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PREMISE OF THE STUDY:: Discordant gene trees are commonly encountered when
sequences from thousands of loci are applied to estimate phylogenetic relationships. Several
processes, contribute to this discord. Yes, have no methodbkat jointly model different

sources of cenflict when estimating phylogenies. An alternative to analyzing gatiomes or

all the sequenced loci is to identify a subset of loci for phylogeaealysis. live can identify

data partitions'that are most likely to reflect descent from a common ancestor (i.e., discordant
loci that indeed reflect incomplete lineage sorting [ILS], as opposed to some other process, such
as lateral gene transfer [LGT]ve can analyze this subset using powerful coaledizes®d
speciedreg approaches.

METHODS: Test data sets were simulated where discord among loci could arise from ILS and
LGT. Datasets where analyzed using the newly developed program CLASSIPHY(ldtiah
2018) toassessvhether oumbility to distinguish the cause of discord among loci varied when
ILS and LGT occurred in the recent versus deep past and whether the accuracy of these
inferencesywere affected by the mutational process.

KEY RESULTS. We showhataccuracy oprobabilistic classification of individual loci by the
cause of'discord differed when ILS and LGT events occurred more recently compartdtewi
distant paséind thathe signaito-noise ratio arising from the mutational processtributes to
difficulties in inferring LGT data partitions.

CONCLUSIONS: We discuss our findings in terms of the promise and limitations of
identifyingsubsets of loci for speciéree inference that will not violate the underlying
coalescentimoddi.e., data partitions in which ILS, and not LGT, contributes to discotid)

also discuss the empirical implications of our work given the many recalcides in the tree

of life (e.g., origins of angiosperms, amniotes, or Neoaves), and recent arguments for
concatenating.loci.

KEY WORDS..CLASSIPHY:; coalescencegenetree discorgdincomplete lineage sorting;

lateral genestransfespecies tree

When phylogenetic relationships among species are examined using genomic or toamscript
scale dataets, the discord (e.g., incongruent branching patterns) among individual gene trees is
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clear. There are various processes that can result in this discord, such as incomplete lineage
sorting (ILS), lateral gene transfer (LGT), hybridization (H), and gempéchtion and loss
(DL). In addition to these biological processes that generate discord, disapitoe due ta
lack of informative phylogenetic data ordaoors in sequence assembly. Disagreement between
gene trees_ has traditionally posed a challdagphylogenetic analysis, especially when the
only strategy for combining data from different genes was simple concatenatioh, whic
effectively‘treats discord as noise, rather than fundamental structure of systems. However,
significant‘advances for estitivag phylogenetic relationships despite gene tree discord have
been made with specitiee methods, which explicitly model the coalescent process, turning
one source ofidiscord, ILS, into a source of information rather than noise (Edwards, 2009;
Knowles anl' Kubatko, 2010).

There have also been recent developments for modeling sources of discord othe$ than
when estimating phylogenetic relationships (e.g., gene duplication and loss: Bowdsau et
2013; hybrid origin of taxa: Bilschak et al., 2017; Meng and Kubatko, 2009; netvmks:
Lemus and-Ané, 201@&olis-Lemus et al., 2017; Zhang et al., 2018; Wen and Nakleh, 2017).
However, adequate methods do not exist that simultaneously estimate phylogeestimadel
sources oficonflict, model molecular substitution, and perform well when more thaaus®e
of discord-are considered (Boussau et al., 2013). As a result, slight changes&t dssambly
and/or phylogenetic reconstruction methods often generate different spexsggdamis et al.,
2014, Wickett et al., 2014; Xi et al., 2014

Thesesstudies emphasize that the key to resolving relationships lies not just with more data,
but also withwdéecisions about which data to include and what analyses to apply (etgetSmit
al., 2015; Brown and Thompson, 2017; Shen et al., 2017). Model misspecification, for example,
of the model of molecular evolution (e.g., nonstationarity of composition, Foster, 2004; Morgan
et al., 2013;.Cox et al., 2014, Jarvis et al., 2014) or ¢rereeevolution (e.gignoring
coalescenbased variation among loci; Kubatko and Degnan, 2007), has been shown to
dramaticallysreduce the accuracy of phylogenetic reconstruction. However, rocadett
currently, ner.are they likely soon to be, capable of accommodating all thedesteity and
complexity in full genomes and transcriptomes. Consequently, approaches that focus on

identifying subsets of data that conform to the assumptions of, or are otherwiseegbfion)

This article is protected by copyright. All rights reserved



the particular models used in a given phylogenetic analysis, have been expanding (e.g., Huang
et al., 20162018 Brown and Thompson, 2017; Richards et al., 2017).

Different criteria might be applied to identify which loci from a larger pool might be
included in a phylogenetic analysis. For example, loci may beechioased on characterizations
of their phylegenetic signal (Gori et al., 2016; Huang et al., 2016; Lewitus and Morlon, 2016).
As an alternative to using a statistical criterion to reduce the heterogeneity in data that does not
consider what'processes urigethe discord, the biological basis of the discord might be
considered explicitly when identifying data partitions. For example, data pagtitimit be
based on'whether discord is caused by ILS versus LGT using the recently developed program
CLASSIPHY (see Huang et al., 2018). Such data partitions, like the characterizations based on
statistical criteria that are agnostic to cause (see Gori et al., 20060t caly be used to avoid
model misspecification (i.e., only loci for whicliscord arissfrom ILS might be included in a
speciedree analysis of phylogenetic relationships), but they may also provide additional
information that is of biological interestthe proportion of loci evolving under different
evolutionarygprocesses (see Huang e8l18). That is, discord among loci is more than just a
statistical inconvenience, but can be usefully leveraged to inform and improueetlgsis if the
underlyingsprocess can correctly be identified and modeled.

A newly developed methd@LASSIPHY)provides for the identification of the processes
that generate discord in a given locus (Huang et al., 2018), and apart from the fundamenta
utility of this (e.g., for phylogenetic inference as described above), this meswodllalws us to
ask questignstalob the evolution of the discord itself. Here we use this method to ask two key
guestions abeut the utility of this concept in practice. First, how sensitive is the accurate
classification of loci to the diversification history itseBecond, how is the @aoracy of data
partitions (i.e., the inferred subsets of loci with discord due to ILS) infecehg the mutational
process? We answer these questions using simulated test data, so thatavericave
knowledge of the identities of the particular loci that are discordant due to ILB €T, as
well as the timing of ILS and LGT events themselves.

By assessing the effects of the timing of divergence, as well as the mutational process, on
our ability to distinguish ILS from LGT as the cause of discord among loci (geg)k the
present studywe provide a critical context for empirical applications of the program
CLASSIPHY (Huang et al., 2018) given that ILS and LGT events in practice may ocher in t
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recent or more distant evolutionary past and thaltdata sets are comprised of DNA

sequences. We discuss the relevance of our findings to strategies for resolving the recalcitrant
nodes that have come to characterize many deep nodes in the history of divergence of different
clades (e.g., birds and planMirarab et al., 2014; Wickett et al., 2014), but also to debates on
best practices,(e.g., over concatenation versus sgeegesstimation; de Queiroz and Gatesy,
2007; Kubatkoand Degan, 2007; Zhong et al., 2013; Gatesy and Springel,iRGsi4al.,

2014; Xi etal;;2014).

<H1I>MATERIALSAND METHODS

We use simulatiofbased testing to examine the robustness of inferred data partitions to the
timing of ILS and LGT events, as well as the mutational process (see Fig. 1hidbrtie
contribution of ILS and LGT to discord and mutational effects on geeeestimation are

known. Becauswe simulated our test data, we know which loci have discord arising from ILS
versus LGT events, and thuge can evaluate whether we can accurately distinguish between
discord duettorlLS versus LGT by comparing the known contribution of ILS and LGT with the
probabilisticallyinferredcontribution oflLS and LGT for each of the test data sets (details
below),usingthe program CLASSIPHY (Huang et al., 2018ich is freely available on

GitHub (https://github.com/huatengh/Classiphy)

<h2>Simulated test dataets

Test data setswere simulated where discord among loci could arise from ILS an@rl@T.

LGT eventsithat induce a topological discord are considered, and hereaftenpyasierred

to as LGT loci (i.e., LGT events that do not alter the topology of a gene tree alassdier] as

LGT loci)..The rest of the loci, which do not contain LGT events, but could contain discord due
to ILS, are referred to as ILS loci.

To generate theest data sets, three separate steps are involved to simulate LGT, lineage
sorting, andsmutation, respectively (Figh)1 Specifically, starting with a species tre®: lpocus
trees were'simulated with random LGT eversgenealogies were simulated wviithhe locus
tree according to coalescent process (i.e., simulating random ILS events)) andéotide
datasets were simulated on the genealogies with a substitution model (details seefmiow).
isolaing the effects of the timing of divergence b tbility to discriminate ILS from LGT
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loci, all test dataets were simulated under a single species tree in which the relative timing of
divergence among taxa remained the same, but the total depth ofdies $f@= was increased
(Fig. 1B). Specifically, the test data were simulated under a Sihtspecies tree with either a
total depth of 25N (and referred to as “shallow”), or one with a total depth of 100N (and
referred to_as.*deep”) with the additional branch length addduktogs of the tree ég Fig.
1B), ratherthan rescaling all the branches. However, to avoid introducing addit®hal
events on‘these extended terminal branches, the extra length was added to the simulated
genealogies'(i-e., after st@drom above), rather than changing species tree itself. As such,
the distribution of ILS and LGT events was held constant; only the absolute timing ofcspecif
events shiftegs

To examine the effect of mutation rates on our ability to distinguish ILS verstisdoi;
we compard the accuracy of the inferred data partitions defined by loci with discord due to
ILS, but not LGT, under two conditions: coalescent gene genealogies versus estimated ge
trees from nucleotides of individual tests data setgwralyzed in CLASSIPHY (FidA).
That is, thesphylogenetic estimate for a locus (i.e., the gene tree infemeddcleotide data)
may differ from'the actual genealogy of that locus (i.e., the coalescent histheylo€tis)
because of.limited phylogenetic signal (for more detaildiermismatch between estimated
gene trees7and coalescent genealogies due to mutational variance see Huang et al., 2009, 2014;
Lanier et al., 2013). This potential mismatch between the gene genealogy and égjenate
tree on the accuracy of data partisds relevant to classifying empirical data, and therefore is
included herepgiven the distribution of homoplasy is dependent upon the diversity history, and
its effects orthe performance of CLASSIPHY have not yet been investigated.

<h2>Choice of parametrs in simulated test data

All test data sets were simulated under the same species tree (FighisBpecies tree was
chosen to,be representative of a history with an average amount of discord due to ILS.
Specifically,.the species tree was identified from a set of 100 species trees simulated under Yule
birth-and-death model (with speciation rate s @xtinction rate), for which 500 genealogies
were simulated, and the average RF distance between species tree and its genealogies (i.e., ILS
caused distam) was calalated. The chosen tree (Fig. 1B) was then identified by ranking all

100 species trees accorditaghe speciesreegenealogy distanceglectingthe species tree
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closest to the mean distance. Hence, the species tree used in this studglasneS@axon tree
at 25N depth with an average level of expected discord due to ILS.

Based on this species tree, we simulated 10f€reint data set€€ach data set consisted of
800 locus trees (i.e., 800 independent loci; see Fig. 1)héutata setdiffered in their
respective rates of LGT, which ranged from 2e-10 to 2e-9 LGT events per genelaten. S
LGT events were introduced at random, in each data set of 800 locus trees, there are locus trees
that differ topologically with the spass tree (i.e LGT between nagister lineage), those with
the same topology but different branch lengths (i.e., LGT between sister lineadahpsm
having no LGT events. The range of LGT rate was chosen such that 90% of theedesus-
contain 245%LGT loci. Sice estimating large numiseof gene trees is computationally
intensive, onlysthree data sets with different amounts of LGT loci were selected for simulating
nucleotide sequences and estimating gene trees. These data sets were identified by ranking the
data sets based on the proportion of LGT loci (i.e., ranking were establishedegft2o$the
simulation‘procedure; see Fig. 1A), and selecting the three data sets at {f25%nd 75%
guantile. These test data sets, each comgr00 loci, contained 4.9%, 7.5% and 11.5% LGT
loci, respectively. Genealogies with one individual per species were simulated for each locus
tree according tthe coalescent model (i.e., a genealogy may differ from its locus tree because
of ILS).

We used SimPhy (Mallo et a016) for simulating the species trees, locus trees and
genealogies above (a wrapper function to use Simphy is included in the CLASSIPHY R
package),andwsed S€gn (Rambaut and Grassly, 1997) to simulate nucleotidesestan
the genealogies. For eaghnealogy (under the shallow versus deep history of 25N versus 100N
total depth, respectively), nucleotide da&s of 1000 bp were simulated with the program Seg-
Gen (Rambaut and Grassly, 1997) under an HKY85 model of nucleotide substitution with a
transition-transversion ratio of 3.0, a gamma mutation rate distribution with shape paraimete
0.8, and nucleatide frequencies of A=0.3, C=0.2, T=0.3, and G = 0.2 for the ancestral
sequence..From the simulated DNA sequences, gene trees were estamaiétAxML
(Stamatakis; 2014). These estimated gene trees may differ from the actual genealogy because of
limited phylogenetic signal (for more details on the mismatch between estimated gene trees and
coalescent genealogies due to mutational variance s@egHet al., 2009, 2014; Lanier et al.,

2013). An outgroup lineage (but with no LGT between the outgroup agwup lineages) was
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used to oot estimated gene tree (Fig.)1Bhe outgroup is not included in any of the calculated
summary statistics usediine CLASSIPHY analyses (i.e., the outgroup does not contribute to
the classification of loci as ILS versus LGT loci).

In total, trerewere 12 test data sets: teistta sets for each of 3 different LGT quantiles for a
shallow versus deep divergence higidrased on either the estimated gene trees or the
genealogies themselves (after excluding them from the trainingeli&ach test data sess
analyzed separately using CLASSIPHY (Huang et al. 2018), as described Dedotest data
sets, and the"pameter file for the simulated training sets, are freely avaifatre GitHub

(https://github.com/huatengh/Classiphy

<h2>Classification of loci by the cause of discord

CLASSIPHY is a simulatiottrained (supervised) machine learning approach (Huang et al.
2018). Unlike traditional machine learning approaches, which typically use emhpiaia for
both training and evaluation, in the CLASSIPHY approach, trainingadlatgenerated under
known processes of ILS and LGT, following Sukuumaran et al. (2016), and the entire process is
described'in detail below. The machine learning algorithm used in CLASSIPd&trgminant
analysis of.principal component®APC) andhas beemlescribed comprehensively (Jombart,
2008; Jombart et al., 2010). Briefly, this algorithm involves calculating a set ofi@ym
statistics on the training data, projecting these statistics ontogaim@mponent axes, and
using the principal componentesscores as input to constraaliscriminant analysis
classifier, whieh in turn is applied to the target data to clats#fynwith respect to the
generating'medel. While there are many machine learning algorithms availebhave found
that the DAPC prforms well enough for applications such as this (Sukumaran et al, 2016) to
base our analyses on it and has been borne out through our own assessments (Huateng et al.,
2018).

The basic steps involved in this simulatimanedDAPC procedure arél) simulation of
gene trees.under regimes corresponding to different processes that might eotatritistord—
in this casglLS and LGT,(2) calculation of summary statistics on simulated data sets to train a
classification function, (3) construction of a discriminant analysis functiordtmserincipal
components extracted from the training data d¢tagsessment of the performance of the
summary statistics by inspection of posterior prediction of the training datndeb)
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application of the discriminaminalysis function to the original data to classify it with respect to
whether ILS or LGT underlie observed gene tree discord. The summary statesticd ased
directly, but rather the principal components extracted from the summary statistics ame used
construct the DAPC function in this machine learning approach. For a detatapten of
CLASSIPHY;see Huang et al. (2018), which describes the concept of identifying data
partitions by the biological cause of discord and demonstrates the vafittigy statistical
approach ‘applied in CLASSIPHY. Here, we limit our focus to questions that carstvered
statistically by“application of this method to data sets that differ with respect to the timing of
ILS and LGT events, and the effects of the matetl process on the accuracy of identifying
data partitions«(i.e., data subsets with ILS, but no LGT).

The training setappliedin the CLASSIPHY analyses here comprised 1000 data with
different LGT rates, each with 800 loci, where the rate of LGTdvasn from the distribution
described above, simulated @ndhe one species tree (Fig.)1Bor each of the 800 loci of each
test dataset (i.e., a total of 800 logi 12 data sets), a probabilistic classification was generated
using a standard posterior probabilities >0.5 threshold to classify a locus aseith8rlocus
or LGT locus'(see Huang et al. 2018 for other thresholds that might be applied using
CLASSIPHY).

<h2>Assessing accuracy of data partitions

The inferred classification of individuldci from the CLASSIPHY analysis was compared
to the actual history of each locus to evaluate the accuracy of distinguishingdL%a loci.
Accuracy ofithe data partitions are summarized separatel§)fea¢h of the three LGT rates
(i.e., a low, medium, and high LGT rate), and (2) the different depths of divergance (i
shallow versus deep divergence histories). For each of these separate scenarios, a receiver
operating characteristic (ROC) curve analysis was performed usipR@&R package (Robin
et al., 2011)..Such analyses are commonly used to characterize and compare the results from
machine learning approaches. ROC plots provide a visualization for assessimjotmegnee
of the classifier.over its entire operating range, as opposed to relying just oretbhedee the
curve (the AUC) to evaluate the classifier. In addition, linear regressions were used to test
whether or not the posterior probability of LGT correlated with the degree of disdorenea
gene tree and the species tree,(itee specieso-locus Robinsori~ould’s distance).
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To examine the effect of mutation on the ability to accurately distinguishnd3.GT loci,
the classification accuracy of data partitions was compared when the genealogy versus the
estimated gene tree was analyzed with CLASSIPHY. These results are presented after
standardizing by the overall accuracy of classification for each of the three LGT rates (i.e., a
low, mediumgand high LGT rate), and the different divergence depths (i.e., shallowdespus
divergence, histories), to establish the effect of mutation on accurate classification (as opposed
to inherent'differences in the accurate classification of individual loci). Specifically, the
differencesin‘the percertgecorrect classification when based on genealogies versus estimated

gene trees were calculated and presented.

<H1>RESULTS

There are two important observations about the performance as measured in terms of
posterior probabilities for the true versus false model (Fig. 2). Bgstisualizd in the ROC
curves (Fig. 2)for loci with high posterior probabilities, the method is sensitive to Hjtthé
rate of LGTF=and (Rwhether these events occur in the recent versus distant past (se®Fig. 1
simulation‘design For example, in all cases, irrespective of the rate of LGT, the accuracy of
data partitiens (i.e., classification of ILS and LGT loci) decreases when those events are in the
more distant past, (Fig. 2). In these curves, the true positieg TP, reprgenting sensitivity) is
plotted against thialse positivaate (FP, representing-ispecificity) for thep > 0.5 threshold
used hereto classify ILS and LGT loci. This sensitivity to whether the evamssng discord
occurred inrtherecent versus distpastis also reflected in the difference in the summary
provided bysthe AUC scores for each test data set with either low, medium, or high proportions
of discord cause by LGT (see Fig. Rore specifically, there is a drop in classification
performancdi.e,, lower AUCscores) with higher proportions of LGT events and when the
events occur.in.the distant past. Note that because the additional branch lengihddedrto
the tips of the tree (see Fig. JlBather than rescaling all the branches, ancethese added to
the simulated’genealogies after stegs ascribed in the methods (Fig. 1A), the difference in
performance ean only arise from shifts in the absolute timing of specificsgvent no
additional LGT events were introduced by the extended terminal branches of the tlegmhis

species divergence; Fig. 1B).

This article is protected by copyright. All rights reserved



We can see that the largest decrease in the pagesritoci classified accurately ranges
from about 86 t015% and is associated with the deep divergence histories (Table 1).
Moreover, this analysis also shows how the drop in the accuracy of CLASSIPHYhevilepth
of the divergence events observed in the ROC analyses (Fig. 2) primarily reflects the decreased
accurate classification of LGT loci, not ILS loci. This result highlightg, while phylogenetic
scale matters (that is, whether the processes generating discord occurred in the recent versus
deep pastihe data partitions representing ILS loci tend to be more accurate réative
identifying data“partitions of LGT loci (Tabll). This sensitivity in identifying data partitions
of LGT loci when the events occurred in the more distant past can be visualithed by
relationship between the posterior probability of LGT and the degree of discord hetgere
tree and the specitee (i.e., the specids-locus Robinson-Fould’s distance). This relationship
is clear when the LGT events occurred in the recent past, but it becomes degraddtbsdne

LGT events occur in the more distant past (Fig. 3).

<H1>DISCUSSION

Our examination into how the accuracy of distinguishing ILS and LGT depends on the
timing of these eventsas immediate implications for applications using the program
CLASSIPHY. However, our work also points to more general issues surrounding thergecisi
that researchers make about how to handle topological discordance across loci, as well as the
lack of phylogenetic signal. We also acknowledge that much more work needs to be done
before informed decisions about best practices might be made. Nevertheless, our work is a
example ofshew the field can take steps toward characterizing the relative contributions of
different sources of discord, and by doing so, potentially improve phylogenetic estimate

<h2>ldentifying the cause of discord and implications for what to do about discordant
trees
The approaech implemented in CLASSIPHY (Huang et al., 2018) and the analyses discussed
here are important not only for reconstructing species trees, but also for expilerprgcesses
that lead to discord in phylogies. We are still in the early stages of analyzing and
understanding large genomic and transcriptomic data sets. Significant tepbalchnd

methodological challenges have already been overcome but more continise to
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Despite the relative newness of large genomic skt some major patterns are emerging.
For example, it has become clear that simply adding more data is not going to confidently
resolve all the recalcitrant nodes acrosdibe of life As recent studs have demonstrated,
gene tree discord is very common and can show diverse patterns (Jarvis et abna@iét
al., 2015; Brewn and Thompson, 2016; Shen et al., 2017). Furthermore, these studies have
demonstrated that a relatively small number of genes can dramatically alter species tree
estimates‘and the probability of including “outlier” genes (i.e., genes contributingoe m
misspecification in phylogenetic inference) increases as we increase the amount of data because
the inherent heterogeneity sequence data can only increase with additional taxa and loci. This
additional datasxcomplexity necessalymplicates our ability to reconstruct phylogenies.

Our results suggest that there is the potential to filters#dtafor genes in which the
conflict is due to evolutionary processes that can be correctly modeledosmfasrh, rather
than distort, the phylogeny—specifically, identifying data partitions of ILS loei Ksg. 2 and
Table 1). However, our results also suggest that the abilityctorately classify loci by the
cause of disecord depends on the diversification history itself. More speyifitedlaccuracy of
the CLASSIPHY approach (Huang et al., 2018) is not strictly a function of the ra@&Tofdut
instead depends upon the timing of those LGT events, with events in the distantrgast bei
classified.eSs accurately than those in the recent past (even for the same rate (6id-G))
This behavior presents challenges for studying the process and patterns of LGT and relates to
our ability'to test hypotheses about the role of LGT in the diversification of gmues (e.g.,
Xi et al., 2022):

Nevertheless, one of the most compelling aspects of our results is that disctrdLdiie
tends to be accurately identified, irrespectivevbéther the events took place in the recent or
more distant past (Table 1). Moreover, this result is generally fairly robust to mutational
variance (l.e.,.there is not much of a difference in the classification accuracy of ILS loci based
an estimated. gene tree versus the actual genealogy; Tabimited phylogenetic signal that
might contribute to differences between estimated gene trees and the actual genealogies, at least
for the parameter space considered here, is not a significant problerfindinig has important
implications for decisions researchers might make about phylogenetic anatjsis a
particular estimating species trees (Knowles and Kubatko, 2010). First, it dispelsy@oom

misconceptiorthat species tree approaches may nofpecpriate when divergence occurs in
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the more distant past because, within any species, individuals will have coalesced to a common
ancestor. As our results clearly show, ILS, whether it happens in the recent past or more distant
past, can be detected, though with somewhat lower accuracy (Taéled ith a single

individual sequenced per species. In other words, the discord arising from the randugro$ort
gene lineages, which occurs irrespective of whether divergence is recettfiedistant past,

should not.be econfused with the distinct concept of optimal sample design, and how sampling
more individuals might or might not be useful to phylogenetic inference (e.g., when
diversification‘occurs in the more distant past, sampling more individualsatvilnprove
phylogenetic estimates; see McCormack et al., 2009; Knowles, 2010).

The second important implication of these results on the classification add¢LBdars on
whether the‘lack of phylogenetic signal of individual genes is necessarilyimégireason to
concatenate data (e.g., Jarvis et al., 2014). Unlike the detection of LGT trees, where there is a
fairly substantial effect of mutational variance for deeper histories (Table 1; see also Fig. 3), the
detection of ILS trees is consistentdhgh time (Table 1). Again, this suggests that at least for
the parametersspace studied here, the ability to detect ILS is generally robust even when those
events occurin‘the recent or distant past. As such, the results bojsterents that with
improved model fit (i.e., accurate modeling of the nucleotide substitution pramdsthat
estimated-géne trees match the underlying genealogies), and when ILS is the princargfsour
discord among the gene trees analyzed, species tree analyses can befacqirgibgenetic
inference."Whole genomes or transcriptomes likely have many processes that shape gene tree
evolution and'so instead of presuming that all the discord is the result of ILSgyMeenable to
identify andwuse those ILS loci for specie®tomnstruction. However, the difference between
the classification accuracy of LGT loci based on the actual genealogical histories versus the
gene trees themselves, as well as reduced accuracy of LGT loci for deeper species divergence
times relative.to mar shallow histories (Table 1), suggests that limited phylogenetic signal may

become problematic (see also Richards et al. 2017).

<h2>Accurately estimahg species’ phylogenies and moving beyond the species tree

Detailed interrogation of genomic data sets (e.g., Fontaine et al., 2015; SmithGt5l., 2
Shen et al., 2017) has provided clear evidence that processes other than the coalescent
(reviewedby Maddison, 1997) contribute significantly to gene-tree discord. The importance of
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proper modeling of data (e.g., Kubatko and Degnan, 2007; Ruprecht et al., 2017), and the
impact of the different sources of discord on phylogenomic analyses, highlights that data
abundance alone will not be sufficient to infer accurate inference of species relationships.
Debates on best practices (e.g., over concatenation and coalescence, de Queiroz and Gatesy,
2007; Kubatke.and Degnan, 2007; Edwards, 2009; Zhong et al., 2013; Gatesy and Springer,
2014 Liu et.al.,2014; Xi et al., 2014) typically do not address the many sources of discord that
contribute'toconflict. Perhaps more importantly, these discussions often do ndectmei, in
addition to'the"better construction of species trees, analyses of the patterns of conflict also lead
to a better understanding of the evolutionary processes and events that occhmeithevit
lineages beingwanalyzed. As such, our study represents an important step toward characterizing
the relative=contributions of different sources of discord. Instead of simply eoatiag all the
data,which violatesour models of evolution, we might examine the data in more detail, and if
we can identify those genes where discord is the result of ILS, we may have an oppartunity t
better resolve species relationships. However, even though we densotisitdhe
identificationrof ILS genes is possible under the parameter space explored here, empirical data
aremore complex. For example, as the scope of a particular phylogenetic analysis increases, the
probability=ef having multiple processes influence the evolution of a single geaso
increases~And so our results, along with those of other genomic studies overfthe Jasirs,
suggest that decisions about phylogenetic analyses will be more nuanced, couliehatiteg
which one method might be best (i.e., simply assurhiagconcatenation will avoid unwanted
problems is'not a justifiable position). As data sets continue to expand in taxonomic and
genomic coverage, how we might achieve the most accurate phylogenetic estimates, while at the
same time, extract information about the evolutionary processes structuring phylagéatam
is a pressing question that deserves more attention.

What approach might researchers take to reach a balance between data content and model
fit to achieve.accuta phylogenetic inference? Despite compelling arguments for improved
model fit todncrease the accuracy of phylogenetic inference, and given theluif$ien
analyzing big.data, some researchers have shifted back to the use of concatenated data sets wit
only nucleotide evolution modeled in the inference procedure (e.g., Jarvis et al., 20)dtt Wi
et al., 2014; Prum et al., 2015; Yang et al., 2015), prompting others to attempt to argue for the
superiority of concatenation specifically (e.g., Gatesy and Springer, 2017). Withougaiay
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or against the specific application of these methods to particulasetatahe lessons from

genomics and transcriptocs over the last few years hademonstrated that this practice masks
significant discord underlying the data. This underlying discord can result arckses finding

strong support for conflicting relationships with only minor modifications to thesgenkided

between analyses. As such, the field of phylogenetiasan interesting junctureigddataare

providing unprecedented opportunities to conduct phylogenetic analyses at a $cale tha
encompasses‘entire genomes. However, such analyses face computational challenges and pose
new challenges'from their increased heterogeneity (i.e., larger data sets have a greater number
of processes that might contribute to discordant gene trees).

We hopesthat our work here will draw attention to one potential avenue for potentially
improving ‘phylogenetic estimates by minimizing some model misspecificatidhigicase,
excluding LGT trees from a set of discordant treeg)le welearn something about the
processes underlying the discord observed in phylogenomics, two goals that arly certan
reach when researchers decide to concatenate. By emhitaeingterogeneity in gene trees and
exploring thessources of discord, we stand to gain a better understanding of howltimgres
phylogenies may or may not be distorted by gene tree discord (e.g., Huang et al., 2014).
Moreoverpeven if we do not currently have methods that can infer phylogenies under models
that account for multiple discomgenerating processes, identifying the proessgorming the
data is still useful for applications beyond a focus on species tree inference per se (e.g., how
does thecontribution of LGT vary across clades or whether LGT is associated with ecological
shifts). In the"futureunderstanding which model features are important to provide a realistic
framework'ferinferring species phylogenies when theses#ds contain nitiple discord
generating processes will be mutually beneficial to both endeavors, and it is pirthisf s

exploration that.we present our results.
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FIGURE 1. (A) Schematic of théhree steps to simulate lateral géransfer (GT), lineage

sorting, and mutation, respectivednd (B) the topology of the species tree and different tree
depths (i.ex'shallow and deep) used to simulate test data sets. Specifically, starting with a
species tree (Fig. 1B)1) locus treesvere simulated with random LGT event8) §enealogies

were simulated within the locus tree according to a coalescent process (i.e., simulating random
incomplete lineage sortindl[S] events), and3) nucleotide dataets were simulated on the
genealogiesinder a model of nucleotide substitution; note the subscripts identify the steps in
the simulationsprocess that were carried out for each independent locus, for ekamhpdelsi

to locus]."Either the gene genealogies or estimated gene trees from the nucleotide data sets were
analyzed.with CLASSIPHYo examine the impact of homoplasy on inferred data partitions

(i.e., groups of ILS loci versus LGT loci).

FIGURE 2. Classification performamcwhen species divergence is relatively recent (i.e.,

shallow; shown,in the solid line) compared to deeper divergence times (show in the dotted line)
for differentseontributions ofateral gene transfet. GT) to gene tree discord, ranging from low,
medium,and high relative proportions of LGT loci, as characterized by the receivetiogera
characteristic (ROC) curve. A classifier with no power will sit on the diagonal (i.e., essentially
random guessing, 0.5, whether a locus is a incomplete lineage stt8hgdgrsus LGT locus).
Thearea under'the curvA&UC) scores (with a maximum value of 1) are also shown for
comparisonsof the accuracy of the classifier in distinguishing ILS versus LGT loci (presented
next to the'solid and dashed lines) for shalloww®deep histories.

FIGURE 3. Variation in the classification performance among gene trees as a function of the
RobinsonFould’s distance between each gene tree and the species tree (i.e., each dot shows the

posterior probability ofateral gene transf¢L.GT]) when species divergence is relatively recent
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(shown on the left) compared to deeper divergence times (show on the right), for (A)low, (
medium, and (C) high relative proportions of LGT loci.

TABLE"1"Comparison between the classification aacyrofincomplete lineage sortinglL.S)
andlateral"gene transf€L.GT) loci based on the genealogy versus estimated gene trees
highlights'the impact of mutational variance (i.e., the mismatch between the actual genealogical
history of asloeus and the estimated gene tree of a particular locus; see HUarkpeodn
Becausdherresults are standardized (i.e., the difference in the percentage of correct
classification ofilLS and LGT loci when based on the genealogy versus the estimated gene tree),
the effect of mutation separate from any inherent differences in the accuracy of classification of

a locus is clear.

% Decrease in classification accuracy due to mutation

Shallow divergence history Deep divergence history
LGT rate ILS LGT ILS LGT
Low 0 8% 0 15%
Medium 3% 0 2% 18%
High 8% 0 0 31%
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(A) Generating test data: ajb2_1064_f1.pdf
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