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Key Points 
 
 Neoarchean nanoparticle silicate inclusions appear to be the earliest iron mineral 

preserved in cherts from Australia and South Africa 
 Our multiscale analyses indicate the particles are greenalite that are dominantly Fe(II) but 

also have low and variable Fe(III) content 
 We present four (bio)geochemical hypotheses that could produce low-Fe(III) greenalite 
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Abstract 

Banded iron formations (BIFs) represent chemical precipitation from Earth’s early oceans and 1 

therefore contain insights into ancient marine biogeochemistry. However, BIFs have undergone 2 

multiple episodes of alteration, making it difficult to assess the primary mineral assemblage. 3 

Nanoscale mineral inclusions from 2.5 billion-year-old BIFs and ferruginous cherts provide new 4 

evidence that iron silicates were primary minerals deposited from the Neoarchean ocean, 5 

contrasting sharply with current models for BIF formation. Here we used multi-scale imaging 6 

and spectroscopic techniques to characterize the best-preserved examples of these inclusions. 7 

Our integrated results demonstrate that these early minerals were low-Fe(III) greenalite. We 8 

present potential pathways in which low-Fe(III) greenalite could have formed through changes in 9 

saturation state and/or iron oxidation and reduction. Future constraints for ancient ocean 10 

chemistry and early life’s activities should include low-Fe(III) greenalite as a primary mineral in 11 

the Neoarchean ocean. 12 

 

Index Terms:  
0404 Anoxic and hypoxic environments 
0414/4912 Biogeochemical cycles, processes, and modeling 
0471 Oxidation/reduction reactions 
1042/ 3620 Mineral and crystal chemistry 
9623 Archean 
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Introduction 13 

For the first half of Earth’s ~4.5 billion-year history, there was negligible atmospheric oxygen 14 

and the oceans had high levels of ferrous iron and silica. The sedimentary record from 3.8 to 2.3 15 

billion years ago (Ga) documents the survival of oxygen-sensitive detrital grains in 16 

conglomerates and marine sandstones (Johnson et al. 2014, Rasmussen & Buick 1999), the lack 17 

of terrestrial iron oxidation in paleosols (Prasad & Roscoe 1996, Rye & Holland 1998), and an 18 

unfamiliar sulfur cycle with strong signals of photochemical reactions occurring in the absence 19 

of an ozone layer (Farquhar et al. 2011). Another conspicuous difference from modern marine 20 

sediments was the deposition of extensive silica-rich Banded Iron Formations (BIFs) in the early 21 

oceans. These laminated BIFs are thought to be comprised of chemical precipitates accumulating 22 

in ferruginous and silica-rich oceans (Bekker et al. 2014, Beukes & Gutzmer 2008). BIFs have 23 

been extensively investigated as one of the best records of marine chemistry in the Archean [4.0 24 

- 2.5 Ga] oceans (e.g. Klein 2005). However, it is also well-established that these BIFs have 25 

experienced early and late diagenesis, fluid flow, and metamorphism over their multi-billion-26 

year existence, and therefore many–if not all–minerals in BIFs are attributed to diagenesis and 27 

later alteration (e.g., Bekker et al. 2014, Beukes 1984, Fischer & Knoll 2009, Klein 2005, Pufahl 28 

& Hiatt 2012, Simonson 2003). Identifying the original precipitate(s) of BIFs has therefore been 29 

a critical question pertinent to understanding what BIFs represent and record with respect to 30 

ancient seawater chemistry and early life. While it is impossible to pinpoint the amorphous 31 

precursor phases that originally formed in the water column, it is possible to determine the first 32 

stable crystalline minerals that formed under Archean ocean conditions and were preservable in 33 

the rock record – which we will call the “primary mineral(s).” 34 

 35 
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While initial suggestions of primary BIF minerals concentrated on iron silicates like glauconite 36 

or greenalite (Leith 1903, Spurr 1894, Winchell et al. 1899), later models converged on iron 37 

oxides such as hematite (Cloud 1973, James 1954, reviewed in Rasmussen et al. 2017). 38 

Observations of chert bands and nodules, often targeted because they were early-forming and 39 

relatively impermeable to later altering fluids (e.g., Clout & Simonson 2005), resulted in the 40 

discoveries of microcrystalline (< 1 µm) hematite particles that supported the conclusion that 41 

hematite was paragenetically the primary iron mineral (Ayres 1972, Beukes & Gutzmer 2008, 42 

Klein & Beukes 1989, Spencer & Percival 1952, Sun et al. 2015). This hematite was proposed to 43 

derive from the dehydration of ferric oxyhydroxide precipitates settling from suspension into 44 

silica gel on the ocean floor, with earlier hematite particles then getting replaced by coarser 45 

crystals of magnetite and siderite during diagenesis (Beukes & Gutzmer 2008). This conclusion 46 

also made sense from a solubility point of view: oxidizing iron from soluble iron (ferrous 47 

Fe2+
(aq)) to insoluble iron oxides (e.g., Fe(III)(OH)3 (s)) would act as a mechanism to transport 48 

iron into the sediments to form precursor BIFs. Previous research has extensively explored the 49 

processes that could produce these putative ferric oxyhydroxides in Archean oceans (e.g., see 50 

review by Posth et al. 2014), while other studies have used the adsorption behavior of trace 51 

metals and nutrients onto iron oxides to produce geologic records of seawater chemistry (e.g., 52 

Bjerrum & Canfield 2002, Frei et al. 2009, Konhauser et al. 2009). 53 

 54 

However, recent re-examinations of Neoarchean BIF-hosted chert from the ∼2.5 Ga Hamersley 55 

Group in Western Australia and ∼2.5 Ga Transvaal Supergroup in South Africa using nanoscale 56 

imaging and elemental analyses have led to the suggestion that iron silicate phases were actually 57 

present earlier than hematite (Rasmussen et al. 2015, 2016, 2017). Drill core samples of well-58 
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preserved BIFs and iron-rich cherts contained nanometer-sized iron silicate particles, as well as 59 

often bearing several morphologies of hematite and other iron minerals. Hematite either 60 

mineralized as a replacement texture such as iron oxide rims on iron silicate and iron-bearing 61 

carbonate crystals, or occurred as individual 100 nm – 10 µm equant or platy particles and 62 

defined primary bedding but transitioned vertically and horizontally to submicron iron silicate 63 

particles (Rasmussen et al. 2016). These iron silicates were identified as stilpnomelane and/or 64 

greenalite and occurred as randomly oriented plates that vary in size from <10 nm to 1µm 65 

(Rasmussen et al. 2015, 2016, 2017). These observations were all highly suggestive of hematite 66 

being a secondary mineral, formed after primary iron silicates (Rasmussen et al. 2016), which 67 

was further explored and supported by recent experimental studies (Tosca et al. 2016).  68 

 69 

If iron silicates are indeed the earliest mineral that we can identify in BIFs, then we need to 70 

better characterize them to understand what they record about the ancient marine system. Our 71 

goals were twofold: 1) to determine the exact mineralogy of the best-preserved examples of these 72 

iron silicate inclusions, which serves to constrain Archean seawater chemistry; and 2) to assess 73 

the redox state of iron in these iron silicates, which can be indicative of the paleo-ocean 74 

oxidation state and potentially reveal any microbial involvement in the precipitation of these 75 

phases. We used a variety of bulk, microscale, and nanoscale techniques to characterize the iron 76 

silicate mineralogy and the iron redox state present in particles from the well-preserved examples 77 

of ancient BIF-hosted cherts. We find the best-preserved iron silicate nano-inclusions are 78 

greenalite with low and variable levels of Fe3+, and these new results enable us to discuss several 79 

possible hypotheses to explain the deposition of primary low-Fe(III) greenalite that led to the 80 

formation of the most recognizable early Earth sediment, Banded Iron Formations. 81 
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 82 

Materials and Methods 83 

Nanoparticle-bearing samples were acquired from ~2.5 Ga BIF and ferruginous chert hosted in 84 

well-preserved cores from Western Australia and South Africa (see Rasmussen et al. 2015, 2017; 85 

Sumner & Bowring 1996 for core locations). These cores included ABDP9, GKF, DDH44, and 86 

Silvergrass, which have all undergone only low-grade metamorphism and are considered sub-87 

greenschist facies (Miyano & Beukes 1984, Smith et al. 1982). Ferruginous cherts from ABDP9 88 

and GKF were prioritized because they possessed the most finely laminated sections with the 89 

best level of detail of the many examined samples and were less recrystallized than BIF-hosted 90 

chert. Two samples were also chosen to ensure that our findings represented BIF mineralogy as 91 

well as ferruginous chert: DDH44 388.3 m was chosen as one of the best-preserved Hamersley 92 

BIFs; and Silvergrass 313.6 m was included as another example of a BIF with some well-93 

preserved chert bands, although other bands showed recrystallization and late crystals of 94 

riebeckite and magnetite.  95 

 96 

Samples were prepared as bulk powders, thin sections, and ∼100 nm thick foils to examine the 97 

nanoparticles using a variety of chemical and structural characterization techniques. See 98 

Supporting Information for preparation and analytical details. Focused Ion Beam (FIB)-prepared 99 

foils for nanoscale analyses were produced from samples ABDP9 219.3 m and 288.2 m, GKF 100 

327.2 m, and from the Silvergrass core at 313.6 m. The iron redox state of the FIB foils was 101 

examined at the nanoscale using synchrotron transmission X-ray microscopy (STXM) at the iron 102 

L edge on beamline 10ID-1 (SM) at the Canadian Light Source in Saskatoon, Canada (Cosmidis 103 

& Benzerara 2014). Using this technique, we assessed the iron redox state across a single particle 104 
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and compared the redox state variation between neighboring particles within any foil, following 105 

the Fe-silicate method and calibration established by Bourdelle et al (2013). These nanoscale 106 

redox data were paired with subsequent Transmission Electron Microscopy (TEM)-based 107 

examinations to confirm the particle-scale mineralogy and assess the recrystallization extent of 108 

individual particles. Bright-field TEM and high-angle annular dark-field scanning TEM images 109 

were collected to examine particle textures, and qualitative and quantitative Energy Dispersive 110 

Spectroscopy (EDS) maps, spectra, and point analyses were collected to help identify the 111 

nanoparticle mineralogy. Because the particles can be damaged by the electron beam, especially 112 

during electron diffraction, we analyzed high-resolution TEM images using a fast fourier 113 

transform algorithm to produce diffractograms in which lattice spacing could be quantitatively 114 

measured and compared to iron silicate standards. 115 

 116 

Results 117 

We primarily used transmission-based microscopic and spectroscopic techniques to assess the 118 

morphology and crystal structure of the iron-rich inclusions, complemented by microscale and 119 

bulk spectroscopic and diffraction techniques. The iron silicate inclusions from five well-120 

preserved samples derived from Australia and South Africa displayed differential 121 

recrystallization, with some samples (e.g., ABDP9 288.3 m) containing fairly pristine particles 122 

and other samples (e.g., ABDP9 219.3 m and GKF 327.2 m) having some highly recrystallized 123 

inclusions associated with chert cavities. Diffractograms yielded d-spacings corresponding to a 7 124 

Ångstrom clay in most sections (Figure 1). This result was consistent with analyses that showed 125 

small 7 Ångstrom clay peaks in bulk powders containing nanoparticle inclusions (Figure S1). Fe 126 

X-ray absorption spectra plotted using Sixpack (Webb 2005) were also consistent with iron in a 127 
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silicate mineral (SI, Fig S2, S3). Using TEM-EDS, we confirmed that these particles only 128 

contained Fe, Si, and O, with low and varying amounts of Mg and Al (Fig S4A-D, Table S1), 129 

indicating these were Fe-silicates such as the 7 Ångstrom layered Fe-silicates greenalite 130 

[Fe2+
3Si2O5(OH)4] or cronstedtite [(Fe2+,Fe3+)3(Si,Fe3+)2O5(OH)4]. The 7 Ångstrom silicates also 131 

contained the ~20 Ångstrom structural modulation characteristic of greenalite (Fig 1) 132 

(Guggenheim et al. 1982). The integrated results from all of our multi-scale independent 133 

analyses indicate that the structure and chemistry of the nanoparticles were consistent with 134 

greenalite. 135 

 136 

Several other iron minerals were additionally observed. ABDP9 288 m2 contained siderite 137 

euhedra and ABDP9 219 m had two small pyrite crystals, but both appeared secondary to the 138 

greenalite as they were blocky crystals that cross-cut greenalite nanoparticles. In contrast to the 139 

other sections, some silicate particles from section Silvergrass 313.6 m had 10 Ångstrom spacing 140 

(Figure 1). These diffraction results coincided with a different elemental pattern (Figure S4E). 141 

The data from this distinct set of particles were consistent with the presence of a 10 Ångstrom 142 

layered silicate containing K, Fe, Mg, and Al cations, like the complex hydrated phyllosilicate 143 

stilpnomelane [(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36*nH2O] (Figure 1, Figure S4E). While 144 

commonly found in low-pressure, sub-greenschist facies BIF, stilpnomelane is often considered 145 

a metamorphic mineral associated with greenschist facies or glaucophane-schist facies 146 

(Krivovichev 2013). In BIFs, stilpnomelane is generally observed texturally as forming 147 

secondarily, associated with recrystallization and metamorphism (Feininger 1984, Klein 1974), 148 

and this Silvergrass sample in thin section appeared petrographically to be more recrystallized 149 

and altered. Therefore, we suggest that the stilpnomelane particles in Silvergrass 313.6 m are 150 
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alteration products from earlier greenalite inclusions. Another possibility is that the 151 

stilpnomelane reflects detrital grains from volcanic sources (Haugaard et al. 2016, Laberge 1986, 152 

Pickard 2002). Because all ten samples that we examined contained well-preserved greenalite 153 

encased in chert, our results indicate greenalite was a primary mineral forming from Neoarchean 154 

seawater.  155 

 156 

The iron redox state of the iron silicate inclusions in these FIB foil samples were determined 157 

using scanning transmission X-ray spectromicroscopy at the Fe L2,3 edge. We harnessed a novel 158 

iron redox mapping method to examine the variability of the iron redox state at a nanoscale. 159 

Following the protocol outlined in Bourdelle et al (2013), Fe(III)/FeTotal maps were produced 160 

across the iron-bearing nanoparticles (Figure 2) using the aXis2000 software (Hitchcock 2014). 161 

This mapping indicated that the iron silicate inclusions were principally Fe(II), consistent with 162 

Fe K-edge analyses (Fig S5), but the nanoparticles also contained low levels of Fe(III). Across 163 

individual nanoparticles mapped for Fe(III) content, pixels ranged from 0% to >70% 164 

Fe(III)/FeTotal (Figure 2). The most pristinely preserved particles, those fully encased in chert, 165 

had low ferric iron contents ranging from ~10% to 20% Fe(III)/FeTotal (Figure 2). The low levels 166 

of Fe(III) varied both within individual particles and between particles, and appeared unrelated to 167 

the pixel position in the particle, particle orientation or particle location.  168 

 169 

Discussion 170 

One of our best windows into the chemistry and biology of early Earth’s oceans is through 171 

understanding what chemical precipitates were forming directly from seawater. While iron 172 

oxyhydroxides were thought to be the dominant Fe minerals that initially precipitated, and were 173 
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therefore intensively studied for how they may reflect biological activities and elemental cycles 174 

(Bekker et al. 2014, Kappler & Newman 2004, Konhauser et al. 2007, Posth et al. 2014), recent 175 

observations of nanoscale iron silicate inclusions in early diagenetic, low-porosity chert have 176 

called the existing model into question (Rasmussen et al. 2015, 2017). These iron silicates are 177 

interpreted to be paragenetically earlier than iron oxides (Rasmussen et al. 2016), stimulating 178 

new questions about what BIFs actually indicate about seawater chemistry and mineralization 179 

pathways. 180 

 181 

Additional factors make these pervasive iron silicate inclusions a compelling initial mineral 182 

during BIF deposition. Iron silicates such as minnesotaite, greenalite, and stilpnomelane have 183 

long been identified in BIFs, but the consensus view categorized these as secondary minerals or 184 

derived from volcanic input (Beukes & Gutzmer 2008, Fischer & Knoll 2009, Haugaard et al. 185 

2016, Klein 2005). There had been speculation that primary iron silicates could form in deeper-186 

water and more alkaline environments as ferrous iron and silica reacted, but these minerals were 187 

not thought to be the major primary iron phase in BIFs (e.g., Beukes & Gutzmer 2008, Klein 188 

1974). However, primary magnetic remanence that should have been recorded in original 189 

hematite precipitates, if they stayed below 600 °C, have never been found in the Australian 190 

Hamersley Group and South African Transvaal Supergroup BIFs (Abrajevitch et al. 2014, de 191 

Kock et al. 2009, Humbert et al. 2017, Li et al. 1993) – highly suggestive of hematite being 192 

emplaced secondarily. Additionally, with the probable elevated silica levels of the Archean 193 

ocean (Maliva et al. 2005, Siever 1992, Stefurak et al. 2014), the mineralization of iron silicates 194 

is thermodynamically predicted (Bethke 2002) from highly reducing oceans with <10-56 atm of 195 

O2 (Fig S7). 196 
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 197 

To better constrain these potentially primary Neoarchean minerals, we fully characterized the 198 

mineralogy and iron redox state of the best-preserved iron silicate inclusions that have been 199 

discovered thus far. Ten samples from ~2.5 Ga BIFs and ferruginous cherts from diverse 200 

localities in Australia and South Africa contain a single identical iron silicate mineral: greenalite. 201 

From these observations, we argue that greenalite is the earliest iron mineral preserved in these 202 

cherts. Earlier hypotheses had suggested that iron was deposited in the sediments as a result of 203 

iron oxidation. In order to determine whether an oxidation state change was still relevant to 204 

understanding deposition of primary iron silicates, we examined whether Fe(III) was present in 205 

the greenalite particles and quantified how much ferric iron was present at the scale of individual 206 

particles. In the most unaltered particles, we found that greenalite was dominantly Fe(II) with 10-207 

20% Fe(III). Fe(III) content was variable within individual particles and between particles. The 208 

possibility that these low levels of Fe(III) were secondarily acquired cannot be ruled out; 209 

however, the absence of a spatially-coherent redox distribution suggests that this Fe(III) was an 210 

original component of the greenalite rather than oxidized by a secondary fluid front. 211 

 212 

Our characterization of the Fe-rich nanoparticle inclusions enables us to consider and build on 213 

existing hypotheses to explore the genesis of low-Fe(III) greenalite preserved in early chert. In 214 

the following scenarios, our working hypothesis is that seawater silica (H4SiO4) was at saturation 215 

with amorphous silica (10-2.71 M, Rimstidt & Barnes 1980). Previous work has established that 216 

silica levels were significantly higher in the Archean oceans (Maliva et al. 2005, Siever 1992) 217 

and observations of primary authigenic silica granules in Archean cherts (Stefurak et al. 2014, 218 

2015) provide strong evidence for silica levels at saturation with amorphous silica. We thus 219 
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assume amorphous silica was being deposited on the sea floor, encasing greenalite inclusions 220 

during the diagenetic transformation into chert nodules and bands. In the models described 221 

below, we primarily focus on various iron cycle hypotheses to result in the preservation of low-222 

Fe(III) greenalite in chert.  223 

 224 

1. A straightforward explanation for the deposition of greenalite nanoparticles is that the 225 

ferrous iron and silica concentrations of the ocean exceeded greenalite saturation (Figure 226 

3-1). The saturation of greenalite is set by its solubility constant, which can be calculated 227 

to lie at 1014.01 using estimates from Eugster and Chou (Eugster & Chou 1973). If we 228 

assume dissolved silica was fixed at 10-2.71 M and pH at this time was ∼7 (Halevy & 229 

Bachan 2017), then greenalite would saturate when ferrous iron reached 30 nM (Fig S7). 230 

This estimate is likely far lower than the concentrations that metastable precursor phases 231 

would require to precipitate; however, it is useful to consider the thermodynamic 232 

predictions for greenalite precipitation. Alternatively, ferrous iron could remain below 30 233 

nM and increases in pH could trigger the precipitation of greenalite. These iron 234 

concentrations are strikingly low and emphasize the ease with which greenalite should 235 

precipitate from the Neoarchean ocean – and suggest that greenalite precipitation would 236 

act as a limit to ferrous iron levels and pH.  237 

 238 

The idea that greenalite was thermodynamically stable in the Neoarchean ocean expands 239 

on early suggestions for iron silicate precipitation in deep waters (Beukes & Gutzmer 240 

2008), which was also re-proposed when iron silicates were discovered as abundant 241 

inclusions in chert (Rasmussen et al. 2015). A similar abiotic model has recently been 242 
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explored experimentally by Tosca et al (2016), who synthesized a proto-greenalite gel 243 

under plausible Archean seawater conditions with high silica and iron concentrations at 244 

pHs ≥ 7.5. These experiments demonstrated that it is remarkably simple and favorable to 245 

precipitate a precursor silicate gel in anoxic, ferruginous, and silica-rich oceans (Tosca et 246 

al. 2016), and they suggested that alkaline hydrothermal waters upwelling into more 247 

acidic CO2-buffered surface water would rapidly nucleate greenalite. Rasmussen et al 248 

(2017) expanded on this pH-focused model but proposed flipping the environmental 249 

conditions: iron and silica delivered by more acidic vent fluids could then mix with more 250 

alkaline seawater, initiating the precipitation of greenalite. 251 

 252 

2. Greenalite solubility is still not well constrained and little is currently known about 253 

whether the presence of Fe(III) would enhance the precipitation of greenalite. However, it 254 

is hypothesized that in the iron-phosphate system, the oxidation of Fe(II) causes the 255 

precipitation of Fe(II,III)-phosphate minerals (Cosmidis et al. 2014, Miot et al. 2009, 256 

Voegelin et al. 2013). Furthermore, earlier work has shown that iron silicates, including 257 

Fe(III) serpentine-member clays, can precipitate in silica-rich systems both abiotically 258 

and stimulated by bacterial surfaces (Konhauser & Ferris 1996, Konhauser & Urrutia 259 

1999, Urrutia & Beveridge 1994). If Fe(III) does change the thermodynamic properties of 260 

greenalite and makes precipitation more favorable, then it is possible that waters 261 

undersaturated with respect to Fe(II)-greenalite could have precipitated Fe(III)-bearing 262 

greenalite upon aqueous Fe2+ oxidation (Figure 3-2). A variety of iron oxidation 263 

mechanisms are known, including abiotic UV-radiation catalysis, microbial iron-264 

oxidizing photosynthesis, and biologically-mediated or abiotic interactions between 265 
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ferrous iron and oxygen (e.g., see Konhauser et al, 2007). Oxidation of iron in 266 

ferruginous and silica-rich water could catalyze the precipitation of a low-Fe(III) 267 

greenalite phase that could then be preserved in amorphous silica gel, eventually 268 

mineralizing as greenalite inclusions in chert (Figure 3-2A).   269 

 270 

Alternatively, iron oxidation in silica-rich water could initially produce high-Fe(III) 271 

greenalite. However, in a ferruginous ocean, contact between Fe(III)-bearing clays and 272 

fluids with ferrous iron could reduce structural Fe(III) and increase the Fe(II) content of 273 

the mineral (Schaefer et al. 2011). Although we see no evidence for surface-associated 274 

Fe(III) phases, these should be produced if adsorbed Fe(II) was oxidized; however, if 275 

formed, such phases would be highly reactive in a reducing environment. A net chemical 276 

reduction of Fe(III)-bearing greenalite could occur both during descent of the particles 277 

through a ferruginous water column or in porewaters if reductants are present (Figure 3-278 

2B). The potential reactions described above could have led to a similar primary mineral 279 

assemblage as model 1 and 2A – initial BIFs dominated by low-Fe(III) greenalite and 280 

chert (Figure 3-2). Additionally, Fe(III) in the silicate structure or Fe(III) phases 281 

associated with greenalite could have been reduced by bacterial respiration during early 282 

diagenesis, resulting in an isostructural transformation to lower-Fe(III) clays or reductive 283 

dissolution of the Fe-silicates into its constituent cations (Figure 3-2B) (Dong et al. 284 

2009). 285 

 286 

3. A third model would also form low-Fe(III) greenalite as a stable mineral product, but 287 

from an initial Fe(II,III) precursor metastable phase: green rust 288 
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[Fe(II)4Fe(III)2(OH)12
2+•CO3

2-•2H2O or Fe(II)3Fe(III)(OH)8
+•Cl-•nH2O] (Figure 3-3), as 289 

suggested in a recent paper (Halevy et al. 2017). If a small proportion of aqueous iron is 290 

oxidized –by any biological or abiotic mechanism discussed above– in a highly 291 

ferruginous aqueous environment, then green rust is the metastable initial product that 292 

forms in both laboratory experiments and environmental settings (Halevy et al. 2017, 293 

Zegeye et al. 2012). Because green rust is a metastable phase, it would transform to 294 

secondary, stable phases (Halevy et al. 2017). Ferrous iron present in both the ocean and 295 

porewaters, as well as adsorbed and dissolved silica, could have subsequently induced the 296 

transformation of green rust into thermodynamically more favorable low-Fe(III) 297 

greenalite during particle descent and early diagenesis in the sediments (Figure 3-3). 298 

Early diagenesis could also include iron-reducing microbes utilizing the oxidized iron in 299 

green rust and promoting the transformation of green rust into the more stable Fe(II)-rich 300 

greenalite. If the porewater conditions were supersaturated with respect to greenalite and 301 

the oxidation potential (Eh) of the system was low enough, then the predicted stable iron 302 

mineral to be preserved in the BIF sediments would be greenalite (Fig S7A).  303 

 304 

4. Alternatively, it is possible that the oxidation of aqueous Fe(II) initially formed 305 

metastable Fe(III) oxides with adsorbed silica, similar to prior suggestions (Fischer & 306 

Knoll 2009), that then stabilized as greenalite in the water column or sediments (Figure 307 

3-4). Indeed, experiments with modern iron-oxidizing phototrophs grown with 2 mM 308 

silica resulted in the formation of Fe(III)-oxyhydroxides, with some changes to 309 

morphology and crystallinity, silica substitution into the iron oxides, and co-precipitation 310 

of amorphous silica (Eickhoff et al. 2014, Gauger et al. 2016, Wu et al. 2014). It is 311 
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notable that the formation of Fe(III) clays was not observed in these experiments, even 312 

with high silica levels. However, it is still an open question as to whether iron oxides and 313 

adsorbed silica would undergo dissolution and reprecipitation into low-Fe(III) greenalite 314 

under reducing conditions and/or through the activities of Fe-reducing microbes (Fischer 315 

& Knoll 2009), as this has not conclusively been shown to occur (Posth et al. 2013, but 316 

see Aller et al. 1986).  317 

 318 

It is currently difficult to resolve which model is most plausible to generate the low-Fe(III) 319 

greenalite that we observe. The first abiotic saturation hypothesis is appealing in its simplicity, 320 

and the low and variable levels of Fe(III) that we measured in the greenalite could be present as a 321 

result of the equilibrium environmental conditions at the time of formation or, alternatively, 322 

structural Fe(II) oxidation (Gorski et al. 2012) from secondary fluids post-lithification. 323 

Alternatively, the low Fe(III) that we measure in the greenalite could signify original iron 324 

oxidation from UV radiation, iron-oxidizing photosynthesis, or interactions with low levels of 325 

oxygen. Another line of evidence for original Fe(III) present in greenalite or precursor phases 326 

may arise from the Fe-rich carbonates present in BIFs, which many have argued are products of 327 

early diagenesis, primarily based on the 12C-enriched carbon isotopes and textures of these 328 

phases (Ayres 1972, Becker & Clayton 1972, Beukes et al. 1990, Dimroth & Chauvel 1973, 329 

Fischer & Knoll 2009, Johnson et al. 2013, Klein 1974, Walker 1984). Intriguingly, siderite is 330 

also found as a product from the reduction of Fe(III)-bearing clays (Dong et al. 2009, Komlos et 331 

al. 2007, Kostka et al. 1999). Therefore, hypotheses that involve a flux of oxidized iron –in Fe-332 

silicates or other phases– reaching the sediments and potentially undergoing microbial reduction 333 

would be consistent with the arguments for early diagenetic Fe-rich carbonates in BIFs. 334 
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 335 

Distinguishing between hypotheses involving abiotic precipitation or iron oxidation followed by 336 

the stable mineralization of low-Fe(III) greenalite requires either further constraints on the 337 

solution chemistry and redox conditions of the 2.5 Ga ocean or more experimental data to 338 

measure what minerals actually precipitate in potential scenarios. Yet our detailed 339 

characterization of the earliest iron phases in BIF sediments as low-Fe(III) greenalite emplaces a 340 

firm target against which to compare experimental and environmental observations. For the 341 

primary mineral in equilibrium with the Neoarchean seawater to stabilize as greenalite rather 342 

than hematite, the deep ocean and/or porewater can be inferred to have an oxygen fugacity <10-56 343 

atm (Figure S7C) – inconsistent with the presence of extensive oxygenic photosynthesis. Going 344 

forward, to successfully recreate the chemistry and biology in the 2.5 Ga ocean, low-Fe(III) 345 

greenalite should be present in the stable mineral assemblage. Conversely, the presence of low-346 

Fe(III) greenalite as a primary stable mineral 2.5 billion years ago should act as a constraint for 347 

future estimates of pH, ferrous iron, and silica concentrations in the Neoarchean ocean. 348 

 349 
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Main Text Figure Captions 583 
 584 
Fig 1: TEM Images and Diffractograms of Nanoparticle Inclusions 585 
A. Five FIB foils of representative particles. Images on left indicate particle analyzed using 586 
High-Resolution TEM imaging (right images) and Fast Fourier Transform (FFT, right panel) to 587 
quantify the particle layering distance. Four samples had nanoparticles with d-spacings ~7.3-7.7 588 
Ångstroms, while Silvergrass 313 m had some particles with 10 Ångstrom-spaced layers. Inset 589 
with arrows for ABDP9 219 m indicate the ~20 Ångstrom superlattice reflections characteristic 590 
of greenalite. B. Standards for Greenalite and Stilpnomelane show 7.6 Ångstrom spaced layers 591 
for Greenalite and 10 Ångstrom spaced layers for Stilpnomelane.  592 
 593 
Fig 2: Iron Redox Maps of Nanoparticle Inclusions in Chert  594 
Sample FIB foils imaged using Scanning TEM (left) and Fe(III)/FeTotal redox maps (right) 595 
constructed using multiple energy STXM maps. Non-greenalite particles are outlined: pyrite 596 
crystals (orange) and siderite crystals (yellow) were excluded from redox analyses, but a 597 
different iron silicate (purple) was included in the iron silicate redox analysis. Scale bars 500 nm. 598 
 599 
Fig 3: Mechanisms to Produce Low-Fe(III) Greenalite in Chert 600 
Assuming seawater was at amorphous silica saturation, hypothetical pathways to form low-601 
Fe(III) greenalite encased in chert are:  602 
(1) Greenalite exceeded saturation chemistry and precipitated. 603 
(2) Precipitation of Fe(II,III) greenalite catalyzed by the oxidation of aqueous Fe2+, either 604 
abiotically or biologically mediated. A. Precipitation directly formed low-Fe(III) greenalite, or B. 605 
Precipitation began as a high-Fe(III) greenalite, which then stabilized as low-Fe(III) greenalite. 606 
(3) Oxidation of Fe2+ formed metastable green rust, which then transformed into low Fe(III)-607 
greenalite. 608 
(4) Oxidation of Fe2+ formed precursor iron oxides and silica, which then transformed into low 609 
Fe(III)-greenalite. 610 
 611 
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