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Abstract 
 

Motivation is what drives animals to choose which stimuli to engage in out of the hundreds of 

choices they are faced with daily.  In terms of sexual behavior, the motivation for females to 

engage in copulatory behavior apart from their ability to do so is not well studied.  Further, the 

impacts of estradiol on the motivational aspects of sexual and feeding behavior have not been 

tested in a lab setting.  Here, Becker Lab scientists have developed a novel paradigm to study the 

motivational aspects of female sexual motivation apart from the consummatory aspects of 

physical mating behaviors.  Ovariectomized female rats were trained on an FI15s operant 

conditioning schedule to nose poke for palatable food pellets or access to a sexually receptive 

male within the same apparatus. Males were tethered to one side of the apparatus, allowing 

females to have free range and control the pace of mating interactions.  Results showed that 

when primed with injections of estradiol benzoate and progesterone, females made more 

responses for access to a sexually receptive mate than for palatable food pellets.  Oppositely, 

females made more responses for pellets when unprimed, and less responses for access to a mate.  

Females made the same amount of effort across all trials, indicating that circulating levels of 

estradiol increase the incentive value for cues associated with a male while at the same time 

decrease the incentive value for pellet cues.   

Keywords: motivation, estradiol benzoate, progesterone, sexual behavior, operant 

conditioning 
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Ovarian hormones act to differentially impact choice for sexual and feeding behavior at the same 

time in operant choice paradigm 

 Motivation makes it possible for animals to prioritize which behaviors to engage in out of 

the hundreds of choices they are faced with daily.  Motivation is usually understood in pursuit of 

a reward, like food or sex.  The rewarding value of a stimulus depends on the attributed amount 

of incentive salience, or how much an animal wants the stimulus, which influences what stimuli 

animals will seek out and how hard they will work to attain them (Berridge, 2013).  The 

mesolimbic dopamine system controls an animal’s assessment of the salience and value of a 

stimulus, and if it will seek out the stimulus again.  Female mammals’ adaptive behaviors are 

mediated by estradiol and progesterone, which work together to influence feeding behavior and 

sexual receptivity by decreasing motivation for food and increasing locomotor activity when 

estradiol levels are high.  As recognized in male and female rats in pursuit of a food or sex 

reward, behavior driving animals toward these stimuli can be divided into consummatory and 

motivational aspects, which can also be measured differently.  Consummatory aspects of sexual 

behavior pertain to the physical ability to copulate, while motivation refers to the drive to engage 

in sexual behavior.  Fluctuating levels of estradiol have been found to influence a variety of 

behaviors, with profound effects on sexual and feeding behavior throughout the estrous cycle.  

Previous research has demonstrated an effect of estradiol and progesterone on the consummatory 

aspects of feeding and sexual behavior, but the dissociation of these types of behaviors is not 

largely studied.  To this point, studies examining hormonal influences on sexual behavior largely 

focus around the physical ability and receptive behaviors exhibited by females, but this does not 

speak to how motivated a female is for engaging in sexual behavior.  In addition, because the 
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effects of these hormones on pursuit of a food or mate choice reward simultaneously has not 

been studied, this study aims to determine whether hormones oppositely impact motivation for a 

food or sex reward when animals are given the choice between them at the same time.   

What is Motivation? 

Motivation is the intrinsic drive to engage in a behavior, usually for a reward (Berridge, 

2004).  Animals are faced with many choices daily, and motivation makes it possible for them to 

prioritize which behaviors to engage in.  This is most understood in contexts in pursuit of food, 

water, or sex, where the drive to engage in these kinds of behaviors is imperative to an animal’s 

survival and opportunity to reproduce (Becker, 2009).  When it comes to mating, animals display 

specific behaviors to ensure their genes get successfully passed onto future generations.  Male 

and female animals display different behaviors to ensure reproductive success (Becker, 2009).  

Among rats, females prefer to pace sexual encounters to ensure reproductive success.  Pacing 

behavior is defined by a series of approaches and withdrawals from the male rat in which to 

control the timing of received mounts, intromissions, and ejaculations from a male rat 

(Brandling-Bennett, Blasberg, & Clark, 1999).  This type of sexual behavior is rewarding to 

females, for it enhances reproductive success (Cummings & Becker, 2012).  Reinforcement for a 

reward, like pacing behavior, is assessed by specific circuitry in the brain. 

Reward Circuitry in the Brain 

The learned valence of a stimulus is controlled by the mesolimbic dopamine system.  The 

mesolimbic pathway is characterized by the ascending dopamine projection from the ventral 

tegmental area (VTA) to the nucleus accumbens (NAc) within the ventral striatum area, 

ultimately projecting to the cerebral cortex (Davis & Benoit, 2013).  The VTA is proposed to 

inform the organism whether a stimulus is salient, and the NAc influences motivation and 
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craving for the stimulus (Berridge, 2013).  The ventral striatum mediates habitual and reflexive 

responding for rewards and reward cues (Tremblay, Worbe, & Hollerman, 2009).  The prefrontal 

cortex, the final destination of the projection, manages choice of whether the organism will seek 

out a stimulus (Foy & Foy, 2009).  Other areas within the brain such as the hippocampus, 

amygdala, hypothalamus, and locus coeruleus contribute to associating the experience of a 

reward with learning and memory, environmental cues, and coordinating the organism’s interest 

in a stimulus with the organism’s mood and physiological state (Adinoff, 2004).  Altogether, 

these regions inform the animal of the degree to which the stimulus and its corresponding cues 

provided a rewarding or aversive experience for the animal and whether it should seek out the 

stimulus in the future.    

Dopamine, a neurotransmitter, plays a crucial role in this circuitry.  Neurotransmitter 

detection techniques have demonstrated that dopamine levels are increased when an animal is 

engaging in motivated behaviors, and it is also important for assigning motivational value to 

reward predictive cues (Roitman, Stuber, Phillips, Wightman, & Carelli, 2004).  It functions to 

assign incentive salience for a specific cue, driving the animal to ‘want’ the stimulus (Berridge, 

2013).  Neurons that are activated by dopamine project throughout the amygdala, hypothalamus, 

and other brain regions to attribute goal directed behaviors with the incentive salience, allowing 

an animal to remember the stimulus and its corresponding cues and allocate the motor function 

to seek it out (Yoest, Cummings, & Becker, 2016).  Within this system, the amount of dopamine 

projected to regions along the pathway can be influenced by the action of hormones. 

Estradiol and Progesterone Within the Mesolimbic Dopamine System 

 Estradiol and progesterone affect the mesolimbic dopamine system in a marked number 

of ways.  In testing with amphetamines, it has been found that estradiol, the steroid hormone 
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produced by the ovaries, acts on receptors within the NAc and the striatum to influence 

dopamine transmission (Becker, 2005).  As viewed in ovariectomized female rats, exogenous 

injections of estradiol that work to mimic sexual receptivity indicate an increase in striatal 

release of dopamine in response to amphetamine administration compared to ovariectomized 

females without hormone treatments.  As seen when given acutely, or 30 minutes prior to a 

behavioral test, estradiol has both rapid and long-term effects on these dopamine transmissions 

within the dorsal striatum: the effects of dopamine transmission induced by amphetamines are 

increased when given acutely and are more pronounced after prior treatments with estradiol 

(Becker, 2005).  Similarly, injections of exogenous estradiol demonstrate rapid stimulation of 

dopamine transmission within the NAc.  The effects on sexual behavior in these two areas differ:  

when targeted to the specific region and lesioned from the other, estradiol delivered to the 

striatum enhances integration of the sensorimotor aspects of a sexual encounter, whereas 

estradiol delivered to the NAc works to enhance motivational aspects of the behavior (Becker, 

2005).   

Behavioral testing with injections of progesterone shows that progesterone’s effects on 

striatal transmission of dopamine is only viewed after pretreatments with estradiol, meaning that 

the two usually work synergistically.  Progesterone receptors are a gene product of estradiol; 

therefore, the response to progesterone is indirectly regulated by estradiol and progesterone alone 

is insufficient to induce the sexually reflexive posture of lordosis in female rats on its own 

(Becker, Breedlove, & Crews, 1992).  Progesterone in estradiol-primed rats can act to induce 

sexual receptivity, but with prolonged exposure, it can inhibit it.  This is due to the biphasic 

effects of the hormone, in which levels are naturally cycled within the hypothalamus to down-

regulate receptor concentrations once estradiol levels spike to induce sexual receptivity (Becker 
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et al., 1992).  Due to its influence by estrogen receptors, its impacts on striatal dopamine 

transmission or the impact on motivation have not been largely studied on their own.  Similarly, 

although doses of estradiol alone induce the lordosis response, they do not increase motivation to 

engage in sexual behavior.  Here, progesterone does play an important role in inducing sexual 

proceptivity: when paired with doses of estradiol, progesterone has been found to induce 

motivation to engage in sexual behavior in females as viewed through the display of sexually 

proceptive behaviors of ear wiggling and hopping and darting- traditional, if not outdated 

measures of sexual motivation in female rats.  This means that estradiol paired with progesterone 

is required in order for a sexual encounter to be rewarding to a female.  Looking at 

characteristics of male and female sexual behavior can help further explain the effects of these 

hormones on motivation. 

Dimensions of Sexual Behavior  

Sexual behavior can be dissociated into motivational and consummatory aspects.  

Although males can engage in sexual behavior at any point, they do so most successfully when 

they are motivated to engage in sexual behavior and have the physical ability to do so.  In 

studying male sexual behavior, Barry J. Everitt points out that the brain regions involved with 

male copulatory behavior of mounting, intromitting, and ejaculating are separate from the 

regions that mediate motivation to engage in sexual behavior (1990).  Results these studies found 

that males were unable to engage in sexual behavior after lesioning of the medial preoptic area 

(mPOA) within the hypothalamus, but they did not show a change in appetitive sexual responses 

for a female (Everitt, 1990).  This means that the desire to engage in sexual activity with a 

sexually receptive female was unchanged even when a male was physically unable to perform 

appropriate copulatory behavior, demonstrating that motivation and ability can be dissociated in 
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the male. This effect is also shown through failed attempts to mate with the female while 

displaying persistent efforts to gain access to and investigate the female (Hughes, Everitt, & 

Herbert, 1990).  Furthermore, male rats showed similar behavioral effects after castration: males 

still showed a strong preference for a receptive female over an ovariectomized female in initial 

tests and made failed attempts to mount and intromit, demonstrating their motivation to access 

the female even when physically unable to engage in sexual behavior (Hughes et al., 1990). On 

the other hand, decreasing ventral-striatal dopamine projections through the use of selective 

dopamine receptor antagonists reduced the amount of responses a male rat made to gain access 

to a female, and delayed time in initiating mounts and intromissions (Pfaus & Phillips, 1989).  

The opposing effects of impacting motivation versus the ability to engage in sexual behavior 

when selectively inactivating the mPOA or the dopamine projections to the ventral striatum 

demonstrates that the two behaviors are separate, where the mPOA plays a role in maintaining 

sexual ability, and the dopamine projections in the ventral striatum impact motivation for sexual 

activity (Pfaus & Phillips, 1989).  It is now known that hypothalamic regions, including the 

mPOA, are most important for mediating the consummatory aspects of sexual behavior, whereas 

the mesolimbic dopamine system is most important at mediating the effects of reinforcement 

involved with motivational behavior (Berridge, 2013).  For this paper, a focus will be placed on 

measuring motivation through this neural framework.  

Male and Female Typical Sexual Behavior 

Male and female sexual behavior is mediated by gonadal hormone systems.  Although 

both males and females have circulating levels of estradiol, sexually dimorphic organization of 

the nervous system due to the organizational and activational effects of hormones leads to 

differing circulating levels of estradiol (Becker, 2009).  Male and female mammals also 
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demonstrate sexual receptivity in different ways due to these hormone differences and adaptive 

strategies to ensure reproductive success: males have hundreds of gametes and can engage in 

sexual behavior at any time, whereas females have much fewer gametes, and only engage in 

sexual behavior when they are ovulating (Becker, 2009).  A rat’s estrous cycle is characterized 

by four stages that occur every 4-5 days: proestrus, estrus, metestrus, and diestrus (Paccola, 

Resende, Stumpp, Miraglia, & Cipriano, 2013).  Proestrus and estrus are the two shortest stages 

in the cycle and are when females are sexually receptive, coinciding with rising levels of 

estradiol and subsequent rising levels of progesterone.  Females experience ovulation during the 

estrus portion (Paccola et al., 2013).  While sexually receptive, females experience a behavioral 

shift in which locomotor activity is increased, and motivation to obtain food is decreased (Yoest, 

Cummings, & Becker, 2016).  The increase in locomotor activity enables females to engage in 

behaviors that would make mating more likely, through actively seeking out a mate, spending 

more time with males, and engaging in copulatory behavior. Similarly, when females are not in 

estrus, the motivation to gain access to a sexually receptive male is low and the motivation to 

gain access to food is high (Cummings & Becker, 2012).  This could be because it is more 

energy efficient for a female to spend her time in pursuit of a successful mate when she has the 

most opportunity to become pregnant (Yoest et al., 2016).  Similarly, it is more efficient for her 

to spend her time and energy on other activities necessary for survival when she will not have as 

high of an opportunity to become pregnant (Yoest et al., 2016).  Similar to male typical sexual 

behavior, female sexual ability and motivation to engage in copulation are also postulated to be 

mediated by different brain regions.    

Dimensions of Female Sexual Motivation 
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Like males, female sexual behavior can be divided into consummatory and motivational 

components.  It was previously postulated that a female’s motivation for sexual behavior could 

be measured by her willingness to demonstrate the female copulatory behavior of hopping and 

darting and ear wiggling, paired with the reflexive behavior of lordosis (Becker, 2009).  

Cummings and Becker (2012) demonstrated that physical ability to engage in copulatory 

behavior and motivation for sexual behavior can be dissociated through their use of an operant 

conditioning paradigm in which females primed with vehicle injections or estradiol and 

progesterone had to nose-poke to gain access to a male.  They found that while hormone primed, 

females made significantly more operant responses to gain access to a sexually experienced 

male.  In addition, their latency to enter the male’s side of a two-chambered box after the door 

opened was significantly decreased.  When primed with a vehicle injection, females still worked 

to open the door and gain access to the male side, albeit to a lesser extent.  Additionally, they 

spent significantly more time in the doorway (out of reach of the male) and allowed the door to 

close without engaging in sexual behavior.  These behavioral results suggest that after being 

primed with the vehicle injection, females could simply enjoy the social interaction while the 

door is open, refuting the hypothesis that proximity to a male and propensity to demonstrate 

copulatory and reflexive behavior determines motivation for sexual behavior (Cummings & 

Becker, 2012). 

Hormones and Feeding Behavior   

Like sexual behavior, studies have uncovered the influences of gonadal hormones on 

feeding behavior.  Summarized by Eckel, various studies looking at meal size during estrus in 

female rats has found that when levels of estradiol are low, food intake is high (2011).  The same 

is true for the opposite: when estradiol levels are high, food intake is also low.  She recognizes 
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this difference in terms of meal sizes during both naturally cycling estrus and hormonally 

induced estrus in ovariectomized female rats (Blaustein & Wade, 1976).  Progesterone alone was 

found to not influence feeding behavior in the same way as estradiol, but was found to inhibit 

estradiol’s anorexigenic effect at large doses in addition to estradiol (Eckel, 2011).  Although 

alone these results work to demonstrate that consummatory behavior is oppositely influenced by 

levels of estradiol, they do not speak how motivated a female rat is for food given different levels 

of estradiol and progesterone.  As a part of my earlier research in the Becker Lab, we used the 

paradigm previously used to dissociate the effects of estradiol and progesterone on sexual 

behavior to determine whether there is a similar dissociation of estradiol’s effects on feeding 

behavior, detailed in the next section.    

Studies of Motivation for Food and Sex  

Two types of studies to measure motivation for feeding behavior and sexual behavior 

separately have been completed within the Becker Lab utilizing an operant response paradigm to 

examine motivation for reward.  Here, female rats are trained to nose poke for rewards in active 

holes paired with a light-cue, which measures how much effort rats are willing to put forth in 

order to earn the reward.  In the first study, we hypothesized that estradiol acts to attenuate the 

incentive motivation for food-paired cues (Yoest, Shashlo, Cummings, & Becker, 2017, June).  

In this study, ovariectomized female rats were trained to nose poke for palatable food pellets on 

various schedules of reinforcement in operant conditioning chambers detailed in the methods 

section below.  Females were tested both while unprimed and primed with estradiol benzoate 

(EB) and progesterone (P) to induce sexual receptivity.  We found results consistent with the 

hypothesis: while EB and P priming successfully induced sexual receptivity indicated through 
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lavage samples, it also decreased motivation for food rewards indicated through a decreased 

amount of nose pokes on fixed interval and progressive ratio schedules (Yoest et al., 2017, June). 

In addition to testing motivation for palatable pellets, Cummings and Becker (2012) 

hypothesized that hormone priming with EB and P would increase incentive motivation for 

mate-paired cues.  They developed a dual chambered apparatus (Figure 2) utilizing nose-poke 

holes to test how much effort ovariectomized, female rats were willing to make to gain access to 

a sexually receptive male.  Females were trained on various schedules of reinforcement to make 

responses in nose-poke holes paired with light cues to open a sliding door, in order to gain access 

to a male.  The male was tethered to the far side of the apparatus, ensuring the female had free 

range of both chambers while the male could only move around one side, deemed the male side 

of the apparatus.  The most interesting results researchers found where that females worked 

harder to attain access to the male when hormone primed (Cummings & Becker, 2012).  They 

also found that when unprimed, females put forth the effort to nose poke to open the sliding door 

between the chambers, and spent more time in view of, but just out of reach of the male.  This 

suggests that females could be more interested in the social interaction, rather than engaging in 

sexual behavior when unprimed, refuting a previous hypothesis that proximity to a male 

influences motivation to engage in sexual behavior.   

This current study aims to combine previous paradigms developed by Cummings and 

Becker (2012) to determine the effects of EB and P on the motivational and consummatory 

aspects of both feeding and sexual behavior, but within the same apparatus.  Both previous 

studies completed in the lab found that EB and P oppositely impact the motivational and 

consummatory aspects for feeding and sexual behavior while in separate paradigms, so 

researchers now look to combine these paradigms in order to replicate the choices that animals 
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have within a natural setting.  We hypothesize that, when given the choice between palatable 

food pellets and access to a sexually receptive male, ovariectomized, female rats hormone 

primed with injections of EB and P will increase incentive value for mate-paired cues while at 

the same time decreasing the value of the food-paired cues when both response options are 

available. 

Method 
Animals 

 Experimental animals used were 10 female rats, 55-60 days of age upon arrival, obtained 

from Charles River (Portage, MI).  Fifteen proven-breeder, male Long-Evans rats, also obtained 

from Charles River (Portage, MI) were used as the stimulus males.  Animals were pair-housed 

by sex in Allentown, Inc. NexGen laboratory cages maintained on a 14:10 light: dark cycle, in 

which lights would go off at 1:00 pm.  Animals had free access to rat chow and water.  Females 

were food restricted four hours prior to testing, and food hoppers were returned immediately 

after testing.  

Ovariectomy 

Females were bilaterally ovariectomized two weeks before training.  Surgeries were 

performed with a single dorsal incision using 5% isoflurane anesthesia via inhalation.  Vaginal 

lavage samples were collected daily beginning 10 days after surgery using saline solution to 

ensure surgeries were effective.  Females were cycled using hormone priming to induce sexual 

receptivity.  Beginning 48 hours before testing, hormone injections consisted of two injections of 

5µg of 17 β-estradiol Benzoate (EB) in 0.1 ml peanut oil administered subcutaneously 24 hours 

apart, followed by an injection of 500 µg progesterone (P) in 0.1 ml peanut oil, occurring 4-6 

hours before testing.  Hormone injections were administered during week 2 of pellet training and 

continued throughout the training and testing schedule.   



OVARIAN HORMONES DIFFERENTIALLY IMPACT CHOICE  14 

Apparatus 

 Two separate types of apparatuses were utilized for training in this experiment, and a 

third apparatus that combines each training apparatus was utilized for testing.  Each apparatus 

was designed and fabricated within our laboratory using standard components form MedPC 

(Fairfax, VT) and AnyMaze (Stoelting Co, Inc; Wood Dale, IL). 

The first apparatus was utilized for training in responding for palatable food pellets 

(pellet chamber, Figure 1).  A single, square, acrylic chamber was set up containing two nose 

poke holes with a food dish fixed between them on one wall of the chamber.  One nose poke hole 

was designated as the inactive hole, and the other was designated as the active hole that 

controlled the dispersal of a pellet into the dish.  A light cue, located directly above the active 

nose poke hole, would illuminate for 1 second after the active hole is triggered, indicated through 

a break in an infrared beam running across the active nose-poke hoe.  During active sessions, a 

house light would illuminate the entire chamber.  During 15 second time-out sessions activated 

after an animal failed or completed a trial, the flood light would go off.  Females were trained to 

nose poke in the active hole for a pellet reward on increasing schedules of reinforcement, 

detailed in the next section. 

The second apparatus was utilized for training in responding for a mate.  This apparatus 

is the same one utilized by Cummings and Becker in their 2012 experiment, which was designed 

utilizing two chambers separated by a sliding door (mate chamber, Figure 2).  Similar to the first 

apparatus, one chamber was designated as the female side of the apparatus where a set of nose-

poke holes were located.  Nose poke holes were positioned on the wall adjacent to the sliding 

door, 3 inches from the bottom of the cage and 6 inches apart from each other.  One inch above 

each nose poke hole is a light that is triggered for 1 second as either nose poke hole is activated, 
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indicated by a break in an infrared beam. The other compartment, separated by the sliding door, 

was designated as the male side, where a male rat was tethered to the far side of the cage using a 

stainless-steel wire connected to a felt vest worn by the male.  The female was trained to nose 

poke in the active hole to open the sliding door between the two chambers, where she had free 

access to move between them at her own pace.  The sliding door would automatically close after 

she returned back to the female side and remained there for at least 2 seconds.  Animal tracking 

was recorded by AnyMaze software (Wood Dale, IL).  

In the final apparatus designed for testing, a dual chambered apparatus similar to the 

second apparatus was utilized (choice chamber, Figure 3).  This third apparatus was also divided 

into two chambers separated by a sliding door operated by nose-poke holes.  The female side of 

this apparatus featured two sets of nose-poke holes positioned on adjacent walls of the chamber: 

one set featured an active and inactive hole with corresponding light cues that triggered the 

disbursal of a food pellet into a food dish, and the other set featured an active and inactive hole 

with corresponding light cues that controlled the sliding door between the male and female side 

of the chambers.  The nose-poke holes and cue lights were oriented in the same positions as in 

the training chambers.  After training in each of the first two chambers separately, the female 

was briefly trained, and then tested in this third chamber, where she was given the choice 

between receiving a pellet or mate reward within the same apparatus.   

Training 

Following surgery, females were trained to nose poke for food pellets in the pellet 

chamber on various fixed ratio (FR) and fixed interval (FI) schedules in 30-minute sessions.  

While training for pellets, females were also trained to nose poke in the pacing chambers for 

access to a sexually receptive male.  Training lasted for a total duration of five weeks, in which 
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each female was given two days of pellet training in the pellet chambers and one day of pacing 

training in the pacing chamber during a 5-day training week (Figure 4).  Females were given one 

day of pellet training when primed with an acute injection of estradiol, and a day when 

unprimed.  Females trained in the pacing chambers when primed with EB and P.  After being 

trained when primed, females were given at least 72 hours until next dose of EB.   

Females began week 1 pellet training on an FR1 schedule, in which they were required to 

make a single nose poke in the active hole to receive a pellet, followed by a 15 second time out 

period where behavior is recorded but no pellets are delivered.  After two days, animals who 

mastered the FR1 schedule, deemed as receiving more than 20 rewards in a session, began week 

2 training on an FR5 schedule where they had to make five nose pokes in the active hole in order 

to receive a reward, followed by the 15 second time out period.  After mastering the FR5 

schedule indicated by receiving 20 or more rewards, females were then moved up to a fixed 

Interval 15 second (FI15) schedule, which is a schedule of fifteen second active intervals 

followed by fifteen seconds of an inactive time out where behavior is recorded but no rewards 

are delivered.   Females were trained to make an initial nose poke to begin the fifteen second 

interval.  Within that active interval, the female is allowed to make as many nose pokes as she 

desires, and all nose pokes are counted and result in presentation of the cue light.  The female 

would only receive a pellet if she made at least one nose poke within a 5 second latency period 

initiated after the 15 second interval ends.  Motivation for pellets was measured through number 

of rewards, or food pellets, achieved during the 30-minute fixed interval sessions.  Motivation 

was also measured in terms of number of responses recorded during each interval, and responses 

on the inactive nose poke hole were measured to account for variation in locomotor behavior.   
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While training for pellets, females were also trained to nose poke in the pacing chambers 

for access to a male.  Training for pacing slightly differed from pellet training during the first 

two weeks: females began Pavlovian conditioning in week 1, where the light cue would signal 

and the sliding door would open automatically to give females sexual experience and orient them 

to the action of the sliding door paired with the light cue.  During week 2, females started out the 

session with shaping, in which experimenters would manually signal the light cue and open the 

door until the female made a nose poke in the active hole to open the door herself.  After this, the 

session would continue on an FR1 schedule controlled by the female.  During week 3, depending 

on their mastery of the FR schedules and timing during the week of pellet training, females were 

either trained on an FR5 or an FI15s schedule.  In the remaining two weeks, females were trained 

on the FI15s interval.  In this, the female was required to make a nose poke in the 5 second delay 

following the 15 second interval in order to open the sliding door.  The female was then allowed 

to roam freely through both chambers, gaining access to the tethered male on the other side.  

After the female moved back and stayed on the female side for at least 2 seconds, the sliding 

door would close and begin a new trial.  Trials were defined by the start of the session, and after 

each time the door closes during the 30-minute session.  It is important to note that males were 

rotated so that each female was paired with a different male each session for training and was 

also tested with a novel male to minimize confounding effects of partner preference.  

After the 5 weeks of training and mastering an FI15s schedule in both chambers, females 

were moved to the final, choice chambers, where they would spend 3 weeks being trained then 

tested for a choice between a pellet or mate reward.  Females were given a week of orientation in 

this novel chamber as a refresher with either set of nose poke holes.  During this week of 

orientation females did not respond for pellets or interact with the pellet nose poke holes, so an 
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acute session of pellet training was implemented in the following week to remind females of its 

action.  During week 2, females were trained twice, once after hormone priming and once when 

unprimed. When females were not hormone primed, the testing session started with a 10-minute 

session in the pellet-only chamber, followed by 10 minutes in the choice chamber with a piece of 

acrylic covering the nose-poke holes used to respond for access to the mate in order to ensure 

animals were familiar with responding for pellets in these novel chambers. After this initial 

period the acrylic was removed, and animals were allowed to respond for either reward.  After 

re-associating both nose poke holes with their rewards, females were tested twice in week 3, 

once when primed and unprimed, in the full 30-minute session with both sets of nose poke holes 

and rewards available the whole time.  This week of testing was recorded and analyzed for the 

results of the study.  

Statistical Analyses 

 Two animals were excluded from the study due to failure to master operant conditioning 

tasks, leaving a final N= 8 females who were used for statistical analysis.  Using the results from 

these females, two degrees of analysis were employed in order to examine the effects of hormone 

priming within the choice paradigm for (1) choice and (2) motivation for each trial type.  First, 

choice was divided into three measures assessing whether females demonstrate a preference for 

either mate or pellet trials when primed and unprimed.  The average percent of either mate or 

pellet trials initiated within each 30-minute choice test were collected for analysis using a 2-way 

repeated measures ANOVA of trials initiated with two within subjects factors of treatment 

(primed or unprimed) and trial type (mate or pellet).  Furthermore, the average percent of each 

trial type completed was measured using a paired t-test to compare the amount of each trial type 

(mate and pellet) completed or failed when primed and unprimed.   
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Along with understanding how hormones impact trial choice, measures were utilized to 

determine the effect of priming on motivation for a pellet or sex reward.  In the first of these two 

measures, a two-way repeated measures ANOVA was utilized to assess the average number of 

responses per interval for each type of interval (mate or pellet) and treatment (primed or 

unprimed).   

In addition, the amount of time the animal spent in each area of the chamber was 

quantified to determine the effect of hormone priming on social behavior. The duration of time 

spent was measured on 3 different areas of the apparatus- the female side, male side, and time 

spent in the doorway between each side in view, but just out of reach of the male.  The amount of 

time spent in each of the sides was not normally distributed, therefore non-parametric tests were 

used to analyze duration results.  The total time (seconds) that female rats spent on each of the 

three areas of the cage (female side, door, and male side) was compared with a paired Wilcoxon 

Sign Rank test based on treatment (primed or unprimed).   

Results 

Effect of Hormone Priming on Choice Between Food and Sex  

The results of the analysis show that there is a significant effect of hormone priming on 

the trial types initiated and completed. There was no significant main effect of either hormone 

priming or trials initiated, however, there was a significant interaction between hormone priming 

and the type of trial initiated (F(14,14) = 11.42, p < 0.001) showing that females initiate 

significantly more mate trials than pellet trials when hormone primed (p = 0.01) and oppositely, 

initiate significantly more pellet trials than mate trials when unprimed (p = 0.01) (Figure 5). 

There is a significant effect of hormone priming on percentage of trials completed for 

both mate (t(7) = 4.21, p < 0.005 = 4.21) and pellet (t(7) = 3.95, p = 0.005) trials.  These data 
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show that, in addition to initiating more mate trials overall, primed females completed 

significantly more mate trials than failed mate trials and completed significantly more pellet 

trials than failed pellet trials when unprimed (Figure 6 a & b).   

Effect of Hormone Priming on Motivation for Food or Sex 

Similarly, while there was no significant main effect of either hormone priming or trial 

type, the results demonstrate that there is a significant interaction between hormone priming and 

trial type on responses per interval of each trial type (F(1,7) = 27.63, p = 0.001). Further analysis 

revealed that hormone primed females made significantly more responses during mate trials (p = 

0.046) and less responses during pellet trials (p = 0.006). Unprimed females also made 

significantly more responses during pellet trials compared to mate trials (p < 0.0001), but there 

was no significant difference in responding during pellet and mate trials when females were 

hormone primed (p = 0.31), indicating that the shift in motivation during sexual receptivity is 

driven by a decrease in motivation for pellets but an increase in motivation for access to a mate 

(Figure 7). 

Furthermore, although time spent on both the female and male side of the apparatus did 

not reach statistical significance, time spent on the male side of the cage did indicate a trend 

toward significance. Time spent on the female side was roughly the same between treatment 

groups (p = .98).  Time spent in the male side demonstrated an increasing trend for females to 

spend more time on the male side when primed than when unprimed (p = 0.55).  Time spent in 

the door was significant between treatment groups (p = 0.039), in which unprimed females spent 

significantly more time in the doorway, in view of but just out of reach of the male, than when 

primed (Figure 8 a, b, & c).  These data help further explain the interception of social and sexual 

motivation that influences choice, as discussed further in the next section 
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Discussion 

Due to the scarcity of research investigating female sexual motivation apart from physical 

ability, this study introduces a novel paradigm that enables assessment of motivation for an 

incentive cue and paired reward as influenced by hormone treatment in an apparatus that reflects 

adaptive choice behavior in a natural environment.  Shifts in motivation in responding for a food 

reward or mate reward have been tested separately in a single-task apparatus and have been 

found to be inversely proportional to each other: as estradiol and progesterone levels increase, 

motivation in responding for food decreases and responding for access to a sexually receptive 

mate increases, and vice versa.  This study supports the hypothesis that estradiol and 

progesterone act to increase sexual motivation when ovulating while at the same time decreasing 

motivation for feeding behavior as a function of evolutionary adaptation when given the choice 

between stimuli.   

Results of priming on choice between food and sex reveal that females initiate an equal 

number of trials regardless of priming.  The major differences within trials initiated were the trial 

type based on priming.  This is a significant finding for the basis of the other measures, for it 

suggests that overall effort is unchanged in primed and unprimed animals, indicating that this 

paradigm provides a way in which to assay a proportional, inverse shift in motivation for specific 

trial type, rather than global changes in motivation.  Females made a greater amount of nose 

pokes for the mate and made less nose pokes for pellets when primed and did the opposite when 

unprimed.  Due to the nature of the fixed interval operant conditioning schedule allowing 

females to make a variable amount of nose pokes within the 15s timeframe, animals make more 

nose pokes when more motivated for a reward.  Moving a step further, primed females 

completed a greater amount of mate trials than failed mate trials, and the same is true for 
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unprimed females in responding for pellets.  This suggests that primed females are more 

motivated to sustain consistent responding until the full completion of the interval, and unprimed 

females are more motivated to complete pellet intervals until receipt of a pellet.  As shown 

through the number of responses made per interval, females responded more, and therefore 

worked harder, for access to the mate when primed and for pellets when unprimed.  We can also 

deduce that this is separate from locomotor behavior: although locomotor behavior is an 

observed characteristic of sexual receptivity, the data do not show an increase in responding for 

both mate and pellet trials when primed.  Because primed females did not demonstrate an overall 

increase in responding compared to unprimed females, measuring both how hard a female will 

work and how much she is able to sustain her responding to access a reward is an accurate 

measure of motivation in this form.   

Time spent in each area of the cage demonstrates an interesting interplay of social and 

sexual motivation.  The first measure, time spent on the female side, was roughly equal among 

both treatment groups.  This is because both sets of nose-poke holes are located on the female 

side of the apparatus and therefore where each trial type is initiated.  This is also consistent with 

above results indicating that there was no significant difference in the amount of trials initiated 

between treatment groups.  Time spent in door was found to be significantly greater for the 

unprimed females.  As discussed in Cummings and Becker (2012), unreceptive, unprimed 

females are still motivated by social behavior to respond for access to the male.  However, 

instead of moving over to the male side or engaging in sexual interaction with the male, 

unprimed females will more often sit in the doorframe, out of reach of the male.  This allows her 

to fulfill a social desire to see the rat on the other side of the door.  Because females are 

unreceptive and do not interact with the male in these trials, it also shows that the desire to see 
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the male is not due to sexual motivation.  Lastly, the time spent on the male side of the apparatus 

followed an increasing trend for the primed females.  When females are primed, mimicking the 

hormonal surges associated with ovulation in intact females, they are motivated to become 

pregnant in this time, and will ensure a sufficient number of mounts and intromissions is 

received during trials with respect to pacing behavior.  This demonstrates how sexual receptivity 

can influence females to spend more time in direct contact with a male.  Possible reasons the 

metric did not reach statistical significance regard individual differences in the stimulus males 

uses and the specific male paired with the female on test day.  

Some limitations of the study design regard the stimulus male used and the shifting of 

paradigms throughout training and testing.  First, it was uncovered during training that some of 

the males would fail to mount the sexually receptive female at all during a session, even after 

given sex experience with stimulus females.  If males failed to mount the female within 10 

minutes of a training session in which females initiated mate trials, the male was removed and 

replaced with a different one.  Even in the case that a male would show consistent mounts and 

intromissions across sessions, there were sessions in which males refused to mount, but would 

resume normal mating behavior in a following session, although this occurred very infrequently.  

Upon the week of testing in the choice chambers, we were left using 7 of the 15 males.  Further, 

some of the males were more aggressive when approaching a female, and others were subdued.  

Although extremities were excluded from the study and males were rotated so that females were 

exposed to a variety of mating behavior, individual differences exhibited by the males and 

partner preference by females must still be considered when quantifying the female’s motivation 

to work for access to the male, approaches during mate trials, and behavior while interacting 

with the male.   
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 Furthermore, variances in cage design also seemed to have an initial impact on behavior, 

most notably between the pellet and choice chambers.  The choice and pacing chambers were 

most similar, as both were the same body design with a male on one side, whereas the female 

was alone in the single-chambered pellet apparatus.  We worked to mitigate environmental 

impacts on nose poking trends by resuming training in pellet chambers before introducing both 

reward options within the same paradigm.  When given the choice of both options in the choice 

chambers, we manually disbursed a pellet into the pellet dish at the beginning of the session to 

remind females of its function.  This was effective in reinitiating responding for pellets by the 

week of testing but took a few weeks of additional training to achieve. 

 Another difference between the pellet and choice chambers regarded the house light and 

white noise.  The pellet chambers contained white noise would signal the beginning and end of 

the 30-minute session and would stay on throughout the entire session.  They also contained a 

light that would illuminate the entire apparatus during a 30-minute training session and would go 

off during the 15 second latency period when an interval was been completed or failed.  This 

worked to notify animals when they had failed an interval and when they could resume nose 

poking, mitigating confusion.  The pacing and choice chambers did not contain either cues.  Due 

to this, females would sometimes become confused why the nose-poke light cue would not 

illuminate when poking in the paired nose-poke hole due to a lack of signaling that it was 

inactive, or when multiple failed trials resulted in lack of reward even after a large number of 

responses had been made.  Some females would give up responding on either of the tasks for a 

duration of time after assessing that it does not work.  Incorporating better cues to indicate 

failure in the pacing and choice chambers could further exclude confusion with the status of 

active and inactive intervals and poke-holes, helping aid in learning consistent behavior.   
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Further studies to be completed in our lab will utilize the same cohort of animals and 

paradigm to examine DA projections in the NAc shell in vivo using Fast-Scan Cyclic 

Voltammetry (FSCV) to help us understand how DA encodes the incentive value associated with 

each stimulus as compared to motivation.  Voltammetry is used as a way to measure 

neurotransmission in response to an event occurring on a sub-second timescale (Roitman et al., 

2004).  This will provide valuable insight in how changes in DA transmission are linked to 

specific behaviors that are occurring in real time.  Because DA release and reuptake is associated 

with the motivational value associated with a stimulus, tracking changes in DA projection allows 

us to measure the degree of positive valence that is attributed to the mate-paired and pellet-paired 

cues present in the choice chamber as affected by priming.  Consistent with our results from this 

study, we expect to see a greater increase in DA release in the NAc upon presentation of the 

mate-paired cues than food-paired when females are primed, and similarly, we expect to see a 

greater increase of DA projection upon presentation of food-paired cues than mate-paired cues 

when females are unprimed.  

 Altogether, this study presents a novel approach in understanding how estradiol and 

progesterone affect motivation for food and sex when given a choice.  The results of this study 

and further research with this paradigm contribute to the growing body of work surrounding 

understanding how hormones influence motivation.  Understanding how females approach 

sexual interaction in a lab setting can provide a framework for measuring partner preference and 

social motivation apart from sexual motivation.  The paradigm can also be applied broadly due to 

its ability to measure motivation separate from consummatory aspects of sexual behavior, which 

gives it considerable promise to uncover longstanding questions surrounding disorders in sexual 

dysfunction in both males and females.     
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Figures 

 

Figure 1. the pellet chamber features a set of nose poke holes affixed to one side of the 

square apparatus.  The female was trained to poke on an FI15s schedule in which she 

could make any number of pokes between the time frame but would only receive a 

reward if she made a response during a 5s latency period beginning after the 15s interval. 
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Figure 2. The pacing chamber features a set of nose poke holes that operates a sliding 

door for access to a male.  The females were trained to make responses on the same FI15s 

as the pellet chamber. 
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Figure 3. The choice chamber features two sets of nose poke holes affixed to different 

walls of the chamber.  Both sets of nose poke holes feature an active hole that controls 

the associated reward, and one inactive hole that does not.  One set of nose poke holes 

elicits a pellet reward, the other set operates a sliding door for access to a sexually 

receptive male.  A cue light is associated with each active nose poke hole that will 

illuminate for 1 second after the rat has poked in it.  An active nose poke is indicated by 

the break in an infrared beam running across the nose poke hole. 
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Pellet & Pacing Training Schedule 
Week 1 • Pellet: FR1 (2 days) 

• Pacing: Pavlovian Conditioning (1 day) 
Week 2 • Pellet: FR5 (2 days) 

• Pacing: Shaping & FR1 (1 day) 
Week 3 • Pellet: FR5/FI15 (2 days) 

• Pacing: FR5 (1 day) 
Week 4 • Pellet: FI15 (2 days) 

• Pacing: FI15 (1 day) 
Week 5 • Pellet: FI15 (2 days) 

• Pacing: FI15 (1 day) 
Choice Training & Testing Schedule 

Week 1 • Primed: 30 min choice session (1 day) 
Week 2 • Primed: 30 min full choice session (1 day) 

• Unprimed: 10 mins pellet in pellet chamber, 15 mins pellet only in 
choice chamber, 30 mins full choice session (1 day) 

Week 3 • Primed: full 30 min choice test (1 day) 
• Unprimed: full 30 min choice test (1 day)  

 

Figure 4. The total 5-week training schedule within pellet and pacing chambers included 

2 days of pellet training and 1 day of pacing training each day per week.  Training for 

pellet or pacing was offset per day to align with hormone priming injections and 

scheduled either pacing or pellet training on different days of the week, giving each 

animal a day of training for pellet when both primed and unprimed, and trained for 

pacing only when primed.  During choice training and testing, animals were trained for 2 

weeks: animals were trained on the full 30 min test during week 1 and were trained 

between the pellet and choice chambers on week 2.  Animals were tested on week 3 in 

the full 30 min choice test, once when primed and unprimed, in which data was collected 

for analysis. 
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Figure 5. Percent of trials initiated: females initiated significantly more mate trials when 

primed (striped bars) than when unprimed (solid bars) and initiated significantly more 

pellet trials when unprimed than when primed.  Because females initiated an equal 

number of trials overall, the difference in trial type initiated when primed and unprimed 

provides a baseline in which to assay a proportional shift in motivation, where females 

were more motivated to initiate mate trials when primed and more motivated to initiate 

pellet trials when unprimed.   
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Figure 6. Average percent of trials completed and failed:  a.) females completed more 

mate trials than failed mate trials when hormone primed (striped bars).  In b)., the same is 

true for the opposite: females complete more pellet trials than failed pellet trials when 

unprimed (solid bars), showing that females are more motivated to sustain nose poking in 

order to complete mate trials when primed and pellet trials when unprimed for successful 

receipt of a reward. 
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Figure 7. Average number of responses per interval:  Females made more responses for 

pellets when unprimed (solid bars) than when primed (striped bars).  Females also made 

more responses for pellet trials than mate trials when unprimed.  Further, females also 

made more responses for pellets when primed than for males when unprimed.  Finally, 

females made more responses for pellet trials when unprimed than for mate trials when 

primed.  This demonstrates that priming impacts how hard a female will work for each 

stimulus as seen through average number of nose pokes per interval, most notably 

between pellet trials when unprimed and mate when primed.  
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Figure 8. Time spent in each area of the apparatus: a.) females spent roughly the same 

amount of time on the female side when primed and unprimed. b.) females spent more 

time in the door frame, out of reach of the male but within his view when unprimed than 

when primed. c.) females showed a trend toward significance of spending more time on 

the male side when primed than when unprimed. Individual differences and partner 

preference are discussed as possibilities for this trend. 
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