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Abstract

Chotikapanich and Gri�ths (2002) introduced the Dirichlet distribution to the estima-

tion of Lorenz curves. This distribution naturally accommodates the proportional nature

of income share data and the dependence structure between the shares. Chotikapanich

and Gri�ths (2002) fit a family of five Lorenz curves to one year of Swedish and Brazilian

income share data using unconstrained maximum likelihood and unconstrained non-linear

least squares. We attempt to replicate the authors’ results and extend their analyses using

both constrained estimation techniques and five additional years of data. We successfully

replicate a majority of the authors’ results and find that some of their main qualitative

conclusions also hold using our constrained estimators and additional data.
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Introduction

The Lorenz curve is a commonly used tool to illustrate income distributions and income

inequality. It is constructed by relating ordered cumulative proportions of income to ordered

cumulative population shares. The curve is then used to estimate income inequality measures,

such as the Gini coe�cient or Atkinson’s inequality measure.

Unfortunately, estimates of inequality from Lorenz curves can depend crucially on distri-

butional assumptions, functional form assumptions, and estimation methodologies (Cheong,

2002; Chotikapanich and Gri�ths, 2002, 2005; and Abdalla and Hassan, 2004). Therefore,

the literature proposes di�erent functional forms and re-parameterizations for both the Lorenz

curve and income distributions.1 Estimation is commonly based on least squares techniques,

with more recent studies using Bayesian and maximum likelihood estimation.2

We have three main objectives in this paper. We first attempt a narrow replication of

Chotikapanich and Gri�ths (2002), hereafter CG, who propose using a Dirichlet distribution

to model the proportional nature and dependence structure of cumulative income share data.

CG estimate five Lorenz curves using both maximum likelihood (ML) and non-linear least

squares (NL) on one year of Brazilian and Swedish data, obtaining implied Gini coe�cients.

CG have three main findings: (1) the point estimates of the parameters and of the Gini

coe�cients are generally insensitive to the choice of Lorenz curve specification and estimator,

(2) the standard errors are sensitive to the specification and estimator, and (3) ML performs

better than NL under the Dirichlet distributional assumption.

We replicate a majority of CG’s three main findings. For less parameterized Lorenz curves,

our point estimates and standard errors match CG. We experience considerable instability in

estimating the more parameterized Lorenz curves, consistent with CG. Our successful narrow

replication contributes to the current push for replication and robustness in economics research

(Chang and Li, 2015; Welch, 2015; Zimmermann, 2015).

Our second objective is to extend CG in a scientific replication by using constrained esti-
1For example, Kakwani (1980), Rasche et al. (1980), Ortega et al. (1991), Chotikapanich (1993), Sarabia

et al. (1999, 2001, 2005), Rohde (2009), Helene (2010), and Wang and Smyth (2015).
2See Chotikapanich and Gri�ths (2002, 2008), Hasegawa and Kozumi (2003).
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mators. We apply constrained maximum likelihood (CML) and constrained non-linear least

squares (CNL) to the same functional forms and data as CG. We use constrained estimators

because the parameters from the Lorenz curve specifications in CG should be constrained to

ensure that the curves are invariant to increasing convex exponential and power transforma-

tions (Sarabia et al. (1999)). Although these restrictions are mentioned in CG, some of CG’s

estimates violate the constraints. We find that some parameter estimates di�er between con-

strained and unconstrained estimators, but the implied Gini coe�cients are similar between

constrained and unconstrained estimators.

Our third objective is to fit the various Lorenz curve specifications with both constrained

and unconstrained estimators on five additional years of Swedish and Brazilian income distri-

bution data from the World Bank: data not used by CG. In this scientific replication, we find

that a few of the main conclusions from CG also hold using the constrained estimators and

these additional data. Similar to Abdalla and Hassan (2004), who apply the methodologies

from CG to data from the Abu Dhabi Emirate and their own Lorenz curve form, we find

that Gini coe�cient point estimates are robust to di�erent functional forms and estimation

methods when applied to additional data.

Narrow Replication

The data are the cumulative proportions of income (÷1, ÷2, ..., ÷M with ÷M = 1) and

corresponding cumulative population shares (fi1, fi2, ..., fiM with fiM = 1). Let qi = ÷i≠÷i≠1 be

the income shares. CG assume that (q1, . . . , qM ) has a Dirichlet distribution with parameters

(–1, . . . , –M ), where –i = ⁄[L(fii; —) ≠ L(fii≠1; —)]. L(·) is the Lorenz curve specification with

an associated vector of unknown parameters —, and ⁄ > 0 is an unknown scalar parameter

from the Dirichlet distribution.

CG apply five Lorenz curve specifications to one year of Brazilian and Swedish data:

L1(fii; k) = ekfi ≠ 1
ek ≠ 1 , k > 0 (1)

L2(fii; –, ”) = fi–[1 ≠ (1 ≠ fi)”], – Ø 0, 0 < ” Æ 1 (2)
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L3(fii; ”, “) = [1 ≠ (1 ≠ fi)”]“ , “ Ø 1, 0 < ” Æ 1 (3)

L4(fii; –, ”, “) = fi–[1 ≠ (1 ≠ fi)”]“ , – Ø 0, “ Ø 1, 0 < ” Æ 1 (4)

L5(fii; a, d, b) = fi ≠ afid(1 ≠ fi)b. a > 0, 0 < d Æ 1, 0 < b Æ 1 (5)

Each specification is then estimated with ML based on the Dirichlet distributional assumption

or with NL without the distributional assumption.3 We use the Matlab function fminunc to

maximize the log likelihood functions. The standard errors are from the negative inverse of the

numeric Hessian matrix evaluated at the maximum. We use the Matlab function lsqcurvefit

and the Stata command nl for the NL optimizations. For NL, CG suggest using Newey and

West (1987) standard errors.4

Table 1 shows our narrow replication results. For Lorenz curves L1 to L3 and for both

countries, our ML point estimates and standard errors more or less match those from CG.

Our ML estimation for L4 is unstable, with more stable estimation using Brazilian data

than Swedish data, consistent with CG. However, the Swedish ML point estimates for –

fluctuate around values that are often greater than CG’s estimates. When we perform ML

with random starting values on Swedish data, the point estimates are similar to CG’s but

the standard errors are unstable.5 This instability may indicate that the area around the

maximum is flat, yielding point estimates and variances that are not unique (Gill and King,

2003). In addition, the numeric variance-covariance matrix evaluated at the converged values

is not positive definite for over 50% of the random starting values. As a result, we do not

report ML standard errors for L4 with Swedish data. For L4 with Brazilian data, our point

estimates and standard errors more or less match those from CG.

We are unable to replicate CG’s ML results for L5 for both countries, despite attempting

estimation using a grid of starting values. As noted in Ortega et al. (1991) and Sarabia et al.
3We conduct the replications without assistance from the authors and without their code, using data from

the original source (Jain, 1975). We use Matlab R2013a and Stata 13MP on the Windows 7 Enterprise (64-bit)
and OS X Version 10.9.5 operating systems respectively.

4We implement nl in Stata with di�erent lag values for the Newey-West standard errors and find that a lag
of 2 matches the standard errors reported by CG. These are the standard errors we report. We use the Stata
option vce(hac nwest 2) in the nl command.

5We use 2000 sets of random starting values from a standard normal distribution.
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(1999), L5 can result in a negative income share ÷i for a population share fii, leading to the

di�erence L5(fii; —)≠L5(fii≠1; —) being negative and the term log �(⁄[L5(fii; —)≠L5(fii≠1; —)])

from the log likelihood function being computationally infeasible.

We initialize NL for each Lorenz curve over a grid of starting values that spans the parame-

ters’ support. We find that all Lorenz curve specifications except L1 display some instability.6

Instability is most frequent for L4 and L5. However, the parameter estimates that minimize

the NL objective function and the corresponding standard errors are equivalent to CG.

For both ML and NL we also attempt to replicate the Gini coe�cient G = 1≠2
s 1

0 Lj(fi; —)

dfi. Following CG, we obtain point estimates of G by replacing — with the ML or NL —̂s for

each Lorenz curve specification. With the exception of L1, we successfully replicate the Gini

point estimates and standard errors for all estimators and Lorenz curve specifications.7,8

Similar to CG, we find that the Gini point estimates are insensitive to the choice of Lorenz

curve specification and estimator, although L1 fitted with Brazilian data is an exception.

Given our inability to estimate L5 using ML and the non-positive definite numeric Hessian

for L4 using Swedish data, we do not report an ML Gini coe�cient for L5 or standard errors

of the Gini coe�cient for both L4 and L5.

We also successfully replicate the information inaccuracy measures suggested by Theil

(1967)9 and the likelihood ratio test (LRT) results except for L5 vs. L2 (with –=1) for Brazil.

We obtained 51.355 as the test statistic compared to 31.355 from CG. Both likelihood ratio

statistics, however, lead to the same conclusion that the functional form L2, with – = 1, is
6A majority of the parameter estimates are similar. However, some initial values lead to NL point estimates

with larger residual sum of squares and, in some cases, infinite Gini coe�cients.
7Our initial attempt to replicate CG’s ML standard errors for L1’s Gini coe�cients led us to analytically

verify CG’s formula for the variance of the Gini coe�cient, var(Ĝ). We find a typo in CG’s L1 formula for
var(Ĝ) but are able to replicate the ML standard errors for the Gini coe�cient with our corrected formula.

CG report var(Ĝ) =
Ë

2(ek̂(e2≠k̂2≠2)+1)
(k̂(ek̂≠1))2

È2
var(k̂) but we analytically find var(Ĝ) =

Ë
2(ek̂(ek̂≠k̂2≠2)+1)

(k̂(ek̂≠1))2

È2
var(k̂).

8We discover a minor computational issue in the calculation of the NL standard errors for L1 by CG.
We find that the CG standard errors for the L1 NL Gini coe�cient are calculated as var(Ĝ) = ˆG

ˆ— var(k̂)
when the correct formula is var(Ĝ) = ˆG

ˆ—Õ var(k̂) ˆG
ˆ— . We verify this using CG’s reported Brazilian values for

SE(Ĝ) and SE(k̂), .1647 and .6726, in the formula of var(Ĝ) corrected for the typo detailed in footnote 7:
.16472 = ˆG

ˆ— ◊ .67262 ◊ ˆG
ˆ— , which implies [ ˆG

ˆ— ]2 = .0600 and ˆG
ˆ— = .2449, however ˆG

ˆ— evaluated at k̂ = .0600.
Therefore the variance of Ĝ should be var(Ĝ) = .0600 ◊ .67422 ◊ .0600 = .0016 and SE(Ĝ) = .0403. A similar
computational error occurs for Swedish data.

9The measure, I =
qM

i=1 qilog( qi
q̂i

), compares actual income shares, qi, to predicted income shares, q̂i.
Smaller values of I indicate a better fit.
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rejected relative to L5. The L5 LRT and information inaccuracy measure for L5 are calculated

using CG’s reported point estimates.

Scientific Replication: Constrained Optimization

Table 1 shows our results.10 Point estimates for L1 to L3 are identical for constrained

and unconstrained estimation. For L4 with Swedish data, the CNL estimates deviate the

most from the NL estimates. For example, the CNL estimate for – is close to 0 while the

NL estimate is ≠0.7549. For L4 with Brazilian data, the CNL estimates are close to the NL

estimates. In terms of CML results for L4, the constrained estimates and standard errors

match the unconstrained quantities. Though we were unable to replicate unconstrained ML

point estimates for L5, with parameter constraints imposed the CML point estimates are close

to the unconstrained estimates from CG; we were unable to generate standard error estimates

as the numeric hessians were quite unstable across di�erent sets of starting values. The CNL

point estimates for L5 are either identical to or very close to the NL quantities.

Overall, we find that the CML and CNL estimates of the model parameters can di�er from

their ML and NL counterparts, but the implied Gini coe�cients are similar across estimators.

Scientific Replication: Extension to World Bank Data

We further extend CG using data from the World Bank Poverty and Equity Database

(World Bank, 2015a,b). We construct a dataset of seven quantiles of cumulative income

shares for Brazil in 1987, 1992, 1995, 2001 and 2005 and for the equivalent years for Sweden,

with 2001 replaced by 2000.

Our results are in Tables A1 and A2 in the online appendix. We find that unconstrained

and constrained estimation applied to World Bank data yield qualitative conclusions similar

to those reported by CG, who use data from Jain (1975). With the exception of L4, the point
10Table 1 uses the Matlab functions fmincon and lsqcurvefit. In unreported results we also attempt to use

the Matlab function patternsearch to apply ML and CML. Patternsearch yields parameter estimates that are
either identical to fminunc and fmincon or imply a smaller log-likelihood; it also tends to be less stable than
fminunc and fmincon.
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estimates of the parameters for all Lorenz curve specifications are similar across estimation

techniques, but there are di�erences in the standard errors. ML and NL point estimates for

L4 di�er for all years of Brazilian and Swedish World Bank data. Similar to our narrow

replication, we experience the same computational instability with unconstrained ML for L4

and computational infeasibility for L5 with World Bank data.

We also find that, for a given year, Gini coe�cients are similar across Lorenz curve spec-

ifications and estimators (with the exception of L1 with Brazilian data), even though some

unconstrained parameter estimates violate the restricted ranges. For Brazil, ML estimation of

L1 results in Gini coe�cients that are lower than other functional forms, and NL estimation

results in higher Gini coe�cients. In addition, our point estimates of the Gini coe�cients are

similar to those o�cially reported by the World Bank (see Table A3 in the online appendix).

Table A4 in the online appendix compares the fit using the Theil (1967) information

inaccuracy measure. Our results are largely consistent with CG.

Conclusion and Recommendation

Our narrow replication of CG verifies a majority of their results. Our scientific replication

extends the analysis from CG to constrained estimators and additional data, where we find

that some of their qualitative results still carry through. However, in both our narrow and

scientific replications we find instabilities in the estimation across di�erent datasets, estima-

tors, and optimization algorithms (see footnote 10). These instabilities are possibly due to

the Dirichlet and Lorenz curve functional form specifications.

Although we have explored di�erent functional forms and estimators for modeling Lorenz

curves, it is di�cult for us to make a sweeping recommendation as to which estimator and

functional form that researchers should use. However, assuming you only care about the Gini

coe�cient, and not the fit of actual income shares, then we feel the parsimonious L1 is the

best option. L1’s implied Gini coe�cient is relatively, though not completely, invariant to

estimator choice and also is stable across initialized starting values.
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