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PREMISE OF THE STUDY: Discordant gene trees are commonly encountered when 

sequences from thousands of loci are applied to estimate phylogenetic relationships. Several 

processes contribute to this discord. Yet, we have no methods that jointly model different 

sources of conflict when estimating phylogenies. An alternative to analyzing entire genomes or 

all the sequenced loci is to identify a subset of loci for phylogenetic analysis. If we can identify 

data partitions that are most likely to reflect descent from a common ancestor (i.e., discordant 

loci that indeed reflect incomplete lineage sorting [ILS], as opposed to some other process, such 

as lateral gene transfer [LGT]), we can analyze this subset using powerful coalescent-based 

species-tree approaches.  

METHODS: Test data sets were simulated where discord among loci could arise from ILS and 

LGT. Data sets where analyzed using the newly developed program CLASSIPHY (Huang et al., 

2018) to assess whether our ability to distinguish the cause of discord among loci varied when 

ILS and LGT occurred in the recent versus deep past and whether the accuracy of these 

inferences were affected by the mutational process.  

KEY RESULTS: We show that accuracy of probabilistic classification of individual loci by the 

cause of discord differed when ILS and LGT events occurred more recently compared with the 

distant past and that the signal-to-noise ratio arising from the mutational process contributes to 

difficulties in inferring LGT data partitions.  

CONCLUSIONS: We discuss our findings in terms of the promise and limitations of 

identifying subsets of loci for species-tree inference that will not violate the underlying 

coalescent model (i.e., data partitions in which ILS, and not LGT, contributes to discord). We 

also discuss the empirical implications of our work given the many recalcitrant nodes in the tree 

of life (e.g., origins of angiosperms, amniotes, or Neoaves), and recent arguments for 

concatenating loci.  

KEY WORDS: CLASSIPHY; coalescence; gene-tree discord; incomplete lineage sorting; 

lateral gene transfer; species tree    

 

 

When phylogenetic relationships among species are examined using genomic or transcriptomic 

scale data sets, the discord (e.g., incongruent branching patterns) among individual gene trees is 
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clear. There are various processes that can result in this discord, such as incomplete lineage 

sorting (ILS), lateral gene transfer (LGT), hybridization (H), and gene duplication and loss 

(DL). In addition to these biological processes that generate discord, discord may be due to a 

lack of informative phylogenetic data or to errors in sequence assembly. Disagreement between 

gene trees has traditionally posed a challenge for phylogenetic analysis, especially when the 

only strategy for combining data from different genes was simple concatenation, which 

effectively treats discord as noise, rather than fundamental structure of systems. However, 

significant advances for estimating phylogenetic relationships despite gene tree discord have 

been made with species-tree methods, which explicitly model the coalescent process, turning 

one source of discord, ILS, into a source of information rather than noise (Edwards, 2009; 

Knowles and Kubatko, 2010).  

There have also been recent developments for modeling sources of discord other than ILS 

when estimating phylogenetic relationships (e.g., gene duplication and loss: Boussau et al., 

2013; hybrid origin of taxa: Bilschak et al., 2017; Meng and Kubatko, 2009; networks: Solís-

Lemus and Ané, 2016; Solís-Lemus et al., 2017; Zhang et al., 2018; Wen and Nakleh, 2017). 

However, adequate methods do not exist that simultaneously estimate phylogenetic trees, model 

sources of conflict, model molecular substitution, and perform well when more than one cause 

of discord are considered (Boussau et al., 2013). As a result, slight changes to data set assembly 

and/or phylogenetic reconstruction methods often generate different species trees (Jarvis et al., 

2014, Wickett et al., 2014; Xi et al., 2014). 

These studies emphasize that the key to resolving relationships lies not just with more data, 

but also with decisions about which data to include and what analyses to apply (e.g., Smith et 

al., 2015; Brown and Thompson, 2017; Shen et al., 2017). Model misspecification, for example, 

of the model of molecular evolution (e.g., nonstationarity of composition, Foster, 2004; Morgan 

et al., 2013; Cox et al., 2014; Jarvis et al., 2014) or gene-tree evolution (e.g., ignoring 

coalescent-based variation among loci; Kubatko and Degnan, 2007), has been shown to 

dramatically reduce the accuracy of phylogenetic reconstruction. However, models cannot 

currently, nor are they likely soon to be, capable of accommodating all the heterogeneity and 

complexity in full genomes and transcriptomes. Consequently, approaches that focus on 

identifying subsets of data that conform to the assumptions of, or are otherwise optimized for, 
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the particular models used in a given phylogenetic analysis, have been expanding (e.g., Huang 

et al., 2016, 2018; Brown and Thompson, 2017; Richards et al., 2017).  

Different criteria might be applied to identify which loci from a larger pool might be 

included in a phylogenetic analysis. For example, loci may be chosen based on characterizations 

of their phylogenetic signal (Gori et al., 2016; Huang et al., 2016; Lewitus and Morlon, 2016). 

As an alternative to using a statistical criterion to reduce the heterogeneity in data that does not 

consider what processes underlie the discord, the biological basis of the discord might be 

considered explicitly when identifying data partitions. For example, data partitions might be 

based on whether discord is caused by ILS versus LGT using the recently developed program 

CLASSIPHY (see Huang et al., 2018). Such data partitions, like the characterizations based on 

statistical criteria that are agnostic to cause (see Gori et al., 2016), cannot only be used to avoid 

model misspecification (i.e., only loci for which discord arises from ILS might be included in a 

species-tree analysis of phylogenetic relationships), but they may also provide additional 

information that is of biological interest—the proportion of loci evolving under different 

evolutionary processes (see Huang et al., 2018). That is, discord among loci is more than just a 

statistical inconvenience, but can be usefully leveraged to inform and improve the analysis if the 

underlying process can correctly be identified and modeled.  

A newly developed method (CLASSIPHY) provides for the identification of the processes 

that generate discord in a given locus (Huang et al., 2018), and apart from the fundamental 

utility of this (e.g., for phylogenetic inference as described above), this method also allows us to 

ask questions about the evolution of the discord itself. Here we use this method to ask two key 

questions about the utility of this concept in practice. First, how sensitive is the accurate 

classification of loci to the diversification history itself? Second, how is the accuracy of data 

partitions (i.e., the inferred subsets of loci with discord due to ILS) influenced by the mutational 

process? We answer these questions using simulated test data, so that we have a priori 

knowledge of the identities of the particular loci that are discordant due to ILS versus LGT, as 

well as the timing of ILS and LGT events themselves. 

By assessing the effects of the timing of divergence, as well as the mutational process, on 

our ability to distinguish ILS from LGT as the cause of discord among loci (see Fig. 1) in the 

present study, we provide a critical context for empirical applications of the program 

CLASSIPHY (Huang et al., 2018) given that ILS and LGT events in practice may occur in the 
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recent or more distant evolutionary past and that real data sets are comprised of DNA 

sequences. We discuss the relevance of our findings to strategies for resolving the recalcitrant 

nodes that have come to characterize many deep nodes in the history of divergence of different 

clades (e.g., birds and plants; Mirarab et al., 2014; Wickett et al., 2014), but also to debates on 

best practices (e.g., over concatenation versus species-tree estimation; de Queiroz and Gatesy, 

2007; Kubatko and Degan, 2007; Zhong et al., 2013; Gatesy and Springer, 2014; Liu et al., 

2014; Xi et al., 2014).  

 

<H1>MATERIALS AND METHODS 

We use simulation-based testing to examine the robustness of inferred data partitions to the 

timing of ILS and LGT events, as well as the mutational process (see Fig. 1), for which the 

contribution of ILS and LGT to discord and mutational effects on gene tree estimation are 

known. Because we simulated our test data, we know which loci have discord arising from ILS 

versus LGT events, and thus, we can evaluate whether we can accurately distinguish between 

discord due to ILS versus LGT by comparing the known contribution of ILS and LGT with the 

probabilistically inferred contribution of ILS and LGT for each of the test data sets (details 

below), using the program CLASSIPHY (Huang et al., 2018), which is freely available on 

GitHub (https://github.com/huatengh/Classiphy).  

 

<h2>Simulated test data sets 

Test data sets were simulated where discord among loci could arise from ILS and LGT. Only 

LGT events that induce a topological discord are considered, and hereafter are simply referred 

to as LGT loci (i.e., LGT events that do not alter the topology of a gene tree are not classified as 

LGT loci). The rest of the loci, which do not contain LGT events, but could contain discord due 

to ILS, are referred to as ILS loci.  

To generate the test data sets, three separate steps are involved to simulate LGT, lineage 

sorting, and mutation, respectively (Fig. 1A). Specifically, starting with a species tree: (1) locus 

trees were simulated with random LGT events, (2) genealogies were simulated within the locus 

tree according to coalescent process (i.e., simulating random ILS events), and (3) nucleotide 

data sets were simulated on the genealogies with a substitution model (details see below). For 

isolating the effects of the timing of divergence on the ability to discriminate ILS from LGT 
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loci, all test data sets were simulated under a single species tree in which the relative timing of 

divergence among taxa remained the same, but the total depth of the species tree was increased 

(Fig. 1B). Specifically, the test data were simulated under a 50 taxon species tree with either a 

total depth of 25N (and referred to as “shallow”), or one with a total depth of 100N (and 

referred to as “deep”) with the additional branch length added to the tips of the tree (see Fig. 

1B), rather than rescaling all the branches. However, to avoid introducing additional LGT 

events on these extended terminal branches, the extra length was added to the simulated 

genealogies (i.e., after step 2 from above), rather than changing the species tree itself. As such, 

the distribution of ILS and LGT events was held constant; only the absolute timing of specific 

events shifted.   

To examine the effect of mutation rates on our ability to distinguish ILS versus LGT loci, 

we compared the accuracy of the inferred data partitions defined by loci with discord due to 

ILS, but not LGT, under two conditions: coalescent gene genealogies versus estimated gene 

trees from nucleotides of individual tests data sets were analyzed in CLASSIPHY (Fig. 1A). 

That is, the phylogenetic estimate for a locus (i.e., the gene tree inferred from nucleotide data) 

may differ from the actual genealogy of that locus (i.e., the coalescent history of the locus) 

because of limited phylogenetic signal (for more details on the mismatch between estimated 

gene trees and coalescent genealogies due to mutational variance see Huang et al., 2009, 2014; 

Lanier et al., 2013). This potential mismatch between the gene genealogy and estimated gene 

tree on the accuracy of data partitions is relevant to classifying empirical data, and therefore is 

included here, given the distribution of homoplasy is dependent upon the diversity history, and 

its effects on the performance of CLASSIPHY have not yet been investigated. 

<h2>Choice of parameters in simulated test data 

All test data sets were simulated under the same species tree (Fig. 1B). This species tree was 

chosen to be representative of a history with an average amount of discord due to ILS. 

Specifically, the species tree was identified from a set of 100 species trees simulated under Yule 

birth-and-death model (with speciation rate = 2 × extinction rate), for which 500 genealogies 

were simulated, and the average RF distance between species tree and its genealogies (i.e., ILS-

caused distance) was calculated. The chosen tree (Fig. 1B) was then identified by ranking all 

100 species trees according to the species-tree-genealogy distance, selecting the species tree 
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closest to the mean distance. Hence, the species tree used in this study is a random 50-taxon tree 

at 25N depth with an average level of expected discord due to ILS. 

Based on this species tree, we simulated 1000 different data sets. Each data set consisted of 

800 locus trees (i.e., 800 independent loci; see Fig. 1), but the data sets differed in their 

respective rates of LGT, which ranged from 2e-10 to 2e-9 LGT events per generation. Since 

LGT events were introduced at random, in each data set of 800 locus trees, there are locus trees 

that differ topologically with the species tree (i.e., LGT between nonsister lineage), those with 

the same topology but different branch lengths (i.e., LGT between sister lineages), and those 

having no LGT events. The range of LGT rate was chosen such that 90% of the locus-trees 

contain 2–15% LGT loci.  Since estimating large numbers of gene trees is computationally 

intensive, only three data sets with different amounts of LGT loci were selected for simulating 

nucleotide sequences and estimating gene trees. These data sets were identified by ranking the 

data sets based on the proportion of LGT loci (i.e., ranking were established after step 2 of the 

simulation procedure; see Fig. 1A), and selecting the three data sets at the 25%, 50%, and 75% 

quantile. These test data sets, each comprising 800 loci, contained 4.9%, 7.5% and 11.5% LGT 

loci, respectively. Genealogies with one individual per species were simulated for each locus 

tree according to the coalescent model (i.e., a genealogy may differ from its locus tree because 

of ILS).  

We used SimPhy (Mallo et al., 2016) for simulating the species trees, locus trees and 

genealogies above (a wrapper function to use Simphy is included in the CLASSIPHY R 

package), and used Seq-Gen (Rambaut and Grassly, 1997) to simulate nucleotide data sets on 

the genealogies. For each genealogy (under the shallow versus deep history of 25N versus 100N 

total depth, respectively), nucleotide data sets of 1000 bp were simulated with the program Seq-

Gen (Rambaut and Grassly, 1997) under an HKY85 model of nucleotide substitution with a 

transition–transversion ratio of 3.0, a gamma mutation rate distribution with shape parameter of 

0.8, and nucleotide frequencies of A = 0.3, C = 0.2, T = 0.3, and G = 0.2 for the ancestral 

sequence. From the simulated DNA sequences, gene trees were estimated using RAxML 

(Stamatakis, 2014). These estimated gene trees may differ from the actual genealogy because of 

limited phylogenetic signal (for more details on the mismatch between estimated gene trees and 

coalescent genealogies due to mutational variance see Huang et al., 2009, 2014; Lanier et al., 

2013). An outgroup lineage (but with no LGT between the outgroup and in-group lineages) was 
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used to root estimated gene tree (Fig. 1B). The outgroup is not included in any of the calculated 

summary statistics used in the CLASSIPHY analyses (i.e., the outgroup does not contribute to 

the classification of loci as ILS versus LGT loci).  

In total, there were 12 test data sets: test data sets for each of 3 different LGT quantiles for a 

shallow versus deep divergence history, based on either the estimated gene trees or the 

genealogies themselves (after excluding them from the training data set). Each test data set was 

analyzed separately using CLASSIPHY (Huang et al. 2018), as described below. The test data 

sets, and the parameter file for the simulated training sets, are freely available from GitHub 

(https://github.com/huatengh/Classiphy). 

 

<h2>Classification of loci by the cause of discord 

CLASSIPHY is a simulation-trained (supervised) machine learning approach (Huang et al. 

2018). Unlike traditional machine learning approaches, which typically use empirical data for 

both training and evaluation, in the CLASSIPHY approach, training data are generated under 

known processes of ILS and LGT, following Sukuumaran et al. (2016), and the entire process is 

described in detail below. The machine learning algorithm used in CLASSIPHY is discriminant 

analysis of principal components (DAPC) and has been described comprehensively  (Jombart, 

2008; Jombart et al., 2010). Briefly, this algorithm involves calculating a set of summary 

statistics on the training data, projecting these statistics onto principal component axes, and 

using the principal component axes scores as input to construct a discriminant analysis 

classifier, which in turn is applied to the target data to classify them with respect to the 

generating model. While there are many machine learning algorithms available, we have found 

that the DAPC performs well enough for applications such as this (Sukumaran et al, 2016) to 

base our analyses on it and has been borne out through our own assessments (Huateng et al., 

2018). 

The basic steps involved in this simulation-trained DAPC procedure are (1) simulation of 

gene trees under regimes corresponding to different processes that might contribute to discord—

in this case, ILS and LGT, (2) calculation of summary statistics on simulated data sets to train a 

classification function, (3) construction of a discriminant analysis function based on principal 

components extracted from the training data set, (4) assessment of the performance of the 

summary statistics by inspection of posterior prediction of the training data set, and (5) 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

https://github.com/huatengh/Classiphy�


This article is protected by copyright. All rights reserved 

application of the discriminant analysis function to the original data to classify it with respect to 

whether ILS or LGT underlie observed gene tree discord. The summary statistics are not used 

directly, but rather the principal components extracted from the summary statistics are used to 

construct the DAPC function in this machine learning approach. For a detailed description of 

CLASSIPHY, see Huang et al. (2018), which describes the concept of identifying data 

partitions by the biological cause of discord and demonstrates the validity of the statistical 

approach applied in CLASSIPHY. Here, we limit our focus to questions that can be answered 

statistically by application of this method to data sets that differ with respect to the timing of 

ILS and LGT events, and the effects of the mutational process on the accuracy of identifying 

data partitions (i.e., data subsets with ILS, but no LGT). 

The training set applied in the CLASSIPHY analyses here comprised 1000 data sets with 

different LGT rates, each with 800 loci, where the rate of LGT was drawn from the distribution 

described above, simulated under the one species tree (Fig. 1B). For each of the 800 loci of each 

test data set (i.e., a total of 800 loci × 12 data sets), a probabilistic classification was generated 

using a standard posterior probabilities >0.5 threshold to classify a locus as either an ILS locus 

or LGT locus (see Huang et al. 2018 for other thresholds that might be applied using 

CLASSIPHY).  

 

<h2>Assessing accuracy of data partitions 

The inferred classification of individual loci from the CLASSIPHY analysis was compared 

to the actual history of each locus to evaluate the accuracy of distinguishing ILS and LGT loci. 

Accuracy of the data partitions are summarized separately for (1) each of the three LGT rates 

(i.e., a low, medium, and high LGT rate), and (2) the different depths of divergence (i.e., 

shallow versus deep divergence histories). For each of these separate scenarios, a receiver 

operating characteristic (ROC) curve analysis was performed using the pROC R package (Robin 

et al., 2011). Such analyses are commonly used to characterize and compare the results from 

machine learning approaches. ROC plots provide a visualization for assessing the performance 

of the classifier over its entire operating range, as opposed to relying just on the area under the 

curve (the AUC) to evaluate the classifier. In addition, linear regressions were used to test 

whether or not the posterior probability of LGT correlated with the degree of discord between a 

gene tree and the species tree (i.e., the species-to-locus Robinson-Fould’s distance).  
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To examine the effect of mutation on the ability to accurately distinguish ILS and LGT loci, 

the classification accuracy of data partitions was compared when the genealogy versus the 

estimated gene tree was analyzed with CLASSIPHY. These results are presented after 

standardizing by the overall accuracy of classification for each of the three LGT rates (i.e., a 

low, medium, and high LGT rate), and the different divergence depths (i.e., shallow versus deep 

divergence histories), to establish the effect of mutation on accurate classification (as opposed 

to inherent differences in the accurate classification of individual loci). Specifically, the 

differences in the percentage correct classification when based on genealogies versus estimated 

gene trees were calculated and presented. 

 

<H1>RESULTS  

There are two important observations about the performance as measured in terms of 

posterior probabilities for the true versus false model (Fig. 2). First, as visualized in the ROC 

curves (Fig. 2), for loci with high posterior probabilities, the method is sensitive to both (1) the 

rate of LGT and (2) whether these events occur in the recent versus distant past (see Fig. 1 for 

simulation design). For example, in all cases, irrespective of the rate of LGT, the accuracy of 

data partitions (i.e., classification of ILS and LGT loci) decreases when those events are in the 

more distant past, (Fig. 2). In these curves, the true positive rate (TP, representing sensitivity) is 

plotted against the false positive rate (FP, representing 1 – specificity) for the p > 0.5 threshold 

used here to classify ILS and LGT loci. This sensitivity to whether the events causing discord 

occurred in the recent versus distant past is also reflected in the difference in the summary 

provided by the AUC scores for each test data set with either low, medium, or high proportions 

of discord cause by LGT (see Fig. 2). More specifically, there is a drop in classification 

performance (i.e., lower AUC scores) with higher proportions of LGT events and when the 

events occur in the distant past. Note that because the additional branch lengths were added to 

the tips of the tree (see Fig. 1B), rather than rescaling all the branches, and these were added to 

the simulated genealogies after step 2 as described in the methods (Fig. 1A), the difference in 

performance can only arise from shifts in the absolute timing of specific events (i.e., no 

additional LGT events were introduced by the extended terminal branches of the deep history of 

species divergence; Fig. 1B).  
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We can see that the largest decrease in the percentage of loci classified accurately ranges 

from about 8% to 15% and is associated with the deep divergence histories (Table 1). 

Moreover, this analysis also shows how the drop in the accuracy of CLASSIPHY with the depth 

of the divergence events observed in the ROC analyses (Fig. 2) primarily reflects the decreased 

accurate classification of LGT loci, not ILS loci. This result highlights that, while phylogenetic 

scale matters (that is, whether the processes generating discord occurred in the recent versus 

deep past), the data partitions representing ILS loci tend to be more accurate relative to 

identifying data partitions of LGT loci (Table 1). This sensitivity in identifying data partitions 

of LGT loci when the events occurred in the more distant past can be visualized by the 

relationship between the posterior probability of LGT and the degree of discord between a gene 

tree and the species tree (i.e., the species-to-locus Robinson-Fould’s distance). This relationship 

is clear when the LGT events occurred in the recent past, but it becomes degraded when those 

LGT events occur in the more distant past (Fig. 3).  

 

<H1>DISCUSSION 

Our examination into how the accuracy of distinguishing ILS and LGT depends on the 

timing of these events has immediate implications for applications using the program 

CLASSIPHY. However, our work also points to more general issues surrounding the decisions 

that researchers make about how to handle topological discordance across loci, as well as the 

lack of phylogenetic signal. We also acknowledge that much more work needs to be done 

before informed decisions about best practices might be made. Nevertheless, our work is an 

example of how the field can take steps toward characterizing the relative contributions of 

different sources of discord, and by doing so, potentially improve phylogenetic estimates.  

  

<h2>Identifying the cause of discord and implications for what to do about discordant 

trees 

The approach implemented in CLASSIPHY (Huang et al., 2018) and the analyses discussed 

here are important not only for reconstructing species trees, but also for exploring the processes 

that lead to discord in phylogenies. We are still in the early stages of analyzing and 

understanding large genomic and transcriptomic data sets. Significant technological and 

methodological challenges have already been overcome but more continue to arise. 
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 Despite the relative newness of large genomic data sets, some major patterns are emerging. 

For example, it has become clear that simply adding more data is not going to confidently 

resolve all the recalcitrant nodes across the tree of life. As recent studies have demonstrated, 

gene tree discord is very common and can show diverse patterns (Jarvis et al., 2014; Smith et 

al., 2015; Brown and Thompson, 2016; Shen et al., 2017). Furthermore, these studies have 

demonstrated that a relatively small number of genes can dramatically alter species tree 

estimates and the probability of including “outlier” genes (i.e., genes contributing to model 

misspecification in phylogenetic inference) increases as we increase the amount of data because 

the inherent heterogeneity of sequence data can only increase with additional taxa and loci. This 

additional data complexity necessarily complicates our ability to reconstruct phylogenies. 

Our results suggest that there is the potential to filter data sets for genes in which the 

conflict is due to evolutionary processes that can be correctly modeled so as to inform, rather 

than distort, the phylogeny—specifically, identifying data partitions of ILS loci (see Fig. 2 and 

Table 1). However, our results also suggest that the ability to accurately classify loci by the 

cause of discord depends on the diversification history itself. More specifically, the accuracy of 

the CLASSIPHY approach (Huang et al., 2018) is not strictly a function of the rate of LGT, but 

instead depends upon the timing of those LGT events, with events in the distant past being 

classified less accurately than those in the recent past (even for the same rate of LGT) (Fig. 2). 

This behavior presents challenges for studying the process and patterns of LGT and relates to 

our ability to test hypotheses about the role of LGT in the diversification of some groups (e.g., 

Xi et al., 2012).  

Nevertheless, one of the most compelling aspects of our results is that discord due to ILS 

tends to be accurately identified, irrespective of whether the events took place in the recent or 

more distant past (Table 1). Moreover, this result is generally fairly robust to mutational 

variance (i.e., there is not much of a difference in the classification accuracy of ILS loci based 

an estimated gene tree versus the actual genealogy; Table 1). Limited phylogenetic signal that 

might contribute to differences between estimated gene trees and the actual genealogies, at least 

for the parameter space considered here, is not a significant problem. This finding has important 

implications for decisions researchers might make about phylogenetic analysis and, in 

particular, estimating species trees (Knowles and Kubatko, 2010). First, it dispels a common 

misconception that species tree approaches may not be appropriate when divergence occurs in 
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the more distant past because, within any species, individuals will have coalesced to a common 

ancestor. As our results clearly show, ILS, whether it happens in the recent past or more distant 

past, can be detected, though with somewhat lower accuracy (Table 1), even with a single 

individual sequenced per species. In other words, the discord arising from the random sorting of 

gene lineages, which occurs irrespective of whether divergence is recent or in the distant past, 

should not be confused with the distinct concept of optimal sample design, and how sampling 

more individuals might or might not be useful to phylogenetic inference (e.g., when 

diversification occurs in the more distant past, sampling more individuals will not improve 

phylogenetic estimates; see McCormack et al., 2009; Knowles, 2010).  

The second important implication of these results on the classification of ILS loci bears on 

whether the lack of phylogenetic signal of individual genes is necessarily a legitimate reason to 

concatenate data (e.g., Jarvis et al., 2014). Unlike the detection of LGT trees, where there is a 

fairly substantial effect of mutational variance for deeper histories (Table 1; see also Fig. 3), the 

detection of ILS trees is consistent through time (Table 1). Again, this suggests that at least for 

the parameter space studied here, the ability to detect ILS is generally robust even when those 

events occur in the recent or distant past. As such, the results bolster arguments that with 

improved model fit (i.e., accurate modeling of the nucleotide substitution process such that 

estimated gene trees match the underlying genealogies), and when ILS is the primary source of 

discord among the gene trees analyzed, species tree analyses can be accurate for phylogenetic 

inference. Whole genomes or transcriptomes likely have many processes that shape gene tree 

evolution and so instead of presuming that all the discord is the result of ILS, we may be able to 

identify and use those ILS loci for species tree construction. However, the difference between 

the classification accuracy of LGT loci based on the actual genealogical histories versus the 

gene trees themselves, as well as reduced accuracy of LGT loci for deeper species divergence 

times relative to more shallow histories (Table 1), suggests that limited phylogenetic signal may 

become problematic (see also Richards et al. 2017).  

 

<h2>Accurately estimating species’ phylogenies and moving beyond the species tree  

Detailed interrogation of genomic data sets (e.g., Fontaine et al., 2015; Smith et al., 2015; 

Shen et al., 2017) has provided clear evidence that processes other than the coalescent 

(reviewed by Maddison, 1997) contribute significantly to gene-tree discord. The importance of 
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proper modeling of data (e.g., Kubatko and Degnan, 2007; Ruprecht et al., 2017), and the 

impact of the different sources of discord on phylogenomic analyses, highlights that data 

abundance alone will not be sufficient to infer accurate inference of species relationships. 

Debates on best practices (e.g., over concatenation and coalescence, de Queiroz and Gatesy, 

2007; Kubatko and Degnan, 2007; Edwards, 2009; Zhong et al., 2013; Gatesy and Springer, 

2014; Liu et al., 2014; Xi et al., 2014) typically do not address the many sources of discord that 

contribute to conflict. Perhaps more importantly, these discussions often do not consider that, in 

addition to the better construction of species trees, analyses of the patterns of conflict also lead 

to a better understanding of the evolutionary processes and events that occurred within the 

lineages being analyzed. As such, our study represents an important step toward characterizing 

the relative contributions of different sources of discord. Instead of simply concatenating all the 

data, which violates our models of evolution, we might examine the data in more detail, and if 

we can identify those genes where discord is the result of ILS, we may have an opportunity to 

better resolve species relationships. However, even though we demonstrate that the 

identification of ILS genes is possible under the parameter space explored here, empirical data 

are more complex. For example, as the scope of a particular phylogenetic analysis increases, the 

probability of having multiple processes influence the evolution of a single gene tree also 

increases. And so our results, along with those of other genomic studies over the last few years, 

suggest that decisions about phylogenetic analyses will be more nuanced, contrary to debating 

which one method might be best (i.e., simply assuming that concatenation will avoid unwanted 

problems is not a justifiable position). As data sets continue to expand in taxonomic and 

genomic coverage, how we might achieve the most accurate phylogenetic estimates, while at the 

same time, extract information about the evolutionary processes structuring phylogenomic data, 

is a pressing question that deserves more attention. 

What approach might researchers take to reach a balance between data content and model 

fit to achieve accurate phylogenetic inference? Despite compelling arguments for improved 

model fit to increase the accuracy of phylogenetic inference, and given the difficulties in 

analyzing big data, some researchers have shifted back to the use of concatenated data sets with 

only nucleotide evolution modeled in the inference procedure (e.g., Jarvis et al., 2014; Wickett 

et al., 2014; Prum et al., 2015; Yang et al., 2015), prompting others to attempt to argue for the 

superiority of concatenation specifically (e.g., Gatesy and Springer, 2017).  Without arguing for 
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or against the specific application of these methods to particular data sets, the lessons from 

genomics and transcriptomics over the last few years have demonstrated that this practice masks 

significant discord underlying the data. This underlying discord can result in researchers finding 

strong support for conflicting relationships with only minor modifications to the genes included 

between analyses. As such, the field of phylogenetics is at an interesting juncture. Big data are 

providing unprecedented opportunities to conduct phylogenetic analyses at a scale that 

encompasses entire genomes. However, such analyses face computational challenges and pose 

new challenges from their increased heterogeneity (i.e., larger data sets have a greater number 

of processes that might contribute to discordant gene trees).  

We hope that our work here will draw attention to one potential avenue for potentially 

improving phylogenetic estimates by minimizing some model misspecification (in this case, 

excluding LGT trees from a set of discordant trees), while we learn something about the 

processes underlying the discord observed in phylogenomics, two goals that are certainly out of 

reach when researchers decide to concatenate. By embracing the heterogeneity in gene trees and 

exploring the sources of discord, we stand to gain a better understanding of how the resulting 

phylogenies may or may not be distorted by gene tree discord (e.g., Huang et al., 2014). 

Moreover, even if we do not currently have methods that can infer phylogenies under models 

that account for multiple discord-generating processes, identifying the processes informing the 

data is still useful for applications beyond a focus on species tree inference per se (e.g., how 

does the contribution of LGT vary across clades or whether LGT is associated with ecological 

shifts). In the future, understanding which model features are important to provide a realistic 

framework for inferring species phylogenies when these data sets contain multiple discord-

generating processes will be mutually beneficial to both endeavors, and it is in this spirit of 

exploration that we present our results.  
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FIGURE 1. (A) Schematic of the three steps to simulate lateral gene transfer (LGT), lineage 

sorting, and mutation, respectively, and (B) the topology of the species tree and different tree 

depths (i.e., shallow and deep) used to simulate test data sets. Specifically, starting with a 

species tree (Fig. 1B): (1) locus trees were simulated with random LGT events, (2) genealogies 

were simulated within the locus tree according to a coalescent process (i.e., simulating random 

incomplete lineage sorting [ILS] events), and (3) nucleotide data sets were simulated on the 

genealogies under a model of nucleotide substitution; note the subscripts identify the steps in 

the simulation process that were carried out for each independent locus, for example, for locus i 

to locus j. Either the gene genealogies or estimated gene trees from the nucleotide data sets were 

analyzed with CLASSIPHY to examine the impact of homoplasy on inferred data partitions 

(i.e., groups of ILS loci versus LGT loci).  

FIGURE 2. Classification performance when species divergence is relatively recent (i.e., 

shallow; shown in the solid line) compared to deeper divergence times (show in the dotted line) 

for different contributions of lateral gene transfer (LGT) to gene tree discord, ranging from low, 

medium, and high relative proportions of LGT loci, as characterized by the receiver operating 

characteristic (ROC) curve. A classifier with no power will sit on the diagonal (i.e., essentially 

random guessing, 0.5, whether a locus is a incomplete lineage sorting [ILS] versus LGT locus). 

The area under the curve (AUC) scores (with a maximum value of 1) are also shown for 

comparison of the accuracy of the classifier in distinguishing ILS versus LGT loci (presented 

next to the solid and dashed lines) for shallow versus deep histories.  

FIGURE 3. Variation in the classification performance among gene trees as a function of the 

Robinson-Fould’s distance between each gene tree and the species tree (i.e., each dot shows the 

posterior probability of lateral gene transfer [LGT]) when species divergence is relatively recent 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

(shown on the left) compared to deeper divergence times (show on the right), for (A) low, (B) 

medium, and (C) high relative proportions of LGT loci. 

 

 

 

 

TABLE 1. Comparison between the classification accuracy of incomplete lineage sorting (ILS) 

and lateral gene transfer (LGT) loci based on the genealogy versus estimated gene trees 

highlights the impact of mutational variance (i.e., the mismatch between the actual genealogical 

history of a locus and the estimated gene tree of a particular locus; see Huang et al., 2009). 

Because the results are standardized (i.e., the difference in the percentage of correct 

classification of ILS and LGT loci when based on the genealogy versus the estimated gene tree), 

the effect of mutation separate from any inherent differences in the accuracy of classification of 

a locus is clear. 

 

  % Decrease in classification accuracy due to mutation    

 Shallow divergence history   Deep divergence history  

LGT rate ILS LGT  ILS LGT   

Low  0 8%  0 15% 
  

Medium 3% 0  2% 18%   

High 8% 0  0 31%   
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