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Key Points: 

• A new set of Cassini plasma, energetic particle, and magnetic field data from 

Saturn’s magnetosheath is introduced. 

• Statistical behavior of various magnetosheath properties is examined and 

compared with predicted upstream solar wind properties. 

• Science applications to electron heating at the bow shock and to magnetosheath 

structure are presented. 

 

Abstract 

 A new Cassini magnetosheath data set is introduced that is based on a 

comprehensive survey of intervals in which the observed magnetosheath flow was 

encompassed within the plasma analyzer field of view and for which the computed 

numerical moments are therefore expected to be accurate.  The data extend from 2004 

day 299 to 2012 day 151 and comprise 19,155 416-s measurements.  In addition to the 

plasma ion moments (density, temperature, and flow velocity), merged values of the 

plasma electron density and temperature, the energetic particle pressure, and the magnetic 

field vector are included in the data set.  Statistical properties of various magnetosheath 

parameters, including dependence on local time, are presented.  The magnetosheath field 

and flow are found to be only weakly aligned, primarily because of a relatively large z-

component of the magnetic field, attributable to the field being pulled out of the 
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equatorial orientation by flows at higher latitudes.  A new procedure for using 

magnetosheath properties to estimate the upstream solar wind speed is proposed and used 

to determine that the amount of electron heating at Saturn’s high Mach-number bow 

shock is ~4% of the dissipated flow energy.  The data set is available as an electronic 

supplement to this paper. 

 

1. Introduction 

 Upstream from a planet immersed in a supersonic solar wind, a bow shock will 

form in order to slow and heat the incident wind, converting it to a subsonic flow that can 

be diverted around the obstacle (either the planetary atmosphere/ionosphere or the 

magnetosphere).  The region of shocked solar wind that exists between the bow shock 

and the obstacle is the magnetosheath, and its plasma conditions are determined by the 

physical processes that take place within the shock, processes that are known to vary with 

upstream plasma properties such as Mach number and interplanetary magnetic field 

orientation.  For a magnetized planet whose intrinsic magnetic field enables it to form a 

magnetosphere, the interaction between the solar wind and the magnetosphere is 

mediated by the magnetosheath, and the processes that occur at the magnetopause are 

determined by the properties of the magnetosheath plasma and of the magnetospheric 

plasma just inside the magnetopause. 
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 Saturn’s magnetosheath is of particular interest to comparative magnetospheric 

physics for two principal reasons: 1) the evolution of solar wind properties with 

heliocentric distance is such that at the outer planets the Mach number of the flow is 

typically higher than at the Earth (e.g., Slavin et al., 1985; Masters et al., 2011; Jackman 

and Arridge, 2011), and 2) the nature of Saturn’s magnetosphere is strongly influenced 

by its rapid rotation, internal plasma sources (especially the moon Enceladus), and strong 

internal magnetic field.  These latter features combine to produce very fast corotational 

flow inside the magnetosphere (e.g., Thomsen et al., 2010) and strong centrifugal 

distension of the equatorial region, leading to polar flattening of the magnetopause (e.g., 

Slavin et al., 1985; Stahara et al., 1989; Sulaiman et al., 2014, 2017) and other non-

axisymmetries (e.g., Kivelson and Jia, 2014; Pilkington et al., 2015). 

 In light of these differences in both the upstream and internal plasma properties, it 

is quite likely that various physical processes take on a different level of importance for 

Saturn compared to the Earth.  For example, the higher Mach number of the solar wind 

flow causes a higher magnetosheath β (ratio of particle pressure to magnetic pressure), 

which in turn may suppress magnetopause reconnection (Masters et al., 2012a).  

Likewise, strong shears between flows in the magnetosheath and in the magnetosphere 

can also suppress reconnection (e.g., Desroche et al., 2013; Fuselier et al., 2014).  As 

another example, the action of the Kelvin-Helmholtz (K-H) instability at the 

magnetopause depends on magnetosheath properties, especially the magnetic field 
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orientation and the flow shear across the magnetopause (e.g., Desroche et al., 2013).  

There is some indication that K-H activity at Saturn is more prominent in the afternoon 

and dusk sector than was first anticipated (e.g., Masters et al., 2012b; Delamere et al., 

2013), perhaps because magnetospheric flows transport K-H vortices formed pre-noon on 

around to the afternoon magnetopause region (Delamere et al., 2013, Ma et al., 2015).  

 In addition to the influence that magnetosheath properties have on the coupling 

between the solar wind and the magnetosphere, the properties themselves are reflective of 

the collisionless physics of the bow shock.  With generally higher upstream Mach 

numbers than at Earth, Saturn’s bow shock provides a laboratory for the study of the 

physics of very high Mach number shocks (e.g., Richardson, 1987; Masters et al., 2011; 

Sulaiman et al., 2015, 2016; Masters et al., 2016).  For example, one plasma property that 

has been found to vary with Mach number is the downstream ratio of the ion and electron 

temperatures.  This quantity is of particular interest to magnetospheric studies inasmuch 

as it provides a potential marker for solar wind entry into the magnetosphere (e.g., 

Lavraud et al., 2009). 

 Prior to the arrival of Cassini in 2004, Saturn’s magnetosheath had been visited by 

3 fly-by missions: Pioneer 11 (1979), Voyager 1 (1980), and Voyager 2 (1981).  

Cassini’s 13-year orbital mission has vastly extended the magnetosheath observations, 

both with regard to spatial coverage and with regard to the range of upstream conditions.  

These observations have enabled statistical studies of the location of Saturn’s bow shock 
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and magnetopause (e.g., Arridge et al., 2006; Masters et al., 2008; Kanani et al., 2010; 

Went et al., 2011; Pilkington, 2014, 2015), as well as the magnetic field structure (e.g., 

Sulaiman et al., 2014) and turbulence (e.g., Hadid et al., 2015) within the magnetosheath.  

Evidence has been found for the existence of a plasma depletion layer (Masters et al., 

2014) and Kelvin-Helmholtz waves at the magnetopause (e.g., Masters et al., 2009, 2010; 

Delamere et al., 2011, 2013).  A study of 70 magnetopause crossings found that the 

magnetosheath β is typically high, restricting magnetopause reconnection to regions 

where the magnetic fields on either side are more nearly anti-parallel (Masters et al., 

2012a).   

 With regard to the physics of the bow shock itself, Masters et al. (2011) studied 

the electron heating at 94 Cassini bow shock crossings and found that the amount of 

electron heating across the shock represents between ~3% and ~7% of the incident solar 

wind ram energy, with a clear decline in the fraction with increasing Alfvén Mach 

number.  This range is comparable to values found at Earth of ~7% (Thomsen et al., 

1987; Schwartz et al., 1988). 

 The most extensive survey of Saturn’s magnetosheath properties was done by 

Sergis et al. (2013), who examined Cassini plasma, magnetic field, and energetic particle 

measurements in the magnetosheath for 7 years of the Cassini mission.  Restricting the 

study to intervals where the spacecraft remained within the magnetosheath for 24 hours 

or more, they found 916 hours of data.  Of these, only 340 hours had reliable plasma 

This article is protected by copyright. All rights reserved.



moments because Cassini was often oriented in such a way that the trans-sonic 

magnetosheath flow was not directed into the Cassini Plasma Analyzer/Ion Mass 

Spectrometer (CAPS/IMS) field of view.  That field of view is nearly 2π sr (Young et al., 

2004), but the constraints imposed by the requirements of the imaging instruments and 

thermal balance nonetheless frequently prevented IMS from seeing the flow (c.f., 

Thomsen et al., 2010).  Further, the fact that Cassini was commonly rolling about 

different axes as it orbited Saturn makes determination of the ion moments problematic, 

and the moments determined from numerical integration of the observed distributions 

according to the method described in Thomsen et al. (2010) are flagged as being incorrect 

under such rolling conditions. 

 In spite of these limitations on the availability of thermal plasma measurements, 

Sergis et al. (2013) established important facts about Saturn’s magnetosheath: typical 

flow directions; ranges of density, temperature, and flow speed; typical values of plasma 

β; and the relative distributions of plasma, energetic particle, and magnetic pressures.  

The study particularly focused on the frequent presence of high-energy water-group ions 

(designated W+) within the magnetosheath plasma, which demonstrates that energetic 

particles are able to leak from the magnetosphere and escape both downstream within the 

magnetosheath and upstream into the unshocked solar wind. 

 The difficulty of obtaining valid plasma ion moments has limited the scope of 

several of the studies mentioned above.  For those studies, the determination of which ion 
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moments are likely to be trustworthy has been done on a case-by-case basis, which limits 

the number of events that can practically be included.  In order to improve the event 

statistics without examining the viewing for every spectrum, Burkholder et al. (2017) 

used the viewing flag provided with the IMS moments data at the Planetary Data System 

(PDS) repository with a simple binary criterion: In the post-noon region of the 

magnetosheath, the magnetosheath flow ought to be largely in the +φ direction (in a 

Kronographic r,θ,φ coordinate system), which is parallel to the strict corotational 

direction inside the magnetosphere, so if the field of view includes the corotational 

direction (the definition of the viewing flag), the flows were accepted as valid 

measurements.  On the other hand, in the pre-noon sector, flows were accepted as valid 

only if the flag indicates corotation is not in the field of view.  Burkholder et al. (2017) 

presented persuasive evidence that this procedure satisfactorily identified valid 

magnetosheath flow speeds.  They used the resulting dataset to demonstrate a pre/post-

noon asymmetry in flow speed, which was interpreted as evidence for momentum 

coupling across the magnetopause.  While this approach allowed a satisfactory estimate 

of the flow speed, the corresponding densities and individual flow components may not 

be at all well determined if the bulk flow does not lie within the CAPS field of view.  It is 

therefore highly desirable to establish more definitively which CAPS magnetosheath ion 

moments are expected to be valid. 
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 The purpose of the present report is to introduce a new Cassini magnetosheath 

data set that is based on a comprehensive survey of magnetosheath intervals to identify 

those in which the observed magnetosheath flow was encompassed within the CAPS field 

of view and for which the numerical moments are therefore expected to be accurate.  This 

expands and extends the work of Sergis et al. (2013) by including many intervals of 

duration less than 24 hours and by including additional CAPS observations from 2011 

until the instrument was turned off in 2012.  The observations thus span the interval from 

the descending phase of solar cycle 23 through the ascending phase of cycle 24.  In 

addition, we have merged this data set with corresponding time averages of the electron 

moments (density and temperature) from the CAPS Electron Spectrometer (ELS, Young 

et al., 2004), energetic particle pressures from the Magnetosphere Imaging Instrument 

(MIMI, Krimigis et al., 2004), and magnetic field measurements from the Cassini 

Fluxgate Magnetometer (MAG, Dougherty et al., 2004).  We anticipate that this new data 

set, available as an electronic supplement to this paper, will enable a number of in-depth 

studies of Saturn’s magnetosheath, and we provide here several examples of its utility for 

addressing important scientific questions. 

 

2. Data Analysis 

 The CAPS IMS is a top-hat electrostatic analyzer (for energy-per-charge 

determination) followed by a time-of-flight section (for particle speed determination).  
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There are 8 anodes, providing 8 different look directions in the viewing plane.  Azimuthal 

coverage is provided by a physical actuator, which sweeps the viewing plane back and 

forth, resulting in coverage of ~2π sr of the sky.  The energy range of the instrument is ~1 

eV-50 keV.  For further instrumental details, see Young et al. (2004) or Thomsen et al. 

(2010). 

 The ion moments from CAPS/IMS that are used in this study, as in the previous 

works cited above, is the set of numerical moments derived from the Singles (SNG) data 

product, as described by Thomsen et al. (2010), with one exception: The ions with m/q=2 

are assumed to be H2
+ in that data set since the dominant sources of such particles within 

the magnetosphere are the water emitted from Enceladus and Titan’s upper atmosphere.  

For the present work, ions with m/q=2 in the magnetosheath are assumed to be shocked 

solar wind He++.  Since the calculated temperature (Thomsen et al., 2010) depends on 

both m/q and q itself (density and flow velocity depend only on m/q), the temperature in 

the original file has been multiplied by a factor of 2. 

 In preparation for submission of the Thomsen et al. (2010) moments to the 

Planetary Data System, the CAPS team undertook a cross-calibration of the derived ion 

densities with the electron densities determined from the Cassini Radio and Plasma Wave 

Science (RPWS, Gurnett et al., 2004) experiment.  The latter are based on identification 

of wave emissions near the upper hybrid frequency and are judged to provide the most 

accurate estimate of the local electron density.  This comparison resulted in a slight 
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adjustment of the IMS detection efficiencies, which was incorporated in a re-run of the 

data included in the Thomsen et al. (2010) study, as well as all subsequent calculated 

SNG moments.  Use of the new efficiencies made only fairly slight differences in the 

derived densities of the different ion components (generally less than ~20% either way) 

compared to values used by Thomsen et al. (2010), and velocities and temperatures were 

unchanged.  The full CAPS/IMS/SNG numerical moments data set with the final 

efficiencies is now publicly available at the PDS.  Each value is based on 416 seconds of 

data (13 A-cycles), which allows data to be included from a full actuation cycle, thereby 

giving the fullest possible angular coverage. 

 In addition to the CAPS IMS numerical moments, this data set includes CAPS 

ELS electron moments, specifically the electron density and temperature calculated from 

numerical integration of the observed counts (Lewis et al., 2008) and now available at the 

PDS.  Like IMS, ELS is a top-hat electrostatic analyzer with 8 separate anodes viewing 

parallel to the IMS anodes and covering an energy range of ~0.6 eV - 28 keV (Young et 

al., 2004; Linder et al., 1998; Coates et al., 1996).  As with IMS, the physical actuation of 

the CAPS instrument allows ELS to scan ~2π sr of the sky. The ELS moments available 

at PDS use measurements from anode 5 only, assuming an isotropic distribution (Lewis 

et al., 2008).  To include these moments in the data set, we average the ELS values from 

the PDS (i.e., only anode 5) over the 416 s covered by each IMS/SNG moment 

calculation. 
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 The Cassini magnetic field investigation (MAG) (Dougherty et al., 2004) is a 

combination of two magnetometers: a vector helium magnetometer and a fluxgate 

magnetometer.  Magnetic field measurements are made with a high temporal cadence (>= 

1 measurement per sec), but we have averaged the data to match the 416-s CAPS 

measurement interval.  The tabulated data consist of 3 components in the KRTP 

coordinate system, plus the field magnitude.  In addition to the 416-s mean values that are 

used in this paper, the data file also includes the median values of the components and 

magnitude for the same 416-s intervals.  Intervals that fell within MAG data gaps or 

during SCAS intervals (Science Calibration Subsystem, see Dougherty et al., 2004) are 

flagged with fill values of -9999.99.  

 The Magnetospheric Imaging Instrument (MIMI) (Krimigis et al., 2004) measures 

energetic ions (3 keV/e to few MeV/e) and electrons (20 keV to 1 MeV). The energetic 

ion pressure determined from the MIMI CHEMS (Charge Energy Mass Spectrometer) 

and LEMMS (Low Energy Magnetospheric Measurement System) measurements (c.f., 

Sergis et al., 2017) is interpolated to the CAPS time cadence from a tabulation of 10-

minute values, derived as described by Sergis et al. (2009).  Intervals where MIMI data 

are not available are flagged with pressure values of -1.0000. 

 As noted above, when the CAPS instrument is actuating, its field of view is ~2π 

sr.  For hot, slow flows, this is quite adequate for CAPS to characterize the full ion 

distribution (except for the flow velocity).  However, throughout much of the Saturnian 

This article is protected by copyright. All rights reserved.



magnetosphere and magnetosheath, flow speeds are comparable to or greater than the 

thermal speed of the ions, so to properly characterize the plasma (density, flow, 

temperature), the instrument field of view needs to encompass the flow.  Further, when 

the spacecraft is rolling or if CAPS is not actuating, the computational algorithm for the 

SNG numerical moments yields incorrect values.  Thus, to obtain trustworthy ion 

moments for the present study, it was necessary to identify time intervals when the 

magnetosheath flow was in the CAPS field of view, and when the instrument was 

actuating and the spacecraft was not rolling.  Note that while the flow direction must lie 

within the CAPS FOV, it is acceptable if it lies very near the edge of the FOV since the 

computational algorithm mirrors the distribution about the flow direction (c.f., Thomsen 

et al., 2010). 

 Accordingly, we conducted a comprehensive by-eye survey of the entire 

CAPS/IMS data set (from Saturn Orbit Insertion on 30 June 2004 to 1 June 2012) to 

identify all such intervals with duration of at least 1 hour.  Using 6-hour production 

energy-time spectrograms of the SNG and ELS count rates, available on the Los Alamos 

National Laboratory website (http://www.caps.lanl.gov/cgi-bin/tdc_search.cgi), we 

identified intervals when Cassini was clearly within the magnetosheath, based on the ion 

and electron spectral shape as illustrated below.  Consulting FOV plots available on the 

same website, we then excluded intervals when the spacecraft was rolling, CAPS was not 

actuating, or the magnetosheath flow was not in the CAPS FOV. 
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 Figure 1 shows two 6-hour intervals in which good-quality magnetosheath 

parameters could be obtained.  The top set of panels (Figures 1a-e) shows an interval on 

24 Sep 2009 (day 267) when Cassini passed from the magnetosheath into the solar wind 

and then back into the magnetosheath.  The magnetosheath population is characterized by 

ion energies between ~100 eV and ~2 keV and electrons up to about 100 eV.  The solar 

wind is best identified in the electrons, which have energies generally below 10 eV (and 

in the ELS energy range are probably dominated by spacecraft-originating 

photoelectrons). If the solar wind ion population is within the CAPS field of view, it 

shows up as the very narrow population at ~1 keV seen between ~2230 and 2300 UT.  

The disappearance of ~keV ions upon crossing the bow shock into the solar wind at 

~2010 UT (Figure 1a) indicates that, while the magnetosheath flow was into the CAPS 

FOV, the solar wind itself was not.  Near the end of the solar wind interval, the solar 

wind distribution just barely makes an appearance, and it is clear that the highly 

supersonic distribution there is qualitatively quite different from the hot, trans-sonic 

magnetosheath plasma seen earlier.  Thus, it is quite easy to distinguish magnetosheath 

from solar wind on the basis of both the ion and the electron energy distributions.   

 At ~2325 UT, the change in the spectral properties of both ions and electrons 

indicates a return to the magnetosheath.  However, while the electron spectrum looks 

quite similar to what was seen before the first bow shock crossing at ~2010 UT, the ion 

counts are much reduced compared to the earlier magnetosheath interval.  This suggests 
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that the distribution was no longer flowing into the CAPS field of view, so IMS missed 

the bulk of the plasma.  The two field-of-view plots to the right of the spectrograms 

(Figures 1d,e, corresponding to times marked by red vertical lines on panels a-c) confirm 

this conclusion: Figure 1d shows the all-sky distribution of ion counts at 430 eV for a 10-

m period starting at 1900 UT, in the first magnetosheath interval, whereas Figure 1e 

shows the same thing for the 10-m period starting at 2330 UT, in the second 

magnetosheath interval.  Figure 1d shows that in the first interval the peak of the ion flux 

was well captured within the CAPS FOV, while Figure 1e shows that in the second 

interval, the peak very probably lay beyond the edge of the FOV.  Thus, in this 6-h 

interval only the earlier time in the magnetosheath (1800-2000 UT) was included in the 

database.  The included ion and electron densities within the magnetosheath from the 

database are shown in Figure 1c. 

 The bottom set of panels in Figure 1 (Figures 1f-1i) show similar data from 1 

February 2008 (day 32).  In this case, the first ~2 hours of the interval occurred in the 

magnetosheath, as evidenced by the presence of ions between ~100 and 1000 eV and 

electrons in the neighborhood of 30 eV.  The spectral shapes of both ions and electrons 

are similar to those in Figure 1a and 1b, but the intensities are considerably lower (same 

color bar for both intervals), as shown by the much lower densities derived for both 

species.  At ~1950 UT, Cassini crossed the magnetopause into the magnetosphere, 

characterized by hotter and quite variable electron distributions and very weak ion fluxes 
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with two evident peaks in energy corresponding to magnetospheric water group ions and 

magnetospheric protons.  As with the solar wind, the spectral properties of the 

magnetospheric populations are qualitatively quite different from those in the 

magnetosheath.  The field-of-view plot in Figure 1i shows that the magnetosheath ion 

distribution was within the CAPS FOV during this interval, so the moments are likely to 

be valid (as for Figure 1c, the derived ion and electron densities were nearly equal, 

indicating that the low derived densities in the second event are real and not just 

indicative of missing the main magnetosheath ion population).  Figure 1 thus illustrates 

that it is generally quite easy to identify magnetosheath plasma on the basis of its spectral 

characteristics.  It also illustrates the means by which we can determine if the flow lies 

within the CAPS FOV. 

 The survey of the entire CAPS data set from Saturn Orbital Insertion (SOI) to the 

date when CAPS was turned off yielded 657 separate magnetosheath intervals, 

comprising a total of 19,155 valid measurements (2213 hours).  For each CAPS/IMS 

measurement that was judged to meet the selection criteria, the quantities tabulated in the 

file described here are: 

• Date (day.frac of 2004) 

• Date (day.frac of actual year) 

• Year 

• Day of year 
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• Time (Hour, Minute, Second) 

• Spacecraft location (radial distance, SSQ latitude, SSQ local time) 

• Thermal H+ density, temperature, flow velocity (KRTP components) 

• Thermal He++ density, temperature, flow velocity (KRTP components) 

• Thermal electron density, temperature, number of data points in average 

• Magnetic field magnitude and components (KRTP coordinates), both mean and 

median values for the CAPS/IMS moments interval; also given are the standard 

deviations of those mean values.  In this paper we use only the mean values. 

• Energetic ion pressure 

The SSQ (inertial Saturn-centered equatorial) coordinate system is defined as: z parallel 

to Saturn’s rotational/dipole axis ( ), x toward the sun in the plane containing the z axis 

and the Saturn-sun direction, and y completing the right-handed system.  The KRTP 

(Kronocentric r, θ, φ) coordinate system has positive  radially outward from Saturn,  

in the direction of , and  in the direction . 

 

3. Statistical Results 

 Coverage.  Figure 2 summarizes the spatial locations (radial distance, SSQ 

latitude, and local time) at which valid measurements have been identified.  The 

parameters are plotted as a function of day of year 2004, and the corresponding years are 

noted above the upper panel.  The coverage is largely determined by the evolution of the 
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orbit over the course of the Cassini mission.  For example, detection of magnetosheath 

signatures at very large radial distances primarily occurs in the 2006 time frame, when 

Cassini apoapsis was at very early local times, i.e., the magnetosheath was seen far down 

on the dawn flank of the magnetosphere.  Similarly, high-latitude magnetosheath 

encounters occurred during 2008 and 2009, when the orbital plane was strongly inclined 

to Saturn’s equatorial plane, and apogee was near noon local time.  The radial distance 

and latitude vs. local time distribution  of the magnetosheath intervals is shown explicitly 

in Figure 3. 

 Occurrence Distributions.  Figure 4 shows histograms of various magnetosheath 

properties from the entire dataset.  Figure 4a shows the occurrence distribution of 

measured values of the alpha particle-to-proton ratio (thick black line), compared to a 

similar distribution from daily averages of the solar wind alpha-to-proton ratio available 

from the OMNI database of near-Earth measurements (2004 DOY 180 to 2012 DOY 180, 

thin black line).  Note that the distributions are not normalized to the total number of 

measurements in either case.  While densities, temperatures, and flow velocities all 

change between 1 AU and 10 AU, the composition of the solar wind should remain 

constant.  Compared to the OMNI distribution (largely drawn from ACE measurements), 

our Saturn magnetosheath ratio has a relatively lower occurrence of low values and a 

relatively higher occurrence of high values, although the bulk of the distribution is similar 

to the near-Earth values.  The near-Earth median (0.0270) and mean (0.0298) are slightly 
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smaller than we find from our magnetosheath data (0.0349 and 0.0375, respectively, as 

marked on panel a). 

 Figure 4b shows the un-normalized occurrence distribution of measured values of 

the proton-to-electron density ratio for the full dataset (heavy line) and for two subsets of 

the data (light lines).  The full dataset shows a peak occurrence near 1.5, with a secondary 

peak near 3.  In examining the time history of this ratio, it appears that there was a 

general step down in the ratio sometime between 2006 DOY 108 (2004DOY=840) and 

2007 DOY 172 (2004DOY=1268).  We believe this step may have been due to an 

adjustment of the ELS microchannel plate voltage performed on 6 Jun 2006, which 

increased the efficiency for electron detection.  The light lines in Figure 4b show the 

distributions prior to and after this adjustment.  While it seems plausible that there was a 

discrete change in the electron detection efficiency between these two intervals, it is also 

possible that the absolute ion detection efficiency of IMS declined during the period, so 

we have made no adjustments to any of the reported densities in our dataset. 

 Setting aside the question of the discrete step down in the proton-to-electron 

density ratio, Figure 4b indicates that in general the derived proton densities exceed the 

derived electron densities.  Since the density ratio should be near 1.0 (actually, slightly 

less since the alpha particles also contribute to the charge balance), we conclude that 

there is some remaining uncertainty in the absolute efficiency of either or both of the 

instruments.  There is also the possibility that significant pitch angle anisotropies in the 
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electron population may affect the determination of the electron densities since they were 

derived solely from measurements from a single anode, which may or may not have had 

sufficient pitch-angle coverage to accurately represent an omnidirectional integration of 

the distribution in any given interval.  However, we would expect this effect to cause a 

spread in the derived ratio, rather than a general offset.  Hence, uncertainties in the 

absolute detection efficiencies seem the likeliest explanation.  For users of this 

magnetosheath dataset, we therefore recommend adopting an average of the reported 

proton and electron densities, with a corresponding uncertainty equal to half their 

difference.  For composite properties in the remainder of this paper (such as beta or Mach 

number), we adopt this average density. 

 Figure 4c shows the occurrence distribution of the proton-to-electron temperature 

ratio within Saturn’s magnetosheath.  With an average near 9 and a 5-95% range of ~5-

15, the temperature ratio is very similar to typical values in the Earth’s magnetosheath 

(e.g., Phan et al., 1994). 

 Figure 4d shows the occurrence distribution of the plasma beta, defined as 

  (1) 

where n is the average density recommended above, Tp and Te are the proton and electron 

temperatures, and B is the average field magnitude.  k is the Boltzmann constant. The 

distribution shown in Figure 4d is in general agreement with the beta values reported by 

Masters et al. (2012) and Sergis et al. (2013): Very few samples (<6%) have beta values 
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of less than 1, while a large fraction (>50%) have values greater than 10, and the 

distribution extends into the 100’s.  Moreover, the plasma pressure plotted in Figure 4d 

does not include the energetic particle pressure, which often contributes half or more of 

the total magnetosheath pressure (Sergis et al., 2013; see Figure 10 and associated 

discussion below), so the total beta distribution would be shifted to greater values 

compared to Figure 4d. 

 Finally, Figure 4e shows the occurrence distribution of the local Alfvén Mach 

number 

  (2) 

where V is the magnitude of the proton velocity measured by IMS, VA is the Alfvén 

speed, and mp is the proton mass.  95% of the flows in the magnetosheath are found to be 

super-Alfvénic. 

 Flow Velocities.  Figures 5a-c show the x-y, x-z, and y-z plane projections of the 

measured flow velocities in the SSQ coordinate system.  The vectors are scaled to 1 

Rs=50 km/s.  For clarity of presentation, only every tenth measurement is shown.  The 

solid curves are the Kanani et al. (2010) magnetopause locations for solar wind dynamic 

pressures of 0.002, 0.01, and 0.06 nPa.  This range (0.002-0.06 nPa) fully encompasses 

the range of observed values compiled by Jackman and Arridge [2011].  The vectors are 

reasonably well encompassed by these curves and clearly show the expected deflection 

around the magnetosphere, both in the equatorial plane and out of it at higher latitudes.  
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Figure 5d shows the total measured flow speed of the protons plotted as a function of 

local time.  The red circles indicate averages of the flow speed in 2-h local time bins.  

Vertical red bars show the standard deviation of the averages.  As expected, the flow 

speed is lowest near noon and increases along the flanks as the shocked flow 

reaccelerates toward the upstream flow speed. 

 Local Time Dependence.  As seen in Figure 5d, magnetosheath properties clearly 

depend on the local time of the measurements.  Figure 6 shows the local time dependence 

of several representative magnetosheath properties.  For this figure, the latitude is 

restricted to near-equatorial values (-10˚<lat<+10˚) to eliminate the high-latitude points 

near noon that are well removed from the apex of the magnetosphere (this limitation 

removes ~14% of the data points, primarily from the region between 11 and 14 LT; see 

Figure 3b).  In Figure 6a, the proton and electron temperatures are shown.  Both clearly 

peak near local noon and decrease along the flanks, as the flow reaccelerates and 

adiabatically cools.  It also appears that the pre-noon temperatures, both proton and 

electron, tend to be somewhat higher than the post-noon temperatures.  A similar 

dependence is seen in the He++ temperature (not shown). 

 While it is possible that the pre/post-noon difference in the magnetosheath 

temperatures reveals different shock physics on the pre-noon side of the bow shock vs. 

the post-noon side, Figure 7 suggests that it is more likely the product of an accidental 

coupling between Cassini’s orbital coverage and the solar wind speed.  Figure 7 shows 
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(in black) the solar wind speed predicted for Saturn’s location by the University of 

Michigan mSWIM 1.5-D MHD model (Zieger and Hansen, 2008), with solar wind 

conditions observed at 1 AU as the boundary condition.  The predicted speed is shown 

for the entire interval of this study, given in days from the start of 2004, as in Figure 2.  

Superimposed on the plot of the solar wind speed, with a vertical scale covering two 

decades rather than the one used for the solar wind, is the color-coded proton temperature 

from the magnetosheath dataset.  The color-coding is done according to the local time of 

the observation: Light blue for LT<8 or LT>16, red for 8<LT<12, and green for 

12<LT<16.  At the bottom of the figure, the green zig-zag curve shows dΦ, the relative 

orbital phase between Saturn and Earth reported in the mSWIM files.  Because mSWIM 

predicts the solar wind conditions at Saturn by using near-Earth observations as a 

boundary condition to the calculation, the prediction works best when Earth and Saturn 

are aligned radially (relative phase ~0˚) (Zieger and Hansen, 2008).  

 Figure 7 shows rather clearly that throughout the time interval shown, and almost 

independent of dΦ, the proton temperature tracks well the predicted solar wind speed.  

This is not unexpected since the role of the shock is to convert upstream bulk flow energy 

to downstream thermal energy, enabling magnetosonic waves to deflect the flow around 

the magnetospheric obstacle, so the higher the upstream flow energy, the higher the 

downstream temperature ought to be.  The fact that the tracking works so well when one 

decade of speed variation is compared with two decades of temperature variation is 

This article is protected by copyright. All rights reserved.



consistent with the expectation that the magnetosheath temperature emerges from 

upstream flow energy (proportional to V2).  Comparison of the red (pre-noon) and green 

(post-noon) points in Figure 7 reveals that the pre-noon points were obtained primarily 

during times when the solar wind speed was high, whereas the post-noon points were 

obtained primarily during times when the solar wind speed was lower.  Hence, the 

apparent local time dependence in Figure 6a is likely produced by the long-term variation 

in the solar wind speed.  Although not shown here, the electron temperature and the He++ 

temperature show a similarly good correspondence with the predicted solar wind speed. 

 Figure 6b shows the local time dependence of the proton-to-electron temperature 

ratio.  While the pre-noon values may be slightly higher than the post-noon values on 

average, the difference does not seem significant.  It is interesting that there is no decline 

in Tp/Te toward the flanks, where one would expect the bow shock to be weaker, and thus 

the electron share of the total temperature increase (Tp+Te) to be larger (e.g., Schwartz et 

al., 1988, their Figure 6).  This effect is probably seen only close to the bow shock itself; 

throughout the bulk of the magnetosheath, we are primarily seeing the adiabatic cooling 

of plasma that crossed the shock much closer to the nose. 

 Figure 6c shows the local time dependence of the XSSQ component of the 

measured flow velocity (negative is flow away from the sun).  Near the nose of the 

magnetosphere, the flow is strongly slowed or deflected, with a clear reacceleration along 

the flanks (see also Figure 5d).  In these data it is not uncommon to find positive 
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(sunward) values of Vx near noon, presumably resulting from a rapid expansion of the 

magnetosphere in response to reduced solar wind dynamic pressure, as earlier reported 

for Jupiter (Siscoe et al., 1980; Richardson, 1987, 2002) but not heretofore for Saturn.  

Rapid expansions and contractions of the magnetopause are a consequence of the large 

compressibility of Saturn’s magnetosphere (e.g., Hansen et al., 2005; Arridge et al., 2006; 

Achilleos et al., 2008). 

 Figure 6d shows that there is no strong dependence of proton β on local time.  

Further, the variability in β is very large, as indicated by the large error bars.  This is 

largely because both the density and the field magnitude are highly variable, but their 

variations are not well correlated. 

 Figure 6e shows that the Alfvén Mach number is near and somewhat above 1 near 

the nose and increases along the flanks, largely mirroring the behavior of the flow 

velocity.  The Alfvén speed itself (not shown) shows a tendency to decline toward the 

flanks, which further contributes to the rise in the Mach number there. 

 Estimation of Upstream Flow Speed.  The clear correspondence between the 

magnetosheath proton temperature and the predicted solar wind speed seen in Figure 7 

suggest that this temperature might provide a useful means of monitoring the upstream 

flow speed.  Expanding the argument made above, the bulk flow energy brought into the 

bow shock by the upstream solar wind is converted at the shock to a combination of 

(slowed) flow energy, thermal energy, and magnetic field energy.  Although the presence 
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of the magnetospheric obstacle and its influence on the flow certainly affects the overall 

energy balance, one might nonetheless expect a rough equivalence between the upstream 

energy per particle and the downstream energy per particle.  This possibility is explored 

in Figure 8.  Figures 8a and 8d are color-coded plots of (kTp + 0.5mpV2) and (kTp + 

0.5mpV2+ B2/8πn), respectively, extracted from a global MHD simulation of Saturn’s 

magnetosphere (Jia et al., 2012).  The values of the combined energies per particle are 

normalized to the upstream bulk flow energy.  The black dotted curve indicates the 

magnetopause identified in the simulation.  In both cases (a and d), the normalized 

summed energies appear rather constant throughout the magnetosheath, with values near 

0.5.  This is particularly true for the sum of the thermal and flow energies alone because 

the plasma beta is generally above 1 within the magnetosheath, so the contribution of the 

magnetic field energy to the overall sum is modest, except very near the magnetopause, 

where the field appears to build up in this simulation.  An analysis of the total 

magnetosheath energy (kTp + 0.5mpV2+ B2/8πn) compared to the upstream bulk flow 

energy at several terrestrial bow shock crossings reported by Song et al. (1999) gives 

ratios ~0.4-0.6, quite similar to the Saturn simulation results in Figures 8a and 8d. 

 Figures 6a and 6c discussed above showed that both the proton temperature and 

the bulk flow speed in the magnetosheath vary with local time.  However, their variations 

are opposite, and as shown in Figures 8b and 8e, the sum of the bulk flow energy and the 

proton thermal energy (with or without the magnetic energy) is essentially independent of 
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local time.  This suggests that the summed energy may be a suitable proxy for the solar 

wind speed.  Averaging over our entire magnetosheath data set, we find that 

 <kTp + 0.5mpV2> = 478 ±153 eV 

and <kTp + 0.5mpV2 + B2/8πn> = 527 ±182 eV. 

A similar average over the entire set of predicted solar wind speed from the mSWIM 

model (c.f., Figure 7), interpolated to the magnetosheath measurement times, yields 

 <0.5mpVsw
2> = 889 ±253 eV. 

Thus, on the average, the solar wind bulk flow energy is ~1.860 ±0.797 times the 

combined magnetosheath bulk flow energy and proton temperature.  Similarly, it is 

~1.687 ±0.755 times the combined magnetosheath bulk flow plus thermal plus magnetic 

energy per particle.  In Figures 8c and 8f, 1.860*(kTp + 0.5mpV2) and 1.687*( kTp + 

0.5mpV2 + B2/8πn) are plotted in red over the solar wind bulk flow energy (0.5mpVsw
2) in 

blue.  Both quantities show good tracking of the solar wind, with perhaps greater scatter 

when the magnetosheath magnetic field energy is included (as also reflected in the 

uncertainties in the ratios between the average values). 

 Confirming the statistical similarity of the magnetosheath energy per particle and 

the solar wind bulk flow energy per particle, Figure 9 shows the probability distribution 

of these parameters, normalized to their respective averages.  For most of the range of 

normalized values, the shapes of the distributions are very similar.  The magnetosheath 

distributions (red and blue curves) do deviate significantly from the solar wind 

This article is protected by copyright. All rights reserved.



distribution (green curve) at the high end and especially at the low end.  However, this 

may be due to the higher time resolution of the magnetosheath measurements and their 

point-to-point variability.  A 30-pt smoothing of the magnetosheath temperature plus 

flow energy (grey dashed curve) removes much of this deviation, and the distribution of 

smoothed values is extremely similar to the solar wind energy distribution. 

 Figures 8 and 9 thus suggest that we may estimate the upstream solar wind flow 

velocity from magnetosheath measurements with an average uncertainty of ~22% using 

the expressions 0.5mpVsw
2=1.860*(kTp + 0.5mpV2) or 0.5mpVsw

2=1.687*( kTp + 0.5mpV2 

+ B2/8πn).  At this point, both expressions yield roughly equally good matches to the 

upstream velocity distribution (Figure 9), with no clear preference between them.  In the 

next section (“Sample Applications”), we explore the utility of the first expression as our 

proxy. 

 Pressure Contributions.  In their study of Saturn’s magnetosheath properties, 

Sergis et al. (2013) found that the energetic particles in the MIMI energy range frequently 

contribute half or more of the total magnetosheath thermal pressure.  Figure 10a shows 

the statistical distribution of magnetosheath thermal pressure contributed by various 

populations and by the magnetic field in the new data set.  It is very similar to Figure 8 of 

Sergis et al. (2013).  Figure 10b compares the distribution of the total thermal/magnetic 

magnetosheath pressure (thermal protons + alphas + electrons + suprathermal + 

magnetic) to the distribution of solar wind dynamic pressures predicted by the mSWIM 
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model, interpolated to the magnetosheath measurement points.  Figure 10b confirms that 

on average, with the observed energy partition, pressure balance exists between the 

magnetosheath and the incident solar wind.  

 

4. Sample Applications 

 Magnetosheath structure.  The magnetic structure of the magnetosheath has been 

thoroughly examined by Sulaiman et al. (2014, 2017) using Cassini MAG data from 2004 

to 2010.  They found evidence of significant polar flattening of the magnetopause.  They 

also found that the z-component of the magnetosheath magnetic field (which they termed 

the “meridional component”) was frequently larger than would be expected from simple 

draping of the largely Parker-spiral magnetic field of the upstream solar wind (Jackman 

et al., 2008; Jackman and Arridge, 2011).  They attribute this to a combination of the 

non-axisymmetry of the flattened magnetopause (Erkaev et al., 1996; Farrugia et al., 

1998) and a field-flow coupling in which the plasma flow over the obstacle twists the 

magnetic field, as inferred from terrestrial magnetosheath observations (Longmore et al., 

2006).  As explained by Erkaev et al. and Farrugia et al., polar flattening of the 

magnetopause produces stronger pressure gradients out of the equatorial plane than in the 

plane, leading to greater acceleration of the flow out of the plane and more pronounced 

field stretching in that direction. 
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 Figures 11a and 11b, using data from our new magnetosheath data set, largely 

reproduces the results shown in Figure 2 of Sulaiman et al. (2014).  These figures show 

the magnetic field longitude (their “azimuthal angle”) and latitude (their “meridional 

angle”) for the pre-noon and post-noon measurements in our data set.  There are slight 

differences from the results of Sulaiman et al. due to the use of a different coordinate 

system and to our inclusion of data from 2011 and 2012, largely from the dusk flank.  As 

shown by Sulaiman et al., the preferred longitudes of the field are consistent with draping 

of a largely equatorial interplanetary magnetic field, but there is a significant extension of 

the latitude occurrence to non-equatorial orientations. 

 Figures 11c and 11d show the corresponding observed velocity vector orientations 

for the pre- and post-noon sectors.  Respectively, they clearly show the dawnward and 

duskward deflections expected for flow around the magnetospheric obstacle (see also 

Figure 5).  There is a weak halo of more strongly deflected flows in the pre-noon panel 

(Figure 11c) that is attributable to the few high-latitude measurements in the data set 

(e.g., Figure 5b), but otherwise the observed flow direction is better confined to the 

equatorial plane than is the magnetic field. 

 Figure 12 shows the occurrence distribution of the angle between the flow and the 

magnetic field.  The solid curve shows the distribution of the angle between the total field 

and flow velocities, while the dashed curve shows the distribution of the angle between 

just the equatorial components of both vectors.  Both distributions have been normalized 
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by the sine of the angle, which is proportional to the likelihood that a randomly oriented 

pair of vectors will have a particular angle between them.  As shown by the dashed curve, 

there is a strong tendency for the equatorial components of the field and flow to be 

aligned (peaks near angles of 0˚ and 180˚).  However, when the z-components of both 

vectors are included, the field and flow are found to be only weakly aligned (solid curve).  

Thus, it appears that the tendency for the field to be pulled out of the equatorial 

orientation by flows at higher latitudes as noted by Sulaiman et al. (2014, 2017) may 

appreciably affect the field-flow alignment in the equatorial region, which would tend to 

enhance the growth of the Kelvin-Helmholtz instability there (Desroche et al., 2013). 

 Shock heating.  As mentioned in the introduction, the partition of bulk flow 

energy into downstream particle thermal energy at a collisionless shock is one of the 

fundamental issues for shock physics.  Indications from terrestrial bow shock studies 

indicate that the fraction that goes into electron heating declines with upstream Mach 

number (e.g., Schwartz et al., 1988), so the higher-than-terrestrial Mach numbers of 

Saturn’s bow shock offer the opportunity to explore the electron heating in a parameter 

regime not frequently accessible at the Earth.  In a careful study of 94 bow shock 

crossings at Saturn, Masters et al. (2011) showed that between ~3 and ~7% (median of 

4.3%) of the incident bulk flow energy normal to the shock is converted to electron 

heating and that this fraction decreases with increasing upstream MA.  Lacking an 

upstream solar wind monitor, they used the mSWIM model predictions of the solar wind 
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flow speed, and they estimated the upstream density based on the observed 

magnetosheath density and an assumed compression ratio of 4±1 across the shock.  They 

also tried to take into account the motion of the shock itself, which makes a significant 

difference in the upstream flow speed. 

 The large set of magnetosheath electron temperature measurements in our dataset, 

combined with the statistically-based estimates of the upstream flow speed discussed 

above, allow us to explore how the magnetosheath temperature relates to the solar wind 

bulk flow energy, at least in a statistical sense.  In general, our measurements are not 

made close to a shock crossing, so we have no information about the shock motion.  On 

the average, however, the shock moves out as much as it moves in, so if we simply 

neglect the shock motion, that neglect should only introduce an uncertainty in the 

estimated upstream flow speed.  Indeed, this spread is essentially already included in our 

estimated speed since the scaling of magnetosheath total energy to upstream flow energy 

on which it is based similarly ignores the shock speed. 

 Figure 6a showed that the magnetosheath electron temperature depends fairly 

strongly on local time, but we argued above that this variation is probably predominantly 

due to adiabatic cooling of plasma that crossed the shock not far from the nose.  Thus, we 

can use the average local time dependence of the full dataset to scale each observed 

measurement to what it would have been immediately after transiting the shock near the 
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nose.  Accordingly, we find that the local time dependence of Te shown in Figure 6a can 

be well represented as 

 Te,fit = 18.826 + 15.068cos(LT-11.053) (3) 

From each measurement point (Te, LT), we can then estimate the corresponding 

temperature near the nose of the shock (actually, near 11.053 LT, which is where the 

average temperature reaches a maximum in LT) as 

 Te,nose = [Te(LT)/Te,fit(LT)]·Te,fit(11.053 LT) (4) 

Scaled in this way, the nose electron temperature is correlated with the estimated 

upstream bulk flow energy with a correlation coefficient of ~0.44.  Figure 13 shows the 

occurrence distribution of Te,nose/Esw, where we have used 

 Esw=0.5mpVsw
2=1.860*(kTp + 0.5mpV2)  (5) 

as discussed above.  A Gaussian fit to this distribution (red curve) yields a peak at 

3.5±1.5% with R=0.99.  The median of 3.8% is consistent with the findings of Masters et 

al. (2011), but we find a smaller spread in the values than that study.  These values of 

Te,nose/Esw are smaller than the typical value of ~7% at the terrestrial bow shock 

(Thomsen et al., 1987; Schwartz et al., 1988). 

 Strictly speaking, the ratio we should be calculating is the change in electron 

temperature across the shock, compared to the drop in bulk flow energy normal to the 

shock (e.g., Schwartz et al., 1988).  However, at Saturn the upstream electron temperature 

is extremely low, typically below the ability of ELS to measure it in the presence of the 
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spacecraft photoelectrons below ~3 eV.  Hence, to within a few percent the change in 

electron temperature can be well approximated by the downstream temperature alone.  

Similarly, for crossings near the nose, the downstream bulk flow energy is typically only 

~10% of the upstream value, so approximating the drop in flow energy by the upstream 

energy alone probably only results in an ~10% underestimate of the heating ratio.  

Accounting for these factors, the typical fraction of electron heating is probably closer to 

4 than 3.5, still significantly lower than the typical value for the generally lower-Mach-

number shocks at the Earth. 

 

5. Summary 

 We have introduced a new Cassini magnetosheath data set that is based on a 

comprehensive survey of intervals in which the observed magnetosheath flow was 

encompassed within the CAPS field of view and for which the numerical moments are 

therefore expected to be accurate. In addition, we have merged this data set with 

corresponding time averages of the electron moments (density and temperature) from the 

CAPS Electron Spectrometer, energetic particle pressures from the Magnetosphere 

Imaging Instrument, and magnetic field measurements from the Cassini Fluxgate 

Magnetometer.  The dataset includes 657 separate magnetosheath intervals, comprising a 

total of 19,155 valid measurements (2213 hours).  For a relatively small number of these 

intervals, one or more of the other Cassini instruments may not have returned valid data, 
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and in the accompanying online supplement, these data entries are marked with fill 

values. 

 We have used this dataset to explore the statistical behavior of a number of 

relevant magnetosheath properties, both to validate the data by comparison with previous 

results and to demonstrate the range of useful applications.  With a much expanded set of 

data compared to what was previously available, we have been able to examine the local 

time dependence of various magnetosheath properties and to show that some of what 

appears to be a local time dependence may in fact be an artifact of the coupling between 

the local time coverage and variations in the upstream solar wind velocity, which is of 

primary importance in determining the magnetosheath properties. 

 Using the statistical similarity of the total downstream energy per particle 

(thermal + flow + magnetic) and the upstream bulk flow energy per particle, as predicted 

by the University of Michigan mSWIM MHD model (Zieger and Hansen, 2008), we have 

proposed a new means of approximating the upstream flow speed corresponding to any 

given magnetosheath measurement.  This procedure helps mitigate the absence of an 

upstream solar wind monitor. 

 Using the estimated upstream flow energy, and assuming that most of the 

magnetosheath plasma we observe actually crossed the bow shock fairly near to the nose, 

we find that the electron heating at Saturn’s bow shock represents ~4% of the bulk flow 
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energy lost across the shock, less than the typical terrestrial value of ~7%, and consistent 

with expectations of the Mach-number dependence of electron heating. 

 We have also shown that there is a strong tendency for the equatorial components 

of the magnetosheath magnetic field and flow to be aligned, but when the z-components 

of both vectors are included, the field and flow are found to be only weakly aligned.  

Thus, we confirm the tendency for the field to be pulled out of the equatorial orientation 

by flows at higher latitudes, as noted previously (e.g., Sulaiman et al., 2014, 2017).  Such 

an effect reduces the field-flow alignment in the equatorial region, perhaps enhancing the 

growth of the Kelvin-Helmholtz instability. 

 

6. Conclusions 

 Results presented here offer a more comprehensive picture of the nature of 

Saturn’s magnetosheath and its relation to the properties of the upstream solar wind than 

has been possible in the past.  It is hoped that this new data set, available as an electronic 

supplement to this paper, will enable new insights into the interaction of the solar wind 

and Saturn’s magnetosphere. 
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Figures 

1. Examples of magnetosheath intervals with suitable CAPS viewing: Top (a-e) from 

24 Sep 2009; bottom (f-i) from 1 Feb 2008.  (a) Color-coded counts per accumulation 

interval (proportional to energy flux) of ions in the SNG (E/q identification only) data 

product of CAPS/IMS, as a function of E/q and time.  Data are from detector 7, which 

contained the peak count rate of the distribution.  (b) Corresponding electron count rate 

(again proportional to energy flux) vs. E and t from ELS detector 5.  (c) Ion (red) and 

electron (blue) densities reported in the new magnetosheath data set.  No values are 

reported from the interval in the solar wind (blue bar above panel a), nor from the 

magnetosheath interval between 2300 and 2400 UT, when the heart of the ion distribution 
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was not in the CAPS FOV.  (d) All-sky viewing plot of counts observed at 431 eV 

between 1900 and 1910 UT (time marked by vertical red dashed line on panels (a-c)).  

The plus sign at the center of the circle indicates the look direction toward Saturn, and the 

black triangle to the left of that indicates the look direction where corotation would be 

expected.  The thin circle half-way between the plus sign and the outer circle corresponds 

to look directions in the plane perpendicular to the radial direction, with the northward-

looking direction at the top of the circle.  The peak counts of the observed angular 

distribution lie within the field of view of CAPS, so the derived moments are deemed 

valid for this interval.   (e)  Same as panel d, for 2330-2340 UT, during the second 

encounter with the magnetosheath (marked by second red dashed line in panels (a-c)).  In 

this case the peak of the ion count distribution does not seem to have been captured by 

the CAPS FOV, so the ion moments are not deemed valid, and this interval is excluded 

from the data set.  (f-i) Same as (a-e) except for an energy of 305 eV during a 6-h interval 

on 1 Feb 2008, during which Cassini moved from the magnetosheath across the 

magnetopause into the magnetosphere.  The all-sky viewing for 1824-1830 UT illustrated 

in panel (i) is reversed from that shown in panels (d,e): The x at the center of the plot now 

corresponds to the look direction away from Saturn.  The black triangle still shows the 

look direction for corotation, and northward-looking is still at the top of the light circle 

half-way from the center to the outer circle. 
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2. Summary of coverage for valid magnetosheath measurements included in the new 

data set.  (a) Radial distance; (b) Kronographic latitude; (c) local time.  Values are plotted 

as a function of day of year 2004 (i.e., days since the beginning of 2004), and the 

corresponding years are shown above panel (a) and demarcated by vertical dashed lines. 

3. Number of valid magnetosheath measurements obtained in bins of local time and 

(a) radial distance or (b) latitude. 

4. Occurrence histograms of various magnetosheath properties: (a) Ratio of alpha-

particle density to proton density; (b) ratio of derived proton density to derived electron 

density; (c) ratio of proton temperature to electron temperature; (d) logarithm of the 

plasma beta (protons+electrons); and (e) Alfvén Mach number of the magnetosheath 

flow.  Light line in (a) shows the abundance ratio measured near Earth for the same time 

interval, as listed in the OMNI database.  Light lines in (b) show the distributions for 

subsets of the total interval, from prior to 2004DOY 840 (2006 108) and from after 

2004DOY 1267 (2007 172).  Means and medians are shown for all parameters, and the 5-

95 percentile range for all parameters except the ion-to-electron density ratio. 

5. Plane projections of the measured magnetosheath flow directions in SSQ 

coordinates: (a) x-y, (b) x-z, (c) y-z.  Scale is 50 km/s=1 Rs.  Only every tenth 

measurement in the data set is shown.  Solid curves in (a,b) are the Kanani et al. (2010) 

magnetopause locations for solar wind dynamic pressures of 0.002, 0.01, and 0.06 nPa.  

(d) Total measured flow speed as a function of local time.  Red points show the flow 
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speed averaged in 2-h local time bins.  Horizontal error bars simply show the 2-h ranges, 

and vertical error bars show the standard deviation of the averages. 

6. Local time dependence of various magnetosheath parameters at latitudes between -

10˚ and +10˚: (a) Proton (red) and electron (black) temperatures; (b) ratio of proton 

temperature to electron temperature; (c) SSQ x-component of the measured flow 

velocity; (d) plasma proton beta; (e) Alfvén Mach number of the magnetosheath flow.  2-

h bin averages and standard deviations are also shown for all parameters. 

7. Solar wind speed predicted for Saturn’s location by the mSWIM MHD model 

(black, left-hand scale), compared with the measured magnetosheath proton temperature 

(colored points, right-hand scale).  Temperatures are color-coded according to local time 

of the measurement: Light blue for LT<8 or LT>16, red for 8<LT<12, and green for 

12<LT<16.  Measurements in the 8-12 LT range appear to have been made primarily 

during times of elevated solar wind speed, whereas outside that range more 

measurements were made at lower values of the solar wind speed.  The magnetosheath 

proton temperature tracks rather well the square of the predicted solar wind speed (2 

decades of TH variation for 1 decade of Vsw variation).  The green curve at the bottom of 

the plot shows the variation of the relative orbital phase between Saturn and Earth over 

the time interval.  Intervals near dΦ~0 correspond to good radial alignment between 

Saturn and Earth and should provide the best model predictions at Saturn’s orbit. 
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8. (a) Color-coded contours of (kTp + 0.5mpV2) extracted from the global MHD 

simulation of Jia et al. (2012), and normalized to the upstream bulk flow energy.  

Throughout much of the dayside magnetosheath, the normalized energy sum lies between 

~0.5 and 0.7.  (b) Measured magnetosheath values of (kTp + 0.5mpV2) vs. local time for 

the new data set.  (c) Solar wind bulk flow energy (blue) predicted for Saturn’s location 

by the mSWIM MHD model, compared to 1.860 times the magnetosheath energy sum in 

panel (b) (red) as a function of day of year of 2004.  (d-f) Same as (a-c), but for the total 

energy including the magnetic field (kTp + 0.5mpV2+ B2/8πn).  For panel f, the 

magnetosheath energy is scaled by 1.687. In this calculation the energy per particle inside 

the magnetosphere (panels a, d) is significantly lower than it should be (by ~the average 

mass of the ions) because all the ions in the single fluid are assumed to be protons. 

9. Probability distributions of magnetosheath thermal plus flow energy (blue) and total 

energy per particle (red) compared with that for the solar wind bulk flow energy per 

particle predicted by the mSWIM MHD model (green).  The grey dashed curve is the 

distribution of the magnetosheath particle energy with a 30-pt smoothing applied.  All 

quantities are normalized to their average over the entire CAPS data set. 

10. (a) Occurrence distribution of magnetosheath pressure contributions from various 

populations: Plasma protons (dark blue), plasma alpha particles (green), plasma electrons 

(light blue), suprathermal particles (red), and magnetic field (black dashed).  (b) 

Occurrence distribution of summed components in panel (a) (black), compared with that 
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for the bulk flow energy predicted by the mSWIM MHD model, interpolated to the 

magnetosheath data set points (red dashed). 

11. (a) Binned occurrence of magnetic field latitude and longitude for pre-noon 

magnetosheath observations.  (b) Same for post-noon observations.  (c) Similar plot of 

velocity latitude and longitude for pre-noon observations.  (d) Same for post-noon.  

Longitude and latitude are defined in the SSQ coordinate system.  Longitudes ~180˚ 

correspond to anti-sunward flow; dawnward flow has longitudes ~270˚; and duskward 

flow would have longitudes ~90˚.  Pre-noon flows are deflected dawnward, and post-

noon flows are deflected duskward, as expected. 

12. Occurrence distribution of the angle between the full magnetic field vector and the 

full velocity vector (solid curve) compared with that for the equatorial projections of both 

vectors (dashed curve).  Both distributions have been divided by the sine of the angle, 

which is proportional to the distribution for a random orientation between the vectors.  

The equatorial components are rather strongly aligned, but inclusion of the z-components 

of both vectors significantly reduces the total vector alignment. 

13. Occurrence distribution of magnetosheath electron temperature (black) scaled to the 

nose of the magnetosphere (Equation 4) and normalized to the upstream bulk flow energy 

estimated from the total magnetosheath kinetic energy (Equation 5).  The red curve is a 

Gaussian fit to the distribution, with a peak at 3.5±1.5%. 
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