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Summary

Chotikapanich and Griffiths (Journal of Business and Economic Statistics, 2002,
20(2), 290–295) introduced the Dirichlet distribution to the estimation of Lorenz
curves. This distribution naturally accommodates the proportional nature of
income share data and the dependence structure between the shares. Chotika-
panich and Griffiths fit a family of five Lorenz curves to one year of Swedish
and Brazilian income share data using unconstrained maximum likelihood and
unconstrained nonlinear least squares. We attempt to replicate the authors'
results and extend their analyses using both constrained estimation techniques
and five additional years of data. We successfully replicate a majority of the
authors' results and find that some of their main qualitative conclusions also
hold using our constrained estimators and additional data.

1 INTRODUCTION

The Lorenz curve is a commonly used tool to illustrate income distributions and income inequality. It is constructed by
relating ordered cumulative proportions of income to ordered cumulative population shares. The curve is then used to
estimate income inequality measures, such as the Gini coefficient or Atkinson's inequality measure.

Unfortunately, estimates of inequality from Lorenz curves can depend crucially on distributional assumptions, func-
tional form assumptions, and estimation methodologies (Abdalla & Hassan, 2004; Cheong, 2002; Chotikapanich &
Griffiths, 2002, 2005). Therefore, the literature proposes different functional forms and reparametrizations for both the
Lorenz curve and income distributions.1 Estimation is commonly based on least squares techniques, with more recent
studies using Bayesian and maximum likelihood estimation.2

We have three main objectives in this paper. We first attempt a narrow replication of Chotikapanich and Griffiths (2002),
hereafter CG, who propose using a Dirichlet distribution to model the proportional nature and dependence structure of
cumulative income share data. CG estimate five Lorenz curves using both maximum likelihood (ML) and nonlinear least
squares (NL) on one year of Brazilian and Swedish data, obtaining implied Gini coefficients. CG have three main findings:
(1) the point estimates of the parameters and of the Gini coefficients are generally insensitive to the choice of Lorenz curve
specification and estimator; (2) the standard errors are sensitive to the specification and estimator; and (3) ML performs
better than NL under the Dirichlet distributional assumption.

1For example, Kakwani (1980), Rasche (1980), Ortega, Martin, Fernandez, Ladoux, and Garcia (1991), Chotikapanich (1993), Sarabia, Castillo, and
Slottje (1999), Sarabia, Castillo, and Slottje (2001), Sarabia, Castillo, Pascual, and Sarabia (2005), Rohde (2009), Helene (2010), and Wang and Smyth
(2015).
2See Chotikapanich and Griffiths (2002, 2008) and Hasegawa and Kozumi (2003).
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We replicate a majority of CG's three main findings. For less parametrized Lorenz curves, our point estimates and
standard errors match CG. We experience considerable instability in estimating the more parametrized Lorenz curves,
consistent with CG. Our successful narrow replication contributes to the current push for replication and robustness in
economics research (Chang & Li, 2015; Welch, 2015; Zimmermann, 2015).

Our second objective is to extend CG in a scientific replication by using constrained estimators. We apply constrained
maximum likelihood (CML) and constrained nonlinear least squares (CNL) to the same functional forms and data as
CG. We use constrained estimators because the parameters from the Lorenz curve specifications in CG should be con-
strained to ensure that the curves are invariant to increasing convex exponential and power transformations (Sarabia
et al., 1999). Although these restrictions are mentioned in CG, some of CG's estimates violate the constraints. We find that
some parameter estimates differ between constrained and unconstrained estimators, but the implied Gini coefficients are
similar between constrained and unconstrained estimators.

Our third objective is to fit the various Lorenz curve specifications with both constrained and unconstrained estimators
on five additional years of Swedish and Brazilian income distribution data from the World Bank: data not used by CG. In
this scientific replication, we find that a few of the main conclusions from CG also hold using the constrained estimators
and these additional data. Similar to Abdalla and Hassan (2004), who apply the methodologies from CG to data from the
Abu Dhabi Emirate and their own Lorenz curve form, we find that Gini coefficient point estimates are robust to different
functional forms and estimation methods when applied to additional data.

2 NARROW REPLICATION

The data are the cumulative proportions of income (𝜂1, 𝜂2, … , 𝜂M with 𝜂M = 1) and corresponding cumulative population
shares (𝜋1, 𝜋2, … , 𝜋M with 𝜋M = 1). Let qi = 𝜂i − 𝜂i−1 be the income shares. CG assume that (q1, … , qM) has a Dirichlet
distribution with parameters (𝛼1, … , 𝛼M), where 𝛼i = 𝜆[L(𝜋i; 𝛽) − L(𝜋i−1; 𝛽)]. L(·) is the Lorenz curve specification with
an associated vector of unknown parameters 𝛽, and 𝜆 > 0 is an unknown scalar parameter from the Dirichlet distribution.

CG apply five Lorenz curve specifications to one year of Brazilian and Swedish data:

L1(𝜋i; k) = ek𝜋 − 1
ek − 1

, k > 0, (1)

L2(𝜋i; 𝛼, 𝛿) = 𝜋𝛼[1 − (1 − 𝜋)𝛿], 𝛼 ≥ 0, 0 < 𝛿 ≤ 1, (2)

L3(𝜋i; 𝛿, 𝛾) = [1 − (1 − 𝜋)𝛿]𝛾 , 𝛾 ≥ 1, 0 < 𝛿 ≤ 1, (3)

L4(𝜋i; 𝛼, 𝛿, 𝛾) = 𝜋𝛼[1 − (1 − 𝜋)𝛿]𝛾 , 𝛼 ≥ 0, 𝛾 ≥ 1, 0 < 𝛿 ≤ 1, (4)

L5(𝜋i; a, d, b) = 𝜋 − a𝜋d(1 − 𝜋)b, a > 0, 0 < d ≤ 1, 0 < b ≤ 1. (5)

Each specification is then estimated with ML based on the Dirichlet distributional assumption or with NL without the
distributional assumption.3 We use the Matlab function fminunc to maximize the log-likelihood functions. The standard
errors are from the negative inverse of the numeric Hessian matrix evaluated at the maximum. We use the Matlab func-
tion lsqcurvefit and the Stata command nl for the NL optimizations. For NL, CG suggest using Newey and West (1987)
standard errors.4

Table 1 shows our narrow replication results. For Lorenz curves L1 to L3, and for both countries, our ML point estimates
and standard errors more or less match those from CG. Our ML estimation for L4 is unstable, with more stable estimation
using Brazilian data than Swedish data, consistent with CG. However, the Swedish ML point estimates for 𝛼 fluctuate
around values that are often greater than CG's estimates. When we perform ML with random starting values on Swedish
data, the point estimates are similar to CG's but the standard errors are unstable.5 This instability may indicate that

3We conduct the replications without assistance from the authors and without their code, using data from the original source (Jain, 1975). We use
Matlab R2013a and Stata 13MP on the Windows 7 Enterprise (64-bit) and OS X Version 10.9.5 operating systems respectively.
4We implement nl in Stata with different lag values for the Newey–West standard errors and find that a lag of 2 matches the standard errors reported
by CG. These are the standard errors we report. We use the Stata option vce(hac nwest 2) in the nl command.
5We use 2,000 sets of random starting values from a standard normal distribution.
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TABLE 1 Sweden and Brazil estimates using data from Jain (1975)

Sweden: Chotikapanich and Griffiths Sweden: our unconstrained and constrained results
L2 NL 𝛼: 0.60 (0.01) 𝛿: 0.64 (0.01) G: 0.388 (0.001) 𝛼: 0.60 (0.01) 𝛿: 0.64 (0.01) G: 0.388 (0.001)

ML 𝛼: 0.61 (0.02) 𝛿: 0.64 (0.01) G: 0.387 (0.004) 𝛼: 0.61 (0.02) 𝛿: 0.64 (0.01) G: 0.387 (0.004)
L3 NL 𝛿: 0.73 (0.00) 𝛾 : 1.56 (0.01) G: 0.387 (0.001) 𝛿: 0.73 (0.01) 𝛾 : 1.56 (0.01) G: 0.387 (0.001)

ML 𝛿: 0.73 (0.01) 𝛾 : 1.58 (0.02) G: 0.388 (0.004) 𝛿: 0.73 (0.01) 𝛾 : 1.58 (0.02) G: 0.388 (0.004)
L4 CNL n/a n/a n/a n/a 𝛼: 0.00 𝛿: 0.73 𝛾 : 1.56 G: 0.387

NL 𝛼: −0.76 (0.56) 𝛿: 0.79 (0.04) 𝛾 : 2.29 (0.55) G: 0.386 (0.001) 𝛼: −0.75 (0.56) 𝛿: 0.79 (0.04) 𝛾 : 2.29 (0.55) G: 0.386 (0.001)
CML n/a n/a n/a n/a 𝛼: 0.00 𝛿: 0.73 𝛾 : 1.57 G: 0.388
ML 𝛼: 0.00 (0.66) 𝛿: 0.73 (0.08) 𝛾 : 1.57 (0.64) G: 0.388 (0.004) 𝛼: 0.00 (—) 𝛿: 0.73 (—) 𝛾 : 1.57 (—) G: 0.388 (—)

L1 NL k: 2.50 (0.08) G: 0.379 (0.029) k: 2.50 (0.08) G: 0.379 (0.010)
ML k: 2.53 (0.18) G: 0.383 (0.023) k: 2.53 (0.18) G: 0.383 (0.023)

L5 NL a: 0.77 (0.01) d: 0.94 (0.01) b: 0.59 (0.01) G: 0.388 (0.001) a: 0.77 (0.01) d: 0.94 (0.01) b: 0.59 (0.01) G: 0.388 (0.001)
CML n/a n/a n/a n/a a: 0.75 (—) d: 0.92 (—) b: 0.59 (—) G: 0.387 (—)
ML a: 0.75 (0.01) d: 0.92 (0.01) b: 0.59 (0.01) G: 0.387 (0.003) a: — (—) d: — (—) b: — (—) G: — (—)

Brazil: Chotikapanich and Griffiths Brazil: our unconstrained and constrained results
L2 NL 𝛼: 0.57 (0.02) 𝛿: 0.29 (0.01) G: 0.636 (0.001) 𝛼: 0.57 (0.02) 𝛿: 0.29 (0.01) G: 0.636 (0.001)

ML 𝛼: 0.53 (0.04) 𝛿: 0.29 (0.01) G: 0.633 (0.005) 𝛼: 0.53 (0.04) 𝛿: 0.29 (0.01) G: 0.633 (0.005)
L3 NL 𝛿: 0.38 (0.01) 𝛾 : 1.44 (0.01) G: 0.633 (0.001) 𝛿: 0.38 (0.01) 𝛾 : 1.44 (0.01) G: 0.633 (0.001)

ML 𝛿: 0.37 (0.01) 𝛾 : 1.42 (0.02) G: 0.633 (0.004) 𝛿: 0.37 (0.01) 𝛾 : 1.42 (0.02) G: 0.633 (0.004)
L4 CNL n/a n/a n/a n/a 𝛼: 0.22 𝛿: 0.35 𝛾 : 1.27 G: 0.634

NL 𝛼: 0.22 (0.20) 𝛿: 0.35 (0.03) 𝛾 : 1.27 (0.15) G: 0.634 (0.001) 𝛼: 0.22 (0.20) 𝛿: 0.35 (0.03) 𝛾 : 1.27 (0.15) G: 0.634 (0.001)
ML 𝛼: 0.03 (0.21) 𝛿: 0.37 (0.03) 𝛾 : 1.40 (0.17) G: 0.633 (0.004) 𝛼: 0.03 (0.22) 𝛿: 0.37 (0.03) 𝛾 : 1.39 (0.18) G: 0.633 (0.004)

L1 NL k: 5.37 (0.67) G: 0.637 (0.165) k: 5.37 (0.67) G: 0.637 (0.040)
ML k: 3.84 (0.82) G: 0.523 (0.075) k: 3.84 (0.82) G: 0.523 (0.075)

L5 CNL n/a n/a n/a n/a a: 0.91 d: 1.00 b: 0.27 G: 0.635
NL a: 0.92 (0.01) d: 1.00 (0.01) b: 0.27 (0.01) G: 0.635 (0.001) a: 0.92 (0.01) d: 1.00 (0.01) b: 0.27 (0.01) G: 0.635 (0.001)
CML n/a n/a n/a n/a a: 0.91 (—) d: 1.00 (—) b: 0.27 (—) G: 0.635 (—)
ML a: 0.91 (0.01) d: 1.00 (0.01) b: 0.27 (0.01) G: 0.635 (0.001) a: — (—) d: — (—) b: — (—) G: — (—)

Note. ML, maximum likelihood; NL, nonlinear least squares; CML, constrained maximum likelihood; CNL, constrained nonlinear least squares; G, Gini coeffi-
cient. We report constrained estimates only when they differ from the unconstrained estimates. ‘—’ represents estimates we were unable to obtain. ‘n/a’ represents
estimates that CG did not originally obtain.

the area around the maximum is flat, yielding point estimates and variances that are not unique (Gill & King, 2003).
In addition, the numeric variance–covariance matrix evaluated at the converged values is not positive definite for over
50% of the random starting values. As a result, we do not report ML standard errors for L4 with Swedish data. For L4 with
Brazilian data, our point estimates and standard errors more or less match those from CG.

We are unable to replicate CG's ML results for L5 for both countries, despite attempting estimation using a grid of starting
values. As noted in Ortega et al. (1991) and Sarabia et al. (1999), L5 can result in a negative income share 𝜂i for a population
share 𝜋i, leading to the difference L5(𝜋i; 𝛽) − L5(𝜋i−1; 𝛽) being negative and the term log Γ(𝜆[L5(𝜋i; 𝛽) − L5(𝜋i−1; 𝛽)]) from
the log-likelihood function being computationally infeasible.

We initialize NL for each Lorenz curve over a grid of starting values that spans the parameters' support. We find that
all Lorenz curve specifications except L1 display some instability.6 Instability is most frequent for L4 and L5. However,
the parameter estimates that minimize the NL objective function and the corresponding standard errors are equivalent
to CG.

For both ML and NL we also attempt to replicate the Gini coefficient G = 1 − 2 ∫ 1
0 L𝑗(𝜋; 𝛽)d𝜋. Following CG,

we obtain point estimates of G by replacing 𝛽 with the ML or NL 𝛽s for each Lorenz curve specification. With the

6A majority of the parameter estimates are similar. However, some initial values lead to NL point estimates with larger residual sum of squares and, in
some cases, infinite Gini coefficients.
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exception of L1, we successfully replicate the Gini point estimates and standard errors for all estimators and Lorenz curve
specifications.7,8

Similar to CG, we find that the Gini point estimates are insensitive to the choice of Lorenz curve specification and
estimator, although L1 fitted with Brazilian data is an exception. Given our inability to estimate L5 using ML and the
nonpositive definite numeric Hessian for L4 using Swedish data, we do not report an ML Gini coefficient for L5 or standard
errors of the Gini coefficient for both L4 and L5.

We also successfully replicate the information inaccuracy measures suggested by Theil (1967)9 and the likelihood ratio
test (LRT) results except for L5 versus L2 (with 𝛼=1) for Brazil. We obtained 51.355 as the test statistic, compared to 31.355
from CG. Both likelihood ratio statistics, however, lead to the same conclusion that the functional form L2, with 𝛼 = 1,
is rejected relative to L5. The L5 LRT and information inaccuracy measure for L5 are calculated using CG's reported
point estimates.

3 SCIENTIFIC REPLICATION: CONSTRAINED OPTIMIZATION

Table 1 shows our results.10 Point estimates for L1 to L3 are identical for constrained and unconstrained estimation. For
L4 with Swedish data, the CNL estimates deviate the most from the NL estimates. For example, the CNL estimate for 𝛼 is
close to 0, while the NL estimate is−0.7549. For L4 with Brazilian data, the CNL estimates are close to the NL estimates. In
terms of CML results for L4, the constrained estimates and standard errors match the unconstrained quantities. Though
we were unable to replicate unconstrained ML point estimates for L5, with parameter constraints imposed the CML point
estimates are close to the unconstrained estimates from CG; we were unable to generate standard error estimates as the
numeric hessians were quite unstable across different sets of starting values. The CNL point estimates for L5 are either
identical to or very close to the NL quantities.

Overall, we find that the CML and CNL estimates of the model parameters can differ from their ML and NL
counterparts, but the implied Gini coefficients are similar across estimators.

4 SCIENTIFIC REPLICATION: EXTENSION TO WORLD BANK DATA

We further extend CG using data from the World Bank Poverty and Equity Database (World Bank, 2015a, 2015b). We
construct a dataset of seven quantiles of cumulative income shares for Brazil in 1987, 1992, 1995, 2001, and 2005 and for
the equivalent years for Sweden, with 2001 replaced by 2000.

Our results are in Tables A1 and A2 in the Supporting Information Appendix. We find that unconstrained and con-
strained estimation applied to World Bank data yield qualitative conclusions similar to those reported by CG, who use
data from Jain (1975). With the exception of L4, the point estimates of the parameters for all Lorenz curve specifications
are similar across estimation techniques, but there are differences in the standard errors. ML and NL point estimates for
L4 differ for all years of Brazilian and Swedish World Bank data. Similar to our narrow replication, we experience the same
computational instability with unconstrained ML for L4 and computational infeasibility for L5 with World Bank data.

We also find that, for a given year, Gini coefficients are similar across Lorenz curve specifications and estimators
(with the exception of L1 with Brazilian data), even though some unconstrained parameter estimates violate the
restricted ranges. For Brazil, ML estimation of L1 results in Gini coefficients that are lower than other functional forms,

7Our initial attempt to replicate CG's ML standard errors for L1's Gini coefficients led us to analytically verify CG's formula for the variance of the Gini
coefficient, var(Ĝ). We find a typo in CG's L1 formula for var(Ĝ) but are able to replicate the ML standard errors for the Gini coefficient with our corrected

formula. CG report var(Ĝ) =
[

2(ek̂ (e2−k̂2−2)+1)
(k̂(ek̂−1))2

]2
var(k̂) but we analytically find var(Ĝ) =

[
2(ek̂ (ek̂−k̂2−2)+1)

(k̂(ek̂−1))2

]2
var(k̂).

8We discover a minor computational issue in the calculation of the NL standard errors for L1 by CG. We find that the CG standard errors for the L1
NL Gini coefficient are calculated as var(Ĝ) = 𝜕G

𝜕𝛽
var(k̂) when the correct formula is var(Ĝ) = 𝜕G

𝜕𝛽′
var(k̂) 𝜕G

𝜕𝛽
. We verify this using CG's reported Brazilian

values for SE(Ĝ) and SE(k̂), 0.1647 and 0.6726, in the formula of var(Ĝ) corrected for the typo detailed in footnote 7: 0.16472 = 𝜕G
𝜕𝛽

× 0.67262 × 𝜕G
𝜕𝛽

, which

implies [ 𝜕G
𝜕𝛽
]2 = 0.0600 and 𝜕G

𝜕𝛽
= 0.2449; however, 𝜕G

𝜕𝛽
evaluated at k̂= 0.0600. Therefore the variance of Ĝ should be var(Ĝ) = 0.0600 × 0.67422 × 0.0600

= 0.0016 and SE(Ĝ) = 0.0403. A similar computational error occurs for Swedish data.
9The measure I =

∑M
i=1 qilog

(
qi
q̂i

)
compares actual income shares, qi, to predicted income shares, q̂i. Smaller values of I indicate a better fit.

10Table 1 uses the Matlab functions fmincon and lsqcurvefit. In unreported results we also attempt to use the Matlab function patternsearch to apply ML
and CML. Patternsearch yields parameter estimates that are either identical to fminunc and fmincon or imply a smaller log-likelihood; it also tends to
be less stable than fminunc and fmincon.
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and NL estimation results in higher Gini coefficients. In addition, our point estimates of the Gini coefficients are similar
to those officially reported by the World Bank (see Table A3 in the Supporting Information Appendix).

Table A4 in the Supporting Information Appendix compares the fit using the Theil (1967) information inaccuracy
measure. Our results are largely consistent with CG.

5 CONCLUSION AND RECOMMENDATION

Our narrow replication of CG verifies a majority of their results. Our scientific replication extends the analysis from CG
to constrained estimators and additional data, where we find that some of their qualitative results still carry through.
However, in both our narrow and scientific replications we find instabilities in the estimation across different datasets,
estimators, and optimization algorithms (see footnote 10). These instabilities are possibly due to the Dirichlet and Lorenz
curve functional form specifications.

Although we have explored different functional forms and estimators for modeling Lorenz curves, it is difficult for us to
make a sweeping recommendation as to which estimator and functional form researchers should use. However, assuming
one only cares about the Gini coefficient, and not the fit of actual income shares, then we feel the parsimonious L1 is
the best option. L1's implied Gini coefficient is relatively, though not completely, invariant to estimator choice and also is
stable across initialized starting values.
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