or ZMPSTE24 (of five tested genes that encode A-type lamins 

or enzymes involved in lamin maturation), and >10% of the tested patients had abnormal 

leukocyte nuclear morphology (22,23).  

 

Given the nearly universal liver disease in patients with lamin-related lipodystrophy and the 

abnormal nuclear morphology in some patients with metabolic syndrome and NAFLD (22), we 

hypothesized that some patients with NAFLD, but without lipodystrophy, might have variants in 

genes encoding lamins or lamina-related proteins that predispose to their development of 

NAFLD. We examined a cohort of twin and sibling pairs with NAFLD and identified several 

heterozygous variants in lamina-related genes, including a novel truncation variant in TMPO, 

which encodes lamina-associated polypeptide 2 (LAP2). This truncation manifests a dramatic 

phenotype in cell culture and is the first association of TMPO/LAP2 variants with NAFLD. 
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Materials and Methods 

Study design and participants. Study participants were recruited through the NAFLD Research 

Center (University of California, San Diego), as part of a prospective study of twin pairs as 

previously reported (7,9,11) (see Supplementary Methods). The majority (>80%) of the cohort 

consisted of twin pairs, with the remainder consisting of sibling-sibling pairs; while non-twin 

pairs were excluded from the NAFLD heritability analysis described previously (7), they were 

included in this study to increase the probability of detecting rare variants. Hepatic steatosis was 

quantified noninvasively by magnetic resonance imaging-determined proton-density fat-fraction 

(MRI-PDFF), with NAFLD defined as MRI-PDFF ≥5% without apparent secondary cause of 

hepatic steatosis (e.g., alcohol or steatogenic medication use, other liver disease causes). Liver 

fibrosis was quantified by MR elastography-determined stiffness (MRE-stiffness) (7). All 

participants provided written informed consent, and the research protocol was approved by the 

Institutional Review Board. No samples were obtained from executed prisoners or other 

institutionalized persons. 

Next-generation DNA sequencing for variant identification. Genomic DNA was isolated using 

the Qiagen (Redwood City, CA) DNeasy Blood and Tissue Kit. Next-generation sequencing was 

performed with a custom-designed TruSeq amplicon panel using a MiSeq instrument (Illumina, 

San Diego, CA). Variants were annotated based on RefSeq v.69 gene models and matched with 

1000 Genomes Phase-3 population frequency data and dbNSFP v2.0 functional annotations 

(24,25). Variants were confirmed by Sanger DNA sequencing using primers designed to amplify 

400-600 base-pair regions of genomic DNA flanking variants of interest. The same primers were 

used for PCR amplification and sequencing (Table S1). 
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PNPLA3 variant genotyping. A subset of twin and sibling pairs were previously genotyped for 

the PNPLA3 I148M variant (7). The remainder were genotyped using a Thermo Fisher 

(Waltham, MA) SNP Genotyping assay (catalog number 4351379).  

Plasmids and transfection. Plasmids containing human TMPO (LAP2α) and LMNA open 

reading frames were purchased from Origene (Rockville, MD). The open reading frames were 

subcloned into pCMV6 vectors with amino-terminal green fluorescent protein (GFP) or 

myc/DDK tag (Origene) using SgfI and MluI restriction enzymes, with a stop codon engineered 

immediately 3′ to the MluI site. Mutants of LAP2α were generated using the QuikChange II site-

directed mutagenesis kit (Agilent Technologies, Santa Clara, CA). The truncated variant of 

LAP2 (1-99) was generated via PCR amplification of base-pairs 1-297 of the TMPO open 

reading frame using primers engineered with flanking SgfI and MluI restriction sites, then 

subcloned into pCMV6 with GFP or myc/DDK tag similar to full-length LAP2α. Lipofectamine-

2000 (Life Technologies, Carlsbad, CA) was used for transfection of Huh7 cells (American Type 

Culture Collection, Manassas, VA) (plated at ~60-70% confluency 1d prior to transfection). 

Immunofluorescence.  Two days after transfection, cells were washed, then fixed with a 1:1 

acetone and methanol mixture (-20°C, 10min). Following fixation, washing then blocking, 

primary antibodies (Table S2) were added (overnight, 4°C). After washing, fluorescently-tagged 

secondary antibody (Alexa Fluor® 488 or 594; Thermo Fisher) was added (1h, 22°C), followed 

by DNA staining using 4',6-diamidino-2-phenylindole (DAPI) (Life Technologies). Stained cells 

were visualized with a Zeiss AXIO Imager.M2 microscope, and images were acquired with a 

40X objective. 

Fatty acid treatment. Oleic acid (Sigma-Aldrich, St. Louis, MO) stock solution (50mM) was 

prepared in isopropanol (26). Huh7 cells were plated on lysine-coated glass chamber slides and 
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transfected 1d after plating. After 2d, the culture medium was changed to DMEM containing 1% 

fatty acid-free BSA (Sigma-Aldrich) and oleic acid (500 µM) or vehicle. Cells were fixed (4% 

paraformaldehyde, 15min, 22°C) and permeabilized (0.1% Triton X-100, 5min). Blocking, 

antibody incubation, and DAPI mounting were performed, and 10µM BODIPY 493/503 

(Thermo Fisher) was added at the primary antibody step and incubated overnight (4°C). Lipid 

staining was quantified by counting and measuring intracellular lipid droplets using the Zeiss 

Zen 2.3 lite software package (Fig.S1). 

Semi-native and denaturing gels. Cells were solubilized in lysis buffer (1% Triton X-100, 

50mM Tris pH 8.0, 150mM NaCl, protease inhibitor cocktail (Sigma-Aldrich)). After 

centrifugation (12,000xg, 10min, 4°C), the supernatant protein concentration was determined 

(bicinchoninic acid assay, Thermo Fisher). The supernatant was then diluted in Novex 2X Tris-

glycine sample buffer with (denaturing gels) or without (semi-native gels) SDS (Invitrogen, 

Carlsbad, CA) with or without β-mercaptoethanol (2%). In parallel, the Triton-insoluble pellet 

was solubilized in SDS-containing sample buffer (95°C, 2min). Proteins were resolved using 4-

20% Novex Tris-glycine native gels (Invitrogen) with running buffer containing 0.1% SDS, and 

visualized by silver (Thermo Fisher) or Coomassie staining. 

Immunoprecipitation and immunoblotting. GFP or GFP-tagged lamin A was co-expressed in 

cultured cells with myc-tagged LAP2α. Two days after transfection, cells were solubilized in 

Triton lysis buffer (4°C, 20min), and GFP or GFP-tagged lamin A was immunoprecipitated 

using anti-GFP antibody and Dynabeads protein G (Invitrogen). Immunoprecipitates were 

resolved via SDS-PAGE and transferred to polyvinylidene fluoride membranes (Bio-Rad, 

Hercules, CA) for immunoblotting. Where indicated, data were quantified by densitometry using 

ImageJ version 1.4.3.67. 
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LAP2-binding protein identification by tandem mass spectrometry. Proteins were eluted by 

incubating the immunoprecipitates in 50µL of 0.1M glycine (pH2.5) with shaking (10min, 

22°C), then addition of an equal volume of 1M Tris (pH8) prior to trypsin digestion and analysis 

by LC-MS/MS. 

Statistical analysis.  For continuous data, the two-tailed Student’s t-test or the Mann-Whitney U 

test was used to assess statistical significance. For categorical data, a two-tailed Fisher’s exact 

test was used. 
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Results 

Study participants. Thirty-seven (37) twin and sibling pairs underwent intake history, serologic 

evaluation, MRI, and lamina-related gene sequencing. Within this group of 74 subjects (Table 

1), 21 met criteria for NAFLD (MRI-PDFF ≥5% without another apparent cause of hepatic 

steatosis). This NAFLD group consisted of five concordant twin pairs (4 monozygotic, 1 

dizygotic), one concordant sibling pair, and 9 members of discordant twin (4 monozygotic, 3 

dizygotic) or sibling (2) pairs. This NAFLD group was compared with 53 subjects (Controls) 

without NAFLD (19 concordant twin pairs, 3 concordant sibling-sibling pairs, and 9 members of 

discordant twin or sibling pairs). Cases and Controls differed in body mass index, hemoglobin 

A1c, alanine aminotransferase (ALT) levels, and MRI scores (Table 1). Age, sex, race, and 

ethnicity showed no significant differences between the two groups. 

 

Identification of variants in lamina-related genes.  Given the frequency of hepatic steatosis and 

steatohepatitis among patients with lipodystrophy syndromes caused by LMNA mutations (20,21) 

and the abnormal nuclear morphology in some individuals with metabolic syndrome (22), we 

hypothesized that variants might be found in genes encoding lamins, lamin-related proteins, or 

nuclear lamina-associated proteins in patients with NAFLD. To address this, we performed exon-

directed sequencing of ten genes encoding lamins, lamin-binding proteins (including two 

transcription factors involved in lipid homeostasis that bind lamins), and lamin-processing 

enzymes (LMNA/LMNB2/ZMPSTE24/ICMT/FNTA/FNTB/TMPO/BANF1/SREBF1/SREBF2, 

Table S3). Sequencing was performed with an amplicon-based platform, achieving an average 

read coverage of 1100x across the 10 gene target with ~400 variants identified across all 
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samples. Of these, <10% were predicted to result in an amino acid change in the encoded 

protein; these were confirmed via Sanger sequencing (Fig.S2).  

 

Twelve unique variants in four genes were validated (Table 2). Of these, SREBF2 G595A was 

previously found to have a minor allele frequency (MAF) in the general population of 0.41 and, 

therefore, was excluded from further analyses; the remainder were novel or have MAF < 0.06 

(24). Among these, novel insertion variants in TMPO and SREBF2 were identified in two 

individuals with NAFLD. The TMPO insertion was also present in the monozygotic twin without 

NAFLD, while the SREBF2 insertion was not present in the unaffected sibling. While no single 

genetic variant was significantly associated with NAFLD in this cohort after Bonferroni 

correction, collectively the nuclear lamina genetic variants were found preferentially in study 

participants with NAFLD. The majority of the patients with NAFLD (19 of 21, 90%) were 

heterozygous for a variant in at least one lamina-related gene, versus 19 of 53 (36%) controls 

(P<0.0001) (Fig.1A, left panel). When only variants predicted to result in insertion/deletion or 

change in a conserved amino acid were included (Fig.1A, right panel), 17 of 21 NAFLD patients 

(81%) carried such a variant, compared to 11 of 53 (21%) controls (P<0.0001). Similarly, the 

hepatic fat content (quantitated by MRI-PDFF) was compared in individuals without a lamina-

related variant versus subjects with a variant (Fig.1B). The MRI-PDFF in the former group was 

2.91±0.41% versus 6.74±0.90% in the latter group (mean±SEM;P<0.0001); when only variants 

predicted to result in an insertion/deletion or change in a conserved residue were included, the 

findings were similar: 3.02±0.34% for subjects without versus 7.93±1.12% for subjects with a 

variant (P<0.0001) (Fig.1B). Comparable results were obtained when subgroup analysis of the 

twin pairs (Fig.S3), monozygotic twin pairs (Fig.S4A), dizygotic twin pairs (Fig.S4B), and non-
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twin sibling pairs (not shown) was performed separately. Similarly, when an additional 24 

subjects (15 NAFLD cases, 9 controls) who were recruited as part of the same study, but not part 

of a twin or sibling pair, were included in the analysis, the conclusions were unchanged: 23 of 36 

cases had a variant versus 24 of 62 controls (P=0.02); 20 of 36 cases had an insertion/deletion or 

conserved residue variant versus 14 of 62 controls (P=0.002) (Fig.S5). 

 

In addition to traditional MRI, some study participants underwent MR elastography (MRE) to 

assess the extent of hepatic fibrosis. Within the group of 37 twin/sibling pairs (n=74 subjects), 20 

of the 21 subjects with NAFLD underwent MRE. Of these, 18 of 20 (90%) had a variant in a 

lamina-related gene, but this high number prevented a meaningful assessment of the effect of 

variants on MRE-stiffness in the NAFLD group. Within the other group of 24 subjects who were 

not part of a twin/sibling pair (referenced above), there were 15 subjects with NAFLD, of whom 

13 underwent MRE. When these 13 were combined with the 20 twins and siblings with NAFLD 

(n=33 total subjects with NAFLD who underwent MRE), there was a trend toward those having 

significant or advanced fibrosis (MRE-stiffness >3.66 kPa or >4.11 kPa, respectively (27)) being 

more likely to carry lamina-related variants compared to controls (P=0.2 and 0.06, respectively) 

(Fig.S6). 

 

Effect of PNPLA3 I148M genotype. A single nucleotide polymorphism (C>G) in PNPLA3, 

which encodes patatin-like phospholipase domain containing 3, resulting in an I148M change, is 

a well-described susceptibility allele for NAFLD (28,29). To address whether there was any 

interaction between PNPLA3 genotype and the presence of lamina-related variants in our cohort, 

the PNPLA3 I148M polymorphism was genotyped in the 37 twin and sibling pairs. Notably, 
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presence of one or two G alleles was not significantly associated with NAFLD in our cohort 

(odds ratio conferred by having at least one G allele=2.48, 95% confidence interval 0.88-7.00, 

P=0.09), similar to what was previously noted (7). In contrast, the NAFLD odds ratio associated 

with a lamina variant was 17.0 (95% confidence interval 3.6-81.0, P<0.001), and the effect of a 

lamina variant was highest in subjects lacking a PNPLA3 G allele (n=40): MRI-PDFF 

2.40±0.17% in subjects without a lamina variant versus 5.57±0.87% in those with lamina 

variants (P<0.001) (Fig.S7A). Among those carrying at least one G allele (n=34), the effect of a 

lamina-related variant was also significant: MRI-PDFF 4.08±1.25% in those subjects without a 

variant versus 7.49±1.37% in those with variants (P=0.02). Similar findings were observed in 

subjects lacking a PNPLA3 G allele when only the 31 twin pairs were examined (Fig.S7B), 

although within this subgroup the effect of a lamina variant was not as prominent among subjects 

carrying a PNPLA3 G allele (P=0.06). 

 

Multiple variants in TMPO. Several variants were identified in TMPO (Table 2) and were over-

represented in subjects with NAFLD (13 of 21) compared to controls (10 of 53), a difference 

which remained significant after Bonferroni correction (P=0.0006 by Fisher’s exact test, with a 

threshold of P<0.005 given that ten genes were tested). TMPO encodes six isoforms (α,β,γ,δ,ε,ζ) 

of lamina-associated polypeptide 2 (LAP2) that are produced via alternative splicing (Fig.S8). 

The longest isoform is known as LAP2α and was previously found to interact with lamin A/C via 

its carboxy terminus (30). Notably, the majority of the variants we identified in TMPO were in 

the portion of the gene that is unique to the α-isoform. The lone exception was a novel single 

base pair insertion (c.287_288insA) which was identified in one set of monozygotic 41 year-old 

twins (one twin with NAFLD and one without) and is located in the amino-terminal region 
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common to all isoforms. This insertion is predicted to cause a frameshift and premature stop 

codon after Thr 99, resulting in truncation of all LAP2 isoforms. 

 

Two variants of LAP2 impair interaction with lamin A.  The α-isoform of LAP2 is largely 

found in the nucleoplasm (rather than directly associated with the inner nuclear membrane) and 

binds and stabilizes nucleoplasmic lamin A (30-32).  Previous studies have narrowed the lamin-

binding domain of LAP2α to residues 601-694 (Fig.S8) (30). Hence, the novel truncated variant 

of LAP2 (LAP2 1-99) lacks the lamin-binding domain. In addition, one other variant in TMPO 

that was found in a patient with NAFLD (R690C) results in a charge change in a conserved 

residue and was previously reported to affect lamin binding in vitro (33). Interestingly, this 

variant was previously identified in a family with hereditary cardiomyopathy but has not been 

linked to liver disease (33). To address whether these variants of LAP2α affect binding to lamin 

A, we co-expressed GFP-tagged human lamin A with wild-type or mutant myc-tagged LAP2α in 

Huh7 cells and performed co-immunoprecipitation using anti-GFP antibody. GFP-tagged lamin 

A, but not GFP alone, readily co-precipitated wild-type LAP2α (Fig.2A). In agreement with a 

previous report showing reduced binding to the lamin A tail in vitro (33), LAP2α R690C 

exhibited a modest, though not statistically significant (quantitation via densitometry of three 

independent experiments – data not shown), reduction in co-precipitation with lamin A (Fig.2A), 

while a second variant of LAP2α (Q599E) located outside the lamin-binding region co-

precipitated with lamin A similarly to wild-type LAP2α. In contrast, truncation of LAP2 at 

amino acid 99 completely abrogated binding to lamin A, despite similar expression to wild-type 

LAP2α (Fig.2B). 
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Full-length, but not truncated, LAP2α forms a soluble, detergent-resistant, high molecular 

weight species. Previous work demonstrated that the carboxy-terminal portion of LAP2α can 

dimerize or trimerize in vitro and that multimeric LAP2α migrates as a high molecular species on 

semi-native SDS-PAGE (34,35). Given that lamin A forms intra- and intermolecular disulfide 

bonds (36), we hypothesized that multimeric species of LAP2α might also be disulfide-linked. 

To address this, we expressed myc-tagged LAP2α in Huh7 cells, then performed SDS-PAGE 

under semi-native, denaturing/non-reducing, and denaturing/reducing conditions. Similar to prior 

findings (35), >50% of LAP2α migrated as high-molecular weight species (>250 kDa) under 

semi-native conditions (not shown), with identical results under denaturing non-reducing 

conditions (Fig.S9A). In contrast, under reducing conditions, >90% of LAP2α migrated as a 

single species (~75 kDa) consistent with monomeric LAP2α (Fig.S9A). These data suggest that a 

substantial proportion of LAP2α can exist as disulfide-linked multimeric complexes.  

 

We hypothesized that truncated LAP2 1-99 might differ from wild-type LAP2α in its ability to 

form high-molecular-weight species, as the truncated protein lacks cysteines. In contrast to full-

length LAP2α, LAP2 1-99 formed no disulfide-linked high-molecular-weight species (Fig.S9A). 

Notably, the LAP2α R690C variant migrated as high-molecular-weight species similar to wild-

type LAP2α, consistent with a prior report (35). In addition, >50% of high-molecular-weight 

LAP2α species were Triton-soluble, which did not vary between wild-type LAP2α and the 

R690C variant. In contrast, LAP2 1-99, which did not form detectable high-molecular-weight 

species in the Triton-soluble fraction, formed β-mercaptoethanol-resistant insoluble high-

molecular-weight forms not seen with wild-type LAP2α or any point-variant tested (Fig.S9B). 

Of note, although the high-molecular-weight smear formed by truncated LAP2 1-99 appears 
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more prominent after β-mercaptoethanol treatment (Fig.S9B), quantitation of four independent 

experiments showed no significant difference in the relative amount of high-molecular-weight 

species with or without β-mercaptoethanol treatment. 

 

Truncation of LAP2 disrupts its nuclear localization and increases lipid accumulation 

compared to full-length LAP2α.  In prior studies of LAP2 in cultured cells, a truncated protein 

containing amino acids 1-187 (generated to study LAP2 domains) lost exclusive targeting to the 

nucleus, suggesting that the mature protein region required for nuclear localization is C-terminal 

to residue 187 (37). Hence, we reasoned that LAP2 1-99 would also be mislocalized and 

addressed this by examining DDK-tagged full-length LAP2α or LAP2 1-99 localization in Huh7 

cells. As expected, full-length LAP2α localized exclusively to the nucleus, while LAP2 1-99 was 

found throughout the nucleus and cytoplasm under identical conditions (Fig.3). Similar results 

were obtained in transfected human lung adenocarcinoma (A549) cells and baby hamster kidney 

(BHK) cells (data not shown). 

 

To address whether LAP2 1-99 might contribute to NAFLD development by facilitating lipid 

accumulation in hepatocytes, we treated Huh7 cells expressing full-length LAP2α or LAP2 1-99 

with oleic acid and performed lipid staining. After overnight incubation with oleic acid, lipid 

droplet accumulation in cells transfected with truncated LAP2 (1-99) was similar to that in 

adjacent untransfected cells (quantitation showed no statistically significant difference between 

these two groups of cells), but was significantly greater than in cells transfected with full-length 

LAP2α (Fig.4). 
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Truncated LAP2 has multiple unique interaction partners in Huh7 cells. Given that LAP2 1-

99 exhibited unique biochemical properties compared to full-length LAP2α (Fig.2, Fig.S9), and 

was mislocalized in cultured cells (Fig.3) and led to increased lipid accumulation compared to 

full-length LAP2α in oleic acid-treated cells (Fig.4), we hypothesized that truncated LAP2 might 

exhibit unique protein-protein interactions compared to the full-length protein. To address this, 

we immunoprecipitated GFP-tagged LAP2α or LAP2 1-99 from Huh7 cell lysates and carried 

out mass spectrometry analysis of the immunoprecipitates and associated endogenous proteins 

(Fig.5A). Numerous unique interacting partners for truncated LAP2 1-99 as compared to full-

length protein were detected, many of which were cytoplasmic proteins (Table S4). We selected 

the cytoplasmic ubiquitin-binding protein p62/SQSTM1 for validation because it ranked first 

among 235 identified LAP2-associated proteins after sorting by the ratio of spectra obtained with 

truncated LAP2 1-99 compared to full-length LAP2α, then by percent coverage, and because it 

was reported to regulate lipogenesis in mouse liver (38). Notably, endogenous p62/SQSTM1 

interacted preferentially with LAP2 1-99 as determined by co-immunoprecipitation of GFP-

tagged LAP2 followed by immunoblotting with anti-p62 antibody (Fig.5B,C). 

 

Expression of truncated LAP2 alters endogenous lamin distribution in Huh7 cells. Given the 

unique biochemical properties of truncated LAP2 (Fig.2,3,5; Fig.S9), its effect on lipid 

accumulation in cells (Fig.4), and prior reports demonstrating a role for LAP2α in regulating 

lamin A/C organization (31,32), we hypothesized that LAP2 truncation might lead to altered 

lamin A/C organization. To address this, we expressed wild-type LAP2α and LAP2 1-99 in 

Huh7 cells and examined endogenous lamin A/C distribution (Fig.6A). Although LAP2 1-99 did 

not affect nuclear shape at the level of resolution we tested, more abnormal punctate and globular 
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lamin A/C staining was noted in nuclei of cells transfected with LAP2 1-99 as compared to full-

length LAP2α (Fig.6B). A comparable effect was noted for B-type lamins under the same 

conditions (Fig.S10). 
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Discussion 

Large-scale genome-wide association studies (GWAS) in individuals with NAFLD have 

identified several susceptibility loci (8,39), though these loci cannot account for the high degree 

of heritability suggested by twin and familial aggregation studies (7,8,10,11). Given that a subset 

of patients with mutations in LMNA develop lipodystrophy, metabolic syndrome, and NAFLD 

(20,21), as noted in mice that lack lamin A/C expression in hepatocytes (40), we reasoned that 

other variants in genes encoding lamin-related and lamina-associated proteins might be found in 

patients with NAFLD, and that rare variants that escape detection via GWAS might be identified 

by candidate gene sequencing approaches. 

 

Here we report a set of variants, several of which are novel, in genes encoding lamina-related 

proteins in a cohort of twins and siblings with NAFLD. The majority result in a single amino 

acid change, while two are insertion variants (each of which was identified in one patient). 

Collectively these variants conferred a significantly increased risk of NAFLD within this cohort 

(odds ratio 17.0, P<0.001). In our patient cohort, the PNPLA3 I148M polymorphism did not 

have a significant NAFLD effect, as noted previously (7), likely due to the small size of the 

cohort in relation to the frequency of this variant in the general population. Importantly, the 

effect of the lamina-related variants was most prominent among subjects with wild-type PNPLA3 

(CC genotype), but the interaction of lamina-related variants with PNPLA3 genotypes will need 

to be assessed in a larger population. 

 

Among the variants we identified, one set of twins with NAFLD carried a point mutation in 

ZMPSTE24 (L438F), which encodes a protease involved in lamin A processing, that was 
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previously identified in individuals with metabolic syndrome (22,41). Notably, over one-third of 

the variants were in TMPO, most of which were located in the portion of the gene that is unique 

to the α-isoform of the encoded protein (LAP2). Of these, one was previously reported to cause 

dilated cardiomyopathy in one family (33) but has not previously been associated with metabolic 

disease. No disease association has previously been described for any of the other variants in 

TMPO, including the truncation at Thr99. The NAFLD patient with LAP2 1-99 has a 

monozygotic twin with normal MRI-PDFF, underlining the importance of environmental factors 

in NAFLD and suggesting that this truncation may represent a predisposition rather than a high-

penetrance cause of NAFLD. However, the possibility of other NAFLD patients carrying TMPO 

variants will need to be investigated, and it is not possible to make definitive genotype-

phenotype conclusions because of the small numbers and the lack of longitudinal and 

clinical/lifestyle information, as the involved twins were lost to follow-up after their initial 

enrollment in 2012 (Table S5).  

 

The dramatic effects of truncated LAP2 1-99 in transfected cells, including its altered 

intracellular distribution, alteration of endogenous lamin distribution, and increased lipid droplet 

accumulation, support a role for this variant in predisposition to liver disease. Truncated LAP2 

robustly co-precipitated endogenous p62/SQSTM1, which regulates lipogenic gene expression in 

mouse liver (38), but the functional importance of this and the other unique protein-protein 

interactions identified via mass spectrometry remain to be defined. In addition, the effects of 

truncated LAP2 on both A- and B-type lamins (Fig.6, Fig.S10) are noteworthy given previous 

studies showing that Lmnb1 and Lmnb2 depletion in hepatocytes did not lead to misshapen 

nuclei as determined by liver tissue staining but did lead to nuclear blebbing of cultured 
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hepatocytes (42). It is unknown whether these mice develop spontaneous hepatosteatosis upon 

aging or have increased susceptibility to fibrosis upon high fat feeding as was noted in 

hepatocyte-specific Lmna-null mice (40). However, liver involvement was reported in a patient 

with acquired partial lipodystrophy due to LMNB2 mutation (23,43). In addition, alterations of 

lamins A/C and B1/B2 occur in the context Mallory-Denk body formation and porphyria-

associated liver injury (44,45). 

 

Limitations of our findings include the relatively small number of participants which precludes 

statistical significance for any individual variant. Nevertheless, the fact that we identified several 

variants, even in our small cohort, underscores the potential importance of the nuclear lamina in 

NAFLD and the need for further study. Another limitation is that non-invasive assessment of 

liver disease was used rather than liver biopsy. While the accuracy of MRI in assessing hepatic 

steatosis is well-established (46), the lack of histologic data precludes definitive conclusions 

about liver disease severity. Still, among study participants who underwent MRE, there was a 

trend toward higher MRE-stiffness among those subjects carrying lamina-related variants 

(Fig.S6). This suggests the possibility that these variants might contribute to liver disease 

progression but such a conclusion requires study in larger cohorts. 

 

The data presented here have a number of implications for the study of nuclear lamina function, 

lamina-related disease, and NAFLD. Our findings underscore the importance of proper 

localization and interaction of lamins and lamin-binding proteins at the nuclear lamina. Prior 

studies in cell culture systems and mice have illustrated the role of LAP2α-lamin interaction in 

regulating the stability, localization, and function of lamin A/C (31,32). Our findings are the first 
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to suggest a potential link of TMPO variants with liver disease, possibly via impaired interaction 

with lamin A. In this context, one of the TMPO variants identified herein, the R690C variant, 

was previously reported to cause dilated cardiomyopathy (33), or to serve as a genetic modifier 

in a family with dilated cardiomyopathy (47), without the description of liver disease. 

Identification of this variant in an individual with NAFLD underscores the variability in 

laminopathy phenotypes and the likelihood that genetic modifiers influence both the severity of 

disease and the affected organ(s). In addition, extrapolation of the number of patients in our 

small cohort with variants (19 of 21) in the ten genes sequenced raises the possibility that they 

might be relatively common among patients with familial NAFLD. We also posit that some 

patients with nonfamilial NAFLD might have an unrecognized laminopathy, which may have 

future therapeutic implications as drugs are developed to target laminopathies (48). Further study 

in larger patient cohorts will be needed to clarify the frequency and relative contributions of 

variants in lamina-related genes in patients with NAFLD. Taken together, our data suggest 

several mechanisms by which lamina-related variants such as truncated LAP2 1-99 might 

promote susceptibility to NAFLD via inappropriate interaction with cytoplasmic proteins 

including p62/SQSTM1, altered lamin distribution (which could alter chromatin organization 

(49) and cause downstream transcriptional changes (50)), and promotion of lipid accumulation in 

hepatocytes (Fig.6C). 
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Parameter 
Cases (n = 21) 

[with NAFLD] 

Controls (n = 53) 

[without NAFLD] 
P-value 

Age (S.D.) 52.1 (19.6) 46.1 (20.6) 0.26 

% Male 57 32 0.07 

% Caucasian 67 51 0.30 

% Hispanic 24 15 0.27 

BMI (S.D.) 32.3 (5.0) 27.2 (5.4) < 0.001 

Hgb A1c (S.D.) 6.1 (0.7) 5.7 (0.4) 0.001 

ALT (S.D.) 30 (18) 21 (12) 0.01 

MRI-PDFF (S.D.) 10.7 (5.4) 2.6 (0.9) < 0.0001 

 

Table 1. Characteristics of twin and sibling cohort (37 pairs, n=74 subjects). S.D., standard deviation; 

BMI, body mass index; Hgb, hemoglobin.  
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Nucleotide 

change 

Amino acid 

change 

Conserved 

residue 

Number of cases 

with variant 

Number of controls 

with variant 

Minor allele 

frequency 

ZMPSTE24 C > T L438F Yes 2 0 0.001 

TMPO InsA T99fs N/A 1 1 Not identified 

TMPO G > A R274K No 0 1 0.002 

TMPO C > G T317S Yes 0 1 0.030 

TMPO C > G Q599E Yes 11 7 0.06 

TMPO C > T R690C Yes 1 0 0.011 

SREBF1 C > T V610M Yes 1 1 0.007 

SREBF2 Ins (24bp) S72Ins (in-frame) N/A 1 0 Not identified 

SREBF2 G > A R371K Yes 0 2 0.001 

SREBF2 G > C G595A No 16 23 0.41 

SREBF2 G > C R860S No 6 7 0.06 

SREBF2 G > A R1080Q Yes 1 0 0.001 

 

Table 2. Confirmed coding variants. Minor allele frequency (MAF) cited in far right column is derived 

from the 1000 Genomes Project (reference 24). Ins, insertion; fs, frameshift. 
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Figure Legends - HEP-17-0541.R2 

 

Figure 1. Variants in lamina-related genes were predominantly found in individuals with 

NAFLD in a cohort of twin and sibling pairs. (A) Left panel: Percentages of individuals (y-axis) 

with and without genetic variants are shown for both NAFLD cases and Controls (includes all 

coding variants with minor allele frequency < 0.06). Right panel: Percentages of individuals (y-

axis) with and without a variant resulting in insertion/deletion or change in a conserved residue 

are shown for NAFLD cases and Controls. Fisher’s exact test was used to assess statistical 

significance at a threshold of P<0.05. (B) Left panel: Scatter plot of liver fat content (assessed by 

MRI-PDFF) of individuals without and with a lamina-related genetic variant (includes all coding 

variants with minor allele frequency < 0.06). Right panel: Scatter plot of liver fat content 

(assessed by MRI-PDFF) of individuals without and with a lamina-related genetic variant 

(includes variants resulting in insertion/deletion or change in a conserved residue). Error bars 

represent standard error of the mean. Mann-Whitney U test was used to assess statistical 

significance at a threshold of P<0.05. 

 

Figure 2. Variants of LAP2 found in NAFLD patients interfere with binding to lamin A. (A) 

Huh7 cells were co-transfected with myc-tagged wild-type (WT) or variant LAP2α and GFP-

tagged lamin A, followed by immunoprecipitation using an antibody directed to the GFP tag. 

Immunoprecipitates were resolved on SDS-PAGE, and precipitated proteins were visualized 

after immunoblotting with antibodies to myc or the GFP tag. (B) Huh7 cells were co-transfected 

with GFP-tagged lamin A and WT LAP2α or its truncated variant (LAP2 1-99). Lamin A was 

immunoprecipitated, followed by visualization as in panel A. Ig, immunoglobulin; M.W., 
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apparent molecular weight; kDa, kilodaltons; IP, immunoprecipitation; IB, immunoblot. 

Arrowhead indicates a non-specific band recognized by the myc antibody. 

 

Figure 3. The truncated variant of LAP2 is mislocalized in transfected cells. (A) Huh7 cells were 

transfected with full-length (F.L.) LAP2α or truncated LAP2 (1-99) with DDK tag, or empty 

vector. Cells were then fixed, and LAP2 was visualized by indirect immunofluorescence using 

anti-FLAG antibody (which recognizes the DDK tag). Scale bar: 50 µm (lower magnification 

images: first, second, and fourth rows), 20 µm (higher magnification images: third and fifth 

rows). (B) Cells transfected as in panel A were scored according to whether LAP2 was 

specifically localized to the nucleus or mislocalized throughout the cell (represented as percent 

of transfected cells with mislocalized LAP2). Data were derived from counting 9-12 high-power 

fields from three independent experiments. Error bars represent the standard error of the mean. 

Student’s t test was used to determine statistical significance at a threshold of P<0.05. 

 

Figure 4. Truncated LAP2 causes increased lipid accumulation in transfected cells. (A) Huh7 

cells were transfected with DDK-tagged full-length (F.L.) LAP2α or truncated LAP2 (1-99) or 

empty vector, then treated with 500 µM oleic acid or vehicle (isopropanol) in serum-free 

medium overnight. After fixation, transfected LAP2 was visualized by indirect 

immunofluorescence using anti-FLAG antibody. Lipid droplets were stained with BODIPY 

493/593 as described in Materials and Methods. Representative images are shown for each 

condition; scale bar, 20 µm. (B) Lipid accumulation was quantitated as described in Materials 

and Methods for >10 high-power fields for each condition, and the data shown are representative 
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of 3 independent experiments. Error bars represent standard error of the mean. Student’s t test 

was used to determine statistical significance at a threshold of P<0.05.  

 

Figure 5. Truncated LAP2 has multiple unique cytoplasmic interaction partners, including 

p62/SQSTM1. (A) Huh7 cells were transfected with GFP-tagged LAP2α or truncated LAP2 (1-

99), followed by immunoprecipitation using an anti-GFP antibody; empty vector (GFP only) and 

GFP-tagged lamin A were included as controls. The immunoprecipitates and the input cell 

lysates were visualized by silver staining. (B) Huh7 cells were transfected with GFP alone, GFP-

tagged LAP2α, or truncated LAP2 (1-99), followed by immunoprecipitation of LAP2 using anti-

GFP antibody. Co-precipitated p62/SQSTM1 was visualized by immunoblotting. (C) 

Immunoprecipitated GFP and GFP-tagged proteins were visualized by Coomassie staining for 

the samples shown in panel B. M.W., apparent molecular weight; kDa, kilodaltons; IP, 

immunoprecipitates. Arrowheads indicate antibody heavy (~50 kDa) and light (~25 kDa) chains. 

 

Figure 6. Truncated LAP2 causes altered lamin A/C distribution. (A) Huh7 cells were 

transfected with DDK-tagged full-length (F.L.) LAP2α or truncated LAP2 (1-99). After fixation, 

transfected LAP2 and endogenous lamin A/C were visualized by immunofluorescence using 

anti-FLAG and anti-lamin A/C antibodies, respectively. Representative high-magnification 

images are shown; nuclei of transfected cells with abnormal lamin A/C staining 

(punctate/globular) are highlighted by arrows. Scale bar, 20 µm. (B) Nuclear morphology and 

lamin A/C distribution in cells transfected with full-length LAP2α or truncated LAP2 (1-99) 

were scored in a blinded fashion from three independent experiments (3-6 

fields/condition/experiment, >85 total nuclei/condition). Error bars represent standard error of 
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the mean. Student’s t test was used to determine statistical significance; ***, P<0.001. (C) 

Schematic of alterations predicted to occur due to expression of LAP2 1-99, thereby 

predisposing to NAFLD via ectopic protein-protein interactions (e.g., LAP2 1-99 with 

p62/SQSTM1), altered lamin A/C distribution, chromatin reorganization, and increased lipid 

accumulation in hepatocytes. ONM, outer nuclear membrane; INM, inner nuclear membrane. 

�
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tFig. S3. Among twin pairs only (31 pairs, n=62 subjects), variants in lamina-related genes were 

predominantly found in twins with NAFLD.  (A) Left panel: Percentages of twins (y-axis) with 

and without genetic variants are shown for NAFLD cases and Controls (includes all coding 

variants with minor allele frequency < 0.06). Right panel: Percentages of twins (y-axis) with and 

without a variant resulting in insertion/deletion or change in a conserved residue are shown for 

NAFLD cases and Controls. Fisher’s exact test was used to assess statistical significance at a 

threshold of P<0.05. (B) Left panel: Scatter plot of liver fat content (assessed by MRI-PDFF) of 

twins (31 pairs, n=62 subjects) without and with a lamina-related genetic variant (includes all 

coding variants with minor allele frequency < 0.06). Right panel: Scatter plot of liver fat content 

(assessed by MRI-PDFF) of twins without and with a lamina-related genetic variant (includes 

variants resulting in insertion/deletion or change in a conserved residue). Error bars represent 

standard error of the mean; Mann-Whitney U test was used to assess statistical significance at a 

threshold of P<0.05. 
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tFig. S4. Among both monozygotic (A) and dizygotic twins (B), variants in lamina-related genes 

were predominantly found in twins with NAFLD. (A) Monozygotic twin pairs (20 pairs, n=40 

subjects). Left panel: Percentages of monozygotic twins (y-axis) with and without genetic 

variant(s) are shown for both NAFLD cases (n=12) and Controls (n=28) (includes all coding 

variants with minor allele frequency < 0.06). Fisher’s exact test was used to assess statistical 

significance at a threshold of P<0.05. Right panel: Scatter plot of liver fat content (assessed by 

MRI-PDFF) of monozygotic twins without (n=16) and with (n=24) a lamina-related genetic 

variant (includes all coding variants with minor allele frequency < 0.06). Error bars represent 

standard error of the mean; Mann-Whitney U test was used to assess statistical significance at a 

threshold of P<0.05. (B) Dizygotic twin pairs (11 pairs, n=22 subjects). Left panel: Percentages 

of twins (y-axis) with and without genetic variant(s) are shown for both NAFLD cases (n=5) and 

Controls (n=17) (includes all coding variants with minor allele frequency < 0.06). Fisher’s exact 

test was used to assess statistical significance at a threshold of P<0.05. Right panel: Scatter plot 

of liver fat content (assessed by MRI-PDFF) of twins without (n=14) and with (n=8) a lamina-

related genetic variant (includes all coding variants with minor allele frequency < 0.06). Error 

bars represent standard error of the mean; Mann-Whitney U test was used to assess statistical 

significance at a threshold of P<0.05. 
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tFig. S5. Among all subjects (n=98), including both twin/sibling pairs (n=74) and additional 

subjects not part of a twin/sibling pair (n=24), variants in lamina-related genes were 

predominantly found in individuals with NAFLD. (A) Percentages of individuals (y-axis) with 

and without genetic variant(s) are shown for both NAFLD cases (n=36) and controls (n=62) 

(includes all coding variants with minor allele frequency < 0.06). (B) Percentages of individuals 

(y-axis) with and without a variant resulting in insertion/deletion or change in a conserved 

residue are shown for NAFLD cases (n=36) and controls (n=62). Fisher’s exact test was used to 

assess statistical significance at a threshold of P<0.05. 
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tFig. S6. Lamina-related variants among study participants with NAFLD and hepatic fibrosis. (A) 

Significant fibrosis: Percentages of individuals (y-axis) with and without genetic variant(s) are 

shown for both Cases (NAFLD with MRE > 3.66 kPa; F ≥ 2) and Controls (NAFLD with MRE 

< 3.66 kPa; F < 2). (B) Advanced fibrosis/cirrhosis: Percentages of individuals (y-axis) with and 

without genetic variant(s) are shown for both cases (NAFLD with MRE > 4.11 kPa; F ≥ 3) and 

controls (NAFLD with MRE < 4.11 kPa; F < 3). For each group, Fisher’s exact test was used to 

assess statistical significance at a threshold of P<0.05. Note that this analysis includes twins and 

siblings with NAFLD (n=20 twins/siblings with NAFLD and MRE data) as well as additional 

subjects with NAFLD who were not part of a twin/sibling pair (n=13 subjects with NAFLD and 

MRE data); n=33 total subjects. 
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(A) All twin and sibling pairs (37 pairs, n=74 subjects). Left panel: Scatter plot of liver fat 

content (assessed by MRI-PDFF) of the 40 subjects with PNPLA3 CC genotype without and with 

a lamina-related genetic variant. Right panel: Scatter plot of liver fat content (assessed by MRI-

PDFF) of the 34 subjects with PNPLA3 CG or GG genotype without and with a lamina-related 

genetic variant. Error bars represent standard error of the mean; Mann-Whitney U test was used 

to assess statistical significance at a threshold of P<0.05. (B) Twin pairs only (31 pairs, n=62 

subjects). Left panel: Scatter plot of liver fat content (assessed by MRI-PDFF) of the 31 twins 

with PNPLA3 CC genotype without and with a lamina-related genetic variant. Right panel: 

Scatter plot of liver fat content (assessed by MRI-PDFF) of the 31 twins with PNPLA3 CG or 

GG genotype without and with a lamina-related genetic variant. Error bars represent standard 

error of the mean; Mann-Whitney U test was used to assess statistical significance at a threshold 

of P<0.05. Note that subjects with PNPLA3 CG and GG genotypes were grouped for these 

analyses due to the small number of GG homozygotes (n=12) in the cohort.  
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tFig. S9. Full-length, but not truncated, LAP2α forms a soluble high-molecular weight species 

under non-reducing conditions. (A) Huh7 cells were transfected with wild-type (WT) LAP2α or 

the indicated variant. Two days after transfection, cells were harvested and the Triton-soluble 

fraction was resolved on denaturing SDS-PAGE under non-reducing or reducing conditions. 

Transfected LAP2 was visualized by immunoblotting with antibody directed to the myc tag. (B) 

The Triton-insoluble (pellet) fraction of Huh7 cells, transfected as in panel A, was resolved using 

denaturing SDS-PAGE (non-reducing and reducing) and analyzed by immunoblotting. H.M.W., 

high molecular weight; M.W., apparent molecular weight; kDa, kilodaltons. Arrowhead 

highlights a non-specific band recognized by the myc antibody. 
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tFig. S10. Truncated LAP2 alters B-type lamin distribution. (A) Huh7 cells were transfected with 

DDK-tagged full-length (F.L.) LAP2α or truncated LAP2 (1-99). After fixation, transfected 

LAP2 and endogenous lamin B1 were visualized by immunofluorescence using anti-FLAG and 

anti-lamin B1 antibodies, respectively. Representative high-magnification images are shown; 

nuclei of transfected cells with abnormal lamin staining (punctate/globular) are indicated by 

arrows. Scale bar, 20 µm. Right panel shows quantitation (>40 nuclei scored for each condition). 

Error bars represent standard error of the mean. Student’s t test was used to determine statistical 

significance; **, P<0.01. (B) Cells were transfected with full-length or truncated LAP2α with 

DDK tag as in panel A. After fixation, transfected LAP2 and endogenous lamin B2 were 

visualized by immunofluorescence using anti-FLAG and anti-lamin B2 antibodies, respectively. 

Representative high-magnification images are shown; nuclei of transfected cells with abnormal 

lamin staining (punctate/globular) are indicated by arrows. Scale bar, 20 µm. Right panel shows 

quantitation (>40 nuclei scored for each condition). Error bars represent standard error of the 

mean. Student’s t test was used to determine statistical significance; *, P<0.05. 
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Primer Name  Variant  Sequence (5’  3’) 

ZMPSTE24‐L438F‐FWD  ZMPSTE24 L438F  TTTCTGGCCTGTTTGCTTGG 

ZMPSTE24‐L438F‐REV  ZMPSTE24 L438F  CATGCTGCCAGGACAGAAAT 

BANF1‐G21E‐FWD  BANF1 G21E  GGGAAGAGTCTCCCTGGAAC 

BANF1‐G21E‐REV  BANF1 G21E  TGCCATTCAGAGCACACAAG 

TMPO‐T99fs‐FWD  TMPO T99fs  AGTTACTTGCTTGGCTGTGC 

TMPO‐T99fs‐REV  TMPO T99fs  GTCCTTGGAACCTAAACTGCT 

TMPO‐R274K‐FWD  TMPO R274K; TMPO T317S  TCTTGTTGCCACAAACTTGC 

TMPO‐R274K‐REV  TMPO R274K; TMPO T317S  CCAGTGGGGGCATAGAGTTA 

TMPO‐Q599E‐FWD  TMPO Q599E  TGGCATGCAAATATCCAGTTTC 

TMPO‐Q599E‐REV  TMPO Q599E  AATCCTTCAGCCAGAGGTATCG 

TMPO‐R690C‐FWD  TMPO R690C  CGCTTGGGATTCTGAGCAAA 

TMPO‐R690C‐REV  TMPO R690C  ATTGTTTGTACCAGGCTTCCT 

SREBF1‐V610M‐FWD  SREBF1 V610M  GGGACAGATTCATGGTGTGCACAGG 

SREBF1‐V610M‐REV  SREBF1 V610M  GAACTTGGGGCTCTGGATTTCCTGG 

SREBF2‐S72ins‐FWD  SREBF2 S72ins  GAAAGAGGTAAGGGTTTCCTGACCC 

SREBF2‐S72ins‐REV  SREBF2 S72ins  CTTGACTTGCAGAGTTGGAGCCTGTG 

SREBF2‐R371K‐FWD  SREBF2 R371K  TAACTTCTCCCGAGTGGCAC 

SREBF2‐R371K‐REV  SREBF2 R371K  CCACCTCATTGTCCACCAGA 

SREBF2‐G595A‐FWD  SREBF2 G595A  GGAAATACCTCAGAATGTCAGCAGGG 

SREBF2‐G595A‐REV  SREBF2 G595A  GCTGGTCTTAGCTTCGTCTTCAAAGC 

SREBF2‐R860S‐FWD  SREBF2 R860S  GGTCTTAGAGCTGGAGAGCTGAACAG 

SREBF2‐R860S‐REV  SREBF2 R860S  GAACTGGAGCCACAGGTATGAACCTG 

SREBF2‐R1080Q‐FWD  SREBF2 R1080Q  CTTTTCCGTGGATTGGGTGG 

SREBF2‐R1080Q‐REV  SREBF2 R1080Q  CCACTCTCAGCGGGAAGAT 

 

Table S1. Primers used for PCR amplification of genomic DNA and Sanger sequencing. 
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Antibody target  Manufacturer  Catalog/clone number  Dilution 
FLAG / DDK tag  Sigma‐Aldrich  F1804 (clone M2)  1:250 (IF) 

GFP  Origene  TA150041 (clone 2H8)  1:2000 (IB); 1.5 µg per 500 µL lysate (IP) 

Myc tag  Abcam  ab9106  1:1000 (IB) 

Lamin A/C  Santa Cruz Biotechnology  sc‐20681 (H‐110)  1:250 (IF) 

Lamin B1  Abcam  ab16048  1:250 (IF) 

Lamin B2  Cell Signaling  12255 (clone D8P3U)  1:250 (IF) 

p62/SQSTM1  Abcam  ab96706  1:2000 (IB) 

 

Table S2. Antibodies used for immunofluorescence (IF), immunoprecipitation (IP), and immunoblotting (IB). 

   

Page 60 of 84

Hepatology

Hepatology

57
58
59
60

This article is protected by copyright. All rights reserved.



A
ut

ho
r M

an
us

cr
ip

t
Gene  Protein  Associated disease(s) 

LMNA  A‐type lamin 
Dilated cardiomyopathy, progeria, lipodystrophy, Charcot‐

Marie‐Tooth disease, muscular dystrophy (1‐9) 

LMNB2  B‐type lamin  Lipodystrophy (10) 

ZMPSTE24  Lamin‐processing enzyme  Mandibuloacral dysplasia, lipodystrophy, restrictive 
dermopathy (11, 12) 

ICMT  Lamin‐processing enzyme  None known 

FNTA  Lamin‐processing enzyme  None known 

FNTB  Lamin‐processing enzyme  None known 

TMPO  Lamin binding partner  Dilated cardiomyopathy (13) 

BANF1  Lamin binding partner  Atypical progeria (14) 

SREBF1  Transcription factor  None known 

SREBF2  Transcription factor  None known 

 

Table S3. Candidate genes sequenced. 
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Table S4. LAP2 interacting proteins as determined by mass spectrometry (appended separately). 
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TWIN 
ID 

Sex  Age 
(yrs) 

NAFLD  Diabetes  Other 
chronic 
disease 

PNPLA3 
genotype 

Height 
(m) 

Weight 
(kg) 

BMI 
(kg/
m2) 

Alcohol 
use 

ALT 
(IU/L) 

Glucose 
(mg/dL) 

Insulin 
(µU/mL) 

HOMA‐
IR 

TG 
(mg/dL) 

TW01  M  41  No  No  No  CG  1.73  83.9  28  None  26  92  8  1.8  79 

TW02  M  41  Yes  No  No  CG  1.74  100.6  33 
Rare (less 
than once 
per week) 

26  90  14  3.1  172 

 

Table S5. Clinical and laboratory data for monozygotic twins TW01 and TW02 carrying insertion in TMPO. U, units; IU, international units; 

HOMA‐IR, homeostatic model of insulin resistance; TG, triglycerides. 
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Supplementary Methods 

Study participant recruitment and clinical data acquisition. All participants (recruited between January 2012 and January 2015) 

underwent a standardized clinical research visit at the University of California San Diego (UCSD) NAFLD Translational Research 

Unit including detailed medical history, assessment of alcohol consumption, physical examination, testing to exclude other causes of 

chronic liver disease, fasting laboratory tests (see below), and magnetic resonance imaging (MRI) examination of the liver. Research 

visits and MRI procedures for each related pair were performed on the same day. The Alcohol Use Disorders Identification Test 

questionnaire and Skinner Lifetime Drinking history were administered to record and quantify alcohol use. A physical examination 

including vital signs, height, weight, and anthropometric measurements was performed. Body mass index (BMI) was calculated by 

dividing body weight by the square of the height (kilogram/meters2). Fasting laboratory studies were obtained for all participants 

including complete blood count, liver disease screening tests (hepatitis B surface antigen, hepatitis C antibody, and iron panel 

including serum ferritin), clinical chemistry (creatinine, total protein, blood urea nitrogen, uric acid), hemoglobin A1c, hepatic panel 

(total bilirubin, direct bilirubin, aspartate aminotransferase, alanine aminotransferase [ALT], alkaline phosphatase, -

glutamyltransferase, albumin, prothrombin time, and international normalized ratio), lipid profile, and glucose/insulin levels. MRI 

examinations were performed using a 3T research scanner (GE Signa EXCITE HDxt; GE Healthcare, Waukesha, WI) at the UCSD 

MR3T Research Laboratory. Liver fat was measured via MRI-determined proton-density fat-fraction (MRI-PDFF), and liver fibrosis 

was quantified by MR elastography-determined stiffness (MRE-stiffness) as described (15). NAFLD was defined as MRI-PDFF ≥5% 

Page 64 of 84

Hepatology

Hepatology

57
58
59
60

This article is protected by copyright. All rights reserved.



A
ut

ho
r M

an
us

cr
ip

t
without apparent secondary cause of hepatic steatosis such as significant alcohol use, use of steatogenic medication(s), or other cause 

of liver disease.  

Next-generation DNA sequencing and variant identification: Next-generation sequence data was obtained from genomic DNA by 

amplification of target regions with a custom Illumina TruSeq amplicon panel and analysis via Illumina MiSeq instrument. Sequences 

were then trimmed using Trimmomatic v0.32 and aligned to human reference genome build Grc37/hg19 using the Burrows-Wheeler 

Aligner ‘mem’ algorithm v0.7.8. Variants were detected using the Broad Institute Genome Analysis Toolkit v.3.3-0 Haplotype Caller 

with default parameters, -strand_emit_conf 10 and -strand_call_conf 30, DISCOVERY mode. Variant filtering, annotation and 

reporting were performed using VarSeq v.1.1.0 (Golden Helix, Bozeman, MT). Variants with fewer than 5 alternate observations were 

removed. Variants were annotated based on RefSeq v.69 gene models, and matched with 1000 Genomes Phase 3 population frequency 

data and dbNSFP v2.0 functional annotations (16, 17). 
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tSupplementary Table 4. LAP2-interacting proteins. GFP-tagged LAP2α (full-length), truncated LAP2 (1-99), or GFP alone was immunoprecipitated from Huh7 cells and submitted

 to LC-MS/MS analysis after in-solution trypsin digestion as described in Material and Methods. LAP2-associated proteins identified by mass spectometry were filtered by number of 
peptide-specific spectra, and proteins with fewer than 15 spectra (with either full-length LAP2

ratio of peptide-specific spectra with truncated LAP2 (1-99) to peptide-specific spectra with full-length LAP2

with LAP2 1-99.

Accession Description % Coverage # Peptides # Peptide spectrum matches

Q13501-1 sequestosome-1 [OS=Homo sapiens]63.9 13 39

Q9Y4L1 Hypoxia up-regulated protein 1 [OS=Homo sapiens]46.3 34 82

Q14697-1 Neutral alpha-glucosidase AB [OS=Homo sapiens]39.4 25 61

Q9H936 Mitochondrial glutamate carrier 1 [OS=Homo sapiens]39.3 9 18

P02675 Fibrinogen beta chain [OS=Homo sapiens]38.3 12 26

P07237 Protein disulfide-isomerase [OS=Homo sapiens]37.6 14 30

P14866 Heterogeneous nuclear ribonucleoprotein L [OS=Homo sapiens]34.3 14 31

O14967 calmegin [OS=Homo sapiens] 30.0 11 18

Q8N163-1 Cell cycle and apoptosis regulator protein 2 [OS=Homo sapiens]28.4 15 34

P17812 CTP synthase 1 [OS=Homo sapiens]27.4 11 23

P40939 Trifunctional enzyme subunit alpha, mitochondrial [OS=Homo sapiens]25.0 12 34

P08195-4 Isoform 4 of 4F2 cell-surface antigen heavy chain [OS=Homo sapiens]24.8 12 23

P10909-2 Isoform 2 of Clusterin [OS=Homo sapiens]23.0 9 19

P00367 Glutamate dehydrogenase 1, mitochondrial [OS=Homo sapiens]22.4 10 17

P27824-2 Isoform 2 of Calnexin [OS=Homo sapiens]21.7 11 25

O15027-5 Isoform 5 of Protein transport protein Sec16A [OS=Homo sapiens]20.9 29 63

Q9NVH1-1 DnaJ homolog subfamily C member 11 [OS=Homo sapiens]20.8 9 15

P27708 CAD protein [OS=Homo sapiens] 20.7 33 78

O94832 Unconventional myosin-Id [OS=Homo sapiens]16.9 15 40

P05023 Sodium/potassium-transporting ATPase subunit alpha-1 [OS=Homo sapiens]16.5 12 22

P55157 microsomal triglyceride transfer protein large subunit [OS=Homo sapiens]16.2 11 19

Q8NBJ5 Procollagen galactosyltransferase 1 [OS=Homo sapiens]15.6 9 16

Q92614-1 Unconventional myosin-XVIIIa [OS=Homo sapiens]15.4 24 50

Q86VP6-1 cullin-associated nedd8-dissociated protein 1 [OS=Homo sapiens]14.4 12 21

Q92616 eIF-2-alpha kinase activator GCN1 [OS=Homo sapiens]14.2 26 45

P04114 apolipoprotein B-100 [OS=Homo sapiens]13.5 48 83

Q9BQG0-2 Isoform 2 of Myb-binding protein 1A [OS=Homo sapiens]12.1 10 26

Q09666-1 Neuroblast differentiation-associated protein AHNAK [OS=Homo sapiens]11.3 12 30

Q7Z6Z7 E3 ubiquitin-protein ligase HUWE1 [OS=Homo sapiens]10.3 29 44

Q6P2E9-1 Enhancer of mRNA-decapping protein 4 [OS=Homo sapiens]9.9 9 19

P42704 Leucine-rich PPR motif-containing protein, mitochondrial [OS=Homo sapiens]7.7 9 17

Q96CS3 FAS-associated factor 2 [OS=Homo sapiens]46.3 12 30

Q13200 26S proteasome non-ATPase regulatory subunit 2 [OS=Homo sapiens]24.3 16 36

O94973-2 Isoform 2 of AP-2 complex subunit alpha-2 [OS=Homo sapiens]21.7 16 42

P54136-1 arginine--tRNA ligase, cytoplasmic [OS=Homo sapiens]41.5 22 57

Q86TG7-1 Retrotransposon-derived protein PEG10 [OS=Homo sapiens]30.4 12 34

Q9Y285 Phenylalanine--tRNA ligase alpha subunit [OS=Homo sapiens]41.9 15 41

O60762 Dolichol-phosphate mannosyltransferase subunit 1 [OS=Homo sapiens]43.8 8 19

Q99848 Probable rRNA-processing protein EBP2 [OS=Homo sapiens]36.6 11 42

P41250 Glycine--tRNA ligase [OS=Homo sapiens]25.0 14 29

Q9Y512 sorting and assembly machinery component 50 homolog [OS=Homo sapiens]22.2 8 18

O95864 fatty acid desaturase 2 [OS=Homo sapiens]20.0 7 22
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tQ9UBX3-2 Isoform 2 of Mitochondrial dicarboxylate carrier [OS=Homo sapiens]53.7 11 26

Q02978 Mitochondrial 2-oxoglutarate/malate carrier protein [OS=Homo sapiens]24.2 7 20

P56192 Methionine--tRNA ligase, cytoplasmic [OS=Homo sapiens]30.3 17 38

O95433 activator of 90 kDa heat shock protein ATPase homolog 1 [OS=Homo sapiens]45.9 11 24

Q13813-2 Isoform 2 of Spectrin alpha chain, non-erythrocytic 1 [OS=Homo sapiens]20.3 39 96

P47897 glutamine--tRNA ligase [OS=Homo sapiens]43.9 24 68

P35998 26S protease regulatory subunit 7 [OS=Homo sapiens]31.6 10 22

O60701 UDP-glucose 6-dehydrogenase [OS=Homo sapiens]51.6 16 47

O95573 long-chain-fatty-acid--CoA ligase 3 [OS=Homo sapiens]37.5 20 45

P28331-2 Isoform 2 of NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial [OS=Homo sapiens]26.0 12 21

Q15392 Delta(24)-sterol reductase [OS=Homo sapiens]21.3 10 21

P51812 Ribosomal protein S6 kinase alpha-3 [OS=Homo sapiens]19.3 10 21

Q96PK6-1 RNA-binding protein 14 [OS=Homo sapiens]26.9 13 38

P49368-1 T-complex protein 1 subunit gamma [OS=Homo sapiens]43.3 18 63

P41252 isoleucine--tRNA ligase, cytoplasmic [OS=Homo sapiens]28.4 30 80

P07814 Bifunctional glutamate/proline--tRNA ligase [OS=Homo sapiens]39.5 44 136

P50454 Serpin H1 [OS=Homo sapiens] 48.6 15 39

P46777 60S ribosomal protein L5 [OS=Homo sapiens]35.0 8 43

Q05682-3 Isoform 3 of Caldesmon [OS=Homo sapiens]27.6 12 42

P31689-1 DnaJ homolog subfamily A member 1 [OS=Homo sapiens]44.8 11 27

Q9UBS4 DnaJ homolog subfamily B member 11 [OS=Homo sapiens]35.5 10 26

Q06210-1 glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1 [OS=Homo sapiens]48.6 25 60

Q9UM54-6 Isoform 6 of Unconventional myosin-VI [OS=Homo sapiens]36.6 34 97

P16989-1 Y-box-binding protein 3 [OS=Homo sapiens]19.9 6 50

P78527 DNA-dependent protein kinase catalytic subunit [OS=Homo sapiens]36.0 113 351

P78371-1 T-complex protein 1 subunit beta [OS=Homo sapiens]39.8 15 53

P06576 ATP synthase subunit beta, mitochondrial [OS=Homo sapiens]49.1 18 56

P16615 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 [OS=Homo sapiens]24.3 19 48

P32969 60S ribosomal protein L9 [OS=Homo sapiens]61.5 8 48

Q16891-2 Isoform 2 of MICOS complex subunit MIC60 [OS=Homo sapiens]39.2 22 70

P63010-2 Isoform 2 of AP-2 complex subunit beta [OS=Homo sapiens]38.7 26 82

O95782 AP-2 complex subunit alpha-1 [OS=Homo sapiens]25.8 21 63

Q9NVI7-2 Isoform 2 of ATPase family AAA domain-containing protein 3A [OS=Homo sapiens]32.3 18 67

P17987 T-complex protein 1 subunit alpha [OS=Homo sapiens]61.0 25 104

Q13148-1 TAR DNA-binding protein 43 [OS=Homo sapiens]35.5 8 22

P43243 Matrin-3 [OS=Homo sapiens] 28.5 18 55

O75746 Calcium-binding mitochondrial carrier protein Aralar1 [OS=Homo sapiens]19.2 11 29

Q8WWM7-1 ataxin-2-like protein [OS=Homo sapiens]25.5 22 60

O00159-1 Unconventional myosin-Ic [OS=Homo sapiens]23.8 19 57

P14868 Aspartate--tRNA ligase, cytoplasmic [OS=Homo sapiens]47.1 21 66

O75874 Isocitrate dehydrogenase [NADP] cytoplasmic [OS=Homo sapiens]30.7 10 29

P53621-1 coatomer subunit alpha [OS=Homo sapiens]32.5 33 93

Q9Y608 Leucine-rich repeat flightless-interacting protein 2 [OS=Homo sapiens]29.1 14 61

P55072 Transitional endoplasmic reticulum ATPase [OS=Homo sapiens]57.8 34 139

P59998-3 Isoform 3 of Actin-related protein 2/3 complex subunit 4 [OS=Homo sapiens]54.5 8 46

Q9Y3I0 tRNA-splicing ligase RtcB homolog [OS=Homo sapiens]42.8 17 46

O15143 Actin-related protein 2/3 complex subunit 1B [OS=Homo sapiens]34.7 9 42

Q9NYL9 tropomodulin-3 [OS=Homo sapiens]79.0 23 152

P33992 DNA replication licensing factor mcm5 [OS=Homo sapiens]36.6 19 52
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tP11498 pyruvate carboxylase, mitochondrial [OS=Homo sapiens]32.6 27 81

P62917 60S ribosomal protein L8 [OS=Homo sapiens]52.5 10 83

P50990 T-complex protein 1 subunit theta [OS=Homo sapiens]37.2 17 50

P48643 T-complex protein 1 subunit epsilon [OS=Homo sapiens]36.2 16 52

P53007 Tricarboxylate transport protein, mitochondrial [OS=Homo sapiens]42.8 9 35

P49327 Fatty acid synthase [OS=Homo sapiens]36.2 61 219

Q00325-2 Isoform B of Phosphate carrier protein, mitochondrial [OS=Homo sapiens]42.4 15 56

P14649 Myosin light chain 6B [OS=Homo sapiens]40.4 7 56

Q92499 ATP-dependent RNA helicase DDX1 [OS=Homo sapiens]37.2 20 66

Q04637-9 Isoform 9 of Eukaryotic translation initiation factor 4 gamma 1 [OS=Homo sapiens]16.5 20 63

O43795 Unconventional myosin-Ib [OS=Homo sapiens]45.7 43 184

Q15366-3 Isoform 3 of Poly(rC)-binding protein 2 [OS=Homo sapiens]37.6 10 46

P07900-2 Isoform 2 of Heat shock protein HSP 90-alpha [OS=Homo sapiens]33.0 22 88

P62841 40S ribosomal protein S15 [OS=Homo sapiens]69.7 7 61

Q15365 Poly(RC)-binding protein 1 [OS=Homo sapiens]41.3 11 41

P67809 Nuclease-sensitive element-binding protein 1 [OS=Homo sapiens]53.4 11 73

Q92598 Heat shock protein 105 kDa [OS=Homo sapiens]33.1 20 75

P25205-2 Isoform 2 of DNA replication licensing factor MCM3 [OS=Homo sapiens]24.7 16 54

O75643-1 U5 small nuclear ribonucleoprotein 200 kDa helicase [OS=Homo sapiens]19.1 30 75

P05362 Intercellular adhesion molecule 1 [OS=Homo sapiens]29.5 12 38

Q12906-7 Isoform 7 of Interleukin enhancer-binding factor 3 [OS=Homo sapiens]24.6 19 84

P50991 T-complex protein 1 subunit delta [OS=Homo sapiens]48.8 20 75

Q07065 Cytoskeleton-associated protein 4 [OS=Homo sapiens]40.7 18 63

Q8NBQ5 Estradiol 17-beta-dehydrogenase 11 [OS=Homo sapiens]33.0 8 32

Q9Y224 UPF0568 protein C14orf166 [OS=Homo sapiens]67.2 14 58

P07226-1 Tropomyosin alpha-4 chain [OS=Homo sapiens]50.0 14 77

Q08211 Atp-dependent rna helicase a [OS=Homo sapiens]33.0 31 110

P06753-2 Isoform 2 of Tropomyosin alpha-3 chain [OS=Homo sapiens]45.6 14 61

P04843 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 [OS=Homo sapiens]39.9 17 63

P62888 60S ribosomal protein L30 [OS=Homo sapiens]67.0 7 82

P83731 60S ribosomal protein L24 [OS=Homo sapiens]37.6 7 40

P62136-2 Isoform 2 of Serine/threonine-protein phosphatase PP1-alpha catalytic subunit [OS=Homo sapiens]31.1 8 32

P00966 Argininosuccinate synthase [OS=Homo sapiens]31.1 9 29

P18124 60S ribosomal protein L7 [OS=Homo sapiens]52.0 16 102

P52272 Heterogeneous nuclear ribonucleoprotein M [OS=Homo sapiens]64.1 32 219

P39023 60S ribosomal protein L3 [OS=Homo sapiens]41.2 16 120

P26599-3 Isoform 3 of Polypyrimidine tract-binding protein 1 [OS=Homo sapiens]54.6 18 111

P18621-3 Isoform 3 of 60S ribosomal protein L17 [OS=Homo sapiens]40.8 10 61

P61160-1 Actin-related protein 2 [OS=Homo sapiens]43.9 13 98

O15144 Actin-related protein 2/3 complex subunit 2 [OS=Homo sapiens]63.3 14 76

Q9Y265 RuvB-like 1 [OS=Homo sapiens] 59.2 19 69

O75477 erlin-1 [OS=Homo sapiens] 28.9 8 29

Q6P2Q9 Pre-mRNA-processing-splicing factor 8 [OS=Homo sapiens]12.7 20 53

O43175 D-3-phosphoglycerate dehydrogenase [OS=Homo sapiens]25.1 10 32

P23528 Cofilin-1 [OS=Homo sapiens] 57.2 9 39

P61158 actin-related protein 3 [OS=Homo sapiens]73.0 20 135

P15880 40S ribosomal protein S2 [OS=Homo sapiens]47.1 12 65

O94905-1 Erlin-2 [OS=Homo sapiens] 49.9 13 52

P62906 60S ribosomal protein L10A [OS=Homo sapiens]53.0 14 109
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tQ9BQE3 Tubulin alpha-1C chain [OS=Homo sapiens]78.8 23 212

Q7Z406-6 Isoform 6 of Myosin-14 [OS=Homo sapiens]46.6 78 361

P08708 40S ribosomal protein S17 [OS=Homo sapiens]57.0 7 45

P62701 40S ribosomal protein S4, X isoform [OS=Homo sapiens]51.3 15 108

Q9P2E9-1 Ribosome-binding protein 1 [OS=Homo sapiens]68.3 73 355

P62241 40S ribosomal protein S8 [OS=Homo sapiens]51.9 11 84

P62424 60S ribosomal protein L7a [OS=Homo sapiens]54.1 19 130

P35580-4 Isoform 4 of Myosin-10 [OS=Homo sapiens]54.7 107 714

P27348 14-3-3 protein theta [OS=Homo sapiens]45.3 11 44

P35580-3 Isoform 3 of Myosin-10 [OS=Homo sapiens]54.5 106 711

P09651-1 Heterogeneous nuclear ribonucleoprotein A1 [OS=Homo sapiens]28.8 9 40

P51991-1 Heterogeneous nuclear ribonucleoprotein A3 [OS=Homo sapiens]28.0 9 42

P52597 Heterogeneous nuclear ribonucleoprotein F [OS=Homo sapiens]25.1 7 31

P07951-2 Isoform 2 of Tropomyosin beta chain [OS=Homo sapiens]53.5 15 72

P09493-3 Isoform 3 of Tropomyosin alpha-1 chain [OS=Homo sapiens]49.3 15 70

P33993-1 DNA replication licensing factor MCM7 [OS=Homo sapiens]38.7 22 77

P08670 Vimentin [OS=Homo sapiens] 48.3 21 83

P61247 40S ribosomal protein S3a [OS=Homo sapiens]50.0 13 88

P09327 Villin-1 [OS=Homo sapiens] 51.6 32 241

Q00610-1 Clathrin heavy chain 1 [OS=Homo sapiens]55.5 69 383

P31943 Heterogeneous nuclear ribonucleoprotein H [OS=Homo sapiens]44.1 13 82

P17066 Heat shock 70 kDa protein 6 [OS=Homo sapiens]20.2 14 124

P62750 60S ribosomal protein L23a [OS=Homo sapiens]34.6 8 50

P11021 78 kDa glucose-regulated protein [OS=Homo sapiens]60.1 34 269

P10809 60 kDa heat shock protein, mitochondrial [OS=Homo sapiens]67.7 29 195

P17844 probable ATP-dependent RNA helicase DDX5 [OS=Homo sapiens]51.0 25 128

O00571 ATP-dependent RNA helicase DDX3X [OS=Homo sapiens]48.6 25 124

P60709 Actin, cytoplasmic 1 [OS=Homo sapiens]74.9 20 542

P35579-1 Myosin-9 [OS=Homo sapiens] 60.9 131 1421

P27635 60S ribosomal protein L10 [OS=Homo sapiens]43.0 9 49

P62258-1 14-3-3 protein epsilon [OS=Homo sapiens]40.8 9 42

P09493-5 Isoform 5 of Tropomyosin alpha-1 chain [OS=Homo sapiens]25.7 7 42

P60842 Eukaryotic initiation factor 4A-I [OS=Homo sapiens]67.2 23 117

P10412 Histone H1.4 [OS=Homo sapiens] 37.4 12 59

Q92841 Probable ATP-dependent RNA helicase DDX17 [OS=Homo sapiens]35.9 23 112

P62244 40S ribosomal protein S15a [OS=Homo sapiens]51.5 6 56

P36578 60S ribosomal protein L4 [OS=Homo sapiens]42.4 18 145

Q9Y230 RuvB-like 2 [OS=Homo sapiens] 42.5 16 81

Q12905 Interleukin enhancer-binding factor 2 [OS=Homo sapiens]51.3 13 73

Q9BUJ2-1 Heterogeneous nuclear ribonucleoprotein U-like protein 1 [OS=Homo sapiens]22.0 12 51

P38919 Eukaryotic initiation factor 4A-III [OS=Homo sapiens]34.5 12 49

P62266 40S ribosomal protein S23 [OS=Homo sapiens]49.0 7 43

PRDX1_HUMANCOMMON CONTAMINANT! 72.9 13 65

Q00839 Heterogeneous nuclear ribonucleoprotein U [OS=Homo sapiens]28.5 17 105

Q02878 60S ribosomal protein L6 [OS=Homo sapiens]49.7 15 125

P07910-2 Isoform C1 of Heterogeneous nuclear ribonucleoproteins C1/C2 [OS=Homo sapiens]41.6 14 88

P30050-1 60S ribosomal protein L12 [OS=Homo sapiens]54.5 6 90

P11940-1 Polyadenylate-binding protein 1 [OS=Homo sapiens]47.3 24 160

Q9NZI8 Insulin-like growth factor 2 mRNA-binding protein 1 [OS=Homo sapiens]48.7 25 167
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tQ00839-2 Isoform Short of Heterogeneous nuclear ribonucleoprotein U [OS=Homo sapiens]28.0 17 106

P05387 60S acidic ribosomal protein P2 [OS=Homo sapiens]78.3 9 144

Q14240-2 Isoform 2 of Eukaryotic initiation factor 4A-II [OS=Homo sapiens]32.8 10 49

P46781 40S ribosomal protein S9 [OS=Homo sapiens]40.2 9 59

P62269 40S ribosomal protein S18 [OS=Homo sapiens]52.6 11 79

P61978-2 Isoform 2 of Heterogeneous nuclear ribonucleoprotein K [OS=Homo sapiens]53.7 20 150

P60228 Eukaryotic translation initiation factor 3 subunit E [OS=Homo sapiens]34.8 13 67

P19338 Nucleolin [OS=Homo sapiens] 32.7 24 129

P61353 60S ribosomal protein L27 [OS=Homo sapiens]41.9 5 60

P09874 Poly [ADP-ribose] polymerase 1 [OS=Homo sapiens]36.0 29 114

P62280 40S ribosomal protein S11 [OS=Homo sapiens]46.8 8 63

P26373-1 60S ribosomal protein L13 [OS=Homo sapiens]39.3 11 57

P07355-2 Isoform 2 of Annexin A2 [OS=Homo sapiens]55.2 17 92

P62805 histone H4 [OS=Homo sapiens] 52.4 7 76

Q15029 116 kDa U5 small nuclear ribonucleoprotein component [OS=Homo sapiens]19.4 14 46

P13010 X-ray repair cross-complementing protein 5 [OS=Homo sapiens]41.3 20 90

Q13310-3 Isoform 3 of Polyadenylate-binding protein 4 [OS=Homo sapiens]37.1 22 108

O43143 Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15 [OS=Homo sapiens]29.9 20 79

P42167 Lamina-associated polypeptide 2, isoforms beta/gamma [OS=Homo sapiens]38.5 18 417

O43396 Thioredoxin-like protein 1 [OS=Homo sapiens]89.3 19 127

Q9P2K8-1 eIF-2-alpha kinase GCN2 [OS=Homo sapiens]24.0 33 97

P01861 Ig gamma-4 chain C region [OS=Homo sapiens]7.6 1 39

P01857 Ig gamma-1 chain C region [OS=Homo sapiens]7.6 1 39

Q07955-1 Serine/arginine-rich splicing factor 1 [OS=Homo sapiens]48.4 14 94

Q08170 Serine/arginine-rich splicing factor 4 [OS=Homo sapiens]14.6 7 54

Q16629 serine/arginine-rich splicing factor 7 [OS=Homo sapiens]28.6 7 40

P55884-2 Isoform 2 of Eukaryotic translation initiation factor 3 subunit B [OS=Homo sapiens]20.5 12 44

Q5QNW6-2 Isoform 2 of Histone H2B type 2-F [OS=Homo sapiens]44.8 7 117

P06899 Histone H2B type 1-J [OS=Homo sapiens]47.6 7 107

P02545 Prelamin-A/C [OS=Homo sapiens] 69.6 49 687

O00303 Eukaryotic translation initiation factor 3 subunit F [OS=Homo sapiens]45.1 11 67

Q15393-1 Splicing factor 3B subunit 3 [OS=Homo sapiens]9.6 9 31

Q13247 Serine/arginine-rich splicing factor 6 [OS=Homo sapiens]33.7 13 87

Q9UQ35 serine/arginine repetitive matrix protein 2 [OS=Homo sapiens]33.2 65 238

Q96HS1-1 Serine/threonine-protein phosphatase Pgam5, mitochondrial [OS=Homo sapiens]47.4 10 48

P62316 Small nuclear ribonucleoprotein Sm D2 [OS=Homo sapiens]55.9 6 39

O43809 Cleavage and polyadenylation specificity factor subunit 5 [OS=Homo sapiens]46.7 7 32

P42166 Lamina-associated polypeptide 2, isoform alpha [OS=Homo sapiens]79.3 46 706

O75533-1 splicing factor 3B subunit 1 [OS=Homo sapiens]24.0 20 54

Q9Y262 eukaryotic translation initiation factor 3 subunit L [OS=Homo sapiens]20.0 10 38

Q8IYB3 Serine/arginine repetitive matrix protein 1 [OS=Homo sapiens]14.3 8 41

Q93009 Ubiquitin carboxyl-terminal hydrolase 7 [OS=Homo sapiens]45.9 38 141

P23284 peptidyl-prolyl cis-trans isomerase B [OS=Homo sapiens]42.1 8 29

Q9UHX1-2 Isoform 2 of Poly(U)-binding-splicing factor PUF60 [OS=Homo sapiens]29.3 10 23

P53999 Activated RNA polymerase II transcriptional coactivator p15 [OS=Homo sapiens]46.5 9 33

Q7L014 probable ATP-dependent RNA helicase DDX46 [OS=Homo sapiens]14.3 13 23
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t(full-length), truncated LAP2 (1-99), or GFP alone was immunoprecipitated from Huh7 cells and submitted

 to LC-MS/MS analysis after in-solution trypsin digestion as described in Material and Methods. LAP2-associated proteins identified by mass spectometry were filtered by number of 
peptide-specific spectra, and proteins with fewer than 15 spectra (with either full-length LAP2α or LAP2 1-99) were removed. The remaining proteins are shown here, arranged by (1) 

ratio of peptide-specific spectra with truncated LAP2 (1-99) to peptide-specific spectra with full-length LAP2α, (2) percent coverage, and (3) total number of peptide-specific spectra 

# Unique Peptides # AAs MW [kDa] Entrez Gene IDEnsembl Gene IDGene ID # Peptides (GFP)

13 440 47.7 8878 ENSG00000161011SQSTM1

34 999 111.3 10525 ENSG00000149428; ENSG00000280682HYOU1

25 944 106.8 23193 ENSG00000089597GANAB

9 323 34.4 79751 ENSG00000177542SLC25A22

12 491 55.9 2244 ENSG00000171564FGB

14 508 57.1 5034 ENSG00000185624P4HB

14 589 64.1 3191 ENSG00000104824HNRNPL

11 610 70 1047 ENSG00000153132CLGN

15 923 102.8 57805 ENSG00000158941CCAR2; KIAA19672

11 591 66.6 1503 ENSG00000171793CTPS1

12 763 82.9 3030 ENSG00000084754HADHA

12 661 71.1 ENSG00000168003

9 501 57.8 1191 ENSG00000120885CLU

10 558 61.4 2746 ENSG00000148672GLUD1

11 627 71.5 821 ENSG00000127022CANX

29 2201 235.6

9 559 63.2 55735 ENSG00000007923DNAJC11

33 2225 242.8 790 ENSG00000084774CAD

15 1006 116.1 4642 ENSG00000176658MYO1D

12 1023 112.8 476 ENSG00000163399ATP1A1

11 894 99.3 4547 ENSG00000138823MTTP

9 622 71.6 79709 ENSG00000130309COLGALT1; GLT25D1

24 2054 233 399687 ENSG00000196535MYO18A

12 1230 136.3 55832 ENSG00000111530CAND1

26 2671 292.6 10985 ENSG00000089154GCN1L1; GCN1

48 4563 515.3 338 ENSG00000084674APOB

10 1332 149.3 10514 ENSG00000132382MYBBP1A

12 5890 628.7 79026 ENSG00000124942AHNAK

28 4374 481.6 10075 ENSG00000086758HUWE1

9 1401 151.6 23644 ENSG00000038358EDC4

9 1394 157.8 10128 ENSG00000138095LRPPRC

12 445 52.6 23197 ENSG00000113194FAF2

16 908 100.1 5708 ENSG00000175166PSMD2

8 940 104 161 ENSG00000183020AP2A2

22 660 75.3 5917 ENSG00000113643RARS

12 708 80.1 23089 PEG10

15 508 57.5 2193 ENSG00000179115FARSA

8 260 29.6 8813 ENSG00000000419DPM1

11 306 34.8 10969 ENSG00000117395EBNA1BP2

14 739 83.1 2617 ENSG00000106105GARS

8 469 51.9 25813 ENSG00000100347SAMM50

7 444 52.2 9415 ENSG00000134824FADS2
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t11 296 32.1 1468 ENSG00000183048SLC25A10

7 314 34 8402 ENSG00000108528SLC25A11

17 900 101.1 4141 ENSG00000166986MARS

11 338 38.3 10598 ENSG00000100591AHSA1

39 2477 284.9 6709 ENSG00000197694SPTAN1

23 775 87.7 5859 ENSG00000172053QARS

10 433 48.6 5701 ENSG00000161057PSMC2

16 494 55 7358 ENSG00000109814UGDH

18 720 80.4 2181 ENSG00000123983ACSL3

12 741 80.9 4719 ENSG00000023228NDUFS1

10 516 60.1 1718 ENSG00000116133DHCR24

10 740 83.7 6197 ENSG00000177189RPS6KA3

13 669 69.4 10432 ENSG00000239306RBM14 3

18 545 60.5 7203 ENSG00000163468CCT3

30 1262 144.4 3376 ENSG00000196305IARS

43 1512 170.5 2058 ENSG00000136628EPRS

15 418 46.4 871 ENSG00000149257SERPINH1

8 297 34.3 6125 ENSG00000122406RPL5

12 558 64.2 800 ENSG00000122786CALD1

11 397 44.8 3301 ENSG00000086061DNAJA1

10 358 40.5 51726 ENSG00000090520DNAJB11

25 699 78.8 2673 ENSG00000198380GFPT1

33 1285 148.6

2 372 40.1 8531 ENSG00000060138CSDA; YBX3

113 4128 468.8 5591 ENSG00000253729PRKDC 1

15 535 57.5 10576 ENSG00000166226CCT2

18 529 56.5 506 ENSG00000110955ATP5B

19 1042 114.7 488 ENSG00000174437ATP2A2

8 192 21.9 6133 ENSG00000163682RPL9

22 747 82.6 10989 ENSG00000132305IMMT

26 951 105.6 163 ENSG00000006125AP2B1

13 977 107.5 160 ENSG00000196961AP2A1

6 586 66.2 55210 ENSG00000197785ATAD3A 2

25 556 60.3 6950 ENSG00000120438TCP1

8 414 44.7 23435 ENSG00000120948TARDBP

18 847 94.6 9782 ENSG00000015479; ENSG00000280987MATR3

4 678 74.7 8604 ENSG00000115840SLC25A12 1

22 1075 113.3 11273 ENSG00000168488ATXN2L

19 1063 121.6 4641 ENSG00000197879MYO1C

21 501 57.1 1615 ENSG00000115866DARS 1

10 414 46.6 3417 ENSG00000138413IDH1

33 1224 138.3 1314 ENSG00000122218COPA

14 721 82.1 9209 ENSG00000093167LRRFIP2

34 806 89.3 7415 ENSG00000165280VCP 2

8 187 21.6 10093 ENSG00000241553ARPC4

17 505 55.2 51493 ENSG00000100220C22orf28; RTCB

8 372 40.9 10095 ENSG00000130429ARPC1B

23 352 39.6 29766 ENSG00000138594TMOD3

19 734 82.2 4174 ENSG00000100297MCM5
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t27 1178 129.6 5091 ENSG00000173599PC

10 257 28 6132 ENSG00000161016RPL8

17 548 59.6 10694 ENSG00000156261CCT8

15 541 59.6 22948 ENSG00000150753CCT5

9 311 34 6576 ENSG00000100075SLC25A1

61 2511 273.3 2194 ENSG00000169710FASN

15 361 39.9 5250 ENSG00000075415SLC25A3 2

5 208 22.8 140465 ENSG00000196465MYL6B 1

20 740 82.4 1653 ENSG00000079785DDX1

20 1606 176.1 ENSG00000114867

43 1136 131.9 4430 ENSG00000128641MYO1B

6 362 38.2 5094 ENSG00000197111PCBP2 1

11 854 98.1 3320 ENSG00000080824HSP90AA1 3

7 145 17 6209 ENSG00000115268RPS15

7 356 37.5 5093 ENSG00000169564PCBP1 1

7 324 35.9 4904 ENSG00000065978YBX1

19 858 96.8 10808 ENSG00000120694HSPH1

16 853 95.8 4172 ENSG00000112118MCM3

30 2136 244.4 23020 ENSG00000144028SNRNP200

12 532 57.8 3383 ENSG00000090339ICAM1 1

19 898 95.7 3609 ENSG00000129351ILF3

19 539 57.9 10575 ENSG00000115484CCT4 1

18 602 66 10970 ENSG00000136026CKAP4

8 300 32.9 51170 ENSG00000198189HSD17B11

14 244 28.1 51637 ENSG00000087302C14orf166

8 248 28.5 7171 ENSG00000167460TPM4

31 1270 140.9 1660 ENSG00000135829DHX9

10 248 29 7170 ENSG00000143549TPM3

17 607 68.5 6184 ENSG00000163902RPN1 1

7 115 12.8 6156 ENSG00000156482RPL30 1

7 157 17.8 6152 ENSG00000114391RPL24 1

2 341 38.6 5499 ENSG00000172531PPP1CA

9 412 46.5 445 ENSG00000130707ASS1

16 248 29.2 6129 ENSG00000147604RPL7

32 730 77.5 4670 ENSG00000099783HNRNPM 5

16 403 46.1 6122 ENSG00000100316RPL3

18 557 59.6 5725 ENSG00000011304PTBP1

10 228 26.4 100526842ENSG00000215472RPL17-C18ORF32

13 394 44.7 10097 ENSG00000138071ACTR2

14 300 34.3 10109 ENSG00000163466ARPC2

19 456 50.2 8607 ENSG00000175792RUVBL1

6 346 38.9 10613 ERLIN1

20 2335 273.4 10594 ENSG00000174231; ENSG00000274442PRPF8

10 533 56.6 26227 ENSG00000092621PHGDH

9 166 18.5 1072 ENSG00000172757CFL1

20 418 47.3 10096 ENSG00000115091ACTR3

12 293 31.3 6187 ENSG00000140988RPS2

11 339 37.8 11160 ENSG00000147475ERLIN2

14 217 24.8 4736 ENSG00000198755RPL10A 1
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t10 449 49.9 84790 ENSG00000167553TUBA1C 10

68 2003 228.5 79784 ENSG00000105357MYH14 1

7 135 15.5 6218 ENSG00000182774; ENSG00000278229RPS17; RPS17L

15 263 29.6 6191 ENSG00000198034RPS4X 1

73 1410 152.4 6238 ENSG00000125844RRBP1

11 208 24.2 6202 ENSG00000142937RPS8 2

19 266 30 6130 ENSG00000148303; ENSG00000280858RPL7A 1

2 2007 232.4 4628 ENSG00000133026MYH10 3

6 245 27.7 10971 ENSG00000134308YWHAQ 1

1 1997 231.2 4628 ENSG00000133026MYH10 3

8 372 38.7 3178 ENSG00000135486HNRNPA1

9 378 39.6 220988 ENSG00000170144HNRNPA3

5 415 45.6 3185 ENSG00000169813HNRNPF

7 284 33 7169 ENSG00000198467TPM2

7 284 32.9 7168 ENSG00000140416TPM1

22 719 81.3 4176 ENSG00000166508MCM7 1

20 466 53.6 7431 ENSG00000026025VIM 1

13 264 29.9 6189 ENSG00000145425RPS3A

32 827 92.6 7429 ENSG00000127831VIL1 1

69 1675 191.5 1213 ENSG00000141367CLTC

7 449 49.2 3187 ENSG00000169045HNRNPH1 2

1 643 71 3310 ENSG00000173110HSPA6 6

8 156 17.7 6147 ENSG00000198242RPL23A

32 654 72.3 3309 ENSG00000044574HSPA5 7

29 573 61 3329 ENSG00000144381HSPD1 8

18 614 69.1 1655 ENSG00000108654DDX5 1

24 662 73.2 1654 ENSG00000215301DDX3X

11 375 41.7 60 ENSG00000075624ACTB 11

112 1960 226.4 4627 ENSG00000100345MYH9 26

9 214 24.6 6134 ENSG00000147403RPL10

6 255 29.2 7531 ENSG00000108953; ENSG00000274474YWHAE 1

2 245 28.4 7168 ENSG00000140416TPM1

14 406 46.1 1973 ENSG00000161960EIF4A1 4

3 219 21.9 3008 ENSG00000168298HIST1H1E 1

16 729 80.2 10521 DDX17 1

6 130 14.8 6210 ENSG00000134419RPS15A 1

18 427 47.7 6124 ENSG00000174444RPL4

16 463 51.1 10856 ENSG00000183207RUVBL2 1

13 390 43 3608 ENSG00000143621ILF2

12 856 95.7 11100 ENSG00000105323HNRNPUL1

10 411 46.8 9775 ENSG00000141543EIF4A3

7 143 15.8 6228 ENSG00000186468RPS23

12 199 22.1 5052 ENSG00000117450PRDX1 4

1 825 90.5 3192 ENSG00000153187HNRNPU 1

15 288 32.7 6128 ENSG00000089009RPL6 1

14 293 32.3 3183 ENSG00000092199HNRNPC 2

6 165 17.8 6136 ENSG00000197958RPL12 2

17 636 70.6 26986 ENSG00000070756PABPC1 5

22 577 63.4 10642 ENSG00000159217IGF2BP1 1
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t1 806 88.9 3192 ENSG00000153187HNRNPU 1

9 115 11.7 6181 ENSG00000177600RPLP2 3

1 408 46.5 1974 ENSG00000156976EIF4A2 2

9 194 22.6 6203 ENSG00000170889; ENSG00000278270; ENSG00000274005; ENSG00000277359; ENSG00000274646; ENSG00000274626; ENSG00000275323; ENSG00000277079; ENSG00000274950; ENSG00000278081RPS9 1

11 152 17.7 6222 ENSG00000223367; ENSG00000226225; ENSG00000231500; ENSG00000235650; ENSG00000096150RPS18 4

20 464 51 3190 ENSG00000165119HNRNPK 3

13 445 52.2 3646 ENSG00000104408EIF3E

24 710 76.6 4691 ENSG00000115053NCL

5 136 15.8 6155 ENSG00000131469RPL27 1

29 1014 113 142 ENSG00000143799PARP1 1

8 158 18.4 6205 ENSG00000142534RPS11 3

11 211 24.2 6137 ENSG00000167526RPL13 2

17 357 40.4 302 ENSG00000182718ANXA2 1

7 103 11.4 8359; 8361; 8360; 8363; 8370; 554313; 8365; 8364; 121504; 8367; 8294; 8366; 8362; 8368ENSG00000158406; ENSG00000270882; ENSG00000197837; ENSG00000270276; ENSG00000197061; ENSG00000197238; ENSG00000278705; ENSG00000274618; ENSG00000278637; ENSG00000273542; ENSG00000276966; ENSG00000277157; ENSG00000275126; ENSG00000276180HIST1H4A; HIST1H4F; HIST1H4D; HIST1H4J; HIST2H4A; HIST2H4B; HIST1H4H; HIST1H4C; HIST4H4; HIST1H4E; HIST1H4I; HIST1H4B; HIST1H4K; HIST1H4L2

13 972 109.4 9343 ENSG00000108883EFTUD2

20 732 82.7 7520 ENSG00000079246XRCC5

15 660 72.3 8761 ENSG00000090621PABPC4 3

20 795 90.9 1665 ENSG00000109606DHX15

3 454 50.6 7112 ENSG00000120802TMPO

19 289 32.2 9352 ENSG00000091164TXNL1

33 1649 186.8 440275 ENSG00000128829EIF2AK4

1 327 35.9 3503 ENSG00000211892; ENSG00000277016IGHG4 1

1 330 36.1 3500 ENSG00000211896; ENSG00000277633IGHG1 1

14 248 27.7 6426 ENSG00000136450SRSF1

2 494 56.6 6429 ENSG00000116350SRSF4

6 238 27.4 6432 ENSG00000115875SRSF7

12 873 99

2 134 14.8 440689 ENSG00000203814HIST2H2BF 3

2 126 13.9 8970 ENSG00000124635HIST1H2BJ 3

47 664 74.1 4000 ENSG00000160789LMNA

11 357 37.5 8665 ENSG00000175390; ENSG00000280606EIF3F

9 1217 135.5 23450 ENSG00000189091SF3B3

8 344 39.6 6431 ENSG00000124193SRSF6

65 2752 299.4 23524 ENSG00000167978SRRM2

10 289 32 192111 ENSG00000247077PGAM5

6 118 13.5 6633 ENSG00000125743SNRPD2

7 227 26.2 11051 ENSG00000167005NUDT21

31 694 75.4 7112 ENSG00000120802TMPO

20 1304 145.7 23451 ENSG00000115524SF3B1

10 564 66.7 51386 ENSG00000100129EIF3L

8 904 102.3 10250 ENSG00000133226SRRM1

38 1102 128.2 7874 ENSG00000187555USP7

8 216 23.7 5479 ENSG00000166794PPIB

10 542 58.1 22827 ENSG00000179950; ENSG00000274081PUF60

9 127 14.4 10923 ENSG00000113387SUB1 1

13 1031 117.3 9879 ENSG00000145833DDX46
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t(full-length), truncated LAP2 (1-99), or GFP alone was immunoprecipitated from Huh7 cells and submitted

 to LC-MS/MS analysis after in-solution trypsin digestion as described in Material and Methods. LAP2-associated proteins identified by mass spectometry were filtered by number of 
 or LAP2 1-99) were removed. The remaining proteins are shown here, arranged by (1) 

, (2) percent coverage, and (3) total number of peptide-specific spectra 

# Peptide spectrum matches (GFP)# Peptides (LAP2alpha FL)# Peptide spectrum matches (LAP2alpha FL)# Peptides (LAP2 1-99)# Peptide spectrum matches (LAP2 1-99)

13 34

34 82

25 59

9 18

12 25

14 29

11 18

11 18

4 13 27

11 23

10 20

12 23

8 15

10 17

11 25

29 52

9 15

30 48

15 25

11 19

11 19

9 16

22 34

12 20

26 45

48 83

9 15

12 22

29 44

9 17

9 17

2 3 12 27

2 3 16 26

2 2 8 17

3 5 21 42

3 3 12 25

2 4 15 33

2 2 8 16

1 2 9 16

2 3 13 24

2 2 8 16

1 2 7 16
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t 3 3 11 23

1 2 7 15

2 4 16 29

2 3 11 21

4 6 26 41

4 7 23 45

3 3 10 19

5 6 16 36

4 6 20 36

3 3 12 18

3 3 10 18

2 3 10 18

4 2 3 9 17

3 5 16 28

8 10 30 56

9 15 43 82

3 6 15 32

2 3 7 16

2 3 9 16

2 4 10 21

3 4 10 21

6 9 25 47

5 9 27 47

2 4 6 20

1 29 44 109 215

4 5 14 24

6 8 18 36

5 7 18 31

3 4 7 17

7 11 22 46

4 6 16 25

5 6 12 25

3 5 9 17 37

9 13 24 53

3 4 7 16

4 7 14 28

2 2 4 11 16

4 6 13 23

4 6 13 23

2 5 10 20 38

3 5 10 19

11 15 29 55

5 8 14 29

3 14 23 33 81

4 6 8 21

3 5 11 17

3 5 8 17

10 18 20 61

4 8 17 27
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t 11 16 24 53

6 11 10 36

5 7 11 22

5 8 13 25

4 7 9 21

22 37 56 106

2 7 12 15 34

2 2 8 6 22

5 8 13 22

6 10 15 27

16 30 39 80

1 6 9 10 24

5 10 18 20 48

2 8 5 21

1 5 8 11 21

4 10 9 26

8 15 19 39

7 10 14 26

12 17 25 44

1 4 9 11 23

7 11 14 28

1 8 14 18 35

10 12 17 30

5 8 8 20

5 9 9 22

6 14 13 34

10 15 21 36

5 11 11 26

1 10 16 17 37

1 5 14 7 32

1 4 7 7 16

4 7 8 16

4 7 9 16

9 19 16 43

5 24 43 31 97

9 20 14 45

10 17 16 38

5 9 8 20

8 19 13 42

9 16 12 35

9 16 16 35

4 7 8 15

9 14 17 30

5 8 8 17

5 9 8 19

14 23 19 48

8 12 11 25

6 13 13 27

1 8 14 12 29
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t24 17 46 23 95

1 32 67 62 137

3 8 6 16

1 10 20 15 40

38 65 57 126

2 6 15 11 29

1 11 23 19 44

5 62 146 97 276

1 5 9 9 17

5 62 146 96 274

4 8 7 15

4 8 7 15

5 8 6 15

8 15 13 28

7 15 14 28

1 13 22 21 41

1 8 13 13 24

9 17 11 30

1 25 54 31 95

48 81 59 142

3 9 20 12 35

13 10 32 14 55

5 10 8 17

11 26 68 34 115

13 20 49 28 82

2 16 27 24 45

14 27 21 45

28 17 104 19 170

39 101 307 126 501

5 10 8 16

1 5 10 7 16

4 10 6 16

6 15 30 23 47

1 6 11 8 17

2 15 24 20 37

2 5 13 6 20

15 36 18 55

2 10 21 15 32

6 13 9 19

7 13 11 19

8 14 11 20

6 12 7 17

4 11 17 12 24

1 11 24 13 33

2 13 30 14 41

3 8 17 11 23

5 6 18 6 24

9 19 40 22 53

2 21 37 20 49
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t1 12 25 13 33

6 8 30 9 39

3 7 14 9 18

1 9 15 9 19

5 8 19 10 24

4 16 42 20 53

10 18 12 22

16 32 20 39

1 5 15 5 18

1 16 25 16 30

4 7 17 8 20

4 7 13 8 15

1 15 29 15 33

3 6 15 6 17

10 15 10 17

17 27 15 30

4 15 29 17 32

12 23 14 25

14 202 13 205

16 59 17 52

29 52 24 45

4 1 16 1 12

4 1 16 1 12

13 40 12 29

7 21 6 15

7 17 6 12

9 17 8 12

3 6 29 5 19

3 6 28 5 18

20 35 13 22

11 23 6 14

9 15 6 9

13 40 10 23

65 135 38 73

10 21 6 11

6 16 5 8

7 15 5 7

44 471 15 207

13 19 5 8

8 15 4 6

8 21 5 7

29 57 10 18

8 24 3 5

9 15 1 2

1 9 29 2 3

13 22
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t
# Peptide spectrum matches (LAP2 1-99)
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