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A reduced order model (ROM) has been developed for the pressure distribution over
the AGARD 445.6 wing using a computational fluid dynamics (CFD) code, FUN3D version
12.9. Modal step responses of the inviscid, unsteady aerodynamic system are computed
using the FUN3D code. Using proper orthogonal decomposition (POD), the modal step
responses are decomposed into a set of pressure modes and a set of generalized coordinates
associated with every pressure mode. An appropriate subset of the generalized coordinates
is then transformed into state-space form. The unsteady aerodynamic state-space ROM
could then be combined with a state-space model of the structure to create an aeroelas-
tic simulation in MATLAB. The aerodynamic model is orders of magnitude faster than
the high-order solution procedure developed by the use of traditional fluid and structural
solvers enabling flutter, aeroservoelasticity analysis, and optimization at an earlier stage of
the fixed wing aircraft design process.

Nomenclature

β step input scaling parameter
Φ proper orthogonal decomposition reduced-order mapping matrix
A,B,C state-space matrix operators
E relative pressure error
H Hankel matrix
ht impulse response
P, P̂ full- and reduced-order discrete pressure variables
P0 base pressure solution
PFUN3D predicted pressure distribution via FUN3D
PROM predicted pressure distribution via ROM
S snapshot matrix of offset pressure distributions
st step response
u system input
x system state variables
y system response
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I. Introduction

The application of reduced order modeling (ROM) techniques to aeroelastic systems is an active area of
research, motivated by the desire for faster algorithms that are well suited to the design environment

for aircraft. For example, transonic, fluid-structure interaction is a particular application of interest to
both external and internal aerodynamicists because moving shock waves in the flow necessitate high-fidelity
numerical flow solvers that are too cumbersome for iterative design analysis. Regardless of the application,
when nonlinearities are present in either the flowfield or the structure, established order reduction methods
that rely on linearized dynamics are of little use. Volterra methods1 and proper orthogonal decomposition2,3

(POD) are two of the more prevalent ROM techniques well-suited to nonlinear dynamics.4–8 Traditionally,
Volterra methods have relied on generalized aerodynamic forces (GAFs) to couple fluid forcing terms to
structural modes. The combining of POD with Volterra methods is a way to replace the GAF terms with a
physics-based fluid ROM that can potentially produce nonlinear aerodynamic forcing.

In this paper, we present a method for creating a reduced order model of the pressure distribution over
the AGARD 445.6 wing from CFD data obtained using the FUN3D code. The flow is assumed to be inviscid
with a constant free-stream Mach number and angle of attack. We present two cases, one at Mach 0.8 and
another at Mach 1.1, both of which held the angle of attack at 0◦.

II. AGARD 445.6 Wing

The AGARD 445.6 Aeroelastic Wing has been used extensively by several authors to validate compu-
tational methods. Although the aeroelastic behavior of this wing is fairly benign (weakly nonlinear), the
aeroelastic data from the flutter test of this wing provides a good starting point for validation of compu-
tational techniques. The wing is a 45-degree swept-back wing with an NACA 65A004 airfoil section, panel
aspect ratio of 1.65, and a taper ratio of 0.6576. The shape of the first four structural modes for this wing
are presented in Figure 1. The modes are first bending, first torsion, second bending, and second torsion.
The corresponding modal frequencies in vacuo are 9.60, 38.2, 48.35, and 91.54 Hz.

III. ROM Formulation

This section introduces the proper orthogonal decomposition (POD) and overviews the eigensystem
realization algorithm (ERA). In addition, we fully develop the POD-ERA approach and the synthesis of
aeroelastic ROMs.

III.A. ROM Development Process

An outline of the ROM development process is as follows:

1. Implementation of step response technique into the aeroelastic CFD code.

2. Computation of the step responses for each mode of an aeroelastic system using the aeroelastic CFD
code.

3. Dimensionality reduction of the step responses from step 2 using proper orthogonal decomposition.

4. Impulse responses are computed from the generalized coordinates in step 3 and are fed into the ERA.

5. Evaluation/validation of the state-space modes in step 4.

III.B. Proper Orthogonal Decomposition

Proper orthogonal decomposition is a technique used to decompose vector and scalar fields into a weighted
sum of basis functions or modes. The modes represent the spatial component of the decomposed data
while the weights represent the temporal component of the data. A detailed description of POD applied
to spatially discretized flowields can be found in Ref. 9. A summary of POD as it applies to a spatially
discretized scalarfield follows.

A POD reduced-order mapping Φ is constructed by the collection of observations of the solutions P (t)−P0

at different time intervals throughout the time integration of the full-system dynamics. These observations
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(a) First structural mode. (b) Second structural mode.

(c) Third structural mode. (d) Fourth structural mode.

Figure 1. The first four structural modes of the AGARD 445.6 wing where ‘zmd’ is the modal deflection in the
z-direction.

are called snapshots9 and are generally collected to provide a good variety of pressure dynamics that minimize
linear dependence. The snapshot generation procedure is sometimes referred to as POD training.9 Snapshots
are compiled columnwise into a snapshot matrix S. Next, the eigenvectors V are obtained from S>S. S and
V produce a linear transformation Φ between the full-order solution P and the reduced-order solution P̂ :

P [n] ≈ P0 + ΦP̂ [n], (1)

Φ = SV. (2)

The reduced-order variable P̂ [n] represents deviations of P [n] from a base solution P0. The subtraction of
P0 will result in zero-valued boundaries for the POD modes wherever constant boundary conditions occur
on the domain.

III.C. Eigensystem Realization Algorithm

The ERA method10 identifies a discrete, linear, time-invariant state-space realization of the form

x[n+ 1] = Ax[n] +Bβu[n], (3)

y[n] = Cx[n], (4)

by the use of data from a complete ensemble of impulse responses. The term β is a scaling parameter that is
necessary to calibrate the forcing amplitude when the impulse is other than unity. Theoretically, β should be
the inverse of the impulse amplitude and its inclusion allows more freedom when the full system is impulsed.
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Initial state responses can be used in lieu of impulse responses, but we only consider impulse response
data in this overview for simplicity. The system realization procedure takes measurement data y[n] from the
free response of the system and produces a minimal state-space model A,B, and C such that functions y
are accurately reproduced.

The free pulse response of linear, time-invariant, discrete systems is given by a function known as the
Markov parameter,

ym[n] = CAn−1B. (5)

The superposition principle states that a system response to any arbitrary input can be obtained from a linear
combination of impulse responses from that system. The generalized Hankel matrix of impulse responses is
related to the Markov parameter by the superposition principle. The Hankel matrix is formed by windowing
the impulse response data. A total of K data points are provided at discrete time steps n = 1, . . . ,K, and
the r × s matrix Hrs is formed as follows:

Hn−1
rs =


ym[n] . . . ym[n+ s− 1]

ym[1 + n] . . . ym[1 + n+ s− 1]
...

...
...

ym[r − 1 + n] . . . ym[r − 1 + n+ s− 1]

 , (6)

where s is the total size of the data window, and r is the number of time steps used to shift the data window.
The choice of r and s is arbitrary as long as r+ s+n ≤ K+ 2. The ERA method eliminates redundant data
by the use of singular value decomposition (SVD) on H0

rs,

H0
rs = PDQ>. (7)

Unwanted state dimensionality is eliminated by truncation of the elements of P,D, and Q associated with
very small singular values of H0

rs. The number of states is reduced to a minimal number q. The number of
observations p and the number of forcing terms m are known from the problem formulation. The dimension
of the Markov parameter ym[n] is p×m. Algebra is used to recast Equation (5) in terms of the time shifted
Hankel matrix H1

rs and the elements P,D, and Q. The state-space realization flows from this manipulation
and is as follows:

A = D−
1
2P>H1

rsQD
− 1

2 , (8)

B = D
1
2Q>Em, (9)

C = E>p PD
1
2 . (10)

E>p and E>m are defined as

E>p =
[
Ip, 0p, . . . , 0p

]
, (11)

E>m =
[
Im, 0m, . . . , 0m

]
, (12)

where 0p and 0m are the null matrices of order p and m, respectively, and Ip and Im are the identity matrices
of order p and m.

Because the discrete time step δt = tk+1 − tk is constant, the continuous form of the discrete state-space
realization is easily obtained. The continuous form, shown hereafter, absorbs the scaling parameter β into
the matrix B and may require additional state dimensionality when the discrete realization has real, negative
poles:

x[n+ 1] = Ax[n] +Bu[n], (13)

y[n] = Cx[n]. (14)
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IV. Results

Figure 2 shows two of the snapshots obtained from a simulation at Mach 0.8. Figure 2(a) shows the
pressure distribution over the AGARD wing when no structural deformation is present, this is in contrast
to Figure 2(b) thatshows the pressure distribution over the AGARD wing when a step input is applied to
all of the structural modes. Step or impulse inputs are usually used to excite all the frequencies of a system,
however, a step input is easier to implement in FUN3D, and its responses are more numerically stable. The
pressure distribution over the undeformed wing is used to create the base solution vector P0.

(a) AGARD 445.6 wing without any input applied to the
structural modes. The data from this snapshot is arranged
in the column vector P0.

(b) A specific snapshot showing the pressure distribution over
the AGARD 445.6 Wing when a step input is applied to all
four structural modes.

Figure 2. Wing shape and pressure distribution over the wing before and after the step input is applied to the structural
modes. Note that the AGARD 445.6 wing is a very thin airfoil and the figure is not to scale, a visual distortion is
applied in the z-direction for the aid of visualization.

The base solution P0 is then used to offset the remainder of the pressure distributions in the subsequent
time steps obtained from the simulation. Figure 2(b) shows the pressure distribution over the deformed
wing before subtracting the base solution P0. The offset pressure distributions, snapshots, are arranged into
columns and concatenated together to form the snapshot matrix S. As discussed previously, applying the
POD to the snapshot matrix S, results in decomposing the data into its respective spatial component, which
will be referred to as the pressure modes. The pressure modes are ranked according to their associated
singular value in descending order. Figure 3 shows the four most prominent pressure modes.

After the pressure modes were generated, four FUN3D simulations were performed for each structural
mode. In every simulation, the structure was deformed by applying a step input to one structural mode
while the remaining structural modes were held fixed. The response, pressure distribution P [n], was collected
for the four previously mentioned simulations and (P [n] − P0) was projected onto the first eight (ranked)
pressure modes resulting in eight generalized coordinates for every simulation.

The generalized coordinates are considered to be the system’s response to the step inputs. However, in
order to build a state-space model using the ERA, we need to derive the impulse response. Equation 15
shows how the impulse response relates to the step response:

ht = st − st−1, h0 = s0, (15)

where hi and si are the impulse response and the step response at time step t. After the impulse responses
are derived from the step responses, we apply the ERA algorithm. The result of the procedure is a state
space model that relates the generalized coordinates of the structural modes (the inputs) to the generalized
coordinates of the pressure modes (the outputs).

This procedure is then repeated for different Mach numbers. In this paper we compare the accuracy of
two models obtained for Mach 0.8 and 1.1. Each ROM is used to predict the pressure distribution over the
wing under any structural deformation at the respective Mach number.

IV.A. ROM Robustness

In order to test the robustness of the generated ROM, the pressure distribution predicted by the ROM needs
to be compared to the pressure distribution obtained with a high fidelity simulation for arbitrary inputs. We
also would like to verify that the models generated are well suited for subsonic and supersonic freestream
Mach numbers. The ROM and the FUN3D model simulations are both performed by deforming the structure,
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(a) First pressure mode. (b) Second pressure mode.

(c) Third pressure mode. (d) Fourth pressure mode.

Figure 3. The first four pressure modes of the AGARD 445.6 wing. Note that the AGARD 445.6 wing is a very thin
airfoil and the figure is not to scale, a visual distortion is applied in the z-direction for the aid of visualization.

and the predicted pressure distributions of both models are compared. The generalized coordinates of the
structural modes serve as an input to both models. The predicted pressure distribution via the ROM is
computed as follows

x[n+ 1] = Ax[n] +Bu[n], x[0] = 0, (16)

P̂ [n] = Cx[n] +Du[n], (17)

PROM[n] = P0 + ΦP̂ [n]. (18)

Figure 4 shows the inputs, i.e., the structural deformations, applied to both the ROM and the FUN3D
model for the Mach 0.8 and 1.1 cases.

The pressure distribution from the FUN3D simulation is then projected onto the same pressure modes
used to generate the ROM for comparison. The generalized pressure coordinates of each model are plotted
in Figure 6 and 7 for comparison. As the plots suggest, the ROM is able to accurately track the generalized
coordinates associated with pressure mode 1 and 2, however, the dynamics associated with some of the lower
ranked pressure modes, e.g., pressure mode 3, are not captured as well.

In order to properly demonstrate the effectiveness of the method in capturing the pressure distribution
over the wing at the different Mach numbers, it is necessary to show the error associated in predicting the
pressure distribution under various structural deformations. Since there are 50,827 pressure values for every
time step, we compute the relative error as follows

E[n] =
|PROM[n]− PFUN3D[n]|

|PFUN3D[n]|
× 100. (19)

Figure 5 is a top view of E[310] overlaid over the AGARD wing, the error in predicting the pressure
distribution as computed by Equation 19 for n = 310 at Mach 0.8.
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(a) Structural deformation for Mach 0.8.
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(b) Structural deformation for Mach 1.1.

Figure 4. Time history of generalized coordinates for each structural mode. The coordinates will serve as an input to
the high fidelity aerodynamic model (FUN3D) and the reduced aerodynamic model (ROM).

Figure 5. Relative error of predicted pressure (ROM) at
time step 310 overlaid over the AGARD wing at Mach 0.8.
Relative error is computed as defined by Equation 19.

The time step, n = 310, is specifically chosen
because the average error and its standard deviation
are at their peak as can be seen by Figure 8(a).
The average of the relative error and the associated
standard deviation over the wing is computed and
plotted in Figure 8 for both Mach 0.8 and Mach 1.1
when using only eight pressure modes.

The ROM is able to capture and recreate the
pressure distribution over the AGARD wing to a
very high accuracy, namely under 0.5% average er-
ror over the wing throughout the simulation. When
the singular values of the pressure modes are com-
pared, we observe that the singular values associ-
ated with the first four modes are 2.96× 104, 0.759,
0.0455 and 0.0103, respectively. This explains why
the ROM is still very accurate in reproducing the
overall pressure distribution over the wing despite its poor predicting capability associated with some of
the modes, such as mode 3, which has a relatively low singular value compared to modes 1 and 2. The
magnitude of the singular value reflects the importance of the associated pressure mode in contributing to
the final pressure distribution.

Generating a better set of pressure modes means having better predictive capability for all modes. For
example, it is clear that the dynamic behavior of the third pressure mode was not properly captured by
the ROM. This can probably be improved by experimenting with applying the POD method on different
datasets. Such datasets could be varied by adjusting the magnitude of the inputs applied to structural modes
or changing the time step of the CFD simulation.

Another area for improving the ROM is looking into different system identification techniques. The
ERA performed well, but different algorithms could be compared as they might capture richer dynamics or
different interactions between the structural modes and pressure modes.
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V. Conclusion

The results confirm that the proposed method for generating the ROM is capable of accurately predicting
the unsteady pressure distribution over the AGARD wing when the structure is arbitrarily deformed. Fur-
thermore, the ROM is capable of efficiently simulating the pressure distribution for hundreds of time steps
while FUN3D requires many computational hours for the same simulation. It is worth mentioning that the
ROM is only valid under conditions that were used to generate the CFD data; i.e. Mach number, angle of
attack, etc.

While it was demonstrated that only a small subset of the POD pressure modes, namely eight, can
capture the unsteady pressure response over the entire wing with high accuracy at subsonic and supersonic
flow conditions, there is still room for improvement in increasing the accuracy of the ROM. Ongoing work
continues, investigating methods that can provide better POD modes that capture the dynamics between
the unsteady pressures and the structural response.
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(c) Time history of generalized pressure coordinates associated
with the third pressure mode.

G
e

n
e

ra
liz

e
d

 C
o

o
rd

in
a

te
s

Time Step

 

 

0 100 200 300 400 500 600
−1

0

1

2

FUN3D
ROM

(d) Time history of generalized pressure coordinates associ-
ated with the fourth pressure mode.

Figure 6. Reduced order model compared to output from FUN3D at Mach 0.8.
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Figure 7. Reduced order model compared to output from FUN3D at Mach 1.1.
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Figure 8. Comparison of the ROM to the high fidelity CFD solution.
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