
Received: 20 September 2015 Revised: 1 September 2017 Accepted: 14 September 2017
DO
I: 10.1002/smr.1916
R E S E A R CH AR T I C L E
Model refactoring by example: A multi‐objective search based
software engineering approach

Adnane Ghannem1 | Marouane Kessentini2 | Mohammad Salah Hamdi1 |

Ghizlane El Boussaidi3
1 Information Systems Department, Ahmed Bin

Mohammed Military College, Qatar

2Computer and Information Science

Department, University of Michigan, USA

3Software Engineering and IT Department,

École de Technologie Supérieure, Canada

Correspondence

Adnane Ghannem, Information Systems

Department, Ahmed Bin Mohammed Military

College, Qatar.

Email: adnane.ghannem@abmmc.edu.qa

Funding information

NSF, Grant/Award Number: 1661422; NPRP,

Grant/Award Number: 7‐662‐2‐247; Qatar

Foundation; Qatar Research Fund
J Softw Evol Proc. 2018;30:e1916.
https://doi.org/10.1002/smr.1916
Abstract
Declarative rules are frequently used in model refactoring in order to detect refactoring opportu-

nities and to apply the appropriate ones. However, a large number of rules is required to obtain a

complete specification of refactoring opportunities. Companies usually have accumulated exam-

ples of refactorings from past maintenance experiences. Based on these observations, we con-

sider the model refactoring problem as a multi objective problem by suggesting refactoring

sequences that aim to maximize both structural and textual similarity between a given model

(the model to be refactored) and a set of poorly designed models in the base of examples (models

that have undergone some refactorings) and minimize the structural similarity between a given

model and a set of well‐designed models in the base of examples (models that do not need any

refactoring). To this end, we use the Non‐dominated Sorting Genetic Algorithm (NSGA‐II) to find

a set of representative Pareto optimal solutions that present the best trade‐off between struc-

tural and textual similarities of models. The validation results, based on 8 real world models taken

from open‐source projects, confirm the effectiveness of our approach, yielding refactoring rec-

ommendations with an average correctness of over 80%. In addition, our approach outperforms

5 of the state‐of‐the‐art refactoring approaches.

KEYWORDS

model evolution, NSGA‐II, Pareto front, refactoring by example, software maintenance
1 | INTRODUCTION

Maintenance practice consists of modifying existing software while preserving its integrity.1 These modifications are incremental and aim to update

some functionality or correct some design flaws and fix some bugs. These software maintenance activities become more complex when the size of

the system and the number of requirements increase over time.2 Therefore, it is important to provide automated and semi‐automated software

maintenance tools to improve the quality of software systems.

Software developers are, in general, interested to restructure the software system to improve its structure and design before a new release.

This restructuring process is called refactoring.3 Fowler2 defined the refactoring as the process that improves the software structure while

preserving its external behavior. The refactoring strategy involves several activities3 including the detection of refactoring opportunities in a given

software and the recommendation of which refactorings to apply. Many researchers have been working on providing support for refactoring

(eg,2,4,5) focusing on the code level (eg, code smells6). Few approaches addressed detecting and recommending refactorings at the model level

(eg,7-10). However, model‐driven engineering (MDE) is a promising approach that manages software systems' complexity and specifies domain

concepts effectively.11 MDE considers the models as primary artifacts in the software systems. It consists of refining and successively transforming

abstract models into more concrete models including executable source code. In this context, refactoring is a specific type of model transformation

that aims at improving the quality of a given model; for example by improving the design of an existing design model by applying a design pattern

which can be encoded as a model transformation.12

The rise of MDE increased the interest and the needs for tools supporting refactoring at the model‐level. However, many challenges need to be

overcome when building such a tool. Some of these challenges were identified in Mens et al,8 and they include issues related to assessing model
Copyright © 2017 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/smr 1 of 20

http://orcid.org/0000-0002-1320-899X
http://orcid.org/0000-0001-7420-3036
http://orcid.org/0000-0001-6145-774X
mailto:adnane.ghannem@abmmc.edu.qa
https://doi.org/10.1002/smr.1916
https://doi.org/10.1002/smr.1916
http://wileyonlinelibrary.com/journal/smr

2 of 20 GHANNEM ET AL.
quality, ensuring synchronization, and coherence between models (including source code), preserving behavior, etc. Most of existing refactoring

tools offer a semi‐automatic support8 because part of the necessary knowledge for performing the refactoring remains implicit in designers' exper-

tise and programming behavior. Thus, recognizing model refactoring opportunities remains a big challenge that is related to the model marking pro-

cess within MDE context which requires design knowledge and expertise.12 Furthermore, declarative rules represent a common technique in most

of existing work on refactoring in order to detect and correct defects (ie, refactoring opportunities) and defect types can be very important.13

Another common issue to most of refactoring approaches is the problem of sequencing and composing refactoring rules that is, generally, related

to the control of rules' applications within a rule‐based transformational approach.

To overcome some of these issues, many refactoring approaches are using a search‐based approach where the refactoring is considered as an

optimization problem (eg,14-19). Search‐based refactoring approaches adapted some of the known heuristics methods such as simulated annealing

and Hill_climbing as proposed in O' Keeffe and O' Cinneide14 and Seng et al15 and genetic algorithms (GAs) as proposed in Kessentini et al.16 In

previous work,17 we proposed a by example approach that suggests refactorings to correct models. The approach uses single‐objective

optimization to find the best refactorings sequences that maximize the structural similarity between the model under analysis and a set of model

refactoring examples. We calculated the structural similarity based on a set of metrics. Other optimization goals were considered in search‐based

refactoring approaches (eg, reducing the refactoring effort,18 improving the software structure15). Harman et al19 have proposed a multi‐objective

approach that uses 2 software metrics (CBO: coupling between objects, and SDMPC: standard deviation of methods per class) to define 2 optimi-

zation objectives. Most of these approaches relied on the structural information (ie, a combination of software metrics) to formulate their fitness

functions and do not consider the design consistency in the optimization process. However, to suggest meaningful refactorings and to reduce the

number of possible refactorings, both quality and consistency of the model to be refactored should be considered.

This paper represents an extension of our previous work20 having as goal to propose a new multi‐objective optimization approach that aims at

finding the best sequence of refactorings that optimizes 2 objectives: (1) the first objective consists of maximizing both the structural and the tex-

tual similarity between a given model (ie, the model to be refactored) and a set of models in the base of examples (ie, models that have undergone

some refactorings); and (2) the second objective consists of minimizing the structural similarity between a given model (ie, the model to be

refactored) and a set of well‐designed models in the base of examples (ie, models that do not need any refactoring). We start from the observation

that required knowledge to propose suitable refactorings for a given new object‐oriented model may be inferred from other similar existing models'

refactorings. We defined 2 levels of textual and structural similarities (measures) between these models and the given model. To combine these

measures, we adapted the Non‐dominated Sorting Genetic Algorithm (NSGA‐II)21 that aims at finding a set of representative Pareto optimal solu-

tions in a single run. Our approach takes as input an initial model to refactor, a base of examples of models and their subsequent refactorings, and a

list of structural metrics and textual measures. It generates as output a solution as a sequence of refactorings that should be applied to the initial

model. The process of generating this solution is the mechanism that finds a sequence of refactoring operations that represent the best trade‐off

between the 2 criteria of structural and textual similarities between the model to refactor and good/bad design examples.

The intuition behind this work is that we can use data collected from previous releases or projects within the same organization. The “good”

and “bad” examples are defined based on the developers' design and programming practices. In our experiments, we showed that open source sys-

tems could represent a very good starting point, but to get optimal results it is always better that the developers/users provide a good and bad set

of examples from their previous projects to get optimal results. These examples could be found, for example, in the review reports where some bad

examples in terms of quality are described. Another option is to use a set of quality metrics to define what is considered as good or bad by the

developers to extract a set of examples.

The approach could be considered as a data‐mining technique because it is based on the exploration of design examples to identify relevant

refactorings for a new context (project). We believe that one of the main key limits is related to the automated adaptation of refactorings applied in

a similar context to a new one. In some situations, a user interaction is required and not all the refactorings that are recommended can be applied.

However, the problem is a bit easier at the model level comparing to the code level. In our approach, we do not try to extract association rules like

classical data mining techniques. However, the multi‐objective approach adapts the refactoring solution as much as possible to an existing example

while considering the applicability of the refactorings. Thus, we do not generate “templates” from the refactoring examples then apply them, but

our goal is to “optimize” as much as possible the similarity between the examples and the identified model fragment to be refactored.

The main contributions of the paper can be summarized as follows:

• We introduce a novel by example multi‐objective refactoring approach taking into consideration the design consistency when comparing

between the model to be refactored and existing model examples to suggest refactoring solutions.

• We report the result of an empirical study of NSGA‐II t applied to 8 open source systems. We compare the results of our approach to those

obtained in 6 other approaches (a mono objective approach (MONO), MOREX,17 random search, multi‐objective particle swarm optimization

(MOPSO),21 a genetic programming approach GP,22 and our previous work that is not based on the use of good design examples20). The result

of this comparison provides evidence to support the claim that our proposal enables the generation of refactoring solutions with a high precision.

The goal of our experimentation is to find out whether our approach could propose meaningful sequences of refactorings to correct design

defects within models (eg, class diagrams). Indeed, our approach addresses 2 research questions:

GHANNEM ET AL. 3 of 20
• RQ1: To what extent can the proposed approach generate correct sequences of refactorings?

• RQ2: To what extent can the design consistency aspect improve the efficiency of our proposal to generate meaningful refactoring solutions?

To answer RQ1, we assessed the precision and recall of our approach on 8 open source projects. To answer RQ2, we compared our results to

those produced by our previous work called MOREX,17 MOREX,17 GP,22 MOPSO,21 and NSGA‐II without the use of good design examples.20

The rest of this paper is organized as follows. Section 2 presents the overall approach and the details of our adaptation of the multi‐objective

evolutionary algorithm NSGA‐II to the model refactoring problem. Section 3 describes the supporting tools and experimental settings and

presents results and discussion. Section 4 discussed the related works. Finally, we conclude and outline some future directions to our work in

Section 5.
2 | MODEL REFACTORING USING MULTI OBJECTIVE OPTIMIZATION

2.1 | Approach overview

The proposed approach exploits model refactorings' examples and NSGA‐ II23 to automatically suggest (to the user) refactorings' sequences

possibly applicable on a given model. The user is responsible for applying these refactorings. For example, for a rename refactoring, our approach

does not decide for the new name, but it suggests the mentioned refactoring operation, and we give hand to the user to choose the right name

based on his knowledge. The general structure of our approach is introduced in Figure 1. It takes as input a set of bad designed models (label A)

(ie, existing models and their related refactorings), a set of well‐designed models that do not need refactorings (label B), an initial model (label

C), and takes as controlling parameters a set of software metrics (label D). The approach generates as output a sequence of refactorings that

can be applied to the initial model. The goal of our approach is to recommend the refactorings that make the design similar to good ones in terms

of quality; thus, we implicitly considered the fact that the refactorings should improve the quality by meeting quality values similar the ones of the

good design. The generation process of refactorings' sequences (Figure 1) can be seen as the mechanism that finds the best way to combine

refactoring operations among the ones in the base of examples, in such a way to (1) maximize the structural and the textual similarities between

entities to be refactored in the initial model and entities of the models (bad designed models) and (2) minimize the structural similarity between

entities to be refactored in the initial model and entities of the models (well‐designed systems). The structural similarity between 2 entities (eg, clas-

ses) is computed using software metrics of these entities while their textual similarity is computed using textual measures based on WordNet.24

In the proposed approach, we considered a subset of the 72 refactorings defined in Fowler 2 possibly applicable to UML class diagrams. For

example, “Rename_Method”, “Move_Method”, “Move_Attribute”, “Extract_Class”, etc. may be applied on design models, while “Inline_Method”,

“Extract_Method”, “Replace_Temp_With_Query”, etc. Table 1 shows the list of 12 refactorings considered in our approach chosen based on 2 factors:

(1) they can be applied at the class diagram level; and (2) they can be linked to a set of metrics (ie, metrics that are impacted when applying these

refactorings).

Table 2 shows the list of 16 metrics used in our approach and that could be applied to class diagrams (eg, NA, NMeth, NDep, etc.). These metrics

include the 11 metrics defined in Genero et al25 to which we have added a set of simple metrics (eg, NPvMeth, NPbMeth). All these metrics are

related to the class entity, which is the main entity in a class diagram. These metrics are used to compute the structural similarities between classes

from the initial model and those in the base of examples. We believe that the textual similarity measure, described in the next section, considers the

consistency between the elements.

To compute the textual similarity between 2 classes, we used the Rita toolkit.24 To find the best trade‐off between the 2 objectives (structural

and textual measures), we adapted the NSGA‐II.23 The next section describes the algorithm adaptation to the refactoring problem.
FIGURE 1 Multi‐objective model refactoring using examples

TABLE 2 Considered metrics in our approach

Ref Metric

NA The number of attributes

NPvA The number of private attributes

NPbA The number of public attributes

NProtA The number of protected attributes

NMeth The number of methods

NPvMeth The number of private methods

NPbMeth The number of public methods

NProtMeth The number of protected methods

NAss The number of associations

NAgg The number of aggregations

NDep The number of dependencies

NGen The number of generalizations

NAggH The number of aggregations hierarchies

NGenH The number of generalization hierarchies

DIT «deep inheritance tree»: The longest path from the class to the root of the hierarchy

HAgg «hierarchy aggregation»: The longest path from the class to the leaves.

TABLE 1 Considered refactorings in our approach

Refactoring Description

Extract_Class Consists of creating a new class and moving the relevant fields and methods from the old class into the new class

Rename_Method Consists of renaming method with a name that reveals its purpose in order to give more comprehensiveness to the model
design.

Push_Down_Method Consists of moving method from a super‐class to a specific subclass because it makes sense only there.

Push_Down__Attribute Consists of moving attribute from super class to a specific subclass because it makes sense only there.

Rename_Parameter Consists of renaming parameter within the method parameter list.

Add_Parameter Consists of adding a new parameter to the method parameter list.

Move_Attribute Consist of moving attribute from a source class to the class destination when it is more used by the second one than the
class on which it is defined.

Move_Method Consists of moving method from a class to another one when it is using or used by more features of the destination class
than the class on which it is defined.

Pull_Up_Method Consists of moving method from some class(es) to the immediate super‐class in order to eliminate duplicate methods
among sibling classes, and hence reduce code duplication in general.

Pull_Up_Attribute Consists of moving attribute from some class(es) to the immediate super‐class in order to eliminate duplicate field
declarations in sibling classes.

Extract_Interface Consists of creating interface class when many classes use the same subset of a class's interface, or 2 classes have part of
their interfaces in common.

Replace_Inheritance_
With_Delegation

Consists of changing the inheritance relation by a delegation when the subclass uses only part of a super classes interface
or does not want to inherit data.

4 of 20 GHANNEM ET AL.
2.2 | NSGA‐II for model refactoring

2.2.1 | NSGA overview

NSGA‐II is an evolutionary algorithm based on the non‐dominated sorting to solve multi‐objective optimization problems.23 It was designed to

accept an exhaustive list of candidate solutions, which creates a large search space. The idea of NSGA‐II consists of finding a representative set

of Pareto optimal solutions, called non‐dominated solutions. A solution is called non‐dominated when no other solution can improve some

optimization objective without degrading another. Given a set of objectives fi, i∈1,…n, to maximize, a solution x is said to Pareto dominate another

solution x′ if and only if: i, fi(x
′) ≤ fi(x) and ∃ j ∣ fj(x

′) < fj(x).

Three main steps characterize the NSGA‐II algorithm:

• Create randomly the initial population P0 of individuals encoded using a specific representation.

• Create a child population C0 generated from the population of parents P0 using genetic operators such as crossover and mutation.

• Merge both populations and select a subset of individuals, based on the dominance principle to create the next generation.

This process is repeated until reaching the last iteration according to stopping criteria.

GHANNEM ET AL. 5 of 20
2.2.2 | NSGA‐II adaptation

In this section, we describe NSGA‐II adaptation to find the best trade‐off between structural and textual similarity. As our aim is to maximize struc-

tural and textual similarity between a given model (the model to be refactored) and a set of bad designed models in the base of examples (models

that have undergone some refactorings) and minimize the structural similarity between a given model and a set of well‐designed models in the base

of examples (models that do not need any refactoring). We separate each criterion in an objective for NSGA‐II. The algorithm takes as input a set of

model refactorings' examples (our base of examples), an initial model, and set of metrics. We build an initial population as a set of individuals that

stand for possible solutions representing refactorings' sequences possibly applicable to the classes of the initial model (Lines 1–2). An individual is a

set of blocks where each block contains a CIM (class chosen from the initial model), a CBE (class chosen from the base of examples) that was

matched to CIM, and a list of refactorings which is a subset of the refactorings that were applied to CBE (in its subsequent version) and possibly

applicable to the CIM. The next section explains and illustrates the individuals' representation.

Once, a population of refactoring solutions is generated, the main NSGA‐II loop (Lines 4–21) consists of evolving a population of candidate

solutions towards the best sequence of refactoring, ie, an individual that maximizes as much as possible both the textual and the structural

similarities between the classes CIM and CBE that were matched within the individual's blocks. In addition, CIM is compared with all the good

examples to identify the closest class in the good model (CGE) using the structural similarity measure. An offspring population Ct is generated from

a parent population Pt using genetic operators (selection, crossover, and mutation) (Line 5) throughout each iteration t. After that, Ct and Pt will be

merged together to create a global population Gt. Then, each individual I in the population Gt is evaluated using our 2 fitness functions.

After calculating these functions, a list of non‐dominated fronts F (F1, F2, ...) is returned by sorting all the solutions, where F1 represents the set

of non‐dominated solutions, F2 represents the set of solutions dominated only by solutions in F1, etc (line 11). Then, we build the next population

Pt + 1 from the set of non‐dominated fronts starting from front F1 to Fi (lines 14–17). In general, the number of solutions in all sets from front F1 to Fi

is larger than the Max_size. To choose exactly Max_size solutions, we sort the solutions of the front Fi using the crowded‐comparison operator (<n)

defined in23 (line 18). Then, we select the best solutions needed until we reach theMax_size (line 19). The crowded‐comparison operator (<n) is based

on non‐domination ranking and the crowding distance described in.23 Finally, the loop terminates (line 21) announcing by that the achievement of

termination criterion (ie, maximum iteration number). The result of the algorithm is the set of best solutions, ie, those in the Pareto front of the last

iteration (line 22). In the next sub‐sections, we give more details concerning the representation of solutions, genetic operators, and the fitness

functions.
Algorithm 1. High level pseudo‐code for NSGA‐II adaptation to our problem.
Algorithm : NSGA‐II search‐based model refactoring

Input

Set of bad designed models with refactorings

Set of well-designed models

Initial model

Set of software metrics

Process:

1. I := set (CIM, CBE, CGE, A set of applicable refactorings)

2. P0 := set_of(I)

3. t := 0

4. Repeat

5. Ct := apply_Genetic_Operators(Pt)

6. Gt := Pt ∪ Ct

7. For all I ∈ Gt

8. SimilarityBE (I) := calculate _Similarity(CIM, CBE)

9. SimilarityGE(I) := calculate _Similarity(CIM, CGE)

10. end For

11. F := fast_Non_Dominated_Sort (Gt) // F = (F1, F2, …)

12. Pt+1 := ∅

13. i := 1

14. While |Pt+1| + |Fi| < Max_size

15. Pt+1 := Pt+1 ∪ Fi

16. i := i+1

17. end While

18. Sort (Fi , Crowded_Comparison_Operator)

19. Pt+1 := Pt+1 ∪∪ Fi [1 .. (Max_size - |Pt+1|)]

20. t := t+1

6 of 20 GHANNEM ET AL.
21. Until t = Max_iteration

22. best_solutions := first_front(Pt)

Output :

best_solutions.

INDIVIDUAL REPRESENTATION

To apply NSGA‐II, we represent a candidate solution (ie, an individual) as a set of blocks. A block is a quadruplet of (CIM, CBE, CGE, Applicable

refactorings to CIM), where CIM is a class chosen from the initial model, CBE is a class chosen from the base of examples that was matched to

CIM, CGE is a class chosen from the well‐designed model, and finally the list of refactorings which is a subset of the refactorings that were applied

to CBE (in its subsequent versions and that can be applied to CIM). Figure 2 shows an example of an individual (solution). The refactoring selection

process adopted within a block considers some constraints in order to avoid conflicts and inconsistencies. For example, if the CIM class does not

have any attribute or method and the CBE class requires a Move_Attribute or Add_Parameter refactoring operation, then we discard these

refactoring operations because we cannot apply them to the CIM class.

The bottom part of Figure 3 shows an example of a candidate solution (ie, an individual) composed of 3 blocks. Each block contains 1

refactoring operation. Therefore, the individual represents a refactorings' sequence to apply and the CIM's on which they apply. The top part of

Figure 3 shows the fragments of an initial model before and after the suggested refactorings' sequence by the individual (at the bottom of the fig-

ure) were applied. Notice that the same refactoring operation could be included several times in the same individual.

The generation of the initial population requires a maximum individual size as parameter. This parameter can be chosen randomly or specified

the user. In our implementation, we adopted the first choice in order to obtain individuals with different sizes. After that, we assign randomly for

each individual: (1) A set of CIM, (2) their matched CBE's, and (3) the sub‐set of refactorings possibly applicable to the CIM among the refactorings

proposed by the CBE.

SELECTION AND GENETIC OPERATORS

a. Selection

There are many methods how to select the best individuals that will participate in the next generation (eg, roulette wheel selection, Boltzmann

selection, tournament selection, rank selection, steady state selection, etc.). NSGA‐II uses binary tournament selection23 to derive a child popula-

tion Qt (ie, the set of individuals that will undergo the crossover and mutation operators) from a parent population Pt. The binary tournament selec-

tion involves running several “tournaments”. Each tournament involves 2 randomly selected individuals from the population. This will give all

individuals of the population the chance to be selected and preserves diversity.
CIM

Applicable refactorings to CIM

CBE
CGE

FIGURE 2 Block representation

Order

-orderId
-...

-getOrder()
-getOrderRow ()
-...()

OrderRow

-taxStatus
-date
-...

-calculate_Total()
-calculate_Weight()
-...()

Product

-description
-quantity
-...

-getPrice()
-getWeight()
-...()

Order

-orderId
-date
-...

-getOrder()
-getOrderRow ()
-calculate_Total()
-...()

OrderRow

-taxStatus
-quantity
-...

-calculate_Weight()
-...()

Product

-description
-...

-getPrice()
-getWeight ()
-...()

FIGURE 3 Individual representation

Agency

SchoolP’1:

P’2:

Course Student

College Bill

Agency

SchoolP1:

P2:

Person Teacher

Car People

Course Student

College Bill

ProductSchool PilotProductOrder OrderRow

School Pilot

Person Teacher

Car People

Order OrderRow

FIGURE 4 Crossover operator

Person AgencyTeacher

Pull_Up_Method(calculate_Total(),
OrderRow, Order); Move_Attribute(quantity, Product, OrderRow)

Car People School

Person AgencyStudent

Pull_Up_Method(calculate_Total(),
OrderRow, Order);

Move_Attribute(quantity, Product,
OrderRow)

Car SchoolPeople
Rename_Attribute(qty, Quantity)

Pull_Up_Attribute(date, OrderRow,
Order)

Order ProductOrderRow

Order ProductOrderRow

FIGURE 5 Mutation operator

GHANNEM ET AL. 7 of 20
b. Crossover

We use a simple, random, cut‐point crossover. For each crossover, 2 individuals are selected by applying the tournament selection.23 The

crossover happens only with a certain probability. The crossover operator allows creating 2 offsprings P1′ and P2′ from the 2 selected parents

P1 and P2. Figure 4 illustrates a 1‐point crossover in which 1 point is selected from the parents P1 and P2. Everything before the cross point is

swapped between the parents, producing 2 children P1′ and P2′.

c. Mutation

The mutation operator consists of randomly changing 1 or more components of the list representing an individual (solution). Given a selected

individual, the mutation operator first randomly selects 1 or more block of the sequence corresponding to the individual, and then the CBE of each

block will be replaced by another one chosen randomly from the base of examples. Figure 5 illustrates the effect of a mutation operation. The CBE

(Teacher and its refactorings list) of the second block is replaced by the CBE Student and its refactorings taking into consideration the constraints

mentioned before.

For all the above change operators, we used a repair operator that eliminates redundant, conflicting, or infeasible refactorings. The repair oper-

ator can either delete or randomly change these dimensions with new refactoring types or change the controlling parameter of these refactorings.

Of course, these issues are also penalized by the fitness function when the solution becomes infeasible, and it will increase the distance with design

examples.

MULTI‐CRITERIA EVALUATION OF INDIVIDUALS

In practice, we should formalize the evaluation of an individual as a mathematical function called “fitness function”. Two different fitness functions

have been considered in this work: (1) the first one calculates the structural similarity between CIM and CBE and between CIM and CGE; (2) the

second one calculates the textual similarity between CIM and CBE. The idea behind is that a candidate solution that displays high structural and

textual similarities between CIM and CBE should give the best sequence of refactorings.

a. Structural criterion

The structural criterion is evaluated using the fitness function denoted by Structural_Similarity by formula 1 and 2.

Structural Similarity CMI;CBEð Þ ¼ 1
m

∑
m

i¼1
Sim CMIi;CBEið Þ (1)

8 of 20 GHANNEM ET AL.
Sim CMIi;CBEið Þ ¼

1 if CMIi ¼ CBEi

0 if CMIi ¼ 0 and CBEi≠0ð Þ or CMIi≠0 and CBEi ¼ 0ð Þ

CMIi
CBEi

if CMIi<CBEi

CBEi
CMIi

if CBEi<CMIi

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(2)

Where m represents the number of metrics. CIMi, CBEi represent the ith metric value of the CIM and ith metric value of the CBE, respectively.

Thus, we define the structural fitness function of a solution, normalized in the range [0, 1], as:

fStructural ¼ 1
n
∑
n

j¼1
Structural Similarity CMIBj;CBEBj

� �
(3)

Where n represents the individual size (number of blocks), CMIBj and CBEBj represent the classes in the first 2 parts of the jth block of the indi-

vidual. To illustrate the computation of the structural fitness function, we considered a system containing 2 classes as shown inTable 3 and a base

of examples containing 2 classes shown inTable 4. In this example, we use 6 metrics given for each class in the model inTable 3 and each class of

the base of examples in Table 4.

We present 2 individuals I1 and I2, respectively, composed by 2 blocks (Plane/Store and Person/Car) and 1 block (Person/Strore). The fitness

function calculated on these solutions has the value:

fStructural I1 ¼
1
2

1
6

3
5
þ 1þ 1þ 0þ 2

4
þ 0

� �
þ 3

6
þ 2
3
þ 5
7
þ 1þ 1þ 1

� �� �� �
¼ 0;66

fStructural I2 ¼
1
6

3
3
þ 2
3
þ 4
7
þ 0þ 2

4
þ 0

� �� �� �
¼ 0;46

In this case, the evaluation process will choose the individual having the maximum value of fitness function, then I1 will be chosen as best

individual.

b. Design consistency criterion

To formulate the textual similarity fitness function, we used Rita toolkit24 which enables to compute the degree of likeness between

2 concepts based on their meaning. Specifically, we used this tool to calculate the textual similarity distance between 2 classes using

their names. Thus, the textual similarity between 2 classes Class1 and Class2, denoted as Textual_Similarity(Class1, Class2), corresponds

to the textual similarity distance between Class1's name and Class2's name. The idea behind consist of breaking down the 2 class names,

if the class name is a complex name, into different words. To this end, we used predefined functions in Rita toolkit that allow us the

extraction of nouns, verbs, adverbs, etc. Then, we calculate the distance between different obtained combinations. Finally, the design
TABLE 3 Classes from the initial model and their metrics values

CIM NPvA NPbA NPbMeth NPvMeth NAss NGen

Plane 5 2 4 2 2 2

Person 3 3 7 0 2 0

TABLE 4 Classes from the base of examples and their metrics values

CBE NPvA NPbA NPbMeth NPvMeth NAss NGen

Store 3 2 4 0 4 0

Car 6 2 5 0 2 0

GHANNEM ET AL. 9 of 20
consistency fitness function of a solution corresponds to the average of distances of all the blocks of the solution as shown by the

formula 4.

fTextual ¼ 1
n
∑
n

j¼1
Textual Similarity CMIBj;CBEBj

� �
(4)

Where n is the number of blocks in the solution and CMIBj and CBEBj are the classes composing the first 2 parts of the jth block of the

solution. We considered the textual similarity when the model is compared with the bad designed models because we adapted the

refactorings applied to that bad designed model to our context. Thus, the textual similarity is important along with the structural one. How-

ever, the dissimilarity with the well‐designed model is used as a helper objective just to identify refactoring opportunities but not to the cor-

rection of these identified defects. The structural function is used by both fitness functions and the semantic function is just used by part the

first fitness function that calculates the similarity between the model to refactor and bad examples (average of structural and textual

similarities).
3 | EXPERIMENTATIONS WITH THE APPROACH

This section describes the evaluation steps of our approach. It starts by presenting our supporting tools. Then, we define our research questions.

Finally, we describe our experimental settings, and we present and discuss the results of the experimentations.

3.1 | Supporting tools

Three preliminary steps are needed for the validation of our approach: (1) we implemented a parser to analyze Java source code and generate a

predicate model as illustrated in Figure 6; (2) we run the parser on 8 Java open source projects (Ant, JabRef, JGraphx, JHotDraw, GanttProject,

JRDF, Xerces, and Xom) in order to obtain their predicate models; and (3) we completed the obtained models in the second step by manually enter-

ing the refactoring operations extracted with Ref‐Finder26 that these projects have undergone. Figure 7 illustrates an example of a CBE. The Ref‐

Finder tool permits detection of 68 refactorings that include a set of atomic refactorings by using logic‐based rules executed by a logic‐program-

ming engine. Ref‐Finder helps finding refactorings that a system has undergone by comparing different versions of the system. Two reasons were

behind the use of Ref‐finder tool: (1) build the base of examples and (2) compute the precision and recall of our approach. We also used another

tool called Rita toolkit24 to calculate the textual similarity.

A plugin was developed to support our approach using Eclipse™ development environment. Figure 8 shows a screenshot of the model

refactoring plugin perspective. The plugin supports many heuristic‐based algorithms for refactoring and hence enable to enter many controlling

parameters depending on the chosen algorithm. For the NSGA‐II refactoring algorithm, it takes as input a base of examples of models and their

related refactorings, an initial model to refactor, and a set of metrics. The user also specifies the population size, the number of iterations, and
FIGURE 6 Class representation in the generated model

FIGURE 7 A class completed with its subsequent refactorings

10 of 20 GHANNEM ET AL.
the solution size (we also can keep this value randomly). It generates as output a Pareto‐front which contains optimal solutions of sequence of

refactorings to be applied on the analyzed system.
3.2 | Experimental setup

Several tests are done to set the NSGA‐II parameters. The stopping criterion was set to 1000 iterations, the Max_size of the population to 30, the

crossover probability to 0.9, and the mutation probability to 0.4. We obtained these values by trial and error. In our case, we selected a high muta-

tion rate because it allows the continuous diversification of the population, which discourages premature convergence to occur. A standard desk-

top computer (i7 CPU running at 3 GHz with 8GB of RAM) was used to run the NSGA‐II algorithm. The run‐time of our algorithm with a 1000

iterations (stopping criteria) was less than 4 minutes, which indicates the scalability of our approach from the performance standpoint. However,

the run‐time depends on the number of refactorings and the size of the models in the base of examples.

We analyzed 8 open‐source Java projects to answer the research questions reported above:

• Ant (v1.8.4): A Java library that is mainly used for building Java applications. Ant provides support to compile, assemble, test, and run Java

applications.

• GanttProject (v2.0.10): A Java project that supports project management and scheduling.

• JabRef (v2.7): A graphical application for managing bibliographical databases.

• JGraphx (v1.10.4.0): A Java Swing diagramming (graph visualization) library.

• JHotDraw (v5.2): A framework for the creation of drawing editors.

• JRDF (v0.5.6.2): A Java library for parsing, storing, and manipulating RDF (Resource Description Framework).

• Xerces (v2.7): A set of parsers compatible with Extensible Markup Language (XML).

• Xom (v1.2.8): A new XML object model.

The choice of these open source projects is based on the fact that they are medium‐sized open‐source projects, and most of them were ana-

lyzed in related work (eg,18,26-28). Most of these open source projects have been actively developed over the past 10 years. Table 5 provides some

relevant information about these projects. Table 6 describes the number of good and bad examples and their sizes extracted from Ant 1.8.4,
FIGURE 8 Model refactoring plugin

GHANNEM ET AL. 11 of 20
GanttProject 2.0.10, JHotDraw 5.2, and Xerces 2.7. Most of the examples are selected based on the previous studies that analyzed these sys-

tems.29-31

3.3 | Measures of precision and recall

To answer our research questions, we used 2 measures: Precision and Recall. These measures stem originally from the area of information retrieval

(IR). Precision is given by Equation 5. It is equal to the ratio of the “Number of correct refactorings detected” to the “Total number of refactorings

detected”. A recall is given by Equation 6. It is equal to the ratio of the “Number of correct refactorings detected” to the “Number of correct

refactorings”. Both values may range from 0% to 100%, whereas a higher value is better than a lower one. We consider that the threshold for

the correctness of recommended refactorings is 85%.

PRECISION ¼ Number of correct refactorings detected
Total number of refactorings detected

(5)

RECALL ¼ Number of correct refactorings detected
Number of correct refactorings

(6)

3.4 | Results and discussion

Our results are presented based on 2 indicators: precision and recall. For our validation, we conducted multiple executions (40 executions)

of our approach on the all considered projects. Figure 9 illustrates the average of precision and recall values for each open source project

over the 40 executions. Figure 10 illustrates the box plots of the precision scores of our algorithm on the different projects based on 40

executions. Similarly, Figure 11 illustrates the box plots of the precision scores of our algorithm on the different projects based on 40

executions.

We noticed very high values of the average of precision and recall, which is over 90% for GanttProject, JHotDraw, JRDF, and Xerces

and less than 90% for the rest of projects (Ant, JabRef, JGraphx [88%] and Xom [86%]) under test. Indeed, the most common intervals

(80%–100%) displayed by Figures 10 and 11 prove that precision and recall scores are approximately the same for different executions

in the 8 projects under analysis. The most common range of 20% between the minimum (80%) and the maximum (100%) for each project

is a sign of stability of the approach. In fact, the minimum values of the recall on the different systems based on the different runs were

between 79.8% and 80.1%. The skewed distributions between the results of different projects are mainly related to the used training exam-

ples as input (different programming contexts, etc.). For example, for JHotDraw and GanttProject, the average of the precision values is

around 90% and is over than 94% for the average of the recall, while Xerces had approximately the same average of the precision and

recall around 92%. These results allow us to positively answer our first research question RQ1 and conclude that the obtained results

are very encouraging.
TABLE 5 Case study settings

Model Classes Methods Attributes Expected refactorings

Ant 1.8.4 824 2090 1048 139

GanttProject 2.0.10 479 960 495 91

JabRef 2.7 594 253 237 32

JGraphx 1.10.4.0 191 1284 420 96

JHotDraw 5.2 160 519 141 71

JRDF v0.5.6.2 734 19 10 41

Xerces 2.7 625 2113 1408 182

Xom 1.2.8 252 186 31 36

TABLE 6 Statistics about the extracted sets of bad and good design examples

Model
#bad examples
(min#classes, max#classes)

#good examples
(min#classes, max#classes)

Ant 1.8.4 72(8, 23) 42(7, 29)

GanttProject 2.0.10 49(6, 21) 28 (6, 22)

JHotDraw 5.2 34(9, 19) 19(8, 24)

Xerces 2.7 38 (6, 14) 34 (7, 19)

FIGURE 9 Average of precision and recall
over 40 execution of our approach on all
projects

FIGURE 10 The minimum, maximum, and average of the precision scores of our algorithm on the different projects based on 40 executions

FIGURE 11 The minimum, maximum, and average of the recall scores of our algorithm on the different projects based on 40 executions

12 of 20 GHANNEM ET AL.
The advantage with the multi‐objective approach is that NSGA‐II, unlike GA, produces a set of solutions called the Pareto front. In our context,

NSGA‐II converges to Pareto‐optimal solutions that are considered as good trade‐off between structural and textual similarities. Figure 12 display

the Pareto‐front for NSGA‐II obtained on the considered open source projects. In these figures, each point is a solution with the structural similarity

score represented in the x‐axis, the textual similarity score in the y‐axis. The best solutions exist in the corner representing the Pareto front that

maximizes the values of the textual and the structural similarities.

To answer the second research question, RQ2, we compared our NSGA‐II adaptation to the current, state‐of‐the‐art refactoring approaches

widely used multi‐objective algorithm, MOPSO,21, using the same adapted fitness function, NSGA‐II without the use of good design examples

(A) (B)

(C) (D)

(E) (F)

(G) (H)

FIGURE 12 Pareto front for NSGA‐II obtained on 8 open source systems: (A) GanttProject, (B) JHotDraw, (C) Xercess, (D) Xom, (E) JabRef, (F)
JRDF, (G) JGraphx, and (H) Ant

GHANNEM ET AL. 13 of 20
(NSGA‐II BE),20 to a mono objective approach (MONO) using GA, to our previous work (MOREX: MOdel Refactoring by EXamples),17 to a genetic

programming (GP) based approach24 and to a random search approach. In MONO, we defined the fitness function as combination of both

structural and textual fitness functions. The MOPSO used in this paper is the Non‐dominated Sorting PSO (NSPSO) proposed by Li.21 In a random

search, the change operators (crossover and mutations) are not used, and populations are generated randomly and evaluated using the 2 fitness

functions. To better evaluate the relevance of considering well‐designed model fragment examples, we compared our NSGA‐II adaptation to

our previous work based also on NSGA‐II but without the use of good examples (called NSGA‐II BE).20 In MOREX,17 we used a single‐objective

14 of 20 GHANNEM ET AL.
GA to propose refactorings, ie, we considered only 1 fitness function based on the structural similarity which is a combination of software metrics.

In GP,22 the authors proposed an approach to generate detection rules based on quality metrics by using GP.

It is clear from Figures 13 and 14 that our NSGA‐II adaptation outperforms all the mono‐objective approaches (MONO, MOREX, and GP) in

100% of experiments. As shown by Figures 13 and 14, NSGA‐II had higher average of precision and recall than MONO, MOREX, and GP, and it

beats by far the random search approach. For example for GanttProject, the NSGA‐II average precision and average recall values are 91% and

96%, respectively, while these values are 82% and 86% in MOREX, 78% and 82% in GP, and 41% and 43% in the random search algorithm where

these values do not exceed 50% for all the 8 projects. For example, we noticed an increase of 9% on average between NSGA‐II and MOREX that

could be considered as great improvement. This improvement can be explained by the fact that NSGA‐II aims to find a compromise between 2

similarities (structural and textual). However, MOREX did not consider textual similarity but only structural one. When comparing NSGA‐II with

the remaining approaches, we considered the best solution selected from the Pareto‐optimal front using the knee point‐based strategy.32 The

results obtained in Figures 13 and 14 support the claim that our NSGA‐II formulation provides a good trade‐off between structural and textual

similarities and outperforms on average the MOPSO approach, except for Ant, JRDF, and XOM opens source systems where precision and recall

are quite similar.

As the considered algorithms are meta‐heuristics, they can produce different results on every run when applied to the same problem instance.

For this reason, we used the P‐values of the Wilcoxon rank‐sum test33 as a statistical test to compare the results of the 5 algorithms: NSGA‐II,

MONO, MOREX,17 NSGA‐II BE,20 GP,22 and MOPSO.21 We independently performed 40 executions using the 6 algorithms in MONO, MOREX,17

GP,22 NSGA‐II BE,20 and MOPSO,21 for the 8 open‐source projects that we used in our experiment. In our context, a P‐value that is less than or

equal to α (=0.05) means that the distributions of the results of the 5 algorithms are different in a statistically significant way. In fact, we computed

the P‐values of MONO,MOREX, GP, andMOPSO results compared with NSGA‐II. In this way, we could decide whether the outperformance of our

approach over the MONO, MOREX17GP, NSGA‐II BE,20 and MOPSO21 approach is statistically significant. Tables 7 and 8 display the precision and

recall median values of NSGA‐II, MONO, MOREX, GP, NSGA‐II BE,20 and MOPSO21 for the 8 open source projects, respectively. For example, for

Ant project, the P‐value for the precision median results of MONO compared with NSGA‐II is 0.0103 while the P‐value of the recall median results

of MONO compared with NSGA‐II is 0.0113. The P‐value for the precision median results of MOREX compared with NSGA‐II is 0.0224, while the

P‐value of the recall median results of MOREX compared with NSGA‐II is 0.0213. The P‐value for the precision median GP compared with NSGA‐II

is 0.0112, while the P‐value of the recall median results of GP compared with NSGA‐II is 0.0142. In addition, the P‐value for the precision median

results of MOPSO compared with NSGA‐II is 0.0098, while the P‐value of the recall median results of MOPSO compared with NSGA‐II is 0.0087.
FIGURE 13 Comparison between NSGA‐II,
MONO, MOREX,16 GP,21 MOPSO,20 NSGA‐II
BE,19 and random search in terms of precision

FIGURE 14 Comparison between NSGA‐II,
MONO, MOREX,16 GP,21 MOPSO,20 NSGA‐II
BE,19 and random search in terms of recall

TABLE 7 Precision median values of NSGA‐II, MONO, MOREX,16 GP,21 NSGA‐II BE,19 and MOPSO20 over 40 independent simulation runs

Model

Precision (%) P‐value (≤0.05)

NSGA‐
II

NSGA‐II
BE19 MONO MOREX GP MOPSO

NSGA‐II vs
MONO

NSGA‐II
vs19

NSGA‐II vs
MOREX

NSGA‐II vs
GP

NSGA‐II vs
MOPSO

Ant 95 92 91 93 94 79 0.0103 0.0147 0.0224 0.0112 0.0098

Gantt 90 84 83 84 80 75 0.0015 0.0014 0.0158 0.0101 0.0012

JabRef 84 80 79 78 77 73 0.0101 0.0111 0.0124 0.0077 0.0045

JGraphx 86 80 75 77 73 70 0.0017 0.0047 0.0212 0.0111 0.0014

JHotDraw 90 84 82 85 84 80 0.0078 0.0019 0.0222 0.0056 0.0075

JRDF 90 87 86 88 84 82 0.0028 0.0027 0.0189 0.0045 0.0084

Xerces 92 88 87 89 86 83 0.0102 0.0043 0.0211 0.0059 0.0047

Xom 87 87 84 87 86 70 0.0094 0.0052 0.0051 0.0091 0.0031

TABLE 8 Recall median values of NSGA‐II, MONO, MOREX,16 GP,21 NSGA‐II BE,19 and MOPSO20 over 40 independent simulation runs

Model

Recall (%) P‐value (≤0.05)

NSGA‐
II

NSGA‐II
BE19 MONO MOREX GP MOPSO

NSGA‐II vs
MONO

NSGA‐II
vs19

NSGA‐II vs
MOREX

NSGA‐II vs
GP

NSGA‐II vs
MOPSO

Ant 81 79 73 78 77 80 0.0113 0.0026 0.0213 0.0142 0.0087

Gantt 94 88 86 88 86 81 0.0011 0.0134 0.0211 0.0091 0.0071

JabRef 91 90 88 90 90 78 0.0009 0.0087 0.0016 0.0075 0.0061

JGraphx 87 83 83 84 83 79 0.0102 0.0231 0.0058 0.0097 0.0004

JHotDraw 94 87 85 90 82 75 0.0067 0.0057 0.0211 0.0113 0.0007

JRDF 89 84 86 86 88 83 0.0087 0.0011 0.0198 0.0117 0.0076

Xerces 91 84 84 85 78 74 0.0101 0.0340 0.0029 0.0131 0.0044

Xom 82 79 77 77 75 69 0.0105 0.0014 0.0158 0.0141 0.0059

GHANNEM ET AL. 15 of 20
Accordingly, we infer that the precision and recall median values of our algorithm are statistically different from the MONO, MOREX, GP, NSGA‐II

BE,20 and the MOPSO ones on each of the systems based on the fact that these P‐values are less than α (= 0.05). We consequently conclude that

our approach is more effective than these 4 approaches, and specifically it is more effective than an approach based only on the structural similarity

without taking into account the context of the entities of analyzed models (ie, MOREX). This observation allows us to positively answer our second

research question RQ2.

The proposed approach is different than a classical data mining technique or a manual inspection of the history to identify similar refactoring

patterns. First, the proposed approach does not find similarities between refactorings, but the current model design is compared with examples of

bad and good design models then the applied refactorings to that similar bad design model are adapted to the current context. It will be difficult for

a developer to identify similarities between model fragments based on the history of changes, especially when the number of changes is high.

Second, our multi‐objective approach does not require using examples from previous releases of the project to evaluate. The experiments show

that examples from open source systems could be a very good starting point for developers in practice/industry to use our technique. Finally,

our approach generates a set of Pareto front solutions and not a single solution, which is the case of machine learning and data mining algorithms.

Thus, the developer can select a solution based on his preferences and not limited to 1 set of recommended refactorings.

Because we viewed the matching problem as a combinatorial problem addressed with heuristic search, it is important to contrast the

correctness results with the execution time. We executed our algorithm on a standard desktop computer (Pentium CPU running at 3GHz with

8GB of RAM). The average execution time is shown in Figure 15. The execution time of the mono‐objective algorithms is slightly lower than

our NSGA‐II approach and NSGA‐II BE,20 but the MOPSO one was higher than ours (due to the used changes operators by MOPSO). In any case,

our approach is meant to apply to situations where the execution time is not the primary concern. Figure 16 shows the distribution of the different

types of refactoring recommended by our approach. It is clear that move method, extract class, and push down method are the most frequent

refactorings between the different solutions.
4 | THREATS TO VALIDITY

We consider the use of the Ref_finder tool to build the base of examples, and at the same time, we compare the results obtained by our algorithm

to those given by Ref_finder as threats to the generalization of our approach. In general, we do not need a big number of examples to obtain good

results, which confirm the reliability of the proposed approach. We showed, in our experiment, that some open source projects used out of the box

could produce good refactoring results for the systems under analysis. However, we agree that, sometimes, within specific contexts, it is difficult to

FIGURE 16 The average distribution of refactoring types in the best solutions recommended by our approach on the different models

FIGURE 15 Comparison between NSGA‐II, MONO, MOREX,16 GP,21 NSGA‐II BE,19 MOPSO,20 and random search in terms of average execution
time on the different systems

16 of 20 GHANNEM ET AL.
define and find refactorings' opportunities. Applications from different domains may have dissimilar design practices, and developers may have

different opinions on how to define a good and bad design example. In fact, the quality of our results heavily depends on the examples introduced

as inputs. In an industrial setting, we could expect a company to start with some few open source projects and gradually migrate its set of

refactoring examples to include context‐specific data. In fact, the definition of “good” and “bad” examples is left to the developers based on their

preferences and best/bad design practices. A possible use of previous releases of evolved models could be a good strategy to adapt in order to

define a set of bad and good design fragments. This might be essential if we consider that different languages and software infrastructures have

different best/worst practices. Another threat is related to the used textual measures. Sometimes, 2 classes have similar names, but they are

semantically equivalent. Also, 2 classes might have different names but be semantically similar.
5 | RELATED WORK

In this section, we classified a relevant existing work that tackled the automation of refactoring activities using search‐based techniques into 2 main

groups: single‐objective and multi‐objective optimization approaches.

In the first group, most of existing works defined their fitness function based on software metrics in order to find the best sequence of

refactorings (eg,15,22,34-44). A comparative study of 4 heuristic techniques applied to the refactoring problemwas presented by O'Keeffe et al34 using

a fitness function that combine 11metrics to evaluate the quality improvements. They experiment the 4 techniques on 5 open‐source systems. They

find that hill‐climbing outperforms the other 3 algorithms. Another single‐objective optimization was proposed by Seng et al15 using on the GA in

order to suggest a list of refactorings. The single fitness function used in this proposal aims to maximize a weighted sum of a set of metrics to improve

the class structure of a software system. These metrics are mainly related to the coupling, cohesion, complexity, and stability. The authors have

defined some refactorings' preconditions able to preserve the behavior but not the semantics domain of the software program. However, authors

have validated their proposal only on the move method refactoring. The refactoring schedule problem was considered by Qayum et al35 as a graph

GHANNEM ET AL. 17 of 20
transformation problem expressing as a search for an optimal path. To do that, they used Ant colony optimization in the graph where nodes and

edges represent, respectively, refactoring candidates and dependencies between them. However, the domain semantics of the software system

and its runtime behavior were not considered. Last but not least, Kessentini et al22 have proposed a single‐objective optimization approach using

GA to find the best sequence of refactoring operations at code level aiming to improve its quality by minimizing the design defects' number detected

in the source code.

In the second group, Pareto‐front concept has been used by Harman et al19 in order to improve search based refactoring approaches. The

authors have combined 2 software metrics: (1) CBO (coupling between objects) and (2) SDMPC (standard deviation of methods per class). Each

metric has been assigned to 1 objective (fitness function). The authors found that the proposed multi‐objective algorithm is able to find a good

sequence of move method refactorings. The obtained sequence represents the best trade‐off between CBO and SDMPC to improve code quality.

Another multi‐objective optimization approach has been proposed by Ouni et al18 using NSGA‐II providing the best trade‐off between 2

objectives: (1) quality based on the metric that calculates the number of corrected defects detected in the initial system and (2) effort based on

the hat calculates the code modifications score metric. In another work, Ouni et al45 tried to find the best trade‐off to find the best sequence of

refactorings by maximizing the quality improvements and minimizing semantic errors. Ó Cinnéide et al46 have investigated, via an empirical study,

about the assessment of some structural software metrics and the relationships between them, based on a variety of search techniques (Pareto‐

optimal search, semi‐random search). In conclusion, vast majority of existing work on search‐based software engineering approaches focused only

on the program structure improvements based on a set of software metrics in both single and multi‐objectives approaches. Thaina et al47 proposed

a recent systematic literature review on search‐based refactoring.

Interactive techniques have been generally introduced in the literature of Search‐Based Software Engineering and especially in the area of

software modularization. Hall et al48 treated software modularization as a constraint satisfaction problem. The idea of this work is to provide a

baseline distribution of software elements using good design principles (eg, minimal coupling and maximal cohesion) that will be refined by a set

of corrections introduced interactively by the designer. The approach, called SUMO (Supervised Re‐modularization), consists of iteratively feeding

domain knowledge into the remodularization process. The process is performed by the designer in terms of constraints that can be introduced to

refine the current modularizations. Initially, the system begins with generating a module dependency graph from an input system. This dependency

is based on the correlation between software elements (coupling between methods, shared attributes etc.). Possible modularizations are then gen-

erated from the graph using multiple simulated authoritative decompositions. Then, using a clustering technique called Bunch, an initial set of clus-

ters is generated that serves as an input to SUMO.

Bavota et al49 presented the adoption of single objective interactive GAs in software re‐modularization process. The main idea is to incorporate

the user in the evaluation of the generated re‐modularizations. Interactive GAs (IGAs) extend the classic GAs by partially or entirely involving the user

in the determination of the solution's fitness function. The basic idea of the IGA is to periodically add a constraint to the GA such that some specific

components shall be put in a given cluster among those created so far. Initially, the IGA evolves similarly to the non‐interactive GA. After a user‐

defined set of iterations, the individual with the highest fitness value is selected from the population set (in the case of single‐objective GA) or from

the first front (in the case of multi‐objective GA) and presented to the user. After analyzing the current modularization, the user provides feedback in

terms of constraints dictating for example, that a specific element needs to be in the same cluster as another one.Overall, the above existing studies of

interactive re‐modularization are limited to few types of refactoring such as moving classes between packages and splitting packages. Furthermore,

the interaction mechanism is based on the manual evaluation of proposed re‐modularization solutions, which could be a time‐consuming process. A

recent study50 extended our previous work51 to propose an interactive search‐based approach for refactoring recommendations. The developers

have to specify a desired design at the architecture level then the proposed approach try to find the relevant refactorings that can generate a similar

design to the expected one.

On the other hand, there are some contributions that focused on the automation of refactoring activities at the model level based on rules. In

general, the used rules have been expressed either as assertions (ie, invariants, pre‐and post‐condition),52,53 or as graph transformations targeting

refactoring operations in general (eg,54,55) or refactorings related to design patterns' applications (eg,7). For example, Ragnhild et al52 have proposed

to detect some parts of the model that need refactoring using declarative rules. However, this proposal requires an important number of rules. In

addition, refactoring rules must be complete, consistent, non‐redundant, and correct to specify clearly and completely of the refactorings.

Refactoring rules have been used also by ElBoussaidi and Mili7 in order to specify design patterns' applications. To do that, the authors represent

the design problems (solved by these patterns) based on models. Then, the obtained models will be transformed using refactoring rules according to

the solutions proposed by the patterns. However, models are not able to represent all design problems at hand. For example, the problem space for

the observer pattern is quite large, and the problem cannot be captured in a single, or a handful of problem models.7 In conclusion, a common issue

in most of the proposed approaches is how to sequence and compose the refactoring rules.

Some other studies have tackled the refactoring opportunities detection at model level using code smells defined as bad design choices which

could negatively impact some code qualities such as maintainability, changeability, and comprehensibility.56 Indeed, during the evolution of the

system, code‐smells can emerge and then represent patterns of software design. These patterns can be a source of problems in the further

development and maintenance of the system. Fowler et al2 identified and defined 22 Code Smells aiming to indicate software refactoring

opportunities and “give you indications that there is trouble that can be solved by a refactoring”. Zhang et al57 investigated about code‐smells that

need more attention than any other Van Emden and Moonen58 and Mantyla59 proposed 2 approaches that aim to detect and analyze code smells

for java programs. Previous empirical studies have analyzed the impact of code‐smells on different software maintainability factors including

18 of 20 GHANNEM ET AL.
defects60 and effort.61 In fact, software metrics (quality indicators) are sometimes difficult to interpret and suggest some actions (refactoring) as

noted by Anda et al62 and Marinescu et al.63
6 | CONCLUSION

We presented a by example search‐based approach that exploits both structural and design consistency information to improve the automation of

suggesting refactoring. It takes as input a model to be refactored, a base of examples of models and their subsequent refactorings, and a list of

metrics and textual measures calculated on both the initial model and the models in the base of examples. The output is a solution to the refactoring

problem. A solution is a sequence of refactoring operations that should be applied to the initial model and that displays the best compromise

between the 2 criteria: structural and textual similarities. In contrast to existing work on refactorings, the design consistency is a major concern

in our paper.

Our experimentation shows that our technique outperforms state‐of‐the‐art techniques where single‐objective and multi‐objective is used.

We evaluated our approach on real‐world models, and the obtained results indicate that the proposed refactorings are comparable to those

expected. We also tested the stability of our approach by performing multiple executions on the projects at hand and checking the stability of pre-

cision and recall values over the multiple executions. These results allowed us to conclude that the proposed approach is more efficient and prom-

ising than approaches that do not consider the design consistency in their optimization objectives.

In the future, we plan to extend our base of examples to include more refactoring operations. We also plan to analyze the domain‐specific

impact on the obtained results.

ACKNOWLEDGEMENT

This work was made possible by the NSF Award #1661422 and NPRP grant # [7‐662‐2‐247] from Qatar Research Fund (a member of Qatar Foun-

dation). The findings achieved herein are solely the responsibility of the authors.

ORCID

Adnane Ghannem http://orcid.org/0000-0002-1320-899X

Mohammad Salah Hamdi http://orcid.org/0000-0001-7420-3036

Ghizlane El Boussaidi http://orcid.org/0000-0001-6145-774X

REFERENCES

1. ISO/IEC, International Standard—ISO/IEC 14764 IEEE Std 14764‐2006 Software Engineering; Software Life Cycle Processes &; Maintenance. ISO/IEC
14764:2006 (E) IEEE Std 14764‐2006 Revision of IEEE Std 1219‐1998), 2006: p. 01‐46.

2. Fowler M. Refactoring: Improving the Design of Existing Code. Boston, MA, USA: Addison‐Wesley; 1999.

3. Mens T, Tourwé T. A survey of software refactoring. IEEE Trans Softw Eng. 2004;30(2):126‐139.

4. Opdyke FW. Refactoring : A program restructuring aid in designing object‐oriented application frameworks. 1992, University of Illinois at Urbana‐
Champaign.

5. Moha N. DECOR : détection et correction des défauts dans les systèmes orientés objet. 2008, Université de Montréal & Université des Sciences et Tech-
nologies de Lille: Montréal. p. 157‐179.

6. Du Bois B, Demeyer S, Verelst J. Refactoring‐improving coupling and cohesion of existing code. In: Proceedings of the 11th Working Conference on Reverse
Engineering (WCRE). Delft University of Technology, Netherlands: IEEE Computer Society; 2004.

7. El‐Boussaidi G, Mili H. Understanding design patterns — what is the problem? Softw. Pract. Exper. 2011;42:1495‐1529.

8. MensT, Taentzer G, Dirk M. Challenges in Model Refactoring. in Proceedings of the 1st Workshop on Refactoring Tools (WRT). Germany: University of Berlin;
2007.

9. Zhang J, Lin Y, Gray J. Generic and Domain‐Specific Model Refactoring Using a Model Transformation Engine. In: Beydeda S, Book M, Gruhn V, eds.
Model‐Driven Software Development. Berlin, Heidelberg: Springer; 2005.

10. Brown JW. AntiPatterns: Refactoring software, architectures, and projects in crisis. WILEY ed. 1998:336.

11. Douglas CS. Guest editor's introduction: Model‐driven engineering. Comput. J. 2006;39(2):41‐47.

12. El‐Boussaidi G, Mili H. Detecting patterns of poor design solutions using constraint propagation. In: Proceedings of the 11th international conference on
Model Driven Engineering Languages and Systems. Toulouse, France: Springer‐Verlag; 2008:189‐203.

13. Kessentini M, Sahraoui H, Boukadoum M, Wimmer M. Search‐based design defects detection by example. In: Proceedings of the 14th international con-
ference on Fundamental approaches to software engineering: Part of the joint European conferences on theory and practice of software. Saarbrücken,
Germany: Springer‐Verlag; 2011.

14. O' Keeffe M, O' Cinneide M. Search‐based software maintenance. In: Proceedings of the 10th European Conference on Software Maintenance and
Reengineering (CSMR). Bari, Italy; 2006.

15. Seng O, Stammel J, Burkhart D. Search‐based determination of refactorings for improving the class structure of object‐oriented systems. In: Proceedings
of the 8th Annual Conference on Genetic and Evolutionary Computation. Seattle, Washington, USA: ACM; 2006.

16. Kessentini M, Sahraoui H, BoukadoumM. Model transformation as an optimization problem. In: Proceedings of the 11th International Conference on Model
Driven Engineering Languages and Systems. Toulouse, France: Springer‐Verlag; 2008.

http://orcid.org/0000-0002-1320-899X
http://orcid.org/0000-0001-7420-3036
http://orcid.org/0000-0001-6145-774X

GHANNEM ET AL. 19 of 20
17. Ghannem A, El‐Boussaidi G, Kessentini M. Model refactoring using examples: A search‐based approach. J Softw Evol Proc. 2014;26:692‐713.

18. Ouni A, Kessentini M, Sahraoui H, Boukadoum M. Maintainability defects detection and correction: A multi‐objective approach. Journal of Automated
Software Engineering, JASE. 2013;20(1):47‐79.

19. Harman M, Tratt L. Pareto optimal search based refactoring at the design level. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation (GECCO). London, England, UK: ACM; 2007:1106‐1113.

20. Ghannem A, ElBoussaidi G, Kessentini M. Example‐based model refactoring using multi‐objective optimization. In: North American Search Based Software
Engineering Symposium. Michigan, Detroit, USA; 2015:104‐127.

21. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA‐II. IEEE Transactions on Evolutionary Computation.
2002;6(2):182‐197.

22. Li X. A non‐dominated sorting particle swarm optimizer for multiobjective optimization. In: Cantú‐Paz E et al., eds. Genetic and Evolutionary Computation
— GECCO 2003. Berlin Heidelberg: Springer; 2003:37‐48.

23. Kessentini M, Kessentini W, Sahraoui H, Boukadoum M, Ouni A. Design defects detection and correction by example. In: Proceedings of the 19th Inter-
national Conference on Program Comprehension (ICPC). Kingston, ON, CANADA: IEEE Computer Society; 2011:81‐90.

24. Howe CD. RiTa: Creativity support for computational literature. In: Proceedings of the 7th ACM Conference on Creativity and Cognition. Berkeley, CA,
USA: ACM; 2009:205‐210.

25. Genero M, Piattini M, Calero C. Empirical validation of class diagram metrics. in Proceedings of the International Symposium in Empirical Software Engi-
neering (ISESE). 2002. Nara, Japan.

26. Miryung K, Matthew G, Alex L, Napol R. Ref‐Finder: A refactoring reconstruction tool based on logic query templates. In: Proceedings of the 18th ACM
SIGSOFT International Symposium on Foundations of Software Engineering. Santa Fe, New Mexico, USA: ACM; 2010:371‐372.

27. Moha N, Yann‐Gael G, Duchien L, Le Meur AF. DECOR: A method for the specification and detection of code and design smells. IEEE Trans. Softw. Eng.
2010;36(1):20‐36.

28. Ghannem A, Kessentini M, El‐Boussaidi G. Detecting model refactoring opportunities using heuristic search. In: Litoiu M, Stroulia E, MacKay S, eds. Pro-
ceedings of the 2011 Conference of the Center for Advanced Studies on Collaborative Research (CASCON). Riverton, NJ, USA: IBM Corp; 2011.

29. Kessentini M, Vaucher S, Sahraoui HA. Deviance from perfection is a better criterion than closeness to evil when identifying risky code. ASE.
2010;113‐122.

30. Kessentini M, Kessentini W, Sahraoui HA, Boukadoum M, Ouni A. Design defects detection and correction by example. ICPC. 2011;81‐90.

31. Mansoor U, Kessentini M, Wimmer M, Deb K. Multi‐view refactoring of class and activity diagrams using a multi‐objective evolutionary algorithm. Soft-
ware Quality Journal. 1‐29. to appear

32. Rachmawati L, Srinivasan D. Multiobjective evolutionary algorithm with controllable focus on the knees of the Pareto front. IEEE Trans. Evol. Comput.
2009;13(4):810‐824.

33. Wilcoxon F. Individual comparisons by ranking methods. In: Kotz S, Johnson N, eds. Breakthroughs in Statistics. New York: Springer; 1992:196‐202.

34. O' Keeffe M, O' Cinnéide M. Search‐based refactoring: An empirical study. J. Softw. Evol. Process. 2008;20(5):345‐364.

35. Qayum F, Heckel R. Local search‐based refactoring as graph transformation. In: Proceedings of the 1st International Symposium on Search Based Software
Engineering (SSBSE). Springer Berlin Heidelberg: Cumberland Lodge, Windsor, UK; 2009.

36. ben Fadhel A, Kessentini M, Langer P, Wimmer M. 2012, September. Search‐based detection of high‐level model changes. In Software Maintenance
(ICSM), 2012 28th IEEE International Conference on (pp. 212‐221). IEEE.

37. Ghannem A, El‐Boussaidi G, Kessentini M. Model refactoring using interactive genetic algorithm. In: Proceedings of the 5th Symposium on Search Based
Software Engineering (SSBSE). Berlin Heidelberg: Springer; 2013.

38. Bechikh S, Kessentini M, Said LB, Ghédira K. Chapter four‐preference incorporation in evolutionary multiobjective optimization: A survey of the state‐
of‐the‐art. Adv Comput. 2015;98:141‐207.

39. Kalboussi S, Bechikh S, Kessentini M, Said LB. Preference‐based many‐objective evolutionary testing generates harder test cases for autonomous
agents. In: International Symposium on Search Based Software Engineering. Berlin, Heidelberg: Springer; 2013:245‐250.

40. Kessentini M, Bouchoucha A, Sahraoui H, BoukadoumM. (2010). Example‐based sequence diagrams to colored petri nets transformation using heuristic
Search. Modelling Foundations and Applications, 156‐172.

41. Kessentini M, Langer P, Wimmer M. "Searching models, modeling search: On the synergies of SBSE and MDE." Proceedings of the 1st International
Workshop on Combining Modelling and Search‐Based Software Engineering. IEEE Press, 2013.

42. Rapu D, et al. Using history information to improve design flaws detection. in Software Maintenance and Reengineering, 2004. CSMR 2004. Proceed-
ings. Eighth European Conference on. 2004.

43. Yamashita A, Moonen L. Do code smells reflect important maintainability aspects? In 28th IEEE International Conference on Software Maintenance
(ICSM). 2012.

44. Ouni A, Kessentini M, Sahraoui H. "Search‐based refactoring using recorded code changes." Software Maintenance and Reengineering (CSMR), 2013
17th European Conference on. IEEE, 2013.

45. Ouni A, Kessentini M, Sahraoui H, Hamdi MS. Search‐based refactoring: Towards semantics preservation. On 28th IEEE International Conference in
Software Maintenance (ICSM), 2012. https://doi.org/10.1109/ICSM.2012.6405292 2012

46. O' Cinnéide M, Tratt L, Harman M, Counsell S, Hemati MI. Experimental assessment of software metrics using automated refactoring. In: Proceedings of
the ACM‐IEEE International Symposium on Empirical Software Engineering and Measurement. Lund, Sweden: ACM; 2012.

47. Mariani T, Vergilio SR. A systematic review on search‐based refactoring. Inf Softw Technol. 2017;83, C (March 2017):14‐34. https://doi.org/10.1016/j.
infsof.2016.11.009

48. Hall M, Walkinshaw N, McMinn P. ‘Supervised software modularization. 28th IEEE International Conference on Software Maintenance. pp. 23‐30.’
(2012. 2012)

https://doi.org/10.1109/ICSM.2012.6405292 2012
https://doi.org/10.1016/j.infsof.2016.11.009
https://doi.org/10.1016/j.infsof.2016.11.009

20 of 20 GHANNEM ET AL.
49. Bavota G, Carnevale F. ‘Putting the developer in a loop: An interactive GA for software re‐modularization. Search based software engineering, Lecture
notes in computer science volume 7515. pp 75‐89’ (2012. 2012)

50. Lin Y, Peng X, Cai Y, Dig D, Zheng D, Zhao W. ‘Interactive and guided architectural refactoring with search‐based recommendation’, International Sym-
posium on the Foundations of Software Engineering (FSE 2016), Accepted, 2016

51. Mkaouer MW, Kessentini M, Bechikh S, Deb K, Ó Cinnéide M. ‘Recommendation system for software refactoring using innovization and interactive
dynamic optimization’. ASE 2014:331‐336

52. Ragnhild VDS, Jonckers V, Mens T. A formal approach to model refactoring and model refinement. SoSyM. 2007;6(2):139‐162.

53. Marc Van Kempen M, Chaudron M, Kourie D, Boake A. Towards proving preservation of behaviour of refactoring of UML models. In: Proceedings of the
2005 annual research conference of the South African institute of computer scientists and information technologists on IT research in developing coun-
tries (SAICSIT); 2005. South African Institute for Computer Scientists and Information Technologists, Republic of South Africa.

54. Mens T, Taentzer G, Runge O. Analysing refactoring dependencies using graph transformation. Software and Systems Modeling. 2007;6(3):269‐285.

55. Biermann E. EMF model transformation based on graph transformation: Formal foundation and tool environment. In: Proceedings of the 5th International
Conference on Graph Transformations (ICGT). Enschede, The Netherlands: Springer‐Verlag; 2010.

56. Brito e Abreu, F, Melo W. Evaluating the impact of object‐oriented design on software quality. In: Proceedings of the 3rd International Software Metrics
Symposium, 1996.

57. Zhang M, Hall T, Baddoo N. Code Bad Smells: A review of current knowledge. J Softw Evol Proc. 2011;23(3):179‐202.

58. Van Emden E, Moonen L. Java quality assurance by detecting code smells. In: Proceedings of the Ninth Working Conference on Reverse Engineering.
2002.

59. Mäntylä MV, Lassenius C. Subjective evaluation of software evolvability using code smells: An empirical study. C Empir Software Eng. 2006;11(3):395‐
431.

60. Monden A, Nakae D, Kamiya T, Sato S, Matsumoto K. Software quality analysis by code clones in industrial legacy software. In: the Proceedings of the
Eighth IEEE Symposium on Software Metrics; 2002.

61. Deligiannis I, Shepperd M, Roumeliotis M, Stamelosd I. An empirical investigation of an object‐oriented design heuristic for maintainability. J Syst
Softw. 2003;65(2):127‐139.

62. Anda B. Assessing software system maintainability using structural measures and expert assessments. in Software Maintenance, 2007. ICSM 2007. IEEE
International Conference on. 2007.

63. Marinescu R. Detection strategies: metrics-based rules for detecting design flaws. In: Proceedings of the 20th IEEE International Conference on Software
Maintenance, 2004.

How to cite this article: Ghannem A, Kessentini M, Hamdi MS, El Boussaidi G. Model refactoring by example: A multi‐objective search

based software engineering approach. J Softw Evol Proc. 2018;30:e1916. https://doi.org/10.1002/smr.1916

https://doi.org/10.1002/smr.1916

