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Abstract 

 

As humans are exposed to rapidly evolving complex systems, there are growing needs for 

humans and systems to use multiple communication modalities such as auditory, vocal (or speech), 

gesture, or visual channels; thus, it is important to evaluate multimodal human-machine 

interactions in multitasking conditions so as to improve human performance and safety. However, 

traditional methods of evaluating human performance and safety rely on experimental settings 

using human subjects which require costly and time-consuming efforts to conduct. To minimize 

the limitations from the use of traditional usability tests, digital human models are often developed 

and used, and they also help us better understand underlying human mental processes to effectively 

improve safety and avoid mental overload. In this regard, I have combined computational cognitive 

modeling and experimental methods to study mental processes and identify differences in human 

performance/workload in various conditions, through this dissertation research.  

The computational cognitive models were implemented by extending the Queuing 

Network-Model Human Processor (QN-MHP) Architecture that enables simulation of human 

multi-task behaviors and multimodal interactions in human-machine systems. Three experiments 

were conducted to investigate human behaviors in multimodal and multitasking scenarios, 

combining the following three specific research aims that are to understand: (1) how humans use 

their finger movements to input information on touchscreen devices (i.e., touchscreen gestures), 

(2) how humans use auditory/vocal signals to interact with the machines (i.e., audio/speech 

interaction), and (3) how humans drive vehicles (i.e., driving controls). Future research 

applications of computational modeling and experimental research are also discussed. 



xii 

 

Scientifically, the results of this dissertation research make significant contributions to 

our better understanding of the nature of touchscreen gestures, audio/speech interaction, and 

driving controls in human-machine systems and whether they benefit or jeopardize human 

performance and safety in the multimodal and concurrent task environments. Moreover, in 

contrast to the previous models for multitasking scenarios mainly focusing on the visual 

processes, this study develops quantitative models of the combined effects of auditory, tactile, 

and visual factors on multitasking performance. From the practical impact perspective, the 

modeling work conducted in this research may help multimodal interface designers minimize the 

limitations of traditional usability tests and make quick design comparisons, less constrained by 

other time-consuming factors, such as developing prototypes and running human subjects. 

Furthermore, the research conducted in this dissertation may help identify which elements in the 

multimodal and multitasking scenarios increase workload and completion time, which can be 

used to reduce the number of accidents and injuries caused by distraction. 
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Chapter 1. 

Introduction 

 

1.1. Overview 

As the amount of information that humans and machines exchange with each other 

increases, there are increasing demands for humans and machines to use multiple communication 

modalities such as auditory, vocal (or speech), gesture, or visual channels. Multimodal interfaces 

are among the most frequently used human-machine interfaces in many complex and data-rich 

environments, especially in multi-task situations such as automotive, aerospace, and medical fields. 

Multimodal interfaces have advantages over unimodal interfaces, including providing more 

bandwidth to the communication and supporting functions such as timesharing, redundancy, 

synergy, disambiguation (Sarter, 2006). However, the use of multimodalities has some constraints: 

the existence of cross-modal links in attention in the form of (1) modality attention, (2) the 

modality shifting effect, and (3) cross-modal spatial and temporal links (for more details, see 

Spence & Driver, 1997). Other literatures also emphasized a drawback of multimodal interfaces, 

which is the mental overload derived from the information with too many channels in an interface 

(Jaimes & Sebe, 2007; Jokinen & Raike, 2003). These may increase users’ cognitive workload and 

reduce their performance, which eventually could lead to higher chances of operating errors and 

accidents (Cook, Potter, Woods, & McDonald, 1991). In order to minimize the limitations, it is 

necessary to evaluate the efficiency of multimodal interfaces in multitasking environments. 
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In this dissertation research, I conducted experimental studies and developed 

corresponding computational models to investigate human behaviors in multimodal and 

multitasking scenarios. Specific goals of my dissertation include investigating: 

 

1) How humans use their finger movements to input information on touchscreen devices 

(i.e., touchscreen gestures) 

2) How humans use auditory/vocal signals to interact with machines (i.e., audio/speech 

interaction) 

3) How humans drive vehicles (i.e., driving control) 

 

Touchscreen gestures: Touchscreen devices have become widely used and the 

corresponding use of finger input gestures has become an important part of our everyday lives 

(Minsky, 1984; Poupyrev & Maruyama, 2003). Due to numerous advantages of touchscreens from 

the human factors perspective, including (1) intuitive and direct manipulation and (2) contextual 

presentation of controls, a large number of touchscreen user interfaces have been developed and 

become ubiquitous in many application domains including driving, healthcare, education, and 

public access information systems (Shneideman, 1991; Viviani & Calil, 2015). In this respect, it 

is important to evaluate the touchscreen interfaces with finger gestures and predict human 

performance in using touchscreens. 

Although the terms vary slightly, touchscreen finger gestures consist of two categories: 

single-touch (e.g., clicking (or pressing), swiping (or flicking), scrolling (or dragging)) and multi-

touch (e.g., pinching (or zooming-out), and spreading (or zooming-in)). Several touchscreen 

gesture studies have been conducted in the domains of human-computer interactions and human 
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factors (e.g., Kobayashi et al, 2011; Jennings, Ryser, & Drews, 2013; Findlater, Froehlich, Fattal, 

Wobbrock, & Dastyar, 2013; Hoggan et al., 2013) and they were mostly experimental studies using 

human subjects. 

Audio/Speech interaction: Many spoken dialogue systems have been developed as both 

research prototypes and commercial applications (Glass, 1999). One of the successful uses of 

spoken dialogue systems is automotive navigation systems with conversational speech 

interactions. Recent in-vehicle navigation systems are equipped with not only guidance generation 

with synthesized voice, but also with operation acceptance with speech recognition (Kono, Yano, 

& Sasajima, 1999). Much research has examined the benefits of hands-free speech (or voice) 

interactions in the automotive fields (Barón & Green, 2006; Gärtner, König, & Wittig, 2001). The 

use of audio/speech interaction results in less mental taxation, fewer glances off the road compared 

to manual data entry, and better driving performance especially in more complex tasks such as 

navigation and phone dialing. While many human dialogue phenomena have been successfully 

modeled (e.g., Mann, Moore, & Levin, 1977; Traum, Swartout, Gratch, & Marsella, 2008), there 

are few modeling studies using cognitive architectures and quantitative prediction methods for 

evaluating spoken dialogue systems. 

Driving control: In driving, mainly two types of controls are required: (1) lateral (also 

called steering) and (2) longitudinal (also called speed) controls. For both controls, drivers must 

continuously adjust or maintain their steering and speed while looking at the road, monitoring 

the speedometer, operating the in-vehicle systems (e.g., navigation or radio), and making critical 

decisions regarding steering and speed. In order to support quantitative analysis of such complex 

behavior of driving controls in multi-tasking environments, it is essential to develop 

computational models to predict human performance. 
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1.2. Research Objectives 

This dissertation research utilizes both computational modeling and experimental methods 

to investigate human behaviors in multimodal and multitasking scenarios (including touchscreen 

gestures, audio/speech interaction, and driving). The overarching objectives of the research are to: 

 

(1) Develop computational models of human-machine multimodal interactions that can predict 

human performance and workload (Phase I). 

(2) Conduct experimental studies to examine how humans interact with machines (Phase II). 

(3) Validate the models with human performance data (Phase III). 

 

In Phase I, a task-independent cognitive architecture, the Queuing Network-Model Human 

Processor (QN-MHP; Liu, Feyen, & Tsimhoni, 2006), is used to model and implement touchscreen 

gestures and audio/speech interaction in a variety of conditions including driving. In Phase II, 

laboratory experiments are conducted to obtain quantitative evidence to evaluate the models 

developed in the first phase. In Phase III, the experimental data from the second phase (and/or 

from the literature) are used to determine whether the models are an accurate representation of the 

real system. 

 

1.3. Queueing Network – Model Human Processor 

1.3.1. Overview 

The Queuing Network – Model Human Processor (QN-MHP; Liu et al., 2006) is a 

computational cognitive architecture that integrates the mathematical framework of queueing 

network theory with the Model Human Processor (Card, Moran, & Newell, 1983) model. The 
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QN-MHP is composed of three subnetworks including perceptual, cognitive, and motor 

subnetworks (See Figure 1.1). Each subnetwork has multiple servers and they are connected by 

routes, representing information flow through human brain and body to conduct the given tasks. 

Each subnetwork is composed of servers that perform distinct functions. The selection of the 

servers and the connection between the servers are developed on the basis of related multiple 

findings in the psychology and neuroscience (Liu et al., 2006). Examples of the process that 

occurs in the perceptual subnetwork include to look at objects (i.e., visual perception) or to listen 

to sounds (i.e., auditory perception). In the cognitive subnetwork, the process includes to 

remember the objects or the sounds, and to compare perceived signals to expected signals. 

Examples in the motor subnetwork are to reach with hands (i.e., manual response) or to say 

words (i.e., speech/verbal response).  

Visual inputs/entities enter the QN system through the common visual processing server 

(Server 1) and these incoming entities are transmitted in parallel routes; one is moved to the 

visual recognition server (Server 2) and another is moved to the visual location server (Server 3). 

These entities from the two visual routes are integrated at Server 4 (the visual recognition and 

location integration server). On the other hand, auditory entities enter through Server 5 and the 

entities travel in parallel routes; one moves to the auditory recognition server (Server 6) and 

another goes to the auditory server (Server 7). As the visual entities do, these auditory entities 

from the two auditory routes are integrated at Server 8 (the auditory recognition and location 

integration server).  

The entities collected in Servers 4 and 8 travel to the cognitive subnetwork by entering 

through Server A (Visuospatial sketchpad) and Server B (Phonological loop). Out of the visual 

entities, the entities related to color/orientation information move to Server A, whereas text-
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related visual entities move to Server B. All auditory entities including voice messages and 

sounds move to Server B. Server C is the central executive server, where the desired touchscreen 

gesture performance (e.g., movement time), speech (or voice) interaction performance (e.g., 

recognition processing time), and driving performance (e.g., steering wheel angle and pedal 

acceleration) are calculated. Server F is the complex cognitive function, where more complex 

mental processing is conducted, such as comparison and computation. Server C communicates 

with Server F, and then transmits entities to the motor subnetwork. 

The motor subnetwork contains five servers. Once entities are transmitted to the motor 

subnetwork, motor programs and long-term procedural information are retrieved at Server W 

(the motor program retrieval server) and assembled at Server Y (the motor program assembling 

and error detecting server). After that, the primary motor server (Server Z) determines the level 

of exerted forces for the motor controls such as foot, hand, eyes, and mouth controls. Then, the 

neural signals are transmitted from Server Z to the foot, hand, eyes, and mouth servers. These 

servers execute (1) foot movements for pedal operation, (2) hand movements for steering 

operation and touchscreen gesture operation, (3) eye movements for looking operation, (4) and 

mouth controls for speaking operation, respectively. When the body segment (i.e., foot, hand, 

eyes, and mouth) starts to work, Server X (the sensorimotor integration server) collects motor 

information from Server Z and sensory information (e.g., visual, auditory, tactile feedback) from 

the body segment in real time, and then relays them to Server C as well as Server Y. 

Here are three major reasons to support the QN architecture for its capability in modeling 

human behaviors in multitasking and multimodal scenarios: 

First, the QN-MHP contains a hybrid system that enables both serial and parallel 

cognitive process modeling; in contrast, other cognitive architectures work only in either serial 
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(e.g., ACT-R) or parallel (e.g. EPIC). The QN-MHP allows more than one server to act in 

parallel or in serial simultaneously. Thus, it is possible to model human performance in multi-

task scenarios represented as multiple flows of entities, such as driving performance under multi-

task conditions. 

Second, multimodal tasks can be implemented in the QN-MHP architecture, using the 

functions of servers in the perceptual and motor subnetworks. For example, the interaction of 

perception and motor controls can be modeled through the QN architecture: multiple sensory 

channels (e.g., visual or auditory; Severs 1-4 and 5-8) and responding methods (e.g., manual or 

speech; the hands and mouth servers). 

Third, the QN-MHP can be used to model individual difference in human performance. 

In other words, the same task could be processed through different routes and servers, depending 

on the human capacity level. For example, Servers C (the central executive server) and/or F (the 

complex cognitive function server) can be selected and used for the particular cases by their 

assumptions. For those who are familiar with a certain task due to its repetition or learning effect, 

Server C is used to implement relatively simple mental processing. Server F can be used to 

implement more complex mental processing for the unexperienced persons or novices for the 

certain task. 
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Figure 1.1 – General structure of the QN-MHP cognitive architecture 

(Liu, Feyen, & Tsimhoni, 2006; Wu & Liu, 2008) 

 

Over the past years, the QN-MHP architecture has been successfully applied to a wide 

range of tasks such as simple and choice reaction time task (Feyen & Liu, 2001), map reading 

(Liu et al., 2006), transcription typing (Wu & Liu, 2008), visual search (Lim & Liu, 2004; Feng 

& Liu, 2013), and driving controls (Tsimhoni & Liu, 2003; Zhao & Wu, 2013; Bi, Gan, Shang, 

& Liu, 2012). Fuller and her colleagues (2012) integrated the QN-MHP model with physical 

digital human models to simulate both physical and cognitive performance. However, there have 

been no attempts for touchscreen gesture-, audio/speech-, and curve-driving-related modeling 

using the QN-MHP framework. 
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1.3.2. Model implementation in the QN-MHP 

To implement human performance models in the QN-MHP architecture, it is required to 

(1) conduct a task analysis and (2) use operators based on the result of the task analysis (or 

develop new operators if they are needed but do not exist yet), and (3) use (or develop) digital 

device mockups, especially for human-machine interface (HMI) evaluations. The task analysis is 

conducted using the NGOMSL (Natural Goals, Operators, Methods, and Selection rules 

Language)-style task description (Kieras, 1999). The operator refers to the most elementary 

component of the task. Each operator is set with several parameters for specifying the task. To 

develop the operator, it is required to have logically solid assumptions and quantitative models 

(See the details in Liu et al., 2006; Chapters 3, 5, 7, 8 of this dissertation). 

 

1.4. Contributions 

1.4.1. Practical significance 

In contrast to the high cost and lengthy test time associated with conventional usability 

evaluations using human subjects, computational models of human performance have significant 

benefits. The modeling work conducted in this research will help multimodal interface designers 

minimize the limitations of traditional usability tests and make quick design comparisons, less 

constrained by other time-consuming factors, such as developing prototypes and testing human 

subjects. 

Furthermore, one of the less explored but important areas in the human factors 

engineering field is a development of computational models to predict driver behaviors in multi-

task and multimodal scenarios. The research conducted in this dissertation may help understand 
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which elements in the multimodal and multitasking scenarios increase workload and completion 

time, which can be used to reduce the number of accidents and injuries caused by distraction. 

1.4.2. Scientific significance 

The research described in this dissertation makes important contributions to our better 

understanding of the nature of gesture and speech interactions in human-machine systems and 

whether they benefit or jeopardize human performance and safety in the multimodal and 

concurrent task environments.  

In contrast to the previous models for multitask scenarios mainly focusing on the visual 

processes, this study develops quantitative models of the combined effects of auditory, tactile, 

and visual factors on multitasking performance. Specifically, the auditory and tactile modalities 

are modeled through not only the motor components (i.e., how to speak words; how to move 

body segments) but also the perception components (i.e., how to listen to words or tones). 

 

1.5. Dissertation Structure 

This dissertation includes nine chapters: this introductory chapter and eight additional 

chapters. Chapters 2 and 3 describe an experimental study and the corresponding modeling work 

regarding touchscreen gesture interactions. Chapter 2 introduces the experiment to quantify the 

performance of finger movement for the major touchscreen gestures (one-touch: dragging and 

swiping; two-touch: pinching and spreading), by investigating the effects of gesture direction and 

type on finger-touch input performance and subjective ratings. Chapter 3 describes the QN-based 

modeling developed for one of the tasks investigated in Chapter 2 (i.e., the dragging task), using 

three-dimensional motion tracking. 
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Chapters 4 and 5 describe an experimental study and the corresponding modeling work 

regarding a topic that combines audio/speech interaction and driving control. Chapter 4 describes 

the experiment to examine the effects of secondary-task modality and road curvature on driver 

behavior and performance (e.g., eye movement, subjective workload). Chapter 5 describes the 

QN-based modeling work of the tasks conducted in Chapter 4, to predict eyes-off-road behavior 

and workload in performing four different types of stimulus-response tasks (i.e., auditory-

manual, auditory-speech, visual-manual, and visual-speech). 

Chapters 6 and 7 introduce an experimental study and the corresponding modeling work 

regarding driving control. Chapter 6 describes the experiment to investigate the effects of road 

geometry (i.e., road curvature and curve direction) and existence of lead vehicle on driving 

performance. Chapter 7 introduces the QN-based modeling work to predict driver lateral control 

performance on curved roads, by integrating vehicle dynamics and reference trajectory tracking. 

Chapter 8 introduces a real-world engineering application by describing the development 

and evaluation of a QN-based computational cognitive model for in-vehicle direct/indirect 

manual and speech interaction systems, which can be used as a usability testing tool of related 

products. Beyond the previous QN-MHP models using a simple voice-related operator (syllable-

level), the model described in Chapter 8 is able to predict human performance for sentence-level 

voice commands. Also, visual feedback using colors and texts is implemented to model human 

indirect-manual controls. 

Chapter 9 provides a summary of the results and conclusion from this dissertation study 

and ends with discussions for future research directions. 
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Chapter 2. 

An Experimental Investigation on the Effects of Touchscreen Gesture Type and Direction 

on Finger-touch Input Performance and Subjective Ratings 

 

2.1. Introduction 

To understand how humans use their fingers when operating touchscreen devices, it is 

important to examine the different characteristics of gestures performed on touchscreens. The 

corresponding research results can be used for designing touchscreen interfaces to better fit user 

needs. The characteristics of touchscreen gesture performance include finger movement time and 

speed, error rate, and finger trajectory for each touchscreen gesture. Over the past decades, 

touchscreen technologies have been developing rapidly and there have been many studies 

investigating the usability of touchscreen devices to understand user’s needs (e.g., Sears, Revis, 

Swatski, Crittenden, & Shneiderman, 1993; Colle & Hiszem, 2004; Kim, Kwon, Heo, Lee, & 

Chung, 2014; Kim & Song, 2014; Garcia-Lopez, Garcia-Cabot, & de-Marcos, 2015). While the 

traditional touchscreen technologies allowed a limited number of finger-touch gestures (e.g., 

typing and clicking) with one finger (mostly an index finger), the type of touchscreen gestures 

and the fingers used have become more diverse recently. 

The type of touchscreen finger gestures is generally composed of two categories: single-

touch and multi-touch gestures. The single-touch gestures include clicking (or pressing, tapping), 

swiping (or flicking), and dragging (or scrolling, panning, sliding), whereas the multi-touch 

gestures include pinching (or zooming-out), spreading (or zooming-in). For the fingers used for 
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the single- and multi-touch gestures, Hinrichs and Carpendale (2011) found that the most 

common drag gestures were done by a single finger (48%), most often the index finger, in their 

observations of visitors using a tabletop touchscreen installed at a public exhibit. They also 

found that one of the common single-handed gestures for scaling the media items on the 

touchscreen device was the two-finger-pinch using the thumb and index fingers, and that the 

most frequently applied swipe action used the index finger. 

In addition to the type of touchscreen gestures, it is necessary to pay attention to the 

directions of the gestures, because of their possible different functions and performance. For 

example, horizontal directions of drag and swipe gestures could mean forward or backward, 

whereas vertical directions for turning the sound volumes up and down (Burnett et al., 2013; 

Billinghurst & Vu, 2015). In addition, recent touchscreen technology allows the use of drag 

gestures to perform finger-writing or finger-painting, and the use of diverse directions of gesture 

for pattern lock instead of conventional password input (Andriotis et al., 2013). For pinch and 

spread gestures, different directions are used for more dedicated scaling in particular directions. 

Some recent studies have investigated a wide range of touchscreen gestures with respect to their 

different types and directions. For example, Gao and Sun (2015) studied the effects of age, type 

of touchscreen, inclination angle for clicking, dragging, zooming and rotating gestures. One of 

their findings was that right-handed subjects were more satisfied with rightward and downward 

drag gestures than leftward and upward dragging due to less movements of their upper arm. 

However, they did not investigate the direction effects of zooming and rotating in the study. 

Asakawa, Denneerlein, and Jindrich (2017) investigated task completion times for tapping, 

sliding, pinching, and spreading. They found that spreading was significantly slower than 

pinching (p < .001). In addition, two-finger gestures were slower than single-finger sliding (or 
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dragging). Specifically, pinch gestures took longer than sliding gestures regardless of their 

directions (i.e., up, down, left, and right), while spread gestures were significantly slower than 

sliding gestures only in three directions (i.e., up, down, and left) except in the right direction. 

Hoggan et al. (2013) studied performance (i.e., task completion time and error rate) of pinch and 

spread gestures. They found that the task completion time of pinch gesture was shorter in the 

horizontal direction than the diagonal direction (i.e., rotating 22.5 degrees counter clockwise 

from the horizontal line). Although the previous studies are important in exploring the diverse 

touchscreen gesture types in multiple directions, the range of gesture directions they employed 

were limited and it is still not known whether the effect of gesture directions on human 

performance varies by the gesture type. 

In this study, I aimed to quantify the performance of finger movement for the major 

touchscreen gestures, by investigating the effects of gesture direction and type on finger-touch 

input performance and subjective ratings. Specifically, task completion time, task failure status, 

error rate, and subjective ratings (i.e., performance and physical demand) were measured with 

respect to the one-touch (i.e., dragging and swiping) and the two-touch (i.e., pinching and 

spreading) touchscreen gestures. In the experiment, using a touchscreen tablet, participants were 

asked to use their index fingers for the one-touch gestures, and their thumb and index fingers for 

the two-touch gestures. 

 

2.2. Method 

2.2.1. Participants 

Twenty right-handed students (11 males and 9 females) ranging in age from 18 to 30 (M 

= 23.8, SD = 3.3) were recruited from a university. They had experience with touchscreen 
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devices for more than 6 years on average. They self-reported to have normal or corrected-to-

normal vision and none of them had physical discomfort and impairments. The experiment took 

approximately one hour and they were paid for their participation. 

2.2.2. Apparatus 

A 9.7-inch touchscreen device (iPad; 1024 × 768; Multi-Touch display) was used and it 

was mounted on a 95-cm high table, with the display surface facing the ceiling (i.e., no 

inclination angle). For this experiment, a web-based interface software was developed and 

connected through the wireless Internet for data transfer. The software was programmed to 

automatically record the finger-touch data, including two-dimensional coordinates and 

timestamps, by two categories: touch-in and touch-out. In this study, touch-in refers to an action 

when a finger arrives from the air to the display surface, whereas touch-out refers to an action 

when a finger leaves from the display surface to the air. Whenever the finger touched in or out 

on the display surface, a 20-pixel-radius black circle was shown on the display, as a visual 

feedback, to inform participants that the finger-touch was recognized and recorded in the 

interface system in real time. 

2.2.3. Finger-touch gesture task 

2.2.3.1. One-touch gesture task 

For the one-touch gesture task, 8 directions covering a circular two-dimensional region 

were used: 0, 45, 90, 135, 180, 225, 270, and 315 degrees of angular direction, based upon the 

Cartesian coordinates systems, as shown in Figure 2.1-(a). These 8 directions were used for both 

the drag and swipe one-touch gesture tasks. Participants were asked to place their right index 

finger on a green circle with a hole (i.e., a center circle or a hollow circle) and to move their 

index finger toward each circle without a hole (i.e., a target circle or a filled circle). The distance 
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between the center and the target circles (40 mm) was determined by a pilot test using five 

participants, which found an average dragging distance on the touchscreen device, allowing them 

to reach to all the eight directions with the same distance. The size of the two circles was fixed 

during the experiment and the radius of all the circles was 20 pixel or 9 mm. A successful one-

touch gesture task was defined as the situation when the Euclidean distance between the centers 

of the black (i.e., the visual feedback circle) and green circles was equal to or less than 20 pixels 

(also called a match of the black and green circles). For the dragging task, participants were 

asked to draw a line from a hollow circle to the other circle in a normal pace. They were asked to 

accomplish the dragging task with two successes on the initial and final matches (i.e., center and 

target-circle matches). For the swiping task, participants were asked to flick their index finger 

from the center circle toward the direction of the target circle. They were asked to accomplish 

the swiping task successfully only once on the initial match (i.e., center-circle match) and swipe 

toward the direction of the target circle. 

2.2.3.2. Two-touch gesture task 

For the two-touch gesture task, 4 directions were selected (see Figure 2.1-(b), whose A-D 

directions correspond to the 0-180, 45-225, 90-270, 135-315 degrees in the one-touch gesture 

task), which are the most often used directions for the two-touch gesture with relatively less 

discomfort than the other unselected directions, such as 180-0 (in which the locations of thumb 

and index fingers are reversely assigned, compared to the 0-180 direction). Participants were 

asked to place their right thumb on a red circle with a hole (i.e., a red hollow circle for thumb) 

and index finger on a green circle with a hole (i.e., a green hollow circle for index finger) and to 

move the two fingers (thumb and index) to the same-colored circles without a hole (i.e., target 

filled circles for both the thumb and the index fingers). The distance between the hollow circles 
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was 80 mm, while the distance between the filled circles was 20 mm. Like the one-touch gesture 

task, the size of the four circles was fixed during the experiment and the radius of all circles was 

20 pixel or 9 mm. Like the one-touch task, a successful two-touch task was defined as the 

situation when the Euclidean distance between the centers of the black and green/red circles was 

equal to or less than 20 pixels for both fingers. For the pinch and spread tasks, participants were 

asked to draw lines from hollow circles to filled circles in a normal pace toward inside (for 

pinching) and outside (for spreading). Participants were asked to accomplish the pinching and 

spreading tasks with four successes on initial (using two fingers) and final matches (using the 

same two fingers). 

 
Figure 2.1 – Directions for the touch gesture tasks 
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(a) Eight angular directions (unit: degree) for the one-touch gesture task (moving from hollow to 

filled circles), (b) Four directions (A, B, C, and D) for the two-touch gesture task (green for index 

finger, red for thumb; moving from hollow to filled circles) 

 

2.2.4. Design of Experiments 

The two independent variables were gesture direction and gesture type.  Gesture direction 

had 8 levels (i.e., 0, 45, 90, 135, 180, 225, 270, and 315 degrees) in the one-touch gesture task, 

and 4 levels (i.e., A, B, C, and D) in the two-touch gesture task. Gesture type had 2 levels for 

both one-touch (i.e., drag and swipe) and two-touch (i.e., pinch and spread) gesture tasks. Three 

repetitions of each level were performed by the participants. Twenty participants performed 6 

sessions (within-subject): 4 sessions for the one-touch task and 2 sessions for the two-touch task. 

Two of the sessions for the one-touch task were the dragging task (one for horizontal-vertical 

directions, another for diagonal directions) and another 2 sessions for the one-touch task were the 

swiping task (one for the horizontal-vertical directions, another for the diagonal directions). The 

2 sessions for the two-touch task were pinching and spreading, respectively. The order of the six 

sessions and each level for the two independent variables were randomized and counterbalanced 

among the participants. 

2.2.5. Dependent variables 

2.2.5.1. Task completion time 

Many touchscreen gesture studies used gesture duration (or task completion time) as a 

measurement of gesture performance. For example, Hoggan et al. (2013) measured the time 

between the movement onset and the removal of both fingers from the display surface as the 

pinch/spread gesture duration. Gao and Sun (2015) measured the amount of time that participants 

spent in completing the task after they clicked the “start” button. In this study, the completion 

times of the one-touch gesture task were measured as the time gap between the touch-in and 
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touch-out moments, only for the success trials. The completion times of the two-touch gesture 

task were measured as the time gap between the first touch-in moment of the two fingers and the 

second touch-out moment of the two fingers, only for the success trials. 

2.2.5.2. Task failure 

All the touchscreen gesture tasks used in this study required not only an exact touching 

action but also an exact processing/moving action for their success. In other words, it is 

important to confirm whether the touchscreen device detects the user’s input command, thereby 

identifying the positions of the touch-in and touch-out on the display surface. In this regard, the 

task success in this study was defined as whether both touch-in and touch-out actions were 

performed correctly, meaning the center of black circles appeared due to both touch-in and 

touch-out actions was within 20 pixels from the center of green/red circles. I believe a task 

failure causes incorrect input message or information to the device. Thus, a task failure was also 

used as a dependent measure, referring to either touch-in or touch-out as a failure. 

2.2.5.3. Error rate 

Since the one-touch gestures have two moments of finger-touch on the display (i.e., one 

touch-in and one touch-out), it is relatively easy to investigate whether or not the task was a 

failure. In contrast, since the two-touch gestures have four moments of touch (i.e., two touch-ins 

and two touch-outs), a more precise measure was needed to examine the two-touch gesture 

failures. Thus, as an additional analysis for the two-touch gesture, the error rate was used, which 

refers to the percentage of all the four failure possibilities. 

2.2.5.4. Subjective ratings 

Subjective ratings were measured by two categories using a scale ranging from 1 (lowest) 

to 7 (highest): performance (i.e., how successful you were in accomplishing; i.e., shorter task 
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completion time and lower error rate) and physical demand (i.e., how physically demanding the 

task was). The performance and physical demands were rated on a seven-point scale for three 

directions, including horizontal, vertical, and diagonal, as well as for two gesture types (i.e., 

dragging and swiping for the one-touch task; pinching and spreading for the two-touch task). The 

reason why the subjective performance was measured in this study was to compare it with the 

objective measures (i.e., was there consistency between what participants perceived and what 

they actually did) and to understand which condition makes participants feel physically 

demanding, as a non-intrusive measure. 

2.2.6. Procedure 

Prior to the experiment, all the participants were given an informed consent form 

reviewed by the university’s institutional review board, and provided with a brief introduction of 

the purposes and nature of the study. Participants were instructed to stand at the workspace (the 

center of the device was located at the right-front side approximately 30 cm away from the right 

edge of participant’s torso) and adjust the height of the touchscreen device for their most natural 

and comfortable posture (the average height of the touchscreen device was approximately 105 

cm from the floor). After the participants practiced for approximately 10 - 15 minutes, they were 

asked to perform 6 sessions for the two main tasks: 4 sessions for the one-touch task and 2 

sessions for the two-touch task. Participants were informed that the goal of the experiment is to 

achieve a task completion time as short as possible and an error rate as low as possible for each 

task. After completing each session, participants were asked to rate their subjective performance 

and physical demand. At the end of all the six sessions, which lasted for approximately an hour, 

participants signed a payment form. 
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2.2.7. Data analysis 

The dependent measures of task completion time, error rate, and subjective ratings were 

analyzed by repeated-measures two-way ANOVA (8 directions × 2 gesture type for the one-

touch task, whereas 4 directions × 2 gesture type for the two-touch task) using SPSS Statistics 

24. Prior to performing the ANOVA tests, the three dependent variables were verified whether 

they violate the normality assumption of ANOVA, using the criteria of skewness (< 2) and 

kurtosis (< 7) (Curran, West, and Finch, 1996). Additionally, the Levene’s test for homogeneity 

of variance was used to investigate the assumption of homogeneity of variance across groups. 

Effect sizes were measured by a partial eta-squared (ηp²). To determine whether there is an 

association between the task failure status and the categorical independent variables (i.e., gesture 

direction and type), the Chi-square test was conducted and Cramer’s V was used as a measure of 

its effect sizes. To investigate the effect of horizontal-vertical-diagonal direction on the 

dependent variables, the gesture directions were also categorized by three directions: horizontal 

(0 and 180 degrees in the one-touch task; A in the two-touch task), vertical (90 and 270 degrees; 

C), and diagonal (45, 135, 215, and 275 degrees; B and D). The significance level for all 

statistical tests was p ≤ .05. The adjusted standardized residuals were used as a post-hoc criterion 

(> 1.96) in the Chi-square test (García-pérez & Núñez-antón, 2003). 

 

2.3. Results 

Tables 2.1 and 2.2 provide a summary of statistical effects for each task, found from the 

two-way ANOVA tests. The results of chi-square tests for each task were presented in Tables 2.3 

and 2.4  To investigate the effect of directions in horizontal (H), vertical (V), and diagonal (D) 
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trajectories from the participants’ view, a new variable (called HVD in the tables) was created 

and analyzed in SPSS as well. 

 

Table 2.1 – ANOVA summary of main effect on one-touch gesture measures 
 Factors MSE F df1 df2 p 

Task completion 

time (ms) 
Gesture type 222184369.5 1403.062 1 892 < .001** 

Direction (8 levels) 154437.308 1.393 7 892 .205 

Gesture type 193588385.6 1218.127 1 902 < .001** 

Direction (HVD) 254477.308 .801 2 902 .449 

Subjective 

performance 

Gesture type 1.2 .861 1 114 .335 

Direction (HVD) 6.3 4.52 2 114 .013* 

Subjective 

physical demand 

Gesture type .533 .205 1 114 .652 

Direction (HVD) 16.233 6.227 2 114 .003** 

*p<.05, **p<.01 

 

 

 

 

Table 2.2 – ANOVA summary of main effect on two-touch gesture measures 
 Factors MSE F df1 df2 p 

Task completion 

time (ms) 

Gesture type 1134060.4 2.357 1 149 .127 

Direction (4 levels) 1408826.4 2.928 3 149 .036* 

Gesture type 843729.0 1.684 1 151 .196 

Direction (HVD) 517209.0 1.032 2 151 .359 

Error rate (%) Gesture type 59.6 10.187 1 443 .002** 

Direction (4 levels) 20.3 3.46 3 443 .016* 

Gesture type 49.3 8.357 1 445 .004** 

Direction (HVD) 15.7 2.66 2 445 .071 

Subjective 

performance 

Gesture type 1.406 .801 1 152 .372 

Direction (4 levels) 23.656 13.48 3 152 < .001** 

Subjective 

physical demand 

Gesture type .756 .363 1 152 .548 

Direction (4 levels) 42.973 20.602 3 152 < .001** 

*p<.05, **p<.01 
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Table 2.3 – One-touch task’s success/failure status by gesture direction and type 
 Gesture type (2 levels): frequency (%) χ² df p 

 Drag Swipe       6.179 1 .013* 

Task 

success 

446  

(93.1%) 

462  

(96.7%) 

       

Task failure 33  

(6.9%) 

16  

(3.3%) 

      

 Direction (8 levels - degree):  frequency (%) χ² df p 

 0 45 90 135 180 225 270 315 17.96 7 .012* 

Task 

success 

116  

(96.7%) 

118  

(99.2%) 

117  

(97.5%) 

112 

(93.3%) 

111  

(92.5%) 

110  

(92.4%) 

116 

(97.5%) 

108 

(90.0%) 

 

Task failure 4  

(3.3%) 

1  

(.8%) 

3  

(2.5%) 

8  

(6.7%) 

9  

(7.5%) 

9  

(7.6%) 

3  

(2.5%) 

12 (10.0%) 

 Direction (HVD):  frequency (%)     χ² df p 

 Horizontal Vertical Diagonal      4.709 2 .095 

Task 

success 

227 

(94.6%) 

233 

(97.5%) 

448 

(93.7%) 

      

Task failure 13 

(5.4%) 

6 

(2.5%) 

30 

(6.3%) 

     

*p<.05, **p<.01 



27 

 

Table 2.4 – Two-touch task’s success/failure status by gesture direction and type 

 Gesture type (2 levels): frequency (%) χ² df p 

 Pinch Spread   6.179 1 .013* 

Task 

success 

71  

(29.6%) 

86 

(40.8%) 

   

Task failure 169 

(70.4%) 

125 (59.2%)   

 Gesture direction (4 levels): frequency (%) χ² df p 

 A B C D 12.522 3 .006** 

Task 

success 

25  

(22.3%) 

49  

(43.4%) 

44 

(39.6%) 

39 

(33.9%) 

 

Task failure 87  

(77.7%) 

64 

(56.6%) 

67 

(60.4%) 

76 

(66.1%) 

 Gesture direction (HVD): frequency (%) χ² df p 

 Horizontal Vertical Diagonal  10.279 2 .006** 

Task 

success 

25 

(22.3%) 

44 

(39.6%) 

88 

(38.6%) 

  

Task failure 87 

(77.7%) 

67 

(60.4%) 

140 

(61.4%) 

 

*p<.05, **p<.01 

 

2.3.1. One-touch gesture task 

2.3.1.1. Touch point distribution 

Figures 2.2-(a) and 2.2-(b) show the distribution of the one-finger touch locations. The 

red and black marks indicate the location of touch-in and touch-out, respectively. Most of the 

touch-out points (i.e., the black marks) for the dragging gesture were located in the eight target 

circles. However, the touch-out points during swiping were on the way toward the target circles, 

but not on the circles. 
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Figure 2.2 – Distribution of one-finger touch points ((a) dragging and (b) swiping) and two-

finger touch points ((c) pinching and (d) spreading (×- first touch, ○- second touch)) on the 

display 

 

2.3.1.2. Task completion time 

The effect of gesture type was significant: F (1,892) = 1403.1, p < .001, ηp² = .611. As 

shown in Figure 2.3-(a), the completion time of the drag gesture (mean (x̄) = 1272.2, standard 

error of the mean (SEM) = 26.4) was significantly longer than that of the swipe gesture (x̄ = 

285.1, SEM = 5.3). However, no significant differences were found among the eight angular 

directions and the three categorical directions (i.e., HVD). 
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Figure 2.3 – Task completion time of (a) one-touch and (b) two-touch gestures by gesture 

angular direction (Error bars = SEM) 

 

2.3.1.3. Task failure 

The result of Pearson Chi-square test showed a significant relationship between task 

failure status and the gesture type, χ² (1, N = 957) = 6.179, p = .013, but with weak strength of 

the relationship (Cramer’s V = .08).  As shown in Figure 2.4-(a), the drag gesture task (6.9 %) 

had higher percentage of task failure than the swiping task (3.3 %). For the relationship between 

the task failure and the angular direction, there was also a significant effect of the directions on 

the task failure (χ² (7, N = 957) = 17.960, p = .012) with a weak relationship (Cramer’s V = 

.137). In particular, task failure occurred most often at 315 degrees (10.0 %, adjusted 

standardized residual = 2.4), shown in Figure 2.4-(b). 
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Figure 2.4 – Percentage of (a-b) one-touch and (c-d) two-touch task’s failure/success by gesture 

type and gesture angular direction 

 

2.3.1.4. Subjective ratings 

As shown in Figure 2.5-(a), ANOVA for the performance revealed a significant main 

effect of the gesture direction (F (2,114) = 4.52, p = .013, ηp² = .073), but no significant main 

effect of the gesture type nor any interaction effect. Pairwise comparisons, using a Tukey HSD 

procedure, showed that the performance when participants moved their finger along the 

horizontal direction (x̄ = 5.6, SEM = .187) was significantly higher (p = .015) than the diagonal 

direction (x̄ = 4.9, SEM = .187). ANOVA for the physical demand showed a statistically 

significant difference on the gesture direction (F (2,114) = 6.23, p = .003, ηp² = .098), but no 
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significant main effect of the gesture type nor interaction between two factors. Post hoc test 

revealed that physical demands during diagonal (x̄ = 3.4, SEM = .255) and vertical movements (x̄ 

= 3.3, SEM = .255) were higher than horizontal movement (x̄ = 2.2, SEM = .255). 

 

 
Figure 2.5 – The main effect of (a) one-touch and (b) two-touch gesture’s direction on subjective 

ratings (Error bars = SEM) 

 

2.3.2. Two-touch gesture task 

2.3.2.1. Touch point distribution 

Figures 2.2-(c) and 2.2-(d) show the distribution of the two-finger touch locations. As 

also indicated in Figures 2.2-(a) and 2.2-(b), the red and black marks indicate the touch-in and 

touch-out points on the display, respectively. Additionally, ×-marks indicate the locations of the 
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fingertip’s first touch, whereas ○-marks indicate the locations of the fingertip’s second touch 

between the thumb and index fingers. Of the two fingers, the index finger was touched-in earlier 

and touched-out earlier than the thumb (see Table 2.5). To estimate the width of zooming-in and 

out gestures, participants tended to use the index finger to reach the display first. It might be 

easier to touch the display surface with the index finger than the thumb, because the index finger 

is longer than the thumb. 

Table 2.5 – Percentage of index finger’s touch-in/out as a first touch (%) 
 

 

 

 

 

 

2.3.2.2. Task completion time 

An ANOVA performed on task completion time revealed a significant effect of gesture 

direction (F (3,149) = 2.928, p = .036, ηp² = .056), but no effect of gesture type nor interaction 

effect. As shown in Figure 2.3-(b), the mean task completion time of the two-touch gesture was 

the longest in the D direction (x̄ = 1885.6, SEM = 83.4), whereas it was the shortest in the A 

direction (x̄ = 1453.9, SEM = 137.7). 

2.3.2.3. Task failure 

A Chi-square test revealed a mildly significant relationship between the task failure status 

and the gesture type: χ² (1, N = 451) = 6.179, p = .013, Cramer’s V = .117. As shown in Figure 

2.4-(c), pinch gesture (70.4 %) had more task failure than spread gesture (59.2%). There was also 

a mildly significant relationship between the task failure status and the gesture direction: χ² (3, N 

= 451) = 12.522, p = .006, Cramer’s V = .006. As shown in Figure 2.4-(d), the two-touch gesture 

  A B C D 

Pinch Touch-in 62.1 65.6 69.5 61.3 

 Touch-out 64.2 67.3 59.3 59.9 

Spread Touch-in 70.4 61.5 53.8 52.8 

 Touch-out 63.4 63.6 65.6 67.8 
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had the most task failure in the A direction (77.7 %) and the least task failure in the B direction 

(56.6%). In addition, a mildly significant relationship between the task failure status and the 

gesture direction (HVD) was found (χ² (2, N = 451) = 10.279, p = .006, Cramer’s V = .151): the 

most task failure occurred in the horizontal direction (77.7%), whereas the least task failure 

occurred in the vertical direction (60.4%). 

2.3.2.4. Error rate 

Error rate for the two-touch gesture task was significantly affected by the gesture type (F 

(1,443) = 10.187, p = .002, ηp² = .022), and the gesture direction (F (3,443) = 3.460, p = .016, ηp² 

= .023), but no interaction effect was found. For the comparison between gesture types, shown in 

Figure 2.6-(a), error rate (x̄ = 29.5%, SEM = 1.7) was significantly higher for pinch gesture than 

spread gesture (x̄ = 22.3%, SEM = 1.6). Post-hoc Tukey’s comparisons showed that the error rate 

for the A direction (x̄ = 30.4%, SEM = 2.2) was significantly higher than the one for the B 

direction (x̄ = 21.5%, SEM = 2.2; p = .031), but other significant differences among the four 

directions were not found (see Figure 2.6-(b)). 
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Figure 2.6 – Error rate of two-touch gestures by (a) gesture type and (b) gesture direction (Error 

bars = SEM) 

 

2.3.2.5. Subjective ratings 

The significant effect of gesture direction (F (3, 152) = 13.48, p < .001, ηp² = .21) showed 

the highest performance for the B direction (x̄ = 4.9, SEM = .209), followed by the C direction (x̄ 

= 4.4, SEM = .209), the D direction (x̄ = 3.5, SEM = .209), and the A direction (x̄ = 3.3, SEM = 

.209), seen in Figure 2.5-(b). Post-hoc Tukey’s tests showed that the mean performance for each 

direction differed significantly from each other direction (all p < .05), except between A and D, 

and between B and C directions. The physical demand that participants reported was 

significantly affected by direction (F (3, 152) = 20.6, p < .001, ηp² = .289), in the sequence of D 

direction (x̄ = 4.8, SEM = .228) > A direction (x̄ = 4.6, SEM = .228) > C direction (x̄ = 3.2, SEM 

= .228) > B direction (x̄ = 2.7, SEM = .228), but no effect of gesture type and interaction effect 

were found.  Similar to the subjective performance results, Tukey’s HSD post-hoc test revealed 

that mean physical demand for each direction differed significantly from other directions (all ps 

< .001), except two comparisons (A-D and B-C). 
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2.3.3. Result Summary 

Table 2.6 summarizes the differences in dependent measures by gesture type and 

direction for both one-touch and two-touch gestures. Note that this table only contains the results 

that are statistically significant. 

Table 2.6 – Result summary 

Measures (unit) One-touch Two-touch 

Task completion time (msec) [Type]  

• Drag (1272.2) > Swipe (285.1) 

[Direction] 

• D (1885.6; longest), A (1453.9; shortest) 

Task failure (%) [Type]  

• Drag (6.9) > Swipe (3.3) 

[Direction]  

• 315 degree (10.0; highest), 45 

degree (.8; lowest) 

[Type]  

• Pinch (70.4) > Spread (59.2) 

[Direction]  

• A (77.7; highest), B (56.6; lowest) 

• Horizontal (77.7; highest), Vertical (60.4; 

lowest) 

Error rate (%) N/A [Type]  

• Pinch (29.5) > Spread (22.3) 

[Direction]  

• A (30.4; highest), B (21.5; lowest) 

Subjective performance (1-7) [Direction]  

• Horizontal (5.6; highest), Diagonal 

(4.9; lowest)  

[Direction]  

• B (4.9; highest), A (3.3; lowest) 

Subjective physical demand (1-7) [Direction]  

• Diagonal (3.4; highest), Horizontal 

(2.2; lowest) 

[Direction]  

• D (4.8; highest), B (2.7; lowest) 

 

2.4. Discussion 

2.4.1. Effects of touchscreen gesture type 

The ANOVA test revealed a significant effect of the gesture type on task completion time 

for the one-touch gesture task: swiping was approximately 4.5 times faster than dragging. This 

was one of the expected results that swiping is faster than dragging, but how much faster swiping 

is than dragging was not measured in the previous studies (e.g., Wolf, Schleicher, & Rohs, 

2014). In contrast, there was no significant effect of the gesture type on task completion time for 
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the two-touch gesture task. Interestingly, however, this finding differs from the results of some 

previous studies. Findlater et al. (2013) reported that pinching took a longer time than spreading 

(p < .002), without considering the direction of the two-touch gestures. Hoggan et al. (2013) 

revealed that spreading took a longer time than pinching (p < .05), considering only the 

directions between A and B defined in the current study. In this regard, whether there is a 

significant difference of task completion times between pinching and spreading might vary 

depending on factors other than direction, such as the distance between the two finger-touches on 

the display surface, size of touchscreen devices, or participant’s anthropometric data (e.g., finger 

and hand sizes). 

With respect to the task failure status, a significant relationship was found with the 

gesture types, for both the one-touch and two-touch gesture tasks. In the one-touch gesture task, 

dragging (6.9%) caused more task failures than swiping (3.3%). There were probably more 

chances to fail during dragging than swiping, because participants had to pay attention to both 

the initial and final targets for drag but only the initial target for swipe. In the two-touch gesture 

task, the percentage of task failures also differed by the gesture type: pinching (70.4%) and 

spreading (59.2%). Similarly, also for the error rate of two-touch gestures, there was a significant 

effect of the gesture type: pinch had 1.3 times higher error rate than spread. This result indicated 

a higher possibility to fail to touch-in and touch-out on/from the two target circles with pinching 

than spreading. Participants were a bit more likely to succeed in spreading which required 

relatively easier touch on the final targets separated with enough distance, compared to pinching. 

Interestingly, in contrast to these objective measures collected by the system, there was no 

difference in subjective ratings between the different gesture types. The performance rated by the 
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participants did not differ by the gesture types because the tasks were relatively easy and there 

was no large difference in the physical demands between gesture types. 

2.4.2. Effects of touchscreen gesture direction 

The effect of gesture direction on the task completion time was found only for the two-

touch gesture task: when the index finger was located on the horizontal line (i.e., A direction), it 

took the shortest time for the pinching and spreading. The finding in this study is consistent with 

Hoggan et al. (2013), reporting that pinch/spread in smaller angles from the horizontal line (i.e., 

getting from D to A directions) were performed in shorter duration. With respect to the task 

failure status and error rate, compared to the task completion time, more clear effects of gesture 

direction were revealed. There was a significant relationship for task failure status with gesture 

direction, for both the one-touch and two-touch gesture tasks. For the one-touch gesture task, the 

highest rate of task failures occurred in the direction of 315 degrees (24.5% among all directions) 

and it was probably due to the occlusion by participants’ right hand. Several participants 

mentioned that it was hard to find the target circle located in the right-bottom area in the display 

when they performed one-touch gesture task. For the two-touch gesture task, the highest rate of 

task failures occurred in the A direction (29.6% of among all directions), followed by the D 

direction (25.6%). 

On the other hand, error rate for the two-touch gesture task was significantly affected by 

the gesture direction, with the highest rate in the A direction (30.4%) and the lowest in the B 

direction (21.5%). For the subjective ratings, significant effects of the gesture direction were 

found. Participants reported that they felt one-touch gestures in the horizontal directions resulted 

in better performance and lower physical demand, than in vertical and diagonal directions. For 

the two-touch gestures, participants tended to perceive better performance and lower physical 
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demand when they performed the tasks in the B and C directions, and worse performance and 

higher physical demand in the A and D directions. This subjective performance result is in 

agreement with the task failure and error rate results. 

In summary, for the two-touch gestures, the A and D directions probably caused postures 

that are physically more demanding. That is, participants might need to twist their shoulders, 

upper/lower arms, or wrists more to perform the pinching and spreading tasks for the A and D 

directions, than the B and C directions. Thus, the possibility of task failure and error occurrence 

might be higher for the A and D directions. However, participants were able to put their right 

upper arms to the right torsos while performing the tasks so that they can have stable postures in 

the A direction, than the other three directions. For this reason, the task completion time at the A 

direction might be the shortest, once they succeeded in performing the tasks. 

2.4.3. Limitations 

There are several limitations of this study that should be taken into account when 

interpreting the results. First, it should be noted that all the results of this study were obtained 

from fixed and static positions of touchscreen displays. I measured the touchscreen gesture 

performance on the display surface in fixed positions, after I asked participants to self-adjust the 

height of the touchscreen device for their most natural and comfortable posture. The reason why 

a fixed and static setting was used in this study was to make the experimental setting purely 

static without considering any other factors, such as inclination angle, use of left hand, and so on. 

The workplace might not be a user-friendly setting for all jobs, but relevant for some jobs with 

standing postures such as a receptionist standing behind a desk. Future studies could conduct the 

usability test of touchscreen device in more dynamic conditions, such as holding the device with 

one hand and performing the gesture task with another hand. Second, the physical demand was 
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measured only with a subjective rating, an inexpensive and a non-intrusive method. Although the 

participants were asked to report their rating right after each session so that they could answer 

the questions clearly without loss of memory or perception of what they were performing for 

each session, more objective and systematic methods, such as electromyography, could also be 

explored (e.g., Kietrys et al., 2015). Third, it was not considered that the errors occurred by 

different level of touchscreen’s sensitivity. Each device has different level of touching 

sensitivity. For example, some recent touchscreen devices have a function of proximity sensing, 

indicating the touching with high sensitivity by detecting a simple placement of a hand near the 

screen (Barrett & Omote, 2010). Thus, future studies could use multiple devices with different 

levels of sensitivity to avoid the errors caused by the device’s own properties. 

 

2.5. Implications and future studies 

This study provides quantitative comparisons of human performance and subjective 

workload of different gesture types and directions for most often used one-touch and two-touch 

touchscreen gestures. The findings in this study can contribute to future touchscreen interface 

designs. First, task completion time is associated with the time that the participants’ fingers 

touched on the touchscreen surface. For example, the result that dragging took 4.5 times longer 

than swiping could be used when designing buttons or spaces on the touchscreen for one-touch 

gestures: proportionally 4.5 time more space is required for dragging than swiping. In addition, 

based upon the result that two-touch gestures in the D direction took longer time than the A 

direction, more space on the touchscreen would be required for tasks in the D direction than the 

A direction. Secondly, the results of task failure and error rate will be useful for touchscreen 

interface designs, since they are related to whether the touch-input commands are correctly 
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applied to the touchscreen device. For example, swiping and spreading would be better to avoid 

input errors than dragging and pinching, respectively. With respect to the direction of gesture, 

the two-touch gesture in the A direction should be avoided because it has higher input error rates. 

Also, another example of design recommendation is to induce users not to perform the drag and 

swipe gestures in the direction of 315 degrees, because it is associated with the highest task 

failure. Lastly, the results of subjective physical demand can be used for user-friendly 

touchscreen designs. For example, it is recommended to the interface designers to allow the users 

to perform the pinching and spreading in the B or C direction, rather than A or D direction, by 

assigning the corresponding buttons or interface on the display, in order to reduce the physical 

demand. 

Future research plans include developing a computational model to predict the task 

completion time and workload for both one-touch and two-touch gesture tasks. I have developed 

a queuing theory-based predictive model that estimates the touchscreen swipe gesture’s 

execution time (Jeong and Liu, 2016). As an extension of this modeling study for swipe gesture, 

I plan to develop computational models for other major touchscreen gestures. According to the 

literature, finger size is one of the factors that may affect human performance of touchscreen 

gesture tasks (e.g., Scott & Conzola, 1997; Bergstrom-Lehtovirta, & Oulasvirta, 2014). In this 

regard, user anthropometric data (e.g., hand and finger sizes) will be used as predictors of the 

models. I expect these predictive models will help interface designers to find usability solutions 

at an early stage of system development, thereby reducing labor and time cost of usability 

evaluation. 
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Chapter 3. 

Queuing Network Modeling of Touchscreen Drag Gestures using Motion Tracking 

 

3.1. Introduction 

As touchscreen technologies have rapidly developed over the last few decades, diverse 

interfaces that require a wide range of touchscreen gestures have become popular (Saffer, 2008; 

Bhalla & Bhalla, 2010). Although the definition varies with the research domain, touchscreen 

gestures can be generally categorized into two types, depending on the number of fingers used: 

single-touch and multi-touch gestures. Typical examples of a single-touch gesture include tap, 

swipe, and drag, whereas pinch and spread are examples of a multi-touch gesture. 

Since the use of touchscreen gestures has become more prevalent in our daily lives, 

humans are likely to have more chances to interact with systems or environments using the 

touchscreen gestures. For instance, they perform touchscreen gestures while walking or driving 

to navigate to the destination. Thus, it is necessary to investigate human behaviors for 

touchscreen gesture tasks in the comprehensive process, using human brain and body segments, 

not just an index finger movement itself. 

Many experimental studies have investigated finger gesture performance on touchscreens 

(e.g., Parhi, Karlson, & Bederson, 2006; Sasangohar, MacKenzie, & Scott, 2009; Jorritsma, 

Prins, & van Ooijen, 2015; Kim & Jo, 2015; Asakawa, Dennerlein, & Jindrich, 2017, Jeong & 

Liu, 2017a). In addition to conducting experiments, several studies have developed prediction 

models using the empirical data obtained through their experiments (e.g., Epps, 1986; Bi, Li, & 
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Zhai, 2013; Ljubic, Glavinic, & Kukec, 2015). However, most of these models have several 

limitations. First, they relied on Fitts’ law or its extension, treating movement time as a function 

of only the distance to and size of the target (Fitts, 1954). In other words, these previous models 

do not consider individual differences that affect finger gesture performance, such as human’s 

anthropometry. Furthermore, the previous models focused on just finger movements, not 

considering human perceptual and cognitive processes; thus, these models cannot fully represent 

the details of comprehensive activities in human-computer interaction, such as visual attention 

shift, and memory storage and retrieval. 

According to the literature, the movement time of object (e.g., fingertips or mouse 

cursors) differs depending on which direction the object is heading to. Jagacinski and Monk 

(1985) compared the movement times when both joystick and head-mounted sight were used in 

two-dimensional directions. In their study, horizontal and vertical movement times were slightly 

shorter than diagonal movement time, but finger movements on touchscreens were not 

investigated. In addition to movement direction, anthropometry is also regarded as a factor that 

affects movement time. Bergstrom-Lehtovirta and Oulasvirta (2014) found that hand size was 

one of the factors to predict the functional area of the thumb on a touchscreen surface. Scott and 

Conzola (1997) examined the effect of finger size on touchscreen keying performance. They 

found that finger size had a significant effect on keying speed and duplication errors (i.e., the 

same digit was inserted into the code again). That is, smaller fingers produced significantly faster 

keying performance and more duplication errors. 

In this chapter, I present a QN-based computational model that predicts finger-drag 

gesture performance on touchscreen devices, by addressing (1) how to develop “Drag-with-

finger” operator (because this operator did not exist in the previous QN-models) and (2) how this 
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new operator plays together with other existing operators in the QN-MHP architecture. 

Figure 3.1 shows the conceptual structure for how I modeled single-touch drag gestures 

in the comprehensive process (i.e., the entire process to complete the finger-drag task, including 

visual attention shift, memory storage and retrieval, and hand-finger movements). I first needed 

predictive models in eight different angular directions (i.e., 0°, 45°, 90°, 135°, 180°, 225°, 270°, 

and 315°) to predict how long the movement of the finger-drag performed on the touchscreen 

devices takes (i.e., the finger movement time of drag-gesture; note that this time corresponds to 

the “Drag-with-finger” operator’s execution time). To develop the predictive models, I collected 

the motion data of finger-drag movement in eight different angular directions, using a motion 

tracking system. Then I used the time frames of the motion data as a measurement of the finger-

drag movement time. Using stepwise regression analysis, I acquired the predictive regression 

models. The predictors of these regression models in each direction were nine anthropometric 

parameters: stature (S), finger spread (FS), thumb breadth (HB), index finger breadth (IB), short 

thumb length (STL), long thumb length (LTL), index finger length (IL), hand length (HL), and 

hand breadth (HB). Most of parameters were the hand and finger sizes related to the single-touch 

drag gesture. The definition of each hand-finger anthropometric parameter was adopted from the 

Eastman Kodak Company (1986) and is illustrated in Figure 3.2. Stature (measured by a linear 

distance from the floor to the top of the skull) was also selected as an anthropometric parameter 

because I was to model finger-drag gestures in the assumption of standing position. After the 

regression equations were developed, using 11 participants’ motion tracking and anthropometric 

data, I used those equations to develop a new operator, “Drag-with-finger”, and built a 

comprehensive QN-based model, using other existing operators. As highlighted in Figure 3.1, 

this new motor operator is associated with not only most of the motor servers (i.e., W-Z and hand 
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servers) in the QN-MHP, but also a cognitive server, Server D (a procedural long-term memory 

server that stores the whole task procedure/components, thus all the operators are associated with 

this server. The details are described in Section 3.2). 

 

 
Figure 3.1 – Conceptual structure for the integration of motion tracking and the QN-MHP 

architecture 
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Figure 3.2 – Hand-finger anthropometric dimensions 

 

 

3.2. Queueing-network modeling of human performance 

3.2.1. Task analysis in the QN-MHP Architecture 

In the NGOMSL (Natural Goals, Operators, Methods, and Selection rules Language; 

Kieras, 1999)-style task analysis, task components (TCs) are used to describe each step to 

accomplish the whole task. Each TC is made with a pre-determined operator that runs with one 

or multiple parameter(s). Table 3.1 shows the result of task analysis for finger-drag gesture task. 

In Table 3.1, “Look-at”, “Determine-hand-movement”, “Drag-with-finger” are the examples of 

the operator, whereas “<target type>”, “<device id>”, “<x, y>” are the examples of the 

parameter. The comprehensive finger-drag gesture task consisted of 16 task components, 

describing as three main subtasks. 
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Table 3.1 – NGOMSL-style task description of comprehensive finger-drag gesture task 
Goal: Make a finger-drag gesture on a touchscreen device 

TC 1:  Look-at <target type> on <device id> at location <x, y> 

TC 2:  Store <target value> to short-term-memory 

TC 3:  Retrieve <target value> from short-term-memory 

TC 4:  Compare <target value> to <expected value> 

            If match, go to TC 5, else return to TC 1. 

TC 5:  Decide 

TC 6:  Look-at <target type> on <device id> at location <x, y> 

TC 7:  Store <target value> to short-term-memory 

TC 8:  Retrieve <target value> from short-term-memory 

TC 9:  Determine-hand-movement 

TC 10: Reach-with-hand 

TC 11: Look-at <target type> on <device id> at location <x, y> 

TC 12: Store <target value> to short-term-memory 

TC 13: Retrieve <target value> from short-term-memory 

TC 14: Determine-finger-movement 

TC 15: Drag-with-finger with <anthropometric data> in <direction> 

TC 16: Return with goal accomplished 

 

3.2.1.1. Visual information perception [TCs 1-5] 

The first subtask is a process to perceive a visual information and to compare the 

information to the information expected. It includes to perceive a visual signal (or information) 

on a touchscreen device with its two-dimension location, and to store and retrieve the 

information of the visual signal, using short-term-memory. Then, a comparison process is 

performed to determine whether the information perceived equals to the information expected. 

3.2.1.2. Hand reach to the target [TCs 6-10] 

In the second subtask, a perception-cognition-motor process using a hand is performed. 

Specifically, it includes to perceive and remember the information of visual signal’s location to 

reach. Using the information, it is determined whether to move the hand. In the motor 

subnetwork, the hand servers make the hand be reached to the target, based on the estimation of 

how far/long the hand reaches the target. 

3.2.1.3. Finger drag on the target [TCs 11-15] 

In this subtask, similar to the second subtask, a perception-cognition-motor process is 

performed, but using a finger, not a hand. After receiving and remembering the visual 
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information to drag, the model determines whether to perform the finger-drag using a finger. The 

hand servers make the finger to be dragged on the target, based on the estimation of how far/long 

the finger drags on the target. 

3.2.2. Development of operators in the QN-MHP architecture 

3.2.2.1. Visual perception operator 

Look-at: The purpose of this operator is to allow a human model to look at a specific 

location. Three parameters are used to set the specific target location: type of target (e.g., text or 

color), device id, and a target’s two-dimensional coordinates on the device. Once the “Look-at” 

operator is activated at Server D (a long-term procedural memory server), it verifies whether an 

eye-saccade motor action is needed, which is used to make the current visual attention be on the 

target location. If the saccade action is needed, because the current visual attention is not on the 

target location, it triggers a saccade motor action at Server W (a motor-elements server). Then 

Server W triggers the Eyes server so that a saccade can be executed at the Eyes server. The 

saccade execution time is determined by a visual angle (i.e., the angle from the current location 

of visual attention to the target location) and an angular velocity (i.e., 4 msec/degree; Kieras & 

Meyer, 1997). After the saccade is completed at the Eyes server, an entity (or visual stimulus) of 

target enters into Server 1 (a visual input server). Then the entity enters Servers 2 (Visual 

recognition) and 3 (Visual location) in parallel, and thus the human model can recognize the 

target and its location. Through Server 4 (a visual integration server), the entity is transformed 

into cognitive subnetwork including Servers A-G. For the finger-drag task in this study, the 

geometric center of a virtual touchscreen device was set as the location of the target to look at. 

On the target, a green circle was used as a visual stimulus in this model. Since the initial visual 

attention was set on the device, so the saccade motor action was not required. 
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3.2.2.2. Memory and cognition operators 

Store to short-term-memory: Using this operator, the model stores the target information 

to the short-term-memory through Server A or B, depending on the type of the target 

information. Server A stores visual and spatial information, whereas Server B does phonological 

information. Once this operator is activated at Server D, the entity enters Server A or B. For the 

finger-drag task in this study, the entity went to Server B (a phonological-loop server), because a 

text was used as a visual stimulus, not color or other types. 

Retrieve from short-term-memory: This operator allows the model to retrieve target 

information from the short-term-memory and makes the retrieved value be available for other 

operators. Similar to the “Store to short-term-memory” operator, once this operator is activated 

at Server D, the entity enters Server A or B. Then, the entity would enter Server C (a central-

executor server), if operators for cognitive central executions (e.g., “Compare” or “Compute”) 

follows after this “Retrieve from short-term-memory”. For the finger-drag task in this study, 

Server B was used to retrieve the text information. 

Compare: The model compares the target and expected values, using this operator. The 

type of information can be either text or color. If the values are identical, the result of 1 is 

returned (going to the next TC), otherwise, 0 is returned (going back to the TC of visual 

perception). Once this operator is activated at Server D, the entity enters Server C to (1) either 

only conduct the comparison if the information type is color; (2) or further route the incoming 

cognitive entity to Server F (a cognitive-complex function server) if the information type is text. 

In this finger-drag task, Server C was used, because a green circle was used as a visual stimulus. 

Determine-hand-movement / Determine-finger-movement: These operators allow the 

model to determine whether to move the hand and finger.  Once these operators are activated at 
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Server D, the entity enters Server C and the model determines whether or not to move their hand 

and finger. Then, Server C would route the entity to Server W (a motor-elements server), if 

operators for motor executions (e.g., “Reach-with-hand” or “Click-with-finger”) follow after 

these “Determine-hand-movement” or “Determine-finger-movement” operators. 

3.2.2.3. Motor operators 

Reach-with-hand: This operator initiates a reaching action using the model’s hand 

servers. Once this operator is activated at Server D, a motor entity is created in Server W with 

the motor type of “Reach-with-hand”. This motor entity is then processed in Servers W, Y, Z, 

and Right-hand or Left-hand servers. The hand servers make the hand be reached to the target, 

based on the estimation of how far/long the hand reaches the target. The general Fitts’ law 

equation is used to determine the reaching execution time. According to Shannon formulation 

(MacKenzie & Buxton, 1992), the movement time MT is:   

𝑀𝑇 = 𝑎 + 𝑏 × log2(
𝐴

𝑊
+ 1)                   (1) 

, where a and b are empirical regression coefficients, varying in the environment (e.g., people 

and devices). W refers to the target’s effective size, whereas A refers to the distance to the target. 

According to Wobbrock, Cutrell, Harada, and MacKenzie (2008), the effective size of W (W’) 

is: 

𝑊′ = min(𝐻𝑒𝑖𝑔ℎ𝑡, 𝑊𝑖𝑑𝑡ℎ) ×
𝑍𝐹𝑖𝑡𝑡𝑠

𝑊
            (2) 

and 4% of error rate is assumed in Fitts’ law. Since the MacKenzie and Buxton (1992)’s original 

model included a mouse clicking time, which corresponds to 260 msec, according to ACT-R 6.0 

model, this amount of time was subtracted. The 70 msec of motor preparation time was also 

deducted to determine the execution time of the “Reach-with-hand” operator. For the finger-drag 

task in this study, it is assumed that the model uses a right hand to reach the target. Also, it is 
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assumed the reaching distance is 300 mm, which closely resembles the actual distance found 

from the pilot test. a = 230 (msec), b = 166 (msec/bit) was used from MacKenzie and Buxton 

(1992). Each participant’s index finger breadth (i.e., IB × IB) was set as the target’s height and 

width in this study. 

Drag-with-finger: This operator initiates a dragging action using the model’s hand 

servers. Once this operator is activated at Server D, a motor entity is created in Server W with 

the motor type of “Drag-with-finger”. Similar to the “Reach-with-hand” operator, this motor 

entity is then processed in Servers W, Y, Z, and Right-hand or Left-hand servers. The hand 

servers make the finger be dragged on the target, based on the estimation of how far/long the 

finger drags on the target. Note that this motor operator is directly associated with only TC 15, 

not any other TCs. In this study, the dragging execution time was determined by the regression 

models derived from hand-finger-related anthropometric data and eight different angular 

directions (i.e., the outcomes from Section 3.3.5). The regression equations for the finger 

movement time of drag-gesture are shown in Table 3.2. 

Table 3.2 – Prediction equations for the finger movement time of drag-gesture 
Angular 

direction 

(degree) 

Prediction equations 

(milliseconds) 

Adjusted R² RMSE M ± SD 

(milliseconds) 

0 1431 - 2610 TB + 3111 IB .70 .23 1127 ± 422 

45 2552 - 2643 TB + 649 STL .59 .40 1246 ± 621 

90 62 - 2358 TB + 3662 IB .52 .34 1177 ± 490 

135 3375 -3191 TB + 697 STL .55 .50 1252 ± 759 

180 1208 - 2153 TB + 2615 IB .68 .20 1030 ± 361 

225 2963 - 2547 TB + 531 STL .57 .39 1114 ± 590 

270 1171 - 2618 TB + 2349 IB + 107 FS .71 .23 1147 ± 435 

315 - 1749 - 4508 TB + 4289 IB + 768 IL .56 .64 1573 ± 973 

 

3.2.2.4. Procedural flow operators 

Decide: It specifies the procedural sequences of the steps in a list of task. Once this 

operator is activated at Server D, it makes the task steps specified in its parameters depending on 

the result of the previous step. 
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Goal-accomplished: This operator indicates the completion of a task. Once this operator 

is activated at Server D, it verifies whether there is any other pending task, and switches to that 

task if any task remains. If no other pending task is remaining, this operator allows the model to 

terminate the simulation.
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3.3. Motion-tracking data collection for “Drag-with-finger” operator development 

3.3.1. Participants 

Eleven participants (6 males and 5 females) ranging in age between 20 and 30 years (M = 25.5, SD = 2.9) were recruited from 

the campus at the University of Michigan. All participants had normal or corrected-to-normal vision and were right-handed. They 

reported no physical issues in using touchscreen display and used touchscreen devices (e.g., smartphones and tablets) for 7.5 years. 

Participants were paid for their time with $15 hourly rate in cash. Table 3.3 summarizes anthropometric data obtained from the 

participants, and population percentile data extracted from Greiner (1991) to compare with the participants’ data. 

 

Table 3.3 – Summary of anthropometric data for the “Drag-with-finger” operator development (n = 11) 

No. Anthropometric Dimension  

(unit: millimeters) 

M SD Min Max Population Percentiles  (male/female) 

5th 50th 95th 

1 Stature (S) 1743 88 1622 1857 1651/1527 1755/1629 1868/1738 

2 Finger spread (FS) 146 22 111 171 unknown unknown unknown 

3 Thumb breadth (TB) 21 2 17 24 22/19 24/21 26/23 

4 Index finger breadth (IB) 16 2 14 19 18/15 20/17 23/19 

5 Short thumb length (STL) 64 8 55 74 62/56 70/63 78/72 

6 Long thumb length (LTL) 128 10 109 145 124/112 138/125 153/141 

7 Index finger length (IL) 73 6 63 84 67/62 75/70 84/77 

8 Hand length (HL) 187 14 166 210 179/163 194/178 212/195 

9 Hand breadth (HB) 84 7 73 95 86/76 95/83 105/90 



55 

 

3.3.2. Apparatus 

A motion tracking system (OptoTrak® Certus™; Northern Digital Inc.) with two 

standing position sensors (3 cameras on each sensor; 3.5 m away from each other) was used to 

record finger movements for finger-drag gestures. One marker was attached on the center of 

participants’ right index fingernail and it was secured with Velcro® straps across the finger, 

wrist, and forearm, shown in Figure 3.3. A touchscreen device (iPad; 1024 x 768; 132 ppi; 9.7-

inch LED-backlit glossy widescreen Multi-Touch display) was mounted on the table (Height = 

95 cm). Participants were asked to find the most comfortable standing position so they do not 

feel any discomfort while performing the finger-drag gesture tasks. 

 

. 

Figure 3.3 – Experimental setup of the finger-drag gesture task 

 

 3.3.3. Touchscreen gesture task and experimental design 

The performance of finger-drag gestures was measured, using a touchscreen interface 

used in Jeong and Liu (2017a). As shown in Figure 3.4, nine circles (i.e., eight target circles 

around one center circle) were designed on a touchscreen display, but only two circles (i.e., one 

center circle and one of the eight target circles; colored in green – one with a hole, the other 
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without a hole) were presented to the participants during the experiment. The distance between 

the center and the target circles was 40 mm, a fixed value. Participants were instructed to move 

their right index fingers from the center circle to one of the target circles; while the center circle 

was fixed and always presented, the target circle was randomly presented on the touchscreen 

display. The radius of the both center and target circles was identically 20 pixels (= 9 mm). 

Whenever the finger arrives from the air to the display surface and leaves from the display 

surface to the air, a 20-pixel-radius black circle was shown on the display, as a visual feedback. 

Only when the Euclidean distance between the center of the black and the green circles equals to 

or less than 20 pixels (also called a match of the black and green circles), it was defined as a 

success. The participants were asked to press ‘start’ button on the center of the screen (then the 

button disappeared immediately), and then to complete the dragging task with two successes on 

the center and target circle matches (i.e., initial and final matches). In the current study, only the 

data of the success trials were used and analyzed. In other words, I did not model the accuracy of 

the drag-gesture’s performance. Instead, I used and analyzed time data, only for the success 

trials. 

 
Figure 3.4 – Angular directions for finger-drag gesture and the coordinate system 

(Note: This figure shows an example task when the direction is 45°; the dotted circles 

and the degree information were not presented to the participants)   
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A within-subject factorial design was used in this study. Two independent variables 

(including a subject variable) manipulated in this experiment were 8 different angular directions 

(i.e., 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°) and the participants’ 9 anthropometric 

parameters (i.e., S, FS, HB, IB, STL, LTL, IL, HL, and HB). Each of eleven participants 

conducted 3 replications of the drag gesture to each angular direction. Each participant 

performed finger-drag gestures in two sessions: 1) horizontal (0° and 180°) / vertical (90° and 

270°) and 2) diagonal direction (45°, 135°, 225°, and 315°). The order of conditions was 

balanced across participants. 

3.3.4. Experimental procedures 

After arrival in the laboratory, each subject was informed of the purpose and nature of the 

experimental task. They completed a consent form and filled out a brief survey about their 

demographic information (e.g., age and gender) and years experienced of touchscreen usage. 

After each participant’s anthropometric data (e.g., hand and finger size) were measured, a marker 

and motion-tracking system wires were attached to their right index finger and upper extremity. 

Prior to the actual finger-drag gesture task, they practiced sample trials to get familiar with the 

tasks for 10-15 minutes. Each of eleven subjects conducted two sessions (i.e., horizontal/vertical 

and diagonal) for drag gesture tasks with their right index finger. At the end of the experiment, 

they completed a payment form and were paid for their times, taken for approximately less than 

an hour. 

3.3.5. Development of finger-drag movement time regression models for “Drag-with-finger” 

operator 

Out of 264 motion data sets (i.e., 11 participants × 8 directions × 3 replications), there were 

only 6 missing data points caused by procedural and equipment malfunction (including non-
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success trials). Figure 3.5 shows a subject’s sample motion data, depending on the angular 

directions. The time frames (in milliseconds) for each motion (in millimeters) were collected and 

they were regarded as the execution time of “Drag-with-finger” operator. SPSS Statistics 23 was 

used for stepwise regression analysis to model the relationship between the finger-drag 

movement time and potential predictors including all anthropometric parameters. The criteria 

were set as probability-of-F-to-enter ≤ .05 and probability-of-F-to-remove ≥ .10. In order to 

detect the multicollinearity problem (i.e., having highly correlated predictors in a regression 

model), variance inflation factors (VIFs) was used to check whether it is less than 10 (Kutner, 

Nachtsheim, & Neter, 2004; Montgomery, Peck, & Vining, 2015). High degree of 

multicollinearity was not present for all eight conditions. From the automated stepwise process, 

linear regression equations were obtained depending on each angular direction (see Table 3.2). 
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Figure 3.5 – A sample motion data in eight different angular directions 

 

3.4. Model validation 

To validate the model including (1) finger-drag gesture process (i.e., TC 15 only) and (2) 

its comprehensive process (i.e., all TCs 1-16), data from Chapter 2 (Jeong & Liu, 2017a) were 

used. The data were collected from twenty (11 males and 9 females; age M = 23.8, SD = 3.3) 

right-handed students who had used the touchscreen devices for 6.7 years on average. 

Participants’ anthropometric data are shown in Table 3.4 (Note that the data were collected in 

Jeong & Liu (2017a), but not used in that study). The touchscreen software collected the finger 
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movement time of drag-gesture (i.e., only the motion time of the finger touched and dragged on 

the surface of touchscreen) and the comprehensive process time (i.e., the entire process time to 

complete the finger-drag task, from when ‘start’ button was pressed to when the task was 

completed). 

Using the new operator “Drag-with-finger” with other existing operators (e.g., “Look-at”, 

“Reach-with-hand”, and “Compare”; adopted from the previous studies (Feng, Liu, Chen, Filev, 

& To, 2014; Jeong & Liu, 2017b), the QN-based model was run using the comprehensive 

process shown in Table 3.1. The model performed 20 simulation runs with different angular 

directions in the MATLAB-Simulink software. Figure 3.6 shows the modeling results (i.e., solid 

lines) compared with experimental results (i.e., dashed lines) in both finger movement time and a 

comprehensive process time of drag-gesture. In the comparison of finger-drag gesture process 

time, the R² of the model was .90 and the RMS = 92.2 msec; in the comprehensive process time, 

the R² of the model was .80 and the RMS = 256.4 msec. 

Table 3.4 – Summary of anthropometric data for validation (n = 20) 
No. Anthropometric Dimension 

(unit: millimeters) 

M SD Min Max 

1 Stature (S) 1729 98 1562 1869 

2 Finger spread (FS) 149 21 111 185 

3 Thumb breadth (TB) 20 2 17 24 

4 Index finger breadth (IB) 16 1 14 19 

5 Short thumb length (STL) 64 7 55 79 

6 Long thumb length (LTL) 127 10 109 145 

7 Index finger length (IL) 73 6 63 86 

8 Hand length (HL) 186 13 165 210 

9 Hand breadth (HB) 84 7 73 99 
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Figure 3.6 – Execution times in drag-gesture’s finger movement (up) and comprehensive process 

(bottom) time 

 

3.5. Discussion 

This chapter presented a computational model for finger-drag gestures on touchscreen 

devices, integrating the QN-MHP architecture and motion tracking: specifically, for finger 

movement and comprehensive process of the drag-gesture. In addition to developing the QN-

based model for the touchscreen finger-drag gesture, the model was evaluated with the data from 

twenty participants in Chapter 2 (Jeong & Liu, 2017a). The model was able to generate similar 

outputs (R² was more than 80% and RMS was less than 300 msec.) of the gesture execution 

times with human performance data. 

3.5.1. Implications 

Since the QN-MHP framework was first developed, a wide range of human performance 

has been successfully modeled (e.g., map reading (Liu et al., 2006), transcription and numerical 

typing (Wu & Liu, 2008; Lin & Wu, 2012), and driving control (Bi, Gan, Shang, & Liu, 2012; 

Jeong, Feng, & Liu, 2017)). The application domains have been expanded to more practical 
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fields, but there has been no attempt to model the touchscreen finger-drag gesture performance. 

In addition to the fact that this study is the first attempt to model the finger-drag gesture 

performance, it has two significant features, compared to other previous modeling studies of 

touchscreen gestures (e.g., Epps, 1986; Bi, Li, & Zhai, 2013; Ljubic, Glavinic, & Kukec, 2015). 

First, this study considered the user’s hand anthropometric data as a factor that affects the finger-

drag performance. From the stepwise regression analysis, it turned out that the finger-drag 

movement time depends on its direction, and it is a function of index finger breadth (IB), thumb 

breadth (TB), short thumb length (STL), index finger length (IL), and finger spread (FS), shown 

in Table 3.2. Using the predictive regression models with the angular direction and several major 

anthropometric data, the movement time of finger-drag can be predictable. The anthropometry-

based prediction model of movement time is a novel approach in finger-drag study, in contrast 

with the conventional way, using the target size and distance. Using the anthropometric data 

under the queueing network cognitive framework, this study predicted not only the simple 

finger-drag gesture movement time but also the comprehensive process time. Since most tasks, 

in reality, are more likely to be performed in multitask settings, it is necessary to understand and 

predict both the simple task process (e.g., a single finger-drag across a touchscreen) and more 

comprehensive process (e.g., additional behaviors of looking at a target on the touchscreen and 

determining the hand and finger movements). 

Moreover, the model developed in this chapter can provide potential benefits to usability 

test researchers who investigate the drag-gestures on certain touchscreen products. For example, 

the model can help minimize the cost of usability evaluation for touchscreen interfaces using 

finger-drag gestures. At the early stage of product design (i.e., prior to developing the prototypes 

or products), the model can be used to compare the human performance such as task completion 
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time, depending on the gesture direction and user’s hand-finger anthropometric data. 

Furthermore, this finger-drag model can be integrated with other touchscreen gesture models 

(e.g., Jeong & Liu, 2016, 2017c) in order to predict human performance while conducting tasks 

using multiple touchscreen gestures, such as swiping, pinching, and spreading. 

3.5.2. Limitations and future studies 

Although this research successfully integrated a queueing network model with studies on 

the motion tracking technology, it shows some limitations. First, the current model only 

considers the anthropometry and drag-gesture direction as predictors of the finger-drag gesture 

performance in the condition of fixed target size and distance. Although I determined these two 

predictors from literature review as mentioned in the introduction, there might be some other 

factors that may need to be taken into account in future studies, such as the handheld postures 

(i.e., one hand or two hands), multitasking conditions (i.e.,  while walking or driving), as well as 

various target sizes and distances. Second, while the anthropometric data related to the “Drag-

with-finger” operator were used, the anthropometric data for the “Reach-with-hand” operator 

were not used in the current study. Thus, I will further expand the current model to consider not 

only the anthropometric data of hand and finger sizes, but also other data including upper and 

lower arm lengths. Third, the parameters used for the “Reach-with-hand” operator (i.e., a = 230 

ms, b = 166 ms/bit) were originally developed for the mouse-based point-and-click task in 

MacKenzie and Buxton (1992), that might not be suitable for the touchscreen-based touch-and-

drag task used in the current study. Therefore, further study is needed to investigate more 

appropriate empirical data for the “Reach-with-hand” operator for better model validation 

performance. Fourth, the current model in this study has only focused on predicting performance 

times, without considering other performance outcomes, such as error rate in touchscreen finger-
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input tasks. Further work can enrich the scope of the model so that the model can predict a wider 

range of human performance in complex tasks. Lastly, the anthropometric data used in this study 

might be categorized as a nested data (i.e., fingers nested in hands), referring to the data that are 

organized by a hierarchical or multilevel structure with more than one level (Aarts et al., 2014). 

Although the multicollinearity test was performed prior to applying the stepwise regression 

analysis in this study, the dependency among finger and hand dimensions could exist. Thus, 

further study can apply a multilevel analysis with more data points for each parameter to 

investigate whether the outcomes addressed in this study were over-fitted, by comparing the 

accuracy rate between the two analyses (Cohen et al., 2003; Burnham & Anderson, 2003; 

Harrell, 2015).  
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Chapter 4. 

An Experimental Study on the Effect of In-vehicle Secondary Task Modalities and Road 

Curvature on Eye Movements and Driving Performance 

 

4.1. Introduction 

Crash statistics indicate the crash rates on horizontal curves, referring to laterally bent roads 

designed to connect to straight roads, are three times higher than on straight road segments 

(Glennon, Neuman, & Leisch, 1985). Moreover, a report that analyzed crash data from the Fatality 

Accident Reporting System for the period 1991–2007, found that the odds of being involved in a 

fatal crash on a curved road are 1.74 times greater than on straight roads (Liu & Subramanian, 

2009). In this regard, car crashes on horizontal, curved roads have been considered a significant 

safety concern for several decades (Johnston, 1982; Zegeer et al., 1991; Charlton, 2007). Many 

studies have defined risk factors for horizontal curve accidents, such as road alignments, 

distraction, speeding, alcohol, fatigue, and adverse weather conditions. According to the literature, 

the most critical factors include: (1) driver distraction by secondary tasks (Vollrath & Trotzke, 

2000; Dingus et al., 2006; Young, Lee, & Regan, 2008; Benedetto, Calvi, & D’Amico, 2012) and 

(2) unsafe road conditions, including sharp road curvatures (Milton & Mannering, 1998; Caliendo, 

Guida, & Parisi, 2007; Fitzpatrick, Lord, & Park, 2010; Calvi, 2015). 

To date, several studies have investigated curve-driving performance dependent on either 

the different modalities of distraction tasks or on different road curvatures. However, few studies 

have investigated the combined effects of both horizontal road curvature and secondary-task 



 

69 

 

sensory modality. For example, Hibberd, Jamson, and Carsten (2013) used six different modality 

types, three stimuli (visual, auditory, haptic) × two responses (manual and speech), to examine the 

effects of distraction on driving performance. They concluded that brake reaction time increased 

when drivers were distracted, but a specific comparison between the different modalities of the 

distractions was not investigated. Angell et al. (2006) compared the effects of visual-manual and 

auditory-speech tasks on lane-keeping performance and eye movement. Based on the results of the 

auditory-speech tasks, there was a longer duration of glances at the road, and the total number of 

glances allowed drivers to maintain their eyes and attention on the road, compared to visual-

manual tasks. However, the effect of different road environments was not examined. Another 

driving simulation study (Kountouriotis & Merat, 2016) investigated the effects of visual (using a 

visual search task) and non-visual (using a counting backwards task) distractions on steering 

performance and eye movement pattern using two different road types: curved and straight. 

Although they concluded that the effects varied between straight and curved roadways, the effect 

of road curvature was not examined. Tsimhoni and Green (2001) studied the effects of road 

curvature on visual demand and driving performance using three curvature radii (194, 291, and 

582 m) conditions and visual-speech tasks. They found that the drivers’ visual demands increased 

for sharper curves leading to poorer driving performance. However, the various modality types of 

the secondary tasks were not specified. Furthermore, Benedetto et al. (2012) investigated the 

effects of three different ways of using a cellular phone (i.e., hands-held, hands-free, and hands-

free voice systems) while driving in three different road scenarios (i.e., a motorway, rural, and 

urban scenarios). However, the modalities used to operate the cellular phones were not specifically 

compared. 
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In summary, few previous studies have investigated diverse secondary-task modalities and 

multiple road curvatures in combination. Studies of their combined effects can provide not only 

insights for future design of in-vehicle systems but also implications for design policies and 

guidelines in order to reduce the frequency of traffic accidents on horizontal, curved roads. For 

this purpose, the current study was carried out to investigate the impact of both secondary-task 

modality and road curvature on safe driving for various levels of modality types and road 

curvatures. 

 

4.2. Literature review 

When conducting experiments in dual-task settings (i.e., driving and secondary tasks), how 

participants are instructed to prioritize their performance between the two tasks is important, 

because the instruction can result in different outcomes. Janssen and Brumby (2010) conducted a 

driving simulation experiment using a secondary phone-dialing task while driving. The 

participants in the study were instructed to prioritize either faster dialing (i.e., dialing-focused) or 

safer driving (i.e., steering-focused). Under the dialing-focused condition, they glanced longer at 

the phone and inputted more digits at one time. In contrast, under the steering-focused condition, 

they made shorter glances away from the road and tried to maintain good driving performance. 

Horrey, Wickens, and Consalus (2006) conducted a driving experiment using in-vehicle 

technologies (IVTs), and they also found a significant effect of task priority (i.e., driving-focused, 

IVT-focused, and equal-focused) on lane-keeping performance and eye movement. When driving 

was prioritized, variability in lane keeping was lower and the percentages of dwell time on the 

road were greater, compared to other conditions. 
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In the current study, participants were instructed to consider driving safety (i.e., 

maintaining a vehicle as close as possible to the center of the driving lane) as having a higher 

priority over secondary task performance (i.e., completing stimulus-response tasks as accurately 

as possible), because prioritizing driving safety is more natural in real life situations. That is, most 

drivers tend to try to save their lives when there is any conflict between life-threating risk and in-

vehicle system operation. 

4.2.1. Effects of secondary-task modality 

The 100-Car Naturalistic Driving Study (Dingus et al., 2006) found that more than half of 

all crashes involved secondary-task distractions. The majority of the secondary-task distractions 

were a result of driver-vehicle interaction, such as using wireless devices (e.g., talking, listening, 

and dialing) and performing vehicle-related tasks (e.g., adjusting the radio and navigation). Drivers 

consistently interact with in-vehicle systems to achieve goals, such as maintaining safe driving 

performance or obtaining particular information for a task (e.g., operating a GPS to navigate to a 

particular destination). In general, the driver-vehicle interaction represents a type of stimulus-

response task: once drivers receive information (or perceive stimuli) from a vehicle system, they 

respond to the system with a method that is recognized by the system. In past years, in-vehicle 

systems used only one modality “visual” and one input “manual”, however, more recent systems 

include additional modalities (e.g., auditory) and inputs (e.g., speech) to maximize the efficiency 

of driver-vehicle interaction. For example, in the past, while tuning a car radio, drivers read the 

current frequency (e.g., 97.0 MHz as a visual stimulus) and pressed a button (e.g., Tune + as a 

manual response) to reach a target frequency (e.g., 97.1 MHz). However, nowadays, to tune a car 

radio, drivers can listen to a voice announcement (e.g., “Say a frequency” as an auditory stimulus) 

from the system and make a voice command (e.g., “ninety-seven point one” as a speech response).  
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Stimulus-response (S-R) compatibility usually refers to how natural the association 

between the stimulus and the response modality is. In general, response time to a stimulus is faster 

for a higher level of S-R compatibility. S-R compatibility level is higher when the S-R types use a 

similar type of modality. For example, an auditory-speech type of task requires a shorter response 

time than an auditory-manual type of task (Stelzel & Schubert, 2011). As an extension of S-R 

compatibility study, Stimulus-central-response (S-C-R) compatibility was introduced in the 1980s, 

emphasizing additional processing that occurs in the brain (Wickens, Sandry, & Vidulich, 1983; 

Wickens, Vidulich, & Sandry-Garza, 1984). With complex systems, response to a stimulus is 

likely to be postponed because of the central-brain processing for decision-making. Central 

processing fundamentally varies, with two different types of information, based on how the 

working memory operates: spatial or verbal. Spatial information indicates any information 

associated with geometric objects, whereas, verbal information relates to language, numeric, or 

symbolic codes. Wickens et al. (1983) found that response-task performance was best for auditory-

stimulus speech response (A-S) type and worst for visual-stimulus manual response (V-M) type, 

and the visual-stimulus speech response (V-S) and auditory-stimulus manual response (A-M) types 

are in between without large differences when verbal information was used. In contrast, 

performance with spatial information was reversed across the different modalities. In addition, 

when dual tasks were conducted, time-sharing efficiency is considered as the extent of how much 

operators can multitask. In general, the S-R modality with higher performance for a single task 

had higher time-sharing efficiency for dual tasks. 

While performing secondary tasks, drivers tend to have higher visual demand when they 

look at visual stimuli compared to when they listen to auditory stimuli. On the other hand, drivers 

tend to have higher visual demand when they respond manually, rather than verbally, because they 
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need to look at which buttons to press. In addition, it is assumed that once drivers complete the 

secondary tasks, their visual attention immediately returns to the road to concentrate on driving, if 

they are instructed to prioritize driving safety over secondary-task performance. Therefore, it is 

hypothesized that if drivers have higher visual demand because of secondary tasks on curved roads 

then they will have more unsafe and unstable eye movements for driving (e.g., more fixations off 

the road) (H1). 

Furthermore, many previous studies have investigated the effect of driver inattention on 

lane-keeping performance (e.g., Liang & Lee, 2010; Peng, Boyle, & Hallmark, 2013). One of the 

typical findings was that longer eyes-off-road time caused more inconsistent steering control and 

larger lane deviations. In addition, Klauer, Dingus, Neale, Sudweeks, and Ramsey (2006) found 

that longer durations of eyes-off-the-forward-roadway led to more near crashes or incidents, 

because of larger lane deviations. Specifically, total eyes-off-road time (TEORT) greater than two 

seconds significantly increased crash risk, whereas, an eye-glance duration of less than two 

seconds did not significantly increase risk compared to normal driving. Moreover, Horrey et al. 

(2006) developed a regression model for predicting lower variability in lane keeping by higher 

percentages of dwell time on the road. Thus, it is hypothesized that when drivers have higher visual 

demand from secondary tasks on curved roads then they will have greater variability in lane-

keeping performance (H2). 

4.2.2. Effects of road curvature 

Several studies have found that the degree of road curvatures is to be one of the most 

influential geometric factors associated with safety on horizontal, curved roads. McGee (2011) 

mentioned that majority of states in the United States are concerned with the horizontal curvature 

as geometric design criteria, and this horizontal curvature affects other primary criteria, including 
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speed and stopping sight distance. Milton and Mannering (1998) found a strong correlation 

between accident rate and the radius of the horizontal curve. That is, a decrease in curve radii 

increased the frequency of accidents. Moreover, it was found that the dispersion of trajectory, 

which refers to a vehicle’s displacement within a driving lane, varied with different road 

curvatures (Calvi, 2015). 

Previous driving studies have found that the degree of a driver’s visual attention to 

secondary tasks varied depending on road conditions. For example, Kun, Brumby, and Medenica 

(2014) found that drivers took shorter glances at in-vehicle devices for secondary tasks while 

driving in the city, compared to the highway. In addition, one finding in Liu (2003) was that drivers 

took shorter times to detect speed limit signs on the side of the road when they were driving in 

scenarios that had greater driving load (i.e., more curved roads). Similarly, in Charlton’s (2007) 

study, it was found that lane-keeping on curved roads requires more visual attention than on 

straight roads. McDonald and Ellis (1975) found that straight roads required 23% of a driver’s 

attentional demand, whereas, curved roads required higher levels of a driver’s attentional demands 

(26%). Under the assumption that driving safety is prioritized over secondary-task performance in 

harder driving conditions, it is hypothesized that if drivers drive on sharper curves while 

performing secondary tasks that they will have less unsafe and unstable eye movements for driving 

(H3). 

Furthermore, from many previous studies of driver distraction, lane-keeping performance 

(e.g., minimizing standard deviations of lane position and steering wheel angle) decreases when 

drivers engage in a secondary task, particularly requiring higher visual attention to the task, even 

on straight roads (e.g., Reed & Green, 1999). Hurwitz and Wheatley (2002) found that the extent 

of lane-keeping variation was likely to be larger on curved roads compared with straight roads. 
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Several studies have focused on the curve’s degree of sharpness: Wooldridge, Fitzpatrick, Koppa, 

and Bauer (2000) found that driver’s visual demand was significantly increased while driving on 

curves with sharper radii. Tsimhoni and Green (2001) also found a similar result, visual demand 

increased when driving on sharper curves, when conducting a driving simulation study with 

voluntary occlusion techniques. In addition, higher visual demand was more likely to affect poorer 

driving performance. In the current study, I aimed to identify differences in driving performance 

and visual attention between different curvatures in multi-task settings. Thus, it is hypothesized 

that if drivers drive on sharper curves while performing secondary tasks they will have higher 

variability in lane-keeping performance (H4). 

 

4.3. Method 

4.3.1. Participants 

A total of 24 licensed drivers participated in the experiment: 16 males and 8 females 

ranging in age between 19 and 31 years (M = 22.6, SD = 3.53). They reported that they drove more 

than 5,000 miles (average driving mileage = 24,480 miles) per year and they had adequate 

vision/hearing for driving. Participants were paid for their time with $15 hourly rate in cash. 

4.3.2. Apparatus 

A fixed-base driving simulator including a 24-inch LCD monitor (HP ZR24w) and a 

Logitech G27 RT racing wheel set (a force-feedback steering wheel, brake pedal, and accelerator) 

was used, as shown in Figure 4.1. A resolution of 1600 × 1200 (pixels) was used to generate the 

graphics of the driving scenarios on the monitor. The field of view was estimated approximately 

38º × 25º, given that the display monitor area was 50 × 32 (H × V; cm²) and the viewing distance 

was 70-75 cm depending on the participants. An eye-tracking device (Gazepoint GP3; gazept.com) 

file:///C:/Users/heejinj/Dropbox/H_Jeong/For%20Conference,%20Publications,%20and%20Posters/Paper-distraction%20in%20curved%20road/gazept.com
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was installed between the monitor and the steering wheel and used to collect subject’s eye 

movement during the experiment. A touchscreen device (Samsung Galaxy Note 4; 2560 × 1440; 

5.7-inch Quad HD Super AMOLED) was mounted on the right-hand side, 12-inch away from the 

center of the steering wheel to allow subjects to perform a secondary (stimulus-response) task 

while driving. MIT AgeLab NBack App (see Reimer, Gulash, Mehler, Foley, Arredondo, & 

Waldmann, 2014; required Android 4.0 and up) was installed on the touchscreen device. The 

illuminance of experimental space was 592 lux. 

 

 
 

Figure 4.1 – Experimental setup of driving and stimulus-response tasks 

(Visual-Manual task on left; Auditory-Speech task on right) 

 

 4.3.2.1. Driving scenarios 

Eight driving scenarios were developed using The Open Racing Car Simulator (TORCS; 

torcs.sourceforge.net). Each scenario included curved roads with four levels of curvature radius 

(R = 100, 200, 400 and 800 meters; all curve deflection angles = 180 degrees), transition straight 

roads (300 m) between each curved road, and starting and ending roads (500 m for each). The 

curves were designed equally in both left and right directions. The eight scenarios including the 

file:///C:/Users/heejinj/Dropbox/H_Jeong/For%20Conference,%20Publications,%20and%20Posters/Paper-distraction%20in%20curved%20road/torcs.sourceforge.net
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different order of four levels of the curvature radius and two directions were randomly given to 

the subjects; they were unaware which road they will drive. 

Rural highway roads with two lanes in one direction were used and had a flat surface and 

only horizontal curves, no vertical curves. The width of each lane was 5 meters. There were 

approximately 4-meter-wide shoulders on each side of the roads. The average driving duration for 

each scenario was 4.5 minutes with an average speed of 50 - 60 km/h. The simulated vehicle was 

a mid-size sedan (Peugeot 406). A dashboard including a speedometer and a tachometer was 

displayed at the center-bottom of the screen. A rear-view mirror was presented at the center-top of 

the screen. 

4.3.2.2. Stimulus-response task 

To implement a driving distraction task (or a secondary task) in this study, a simple 

stimulus-response task (S-R task) with an n-back application software (i.e., MIT AgeLab NBack 

App) was used (see Figure 4.2). The n-back task (also called Delayed Digit Recall Task) was 

originally developed as a method to assess individual’s working memory by perceiving a sequence 

of stimuli and repeating the one from n-steps earlier in the sequence. In this experiment, only the 

0-back (the easiest level) was used to mainly focus on comparing the effect between four different 

stimulus-response types on driving performance, rather than cognitive demands from different 

types of n-back level. That is, the participants were asked to repeat aloud (i.e., speech response) or 

click the button (i.e., manual response) corresponding to the number that was ‘just’ presented on 

the screen (i.e., visual stimulus) or heard from the speaker (i.e., auditory stimulus). They were 

asked to respond to each stimulus as accurately as possible, but to prioritize the driving 

performance whenever they feel they need to improve driving safety. 
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The task included 2 different stimulus types (visual or auditory) and 2 different response 

types (manual or speech). The visual stimuli were composed of 10 Arabic numerals (0 to 9) and 

the auditory stimuli were the voice sounds of the 10 numerals. The vertical and horizontal size of 

the visual stimuli was 80 × 50 mm and the average contrast ratio (stimulus luminance/background 

luminance = 35/40) was .875. The average sound level of auditory stimuli was 75 dB, and was 

confirmed to be clearly audible by all subjects. Each stimulus was presented every 2.25 sec with 

a .75 sec in between each stimulus. One hundred visual or auditory stimuli were presented for 5 

minutes: 3 minutes and 2 minutes were given separately because the maximum run duration for 

the software was 3 minutes. The order of separated stimuli duration was balanced across subjects. 

An experimenter gave the first stimulus of each duration (3 or 2 minutes) to the subject by pressing 

the ‘Begin’ button next to the subject so the stimulus-response task duration (5 minutes) 

sufficiently can cover the whole 4.5-minute driving task. The arrangement of the number buttons 

on the touchscreen was like a commercial telephone keypad and it was fixed during the whole 

experiment. 

 
Figure 4.2 – A screen capture of the N-Back app (Reimer et al., 2014) 

(Visual-Manual task on left; Auditory-Speech task on right) 
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4.3.3. Experimental design 

Two independent variables in this experiment were stimulus-response (distraction) task 

type (S-R Type) and driving road curvature (Road Curvature). Four levels of the stimulus-response 

task type were auditory-manual [A-M], auditory-speech [A-S], visual-manual [V-M], and visual-

speech [V-S]. Two levels of the road curvature were the sharp curve (curve radii are 100 m and 

200 m) and the moderate curve (400 m and 800 m). The classification of the two levels was 

determined, based on the previous curve road studies (e.g., Tsimhoni & Green, 2001; Calvi, 2015). 

Twenty-four subjects performed four sessions in total. All sessions included all of the two 

levels of driving road curvature, whereas each session had each individual secondary task. The 

order of each level for both independent variables was balanced across subjects. 

4.3.4. Procedures  

Prior to arrival at the laboratory, each participant was asked to fill out a brief online survey 

about their demographic information (e.g., age, gender) and driving experience (e.g., mileages 

driven, years). At the laboratory, each participant was informed of the purposes and nature of the 

experiment and they completed a consent form. Before the experiment started, participants 

performed practice trials for 10-15 minutes to become familiar with both driving and secondary 

tasks. After comprehensive training was provided to the participants, the calibration for the eye 

tracking system was conducted. Each subject performed all four sessions of dual-task which each 

of them took 5 to 7 minutes. During the experiment, participants were instructed to prioritize the 

driving task performance over the secondary task performance. After each session, they completed 

a DALI (Driving Activity Load Index; Pauzié, 2008) survey and had a 5-minute break to avoid 

fatigue from each dual-task. At the end of all sessions, they completed a payment form. The whole 

experiment took approximately an hour.  
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4.3.5. Dependent measures 

4.3.5.1. Eye movements 

For eye-tracking analysis, it is essential to determine the appropriate eye-tracking metrics, 

such as the area of interest, defined as an experimenter-defined region of the display. A typical 

area of interest used in driving study includes outside view of vehicle or dashboard. Klauer et al. 

(2006) categorized three areas of eye-glance (called Ellipse 1 - 3) commonly used in driving 

research, based on the degrees of visual angle away from the center forward view. In this study 

eyes-on-road behavior is defined as the eye-glance in the Ellipse 1 (Left Forward, Right Forward, 

and Instrument Panel; 20 degrees or less away from center forward) and eyes-off-road behavior 

refers to the outside of the Ellipse 1. 

Unsafe and unstable eye movements for driving were measured by the percentage of eyes-

off-road glances (%EORG), the percentage of eyes-off-road time (%EORT), the standard 

deviation of lateral (or yaw) eye fixation (SDLEF), and the standard deviation of vertical (or pitch) 

eye fixation (SDVEF). All these eye movement measures are considered as a standard measure of 

driving safety. 

EORG and EORT represent the eye fixation frequency and duration not directed to the road 

respectively. These measures have been commonly used as a surrogate measure of driver 

inattention and visual-cognitive distraction in previous studies (e.g., Sodhi, Reimer, & Llamazares, 

2002; Liang & Lee, 2010). In general, the total eyes-off-road time (TEORT) measure has been 

used to assess the design of in-vehicle electronic devices, as the maximum acceptable TEORT is 

2 seconds and cumulatively 12 seconds (NHTSA, 2013). However, since the driving distance and 

time varies with the road curvature (i.e., obviously longer chance of TEORT at the moderate curve 

than the sharp curve) in this study, EORG and EORT were able to be used for the only comparison 
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between four different S-R Types, not between road curvature levels. Therefore, instead, %EORG 

and %EORT were used in this study for both effects of S-R Types and Road Curvature, defined 

as how many portion of eyes-off-road behavior occurs based on all the possible eye fixation 

frequencies and durations during the task. 

SDLEF represents how much a driver has lateral eye movement. Kountouriotis and Merat 

(2016) used this measure to determine whether drivers scan the pattern of the scene (if higher) or 

concentrate towards the road ahead (if lower). By the same token, SDVEF represents how much a 

driver looks at the scene in the vertical direction. Since this study involves only the horizontal 

curves, not vertical elevations, it is expected that the effect of vertical eye movement would be 

mainly associated with looking at the touch screen device (to conduct secondary tasks) and 

instrumental panel (to check their driving speed). 

For SDLEF and SDVEF measures, eye fixation’s coordinate system had to be clearly 

determined. The coordinate system was customized using the monitor screen size and resolution 

(1600 × 1200). The origin of the coordinate system was set by the center of the monitor positioned 

the center of the road from the driver’s perspective. For example, the four edges of the monitor 

were set as (1/2, 6/16), (-1/2, 6/16), (-1/2, -6/16), and (1/2, 6/16), clockwise from the right-upper 

corner. In other words, SDLEF and SDVEF values indicate the percentage of the monitor screen’s 

horizontal (51.5 cm) and vertical (32 cm) size, respectively. 

4.3.5.2. Variability in lane-keeping performance 

Variability in lane-keeping performance was measured by standard deviation of lateral 

position (SDLP) and standard deviation of steering wheel angle (SDSWA). Lateral position 

indicates the distance gap between the center of the vehicle and the center of the driving lane. The 

steering angle refers to the angle between and the steered wheel direction and the front of the 
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vehicle. SDLP and SDSWA are a surrogate measure to evaluate the driver’s lateral control and 

steering behavior used in previous driving studies (e.g., Jamson, Westernman, Hockey, & Carsten, 

2004; Boyle, Tippin, Paul, & Rizzo, 2008; Dijksterhuis, Brookhuis, & De Waard, 2011; He, 

McCarley, & Krammer, 2014). 

4.3.5.3. Subjective workload 

Subjective workload was measured by six driving activity load measures with a scale 

ranging from 1 (lowest) to 7 (highest):  effort of attention (i.e., attention level required by the 

driving task), visual demand (i.e., visual demand necessary for the driving task), auditory demand 

(i.e., auditory demand necessary for the driving task), temporal demand (i.e., specific constraint 

due to timing demand when running the driving task), interference (i.e., possible disturbance when 

running the driving task simultaneously with the secondary tasks), and situational stress (i.e., 

constraints/stress level while conducting driving task) (Pauzié, 2008). The subjective workload 

was measured only across the four S-R types, not the road curvature, because it was expected that 

participants are less likely to recognize the different road curvatures by each radius (while they 

could differentiate whether the curves are sharp or moderate) than different S-R types during the 

experiment. 

4.3.6. Data Analysis 

Most dependent variables except the subjective workload were analyzed using the 

repeated-measures two-way ANOVA 4 (S-R Type: A-M, A-S, V-M, and V-S) × 2 (Road Curvature: 

Sharp and Moderate) as within-subject factors in SPSS version 23. The subjective workload was 

analyzed by one-way ANOVA with four S-R Types. Prior to performing the analyses of variance, 

all dependent variables were examined to verify whether they have a normal distribution using 

Curran’s criteria of skewness (< 2) and kurtosis (< 7) (Curran, West, & Finch 1996). Also, the 
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Levene’s test for homogeneity of variance was used to examine the assumption of homogeneity of 

variance across groups. Effect sizes were obtained by partial eta-squared (ηp²) because two 

independent variables were used in this study (Cohen, 1973; Brown, 2008); eta-squared (η²) was 

used for subjective workloads.  Additionally, post hoc tests were performed using Tukey’s honest 

significant difference (HSD) to examine significant differences among each level of independent 

variables, especially for the S-R Type including more than two levels. A significant level was set 

at α = .05. 

 

4.4. Results 

4.4.1. Descriptive statistics 

The number of datasets collected with the frequency of 60Hz from the systems was 384 

(24 subjects × 4 levels of S-R Type × 2 levels of Road Curvature × 2 replications): driving data 

(i.e., lateral positions and steering wheel angles) and eye movement data (i.e., eye fixation X-Y 

coordinates and durations of each fixation). However, since there were several missing data points 

due to procedural and equipment malfunction, 240 eye movement and 381 driving datasets were 

analyzed. Table 4.1 shows the summary of datasets by S-R Type and Road Curvature. 

  



 

84 

 

Table 4.1 – Descriptive statistics by S-R Type and Road Curvature 
  S-R Type  Road Curvature 

  A-M A-S V-M V-S  Sharp Moderate  
EORG (%)         

Mean  25.5 .97 43.8 36.0  25.4 27.8 

(SD)  (6.26) (2.85) (7.56) (7.71)  (17.3) (17.7) 

EORT (%)         

Mean  16.1 .91 34.8 27.9  19.1 20.9 

(SD)  (5.10) (3.12) (8.31) (8.49)  (14.4) (14.7) 

SDLEF  

(lateral size of screen = 1) 

   

Mean  .49 .06 .57 .52  .41 .41 

(SD)  (.14) (.02) (.17) (.11)  (.24) (.24) 

SDVEF 

(vertical size of screen = 1) 

   

Mean  .63 015 .67 .58  .50 .51 

(SD)  (.10) (.04) (.07) (.09)  (.23) (.22) 

SDLP (m)         

Mean  .37 .30 .42 .34  .39 .32 

(SD)  (.16) (.13) (.19) (.14)  (.19) (.13) 

SDSWA (degree)      

Mean  .35 .22 .42 .30  .42 .22 

(SD)  (.22) (017) (.27) (.19)  (.25) (.13) 

Workload - overall (1-7)    

Mean  3.89 2.60 4.74 3.90  - - 

(SD)  (1.03) (.94) (1.02) (1.00)  ( - ) ( - ) 
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4.4.2. Eye movements 

4.4.2.1. Eye-glance pattern 

Figure 4.3 represents a subject’s eye-glance pattern depending on the S-R Type and Road 

Curvature. There was a tendency for the higher frequencies of eye fixation on the monitor screen 

(i.e., a 16:12 red square) when the subject drove on the sharp curve than on the moderate curve. 

Also, the eye fixations were mostly on the monitor screen during A-S task, but off the monitor 

screen during the other S-R task types. 

 
Figure 4.3 – A typical eye fixation pattern by S-R Type and Road Curvature 

(Red squares indicate the monitor screen including Ellipse 1) 

 

4.4.2.2. Percentage of eyes-off-road glances (%EORG) 

4 × 2 ANOVA was run for the %EORG, which showed significant main effects of S-R 

Type (F (3, 240) = 530.38, p <.001, ηp² = .873) and Road Curvature (F (1, 240) = 7.99, p = .005, 

ηp² = .033); but there was no significant interaction between two factors. Post hoc test showed 

quite clear significant differences among the four S-R types: V-M > V-S > A-M > A-S (all p 

< .001). Not surprisingly, as shown in Figure 4.4, the V-M type (mean (x̄) = 44.13, standard error 

of the mean (SEM) = .81) of distraction produced the highest %EORG, whereas the A-S type (x̄ 

= .99, SEM = .81) activity made the lowest %EORG. The V-S type (x̄ = 35.91, SEM = .84) made 
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higher percentage of eyes-off-road glances than A-M type (x̄ = 25.62, SEM = .81). This finding is 

consistent with the first hypothesis (H1). That is, more frequent eyes-off-road behaviors (i.e., 

higher %EORG) were recorded on V-M, V-S, and A-M types, than A-S type. 

The ANOVA showed a statistically significant difference on Road Curvature: moderate 

level of Road Curvature (x̄ = 27.82, SEM = .62) resulted in higher %EORG than the sharp level of 

Road Curvature (x̄ = 25.51, SEM = .53), as shown in Figure 4.5. This result indicates that drivers 

concentrated their visual attention on the road at the sharp curve than the moderate curve to 

maintain the driving safety. In other words, participants looked at the forward road ‘more 

frequently’ when driving on the sharp curve than the moderate curve. This result supports the third 

hypothesis (H3). 

  

Figure 4.4 – Main effect of S-R Type on %EORG and %EORT (Error bar = SEM) 
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4.4.2.3. Percentage of eyes-off-road time (%EORT) 

As shown Figure 4.4, ANOVA for %EORT revealed significant main effects for S-R Type 

(F (3, 240) = 305.54, p < .001, ηp²= .798) and Road Curvature (F (1, 240) = 4.97, p = 0027, ηp² 

= .021) but no interaction effect was found. Pearson correlation between %EORT and %EORG 

are quite highly correlated at 0.95. Post hoc test found that, similar to the result 

of %EORG, %EORT was significantly different (all p < .001) in this sequence: V-M (35.1 %) > 

V-S (28.0 %) > A-M (16.3 %) > A-S (.9 %). This finding is also consistent with the first hypothesis 

(H1). In other words, longer eyes-off-road behaviors (i.e., higher %EORT) were recorded on V-

M, V-S, and A-M types than A-S type. 

For the S-R Type comparison of frequency recording more than 12 seconds of TEORT 

(based upon the NHTSA guideline), the difference was in this sequence: V-M (24 times) > V-S 

(13 times) > A-M (12 times) > A-S (none). In other words, there was no big difference between 

V-S and A-M type. 

The comparison for Road Curvature showed that %EORT was higher when the radius was 

moderate (x̄ = 21.02, SEM = .66) than sharp (x̄ = 19.10, SEM = .56), as shown in Figure 4.5. It was 

found that participants driving on a sharper curve looked at the forward road ‘longer’ than on the 

moderate curve, supporting the third hypothesis (H3). 



 

88 

 

 

Figure 4.5 – Main effect of Road Curvature on %EORG and %EORT (Error bar = SEM) 

 

4.4.2.4. Standard deviation of lateral eye fixation (SDLEF) 

A significant main effect of S-R Type (F (3, 240) = 203.37, p < .001, ηp² = .725) on SDLEF 

was revealed, but the main effect of Road Curvature and the interaction effect were not found.  V-

M type (56.8 % of the lateral size of monitor screen), V-S (51.7 %), and A-M type (48.6 %) 

produced significantly higher SDLEF than A-S type (5.70 %), whereas V-M type caused higher 

SDLEF than A-M type, shown in Figure 4.6. However, significant differences on the V-S and A-

M types (p = .532), as well as V-S and V-M types, were not found (p = .114). 

 

Figure 4.6 – Main effect of S-R Type on SDLEF and SDVEF (Error bar = SEM) 
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4.4.2.5. Standard deviation of vertical eye fixation (SDVEF) 

Similar to the result of the SDLEF measure, only the main effect of S-R Type (F (3, 240) 

= 562.79, p < .001, ηp² = .879) was significant; no main effect of Road Curvature and interaction 

was found. However, in addition to the difference between V-M (67.0 % of the vertical size of 

monitor screen) and A-S (14.8 %) types, a pairwise comparison revealed a significant difference 

between A-M and V-S types, unlike the results of the SDLEF analysis. It showed that the value of 

SDVEF was significantly higher at the A-M Type (63.5 %) than the V-S Type (58.4 %) (p = .003), 

shown in Figure 4.6. This finding indicates that the vertical eye movement for looking at the 

stimulus on the touchscreen device had less variation than looking at the button to press (as a 

response) on the device. This result is a bit obvious because the location of the stimulus was closer 

to the road center than the location of response button.  

4.4.3. Variability in lane-keeping performance 

4.4.3.1. Standard deviation of lateral position (SDLP) 

ANOVA for the SDLP revealed significant main effects of both S-R Type (F (3, 381) = 

10.52, p < .001, ηp² = .078) and Road Curvature (F (1, 381) = 19.71, p < .001, ηp² = .050); but no 

interaction reached significance. 

Pairwise comparisons, using a Tukey HSD procedure, revealed three statistically 

significant differences (all p < .05): V-M type (x̄ = .42, SEM = .02) produced higher SDLP than 

V-S type (x̄ = .34, SEM = .02) and A-S type (x̄ = .30, SEM = .02); SDLP for A-M type (x̄ = .37, 

SEM = .02) was higher than for A-S type. However, the comparison regarding which type of S-R 

modality between A-M and V-S types caused higher SDLP was not available. This result does not 

fully agree with the second hypothesis (H2). That is, the secondary task type that caused the least 
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visual demand (i.e., A-S type) resulted in the lowest variability in lane-keeping performance (i.e., 

lowest SDLP), but other comparisons were not available. 

With regard to the comparison among the two Road Curvatures, the SDLP recorded along 

the sharp road curvature (x̄ = .39, SEM = .01) was significantly higher than that on the moderate 

road curvature (x̄ = .32, SEM = .01), shown in Figure 4.7. This finding was in agreement with the 

fourth hypothesis (H4). 

 
Figure 4.7 – Main effect of Road Curvature on SDLP and SDSWA (Error bar = SEM) 

 

4.4.3.2. Standard deviation of steering wheel angle (SDSWA) 

ANOVA showed significant main effects of and S-R Type (F (3, 381) = 17.85, p < .001, 

ηp² = .126) and Road Curvature (F (1, 381) = 110.77, p < .001, ηp² = .229) on the SDSWA, but no 

significant interaction effect was found. As shown Figure 4.7, it was revealed that SDSWA when 

subjects drove on the sharp curve (x̄ = .42, SEM = .01) was significantly higher than when driving 

on the moderate curve (x̄ = .22, SEM = .01). The fourth hypothesis was supported by this result, 

based on the result that variability in lane-keeping performance with secondary task increased (i.e., 

higher SDSWA) at the sharper curve. 
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Pairwise comparison test for S-R types found four significant differences: not surprisingly, 

V-M type (x̄ = .42, SEM = .02) produced more SDSWA than A-S type (x̄ = .222, SEM = .019) and 

V-S type (x̄ = .30, SEM = .02). The A-M type (x̄ = .35, SEM = .02) and V-S type produced more 

SDSWA than A-S type. However, no significant difference of SDSWA between A-M and V-S 

types was found. Similar to the SDLP analysis, this finding partially supports the second 

hypothesis (H2). 

4.4.4. Subjective workload 

The effect of S-R Type on driving activity load (DALI overall rating) was found to be 

significant (F (3, 92) = 18.92, p < .001, η² = .382). Pairwise comparisons revealed that the driving 

activity load was significantly different among the four S-R types (all p < .001), except between 

A-M and V-S types (p > .05).  Although the six specific categories in the DALI questionnaire had 

similar outcomes, compared to the overall rating, the effect of S-R type in the ‘Visual demand’ 

category was revealed to be the most distinct difference among the four S-R types as shown in 

Figure 4.8. Especially, it was found that V-S type (x̄ = 5.13, SEM = .25) task caused higher visual 

demand than A-M type (x̄ = 4.17, SEM = .25) task (p = .038). 

 

Figure 4.8 – Main effect of S-R Type on overall rating and visual demand 

(Error bars = SEM) 
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4.5. Discussion and conclusions 

I investigated the effects of secondary-task modality as well as the degree of horizontal 

road curvature on drivers’ visual attention patterns and their lane-keeping performances. 

Although no significant interaction was shown between the road curvature and the task modality, 

significant effects for two factors were clearly seen. Participants driving on more sharply curved 

roads took longer glances and more frequent glances at the road ahead (i.e., lower %EORG 

and %EORT), but interestingly, their lane-keeping performance was unstable (i.e., higher SDLP 

and SDSWA). As shown in the results of the secondary-task performance (i.e., a greater 

percentage of correct responses on moderate curves than sharp curves), participants prioritizing 

driving performance tended to focus more on safe driving on the sharper curves. For comparison 

of task modalities, the S-R types using a visual stimulus or a manual response (V-M, V-S, and A-

M types) recorded poorer lane-keeping performance and more eyes-off-road moments than the 

S-R type using auditory stimulus and speech response (A-S type). 

However, it was noted that it was hard to compare the performances of auditory-manual 

and visual-speech types. In fact, the comparison of performance between A-M and V-S types 

varied depending on the type of measures used. In other words, no significant difference between 

A-M and V-S types on stable driving control was found, whereas there was a significant 

difference in their effect on eyes-on-road behavior and subjective rating of visual demand: more 

eyes-off-road moments (i.e., higher %EORG and %EORT) were produced by V-S types than A-

M types. Given that no, or less visual attention is generally required for auditory-stimulus (of A-

M types) and speech-response (of V-S types), this finding showed that eyes-off-road moments 

were associated with visual attention induced by visual stimuli rather than manual responses. 

Participants actually reported that they felt higher visual demand from V-S types compared to A-



 

93 

 

M types, as shown in Figure 4.8. A possible explanation for this finding might be top-down 

(expectation) mental processing, participants were not able to anticipate what visual stimuli 

would be presented in the experiment because Arabic numerals were randomly presented, 

whereas, they were able to anticipate which buttons to press due to the button’s fixed positions, 

especially when they become acclimated to the task. As a result, the participants probably paid 

more visual attention to the display while performing V-S type tasks than A-M type tasks. Thus, 

the V-S modality elicited more eyes-off-road moments than the A-M modality. 

There were some limitations in the current study’s experimental setup. Firstly, in terms of 

a participant’s perception of a curving road, Zakowska (1999) argued that perception of a static 

presentation is less sensitive to geometric curve properties than for a dynamic presentation. A two-

dimension screen used in the current study probably affected the driver’s perceptions; the driver’s 

perception of the road curvature was likely less than its actual curvature. Secondly, since a road 

with larger curvature radius has a longer distance (i.e., exactly times of curvature radius because 

the curve deflection angles were 180 degrees for all curves), participants might have felt more 

fatigued when they drove on the moderate curves, which might have affected their performance of 

both the driving and secondary tasks. Thirdly, the narrow field of view used in the current study 

might affect participants’ decisions for curve negotiation (Land & Horwood, 1995). In a limited 

field of view, the larger curves may have been less visible and peripheral cues may have been 

absent. Lastly, the selected curve radii in the driving simulation might not have necessarily 

reflected real-world conditions. For example, the Highway Design Manual (2012) recommends 

that a minimum speed for driving on a 100-meter radius curve in California is approximately 40 

km/h. Given that the participants in this study drove on average 50–60 km/h, the 100-meter radius 

curve might have been too challenging to drive through even without any secondary tasks. It would 



 

94 

 

have been better to have had a baseline condition that participants drove to evaluate the road 

curvature selection, even though the authors confirmed that there was no issue for participants 

driving on sharp curves during practice trials. 

In spite of these limitations, the results from the current study still provide useful guidelines 

with respect to use of secondary-task modalities for safe driving on curved roads. In other words, 

it would be better for drivers to use the methods using auditory stimuli or speech inputs, which 

require less visual demand, and to avoid methods using visual stimuli or manual inputs when they 

operate in-vehicle systems. That is based on the findings that A-S modality type tasks had the 

highest scores for lane-keeping performances and eyes-on-road behavior out of the four modality 

types. 

However, it should be noted that there are several drawbacks to using A-S type of 

modalities or functions. First, the accuracy of speech interactions can be reduced by internal factors. 

Benzeghiba et al. (2007) argued that foreign and regional accents, rate of speech, and emotional 

states can cause higher variabilities for speech recognition. Second, the accuracy of speech 

recognition systems can be affected by external factors; for example, Moreno (1996) found that 

the accuracy of speech control systems decreases, especially when they are operated in noisy 

environments. Third, even though the use of auditory-speech interactions are known as less 

distracting methods compared to the use of visual-manual interactions while driving, mental 

workload still exists. Mental workload is higher when speech interactions are used while driving 

compared to a single driving task (Lo & Green, 2013; Wu, Chang, Boyle, & Jennes, 2015). 

Moreover, Wu et al. (2015) argued that task-load ratings while using speech systems varied with 

the systems used, such as portable voice control devices (e.g., smartphones) and built-in in-vehicle 

voice control systems. Because of drawbacks of speech recognition systems, drivers may need to 
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repeat voice commands because the voice commands are not correctly recognized by the systems. 

Sometimes, perceiving the auditory stimuli or voice announcements from the systems can fail due 

to interruption from surrounding conditions, such as ongoing dialogues with passengers and 

listening to music. 

Further investigations are planned. First, I will examine driver cognitive demand while 

performing secondary tasks on curved roads (1) by measuring eye fixations only within the area 

of the road display and (2) by adding other n-back levels of the secondary tasks (i.e., 1-back or 2-

back). Through the first approach, I propose analyzing whether different S-R modalities change 

patterns of road scanning independent of head-down glances based on previous studies that have 

shown a tendency for cognitively distracted drivers to narrow their scanning range (e.g., Recarter 

& Nunes, 2003; Strayer, Drews, & Johnston, 2003; Kaber, Liang, Zhang, Rogers, & Gangakhedkar, 

2012). Through the second approach, I propose to analyze driver behavior while they are 

performing A-S tasks in more realistic conditions (e.g., talking on the phone) that require central 

executive processes using working memory. 

Second, I propose developing a cognitive model to predict drivers’ lateral-control 

performances and eye-glance patterns depending on the conditions of both secondary-task types 

and road curvatures. Some preliminary modeling studies have been conducted by the authors using 

the Queueing Network Cognitive Architecture (Liu, Feyen, & Tsimhoni, 2006). While current 

models cover each condition separately (i.e., secondary-task type in Jeong & Liu, 2017; road 

curvature in Jeong, Feng, & Liu, 2017), I propose dealing with both conditions in a single model. 

It is expected that this model will help understand the mechanisms of drivers’ behaviors with 

different modality tasks on various horizontal curves. 
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Chapter 5. 

Queuing Network Modeling of In-vehicle Secondary Task Performance 

 

5.1. Introduction 

While driving, drivers continue to interact with in-vehicle systems and their surrounding 

environment, by performing a variety of secondary tasks (e.g., tuning a radio) in addition to 

driving a vehicle. Most of the secondary tasks are composed of multiple stimuli and their 

corresponding responses. In other words, in-vehicle secondary tasks represent a type of stimulus-

response task: once drivers perceive stimuli (or receive information) from the in-vehicle systems, 

they often respond to the systems. While the conventional in-vehicle secondary tasks were the 

visual-manual type (e.g., rotating a knob while looking at the current radio tuning frequency), 

more diverse types have become common, using a wide range of modalities. For example, recent 

in-vehicle systems allow drivers to hear a voice announcement from the electronic navigation 

systems and to say a voice-command to input the information to the systems. 

Many experimental studies have investigated the effect of different types of stimulus-

response tasks on driving performance (e.g., Angell et al., 2006; Shutko, Mayer, Laansoo, & 

Tijerina, 2009; Young, Hsieh, & Seaman, 2013; Reimer et al., 2014b). According to the 

literature, visual and auditory modalities are two of the most frequently used information 

presentation channels in the in-vehicle secondary tasks, whereas manual and speech (or verbal) 

input techniques are the most common responding methods. In general, one of the common 

findings is that driving performance during the visual-manual task was significantly different 
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from that during the auditory-speech task, such as showing higher steering wheel reversal rates 

and higher ratio of eyes-off-road time. However, few studies have examined the more diverse 

types of modalities, such as auditory-manual [A-M], auditory-speech [A-S], visual-manual [V-

M], and visual-speech [V-S] stimulus-response tasks. Furthermore, there are few modeling 

studies for predicting driving behavior and workload during the secondary tasks, even though 

modeling studies enable systems designers to find solutions to usability issues at an early stage 

of system development, thereby reducing labor and time cost. 

In this chapter, I report a computational model to predict eyes-off-road behavior and 

workload in performing four different types of stimulus-response tasks (i.e., A-M, A-S, V-M, 

and V-S), using the Queueing Network-Model Human Processor (QN-MHP; Liu, Feyen, & 

Tsimhoni, 2006) which enables the multitasking prediction as well as human-machine interface 

(HMI) evaluation. The model used the interface of the MIT AgeLab NBack App to evaluate 

simple stimulus-response tasks (see Reimer et al., 2014a for details) and was evaluated with 

human subject data from 24 participants. 

 

5.2. Model development 

5.2.1. Task Analysis 

Task analyses were conducted for all the four stimulus-response tasks: A-M, A-S, V-M, 

and V-S, using NGOMSL (Natural Goals, Operators, Methods, and Selection rules Language)-

style task description (Kieras, 1999). Table 5.1 shows the result of tasks analysis. In the 

NGOMSL task analyses, task components (TCs) were used to describe each step to accomplish 

the whole task. Each TC is made with a pre-determined operator that runs with one or multiple 

parameter(s). In Table 5.1, showing the result of the task analyses, “Look-at”, “Listen-to”, 
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“Click-with-finger” are the examples of the operator, whereas “<target type>”, “<device id>”, 

“<x, y>” are the examples of the parameter. 

 

Table 5.1 – NGOMSL-style descriptions of the four stimulus-response tasks 

[A-M task]  [V-M task] 

Goal: Listen to a number and press the number button Goal: Look at a number and press the number button                                                              

TC 1: Listen-to <target value>  TC 1: Wait/Find a visual stimulus and Look-at <target type>  

           on <device id> at location <𝑥0,𝑦0> 

TC 2: Store the <target value> on STM*  TC 2: Store the <target value> on STM 

TC 3: Retrieve the <target value > from STM  TC 3: Retrieve the <target value> from STM 

TC 4: Compare <target value> to <expected value> 

           If match, return result =1, else return result = 0 

 TC 4: Compare <target value> to <expected value> 

           If match, return result =1, else return result = 0 

TC 5: Decide 

           If result = 1, go to TC 6, else go to TC 1 

 TC 5: Decide 

           If result = 1, go to TC 6, else go to TC 1 

TC 6: Look-at <target type> on <device id> at location    

          <𝑥1,𝑦1> 

 TC 6: Look-at <target type> on <device id> at location  

          <𝑥1,𝑦1> 

TC 7: Store the <target value> on STM  TC 7: Store the <target value> on STM 

TC 8: Retrieve the <target value > from STM  TC 8: Retrieve the <target value> from STM 

TC 9: Compare <target value> to <expected value> 

           If match, return result =1, else return result = 0 

 TC 9: Compare <target value> to <expected value> 

           If match, return result =1, else return result = 0 

TC 10: Decide 

           If result = 1, go to TC 11, else go to TC 6 

 TC 10: Decide 

           If result = 1, go to TC 11, else go to TC 6 

TC 11: Look-at <target type> on <device id> at location   

            <𝑥1,𝑦1> 

 TC 11: Look-at <target type> on <device id> at location  

            <𝑥1,𝑦1> 

TC 12: Store the <target value> on STM  TC 12: Store the <target value> on STM 

TC 13: Retrieve the <target value> from STM  TC 13: Retrieve the <target value> from STM 

TC 14: Determine-hand-movement  TC 14: Determine-hand-movement 

TC 15: Reach-with-hand  TC 15: Reach-with-hand 

TC 16: Look-at <target value> on <device id> at location  

            <𝑥1,𝑦1> 

 TC 16: Look-at <target type> on <device id> at location  

            <𝑥1,𝑦1> 

TC 17: Store the <target value> on STM  TC 17: Store the <target value> on STM 

TC 18: Retrieve the <target value> from STM  TC 18: Retrieve the <target value> from STM 

TC 19: Determine-finger-movement  TC 19: Determine-finger-movement 

TC 20: Click-with-finger  TC 20: Click-with-finger 

TC 21: Return with goal accomplished 

*STM = short-term-memory 

 TC 21: Return with goal accomplished 

 

[A-S task]  [V-S task] 

Goal: Listen to a number and say the number Goal: Look at a number and say the number 

TC 1: Listen-to <target value>  TC 1: Wait/Find a visual stimulus and Look-at <target type>  

           on <device id> at location <𝑥0,𝑦0> 

TC 2: Store the <target value> on STM  TC 2: Store the <target value> on STM 

TC 3: Retrieve the <target value> from STM  TC 3: Retrieve the <target value> from STM 

TC 4: Compare <target value> to <expected value> 

           If match, return result =1, else return result = 0 

 TC 4: Compare <target value> to <expected value> 

           If match, return result =1, else return result = 0 

TC 5: Decide 

           If result = 1, go to TC 6, else go to TC 1 

 TC 5: Decide 

           If result = 1, go to TC 6, else go to TC 1 

TC 6: Say <a number>  TC 6: Say <a number> 

TC 7: Return with goal accomplished  TC 7: Return with goal accomplished 
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5.2.2. Development of Operators 

Because the recent QN-MHP-based models have only operators for the tasks using visual 

stimuli and/or manual responses (Feng, Liu, Chen, Filev, & To, 2014; Jeong & Liu, 2016), two 

new operators were needed and thus developed for auditory stimuli and/or speech responses: 

Listen-to and Say. For these operators, it was assumed that each syllable takes the same amount 

of time for both listening and saying. A pre-determined audio library module including simple 

syllable-separated words for Arabic numerals (e.g., ze-ro, one, …, sev-en, …, nine) was used to 

implement these operators. Here, I describe four major operators including the two new 

operators used for investigating the four stimulus-response tasks: 

Look-at: This operator allows a human model to look at a specific location. The specific 

target location is set with three parameters: type of target (e.g., text or color), device id, and a 

target’s two-dimensional coordinates on the device. Once the “Look-at” operator is activated at 

Server D, a long-term procedural memory server, it triggers a saccade motor action at Server W, 

a motor-elements server. Then Server W triggers the Eyes server so a saccade can be executed at 

the Eyes server. The saccade execution time is determined by an angular velocity (i.e., 4 msec / 

degree; Kieras & Meyer, 1997) and a visual angle (i.e., angle from the current location of visual 

attention to the target location). Once the saccade is completed at the Eyes server, an entity (or 

visual stimulus) of target enters into Server 1, a visual input server. Then the entity enters 

Servers 2 (Visual recognition) and 3 (Visual location) and makes the human model recognize the 

visual target and its location, respectively. Through Server 4, a visual integration server, the 

entity is transformed into the cognitive subnetwork. 

Listen-to: This operator allows a human model to listen to a text-based content (e.g., a 

syllable, a word, and a sentence) from a source of sound, such as an in-vehicle speaker. Once the 
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“Listen-to” operator is activated at Server D, it triggers an auditory motor action at Server W. 

Then Server W triggers the Ears server so a listening action can be executed at the Ears server. 

The listening execution time is determined by an internal process time and an external process 

time (or transmission time). The internal process time is assumed from the perception time 

randomly assigned, ranging from 50 to 200 msec (Card, Moran, & Newell, 1983), whereas the 

external process time (or transmission time) is determined by the distance from the sound source 

to human model’s ears and a sound speed (i.e., 343.2 m/s). Once the listening action is 

completed at the Ears server, an entity (or auditory stimulus) enters into Server 5, an auditory 

input server. Then the entity enters Servers 6 (Auditory recognition) and 7 (Auditory location) 

and makes the human model recognize the sound and its location, respectively. Through Server 

8, an auditory integration server, the entity is transformed into the cognitive subnetwork. 

Reach-with-hand / Click-with-finger:  These operators initiate a reaching and a clicking 

action using the model’s hand servers. Once these operators are activated at Server D, a motor 

entity is created in Server W with the motor type of “Reach-with-hand” / “Click-with-finger”. 

These motor entities are then processed in Servers W, Y, Z, and the Right-hand or Left-hand 

servers. The hand servers make the hand be reached to the target (or the finger be clicked on the 

target), based on the estimation of how far/long the hand reaches the target (or the finger clicks 

on the target). The reaching execution time is determined by the general Fitts’ law equation. 

According to Shannon formulation (MacKenzie, 1992), the movement time MT is: 

𝑀𝑇 = 𝑎 + 𝑏 × log2 (
𝐴

𝑊
+ 1)                     (1) 

, where a and b are empirical regression coefficients, varying in the environment, such as people 

and devices. W refers to the target’s size, whereas A refers to the distance to the target. The 

clicking execution time is determined as 280 msec from the Keystroke Level Model (Card et al., 
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1980). For the manual response in this study, it is assumed that the model uses a right hand. 

Also, it is assumed that the reaching distance is 300 mm, which closely resembles the actual 

distance from a steering wheel to the target on the device. 

Say: This operator initiates a speech (verbal) response action using the model’s mouth 

server. Once this operator is activated at Server D, a motor entity is created in Server W with the 

motor type of “Say”. This motor entity is then processed in Servers W, Y, Z, and the Mouth 

server. The Mouth server makes the model say a text-based content (e.g., a syllable, a word, and 

a sentence) and the corresponding button on the device is clicked. The speech response’s 

execution time is determined with John (1990)’s finding, 130 - 170 msec per syllable, depending 

on the practiced level. In the current study, 130 msec per syllable was used, assuming the highly 

practiced level. 

5.2.3. Development of Digital Device Mockups 

Using MATLAB Graphical User Interface Design Environment (GUIDE), digital device 

mockups of the NBack App were developed. Figure 5.1 shows the digital mockup of the V-M 

task, as an example. Figure 5.2-(a) shows the coordinates for a visual stimulus (i.e., (𝑥0,𝑦0)) and 

a button for the manual response (i.e., (𝑥1,𝑦1)). The flow of the process when V-M task is 

performed is shown in Figure 5.2-(b). Where the model looks at and clicks on the digital mockup 

are indicated by yellow-hatched and white-dotted squares, respectively. 
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Figure 5.1 – (a) An example of digital mockup for the NBack App and (b) its usage for a visual-

manual secondary task while driving 

 

5.3. Model validation 

Experimental data from 24 college students were used to evaluate the model. Participants 

(age: M = 22.6, SD = 3.53; 16 males and 8 females) were asked to perform the four stimulus-

response tasks, using the 0-back task (the easiest level) from the NBack App software, while 

driving on simulated horizontal curves including multiple curvature levels (radii ranging from 

100 to 800 meter). Since the purpose of the current study was to compare only the effects among 

the four different stimulus-response types, other levels of n-back tasks were not used. Either 

visual or auditory stimulus was presented for 2.25 s with a 0.75 s time gap between each 

stimulus. After the driving and secondary tasks, participants completed a Driving Activity Load 

Index (DALI; Pauzié, 2008) survey, as subjective workload measurements. The survey included 

six measures with a seven-level scale ranging from 1 (lowest) to 7 (highest), including effort of 

attention, visual demand, auditory demand, temporal demand, interference, and situational stress. 

The overall scores combining all the six measures were used to validate the model’s workload 

outputs. Eye movement data were collected by Gazepoint GP3 at 60 Hz. In this study, eyes-off-
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road time was defined as the duration of eye-glances in 20 degree or less away from the center 

forward (i.e., left and right forward, and instrument panel; Klauer, Dingus, Neale, Sudweeks, & 

Ramsey, 2006). 

Ten model simulations were run, in which the eye location (recorded by the current 

location of visual attention) and the workload (estimated by server utilizations in the QN 

framework; normalized to 1-7 levels) data were collected every 50 msec. As shown in Figure 

5.2, the model was able to generate results for both the percentage of eyes-off-road time (R² = 

0.88, RMS = 4.95) and workload (R² = 0.99, RMS = 1.16) quite similar to the human subject 

data. 

  
Figure 5.2 – Modeling results of %Eyes-off-road time and workload in comparison to human 

results 

 

5.4. Conclusion and discussion 

This chapter presented a computational model in the QN-MHP architecture for the four 

stimulus-response tasks of the combinations of two stimuli (i.e., auditory and visual) and two 

responses (i.e., manual and speech). In addition to developing a predictive model, I evaluated the 

model with empirical data from 24 subjects, and found very good validation results in the time 

ratio of eyes-off-road as well as workload (more than 85 % of R² for both outputs; less than 5% 

of RMS for Eyes-off-road time and less than 1.5 levels of RMS for workload).  
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To model the tasks using auditory stimuli and/or speech responses, two new auditory-

related operators were developed and they were implemented with a pre-determined audio 

library module. Since the current module includes only Arabic numerals (i.e., 0 - 9) 

pronunciation and its syllable breakdown, further study aims to extend the types of voice 

commands actually used in the practical driving setting (e.g., ‘say a command’, ‘increase the 

temperature’) so that I can support HMI evaluations with a wider range of usability test for in-

vehicle infotainment system developments. 
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Chapter 6. 

An Experimental Study on the Effects of Road Geometry and Lead Vehicle  

on Driving Performance 

 

6.1. Introduction 

According to the Transportation Research Board reports (Torbic et al., 2004; Federal 

Highway Administration, 2006), nearly 25 percent of fatal crashes occur along horizontal curved 

roads, predominantly on two-lane local highways. Moreover, the average crash rates at 

horizontal curved roads is approximately three times that of other road settings. To minimize the 

number of crashes occurring in horizontal curved roads, it is necessary to understand the risk 

factors that significantly affect the crashes. 

In general, the risk factors of crashes while driving on horizontal curved roads consist of 

two categories: inside (e.g., in-vehicle secondary task engagements) and outside (e.g., road 

geometry or other vehicles) of the vehicle. Several studies have investigated the effects of in-

vehicle secondary task engagements on driving performance on curved roads (e.g., Tsimhoni & 

Green, 2001; Tsimhoni, Smith, & Green, 2004; Lehtonen, Lappi, & Summala, 2012). One of the 

typical findings was that the secondary task significantly degraded driver’s lane keeping 

performance on horizontal curved roads.  

On the other hand, several studies have explored the relationship between driving 

performance and the risk factors from the outside of vehicle in horizontal curved road settings. 

For example, Godthelp (1986) and Ben-Bassat and Shinar (2011) found that the smaller the 
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curve’s radii, the harder it is for a driver to maintain a stable lane position (i.e., higher standard 

deviations of lane position and steering wheel angle). Moreover, it was found that the higher the 

degree of curvature, the lower the mean speed of vehicle (Andjus & Maletin, 1998; Figueroa & 

Tarko, 2005). With respect to the effect of curve direction on driving performance, Bella (2013) 

found that speed and lateral position varied depending on the curvature (sharp vs. moderate) as 

well as direction (left vs. right). In addition, Calvi (2015) found that lateral positions were lower 

at left curve and higher at right curve. 

However, relatively fewer studies have investigated the effect of lead vehicle on the 

safety of horizontal curve driving. Although many car-following driver models have been 

developed (e.g., Boer, Ward, Manser, Yamamura, & Kuge, 2005; Ossen & Hoogendoom, 2005; 

Yang & Peng, 2010) over the past decades, comparison between car-following and free-flow 

conditions has been seldom investigated. 

In the study reported in this chapter, I investigated the effects of road geometry (i.e., road 

curvature and curve direction) and existence of lead vehicle on driving performance. In addition 

to their main effects, I investigated whether there are interaction effects between the factors on 

the driving performance. 

 

6.2. Methods 

6.2.1. Participants 

Twenty-four participants (18 males and 6 females) between the ages of 19 and 33 (M = 

23.6, SD = 4.1) were recruited through on-campus email advertisements to take part in this 

experiment. They were all licensed drivers who had average driving mileage of 32,960 miles. 

They were screened before their participation to ensure normal or corrected-to-normal vision. 
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6.2.2. Apparatus and driving scenarios 

A fixed-based driving simulator was used to collect driving performance in horizontal 

curved roads. The simulator included a 24-inch LCD monitor (HP ZR24w) and a Logitech G27 

RT racing wheel set. Using an open source driving simulation software, the Open Racing Car 

Simulator (TORCS), multiple driving scenarios including horizontal curved roads were created 

(see examples in Figure 6.1). The horizontal curved roads had four levels of curvature radius 

(100, 200, 400, and 800 m; all curve deflection angles were 180 degrees) in both right and left 

directions and they were connected by 300-meter transition straight roads to each other. 

Rural highway roads with two lanes in one direction were used and had a flat surface 

with only horizontal curves and no vertical curves. The width of each lane was 5 meters. There 

were approximately 4-meter-wide shoulders on each side of the roads. The average driving 

duration for each scenario was approximately 10 minutes with an average speed of 60 km/h. A 

resolution of 1600 × 1200 pixels was used to generate the graphics of the driving scenarios. Both 

the driver and lead vehicles were a mid-size sedan (Peugeot 406). A dashboard including a 

speedometer and a tachometer was displayed at the center-bottom of the screen. A rear-view 

mirror was presented at the center-top of the screen. Some parts of these driving scenarios were 

used to evaluate a computational model that predicts eyes-off-road behavior and workload in 

performing different secondary tasks on horizontal curves (Jeong & Liu, 2017). 

Driving performance data (e.g., speed, lane position, steering wheel angle, distance 

headway, and time headway) were automatically collected by the simulation system at the 60 Hz 

frequency. 
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Figure 6.1 – Examples of driving scene for car-following task (sharp right curve on the left, 

moderate left curve on the right) 

 

6.2.3. Experimental design 

The experiment followed 2 × 2 × 2 mixed factor design with two levels of road curvature 

(sharp vs. moderate), two levels of curve direction (left vs. right), and two levels of driving 

condition (car-following vs. free-flow). All levels of each independent variable were randomly 

assigned to the participants. For road curvature, only two curvature radii were used: 100-meter 

curve as sharp, whereas 800-meter curve as moderate. A repeated measures analysis was 

performed for the following dependent variables: (1) standard deviations of lane position and 

steering wheel angle as measures of lane keeping performance, (2) vehicle speed as well as 

standard deviations of distance headway and time headway as measures of car-following 

performance. 

6.2.4. Procedures and driving tasks 

Upon arrival at the laboratory, participants were informed about the purposes of the 

experiment and asked to read and sign a consent form if they agreed to do so. They drove 

through a practice drive for 5 - 10 minutes to become familiar with the driving simulator. 

Participants performed two driving tasks: car-following and free-flow tasks. For the car-

following task, participants were asked to follow a lead vehicle running with a constant speed 
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(i.e., 75 km/h) only on the right lane, while maintaining a safe car-following distance. For the 

free-flow task, participants were asked to drive with their own desired speed but obey the speed 

limit, 75 km/h. For both tasks, participants were instructed to drive on the right lane and maintain 

the vehicle in the center of the lane in a normal and safe manner. After each task, they were 

asked to complete a DALI (Driving Activity Load Index; Pauzié, 2008) survey and given a 5-

minute break to avoid fatigue from each task. At the end of all the tasks, they completed a 

payment form. 

6.2.5. Data analysis 

The dependent measures of mean speed, standard deviations of lane position (SDLP) and 

steering wheel angle (SDSWA), standard deviations of distance headway and time headway 

were analyzed by repeated-measures three-way ANOVA (2 road curvatures × 2 curve directions 

× 2 driving conditions) using SPSS Statistics 24. The subjective driving workload collected by 

DALI was analyzed by one-way ANOVA for two driving conditions. Prior to performing the 

ANOVA tests, all the dependent variables were verified whether they violate the normality 

assumption of ANOVA, using a criteria of skewness (< 2) and kurtosis (< 7) (Curran, West, & 

Finch., 1996). Additionally, the Levene’s test for homogeneity of variance was used to 

investigate the assumption of homogeneity of variance across groups. Effect sizes were 

measured by a partial eta-squared (𝑛𝑝²). The significant level for all statistical tests was p ≤ .05. 

 

6.3. Results 

6.3.1. Mean speed 

As shown in Figure 6.2, a repeated-measures ANOVA of mean speed revealed a 

significant main effect of driving condition (F (1, 136) = 407.4, p < .001, 𝑛𝑝² = .75) and road 
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curvature (F (1, 136) = 6.68, p = .011, 𝑛𝑝² = .05): higher in the Free-flow task (mean (x̄)  = 71.8, 

standard error of mean (SEM) = .98) than the Car-following task (x̄  = 56.5, SEM = .24), higher 

at Moderate curve (x̄  = 62.2, SEM = 1.06) than Sharp curve (x̄  = 61.0, SEM = .93). The 

interaction between driving condition and road curvature was also significant (F (1, 136) = 8.64, 

p = .004, 𝑛𝑝² = .06). 

 
Figure 6.2 – Two-way interaction in Mean speed between the driving condition and road 

curvature (Error bars = SEM) 

 

6.3.2. SDLP and SDSWA 

As shown in Figure 6.3, an ANOVA for SDLP revealed a significant main effect of road 

curvature (F (1, 136) = 19.36, p < .001, 𝑛𝑝² = .13), but no significant main effects of other 

factors nor any interaction effect. The SDLP at Sharp curve (x̄ = .32, SEM = .02) was higher than 

that at Moderate curve (x̄ = .23, SEM = .01). 

SDSWA was significantly affected by road curvature (F (1, 136) = 168.76, p < .001, 𝑛𝑝² 

= .55) and interaction between road curvature and curve direction (F (1, 136) = 3.95, p = .049 < 

.05, 𝑛𝑝² = .03; marginally significant). The SDSWA at Sharp curve (x̄ = .37, SEM = .02) was 

higher than that at Moderate curve (x̄ = .10, SEM = .005). 
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Figure 6.3 – Lateral control measures by road curvature 

(Error bars = SEM) 

 

6.3.3. Headway measures for the car-following task 

The significant effect of road curvature (F (1, 92) = 6.50, p = .012, 𝑛𝑝² = .07) showed the 

higher SD distance headway at Moderate curve (x̄ = 6.17, SEM = .66) than at Sharp curve (x̄ = 

3.93, SEM = .58), as shown in Figure 6.4. The SD time headway was also significantly affected 

by road curvature (F (1, 92) = 8.17, p = .005, 𝑛𝑝
2 = .08): higher at Moderate curve (x̄ = .41, SEM 

= .04) than Sharp curve (x̄ = .25, SEM = .03). 

 
Figure 6.4 – The effect of road curvature on headway measures (car-following task) 

(Error bars = SEM) 
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6.3.4. Subjective driving workload 

Six driving activity load measures with a scale ranging from 1 (lowest) to 7 (highest) 

were analyzed:  (1) effort of attention (i.e., level of attention required by the driving task), (2) 

visual demand (i.e., level of visual demand necessary for the driving task), (3) auditory demand 

(i.e., level of auditory demand necessary for the driving task), (4) temporal demand (i.e., level of 

specific constraint due to timing demand during the driving task), (5) interference (i.e., level of 

disturbance during the driving task), and (6) situational stress (i.e., level of constraint or stress 

during the driving task). Although there were differences of each driving workload measure 

between car-following and free-flow tasks (shown in Figure 6.5), no statistically significant 

differences were found (all p >.05). 

 

 
Figure 6.5 – Driving workload by driving condition 

 

6.4. Discussion 

6.4.1. Effects of road geometry 

Significant effects of road curvature on driving performance were found: First, the SDLP 

was 39% higher at Sharp curve than at Moderate curve. Second, SDSWA was 3.7 times higher at 
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Sharp curve than Moderate curve. Lastly, the mean speed was 2% higher at Moderate curve than 

Sharp curve. These results are similar to the findings of previous studies (Godthelp, 1986; 

Andjus & Maletin, 1998; Figueroa & Tarko, 2005; Ben-Bassat & Shinar, 2011). In other words, 

the variability in lane keeping was higher and driving speed was reduced while driving on 

sharper curves. 

For the car-following task, SD distance headway was 57% lower and SD time headway 

was 64% lower at Sharp curve than Moderate curve. The lower standard deviation of time and 

distance headway may indicate their driving strategy and tendency to keep a safe and constant 

following distance away in sharper curves.  

In contrast to the previous studies (e.g., Bella, 2013; Calvi, 2015), the effect of curve 

direction on driving performance was not found in this study. This might be because the 

simulated driving roads used in this study had fewer roadside objects (e.g., vegetation, road 

signs, and guardrail barriers) than their studies, which might affect driver’s perception of road 

and safety (Van Der Horst & De Ridder, 2007). 

6.4.2. Effects of lead vehicle 

The mean speed was 27% higher in free-flow than in car-following condition. 

Participants reduced their speed when a lead vehicle is ahead of them, whereas they increased 

their speed when they were free to drive. Moreover, the mean speed was significantly affected by 

the interaction between road curvature and driving conditions. In other words, the mean speed of 

two driving conditions varied depending on the road curvatures. The mean speed increased 23 % 

at Sharp curve and 31 % at Moderate curve, from car-following to free-flow condition. This 

result indicated that drivers increase their speed if there is no lead vehicle in front of them, even 

in the curved roads. The extent of speed increase is lower at the Sharp curve than Moderate 
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curve, probably in order to maintain the safe lane-keeping performance (nonetheless, the SDLP 

and SDSWA was higher at Sharp curve than Moderate curve). 

Interestingly, however, there was no significant difference of subjective driving workload 

between two driving conditions. It should be noted that, while driver’s self-evaluated workload 

showed no difference between the car-following and free-flow conditions, the driving 

performance (i.e., mean speed) varied by the driving conditions. 

 

6.5. Conclusions 

This study examined the effects of road geometry (i.e., curve direction and road 

curvature) and existence of lead vehicle on driving performance. The results showed that the 

degree of road curvature affected driving performance, especially for mean speed, variability of 

lane-keeping performance, and headway. Moreover, the mean speed was affected by both road 

curvature and whether the lead vehicle existed. 

One limitation of this study is that the lead vehicle’s speed was consistent and the 

movement was relatively static and steady-state. The major reason of using consistent speed for 

the lead vehicle was its simplicity to compare the driving performance between presence and 

absence of the lead vehicle. However, it would be useful to investigate the effects of lead 

vehicle’s speed and behavior on horizontal curve driving performance and driving workload in 

future research. Another limitation is the simulated driving setting, which might provide 

participants unrealistic environment while performing tasks, compared to test-track or 

naturalistic settings. For example, the widths of lane and shoulder in the simulation are different 

than a standard roadway. Despite of the limitations, the findings from this study provides 

important empirical data that can be used for driving safety on horizontal curved roads. 



 

122 

 

References 

Andjus, V., & Maletin, M. (1998). Speeds of cars on horizontal curves. Transportation Research 

Record: Journal of the Transportation Research Board, (1612), 42-47. 

 

Bella, F. (2013). Driver perception of roadside configurations on two-lane rural roads: Effects on 

speed and lateral placement. Accident Analysis & Prevention, 50, 251-262. 

 

Ben-Bassat, T., & Shinar, D. (2011). Effect of shoulder width, guardrail and roadway geometry 

on driver perception and behavior. Accident Analysis & Prevention, 43(6), 2142-2152. 

 

Boer, E. R., Ward, N. J., Manser, M. P., Yamamura, T., & Kuge, N. (2005, June). Driver 

performance assessment with a car following model. In Proceedings of the Third 

International Driving Symposium on Human Factors in Driver Assessment, Training, and 

Vehicle Design (pp. 433-440). 

 

Calvi, A. (2015). Does Roadside Vegetation Affect Driving Performance? Driving Simulator 

Study on the Effects of Trees on Drivers’ Speed and Lateral Position. Transportation 

Research Record: Journal of the Transportation Research Board, (2518), 1-8. 

 

Curran, P. J., West, S. G., & Finch, J. F., (1996). The robustness of test statistics to nonnormality 

and specification error in confirmatory factor analysis, Psychological Methods, 1(1), 16-

29. 

 

Godthelp, H. (1986). Vehicle control during curve driving. Human Factors: The Journal of the 

Human Factors and Ergonomics Society, 28(2), 211-221. 

 

Federal Highway Administration, Low Cost Treatments for Horizontal Curve Safety, FHWASA-

07-002 (Washington, D.C.: 2006). Available at: http://safety.fhwa.dot.gov/roadway_dept/ 

horicurves/fhwasa07002. 

 

Figueroa, A., & Tarko, A. (2005). Speed factors on two-lane rural highways in free-flow 

conditions. Transportation Research Record: Journal of the Transportation Research 

Board, (1912), 39-46. 

 

Jeong H., & Liu, Y. (2017). Modeling of Stimulus-Response Secondary Tasks with Different 

Modalities while Driving in a Computational Cognitive Architecture. In Proceedings of 

the Ninth International Driving Symposium on Human Factors in Driver Assessment, 

Training, and Vehicle Design (pp.58-64). 

 

Lehtonen, E., Lappi, O., & Summala, H. (2012). Anticipatory eye movements when approaching 

a curve on a rural road depend on working memory load. Transportation Research Part 

F: Traffic Psychology and Behaviour, 15(3), 369-377. 

 



 

123 

 

Ossen, S., & Hoogendoorn, S. (2005). Car-following behavior analysis from microscopic 

trajectory data. Transportation Research Record: Journal of the Transportation Research 

Board, (1934), 13-21. 

 

Pauzié, A. (2008). A method to assess the driver mental workload: The driving activity load 

index (DALI). IET Intelligent Transport Systems, 2(4), 315-322. 

 

Tsimhoni, O., & Green, P. (2001, October). Visual demand of driving and the execution of 

display-intensive in-vehicle tasks. In Proceedings of the Human Factors and Ergonomics 

Society Annual Meeting (Vol. 45, No. 23, pp. 1586-1590). Sage CA: Los Angeles, CA: 

SAGE Publications. 

 

Tsimhoni, O., Smith, D., & Green, P. (2004). Address entry while driving: Speech recognition 

versus a touch-screen keyboard. Human Factors: The Journal of the Human Factors and 

Ergonomics Society, 46(4), 600-610. 

 

Torbic, D. J., Harwood, D. W., Gilmore, D. K., Pfefer, R., Neuman, T. R., Slack, K. L., & 

Hardy, K. K. (2004). A guide for reducing collisions on horizontal curves. NCHRP 

Report, 500(7). 

 

Van Der Horst, R., & De Ridder, S. (2007). Influence of roadside infrastructure on driving 

behavior: driving simulator study. Transportation Research Record: Journal of the 

Transportation Research Board, (2018), 36-44. 

 

Yang, H. H., & Peng, H. (2010). Development of an errorable car-following driver 

model. Vehicle System Dynamics, 48(6), 751-773. 

 



124 

 

Chapter 7. 

Queuing Network Modeling of Driver Lateral Control on Curved Roads  

with Integration of Vehicle Dynamics and Reference Trajectory Tracking 

 

7.1. Introduction 

Nearly 25 percent of drivers who die each year on the American roadways are due to fatal 

crashes on curved roads (McGee & Hanscom, 2006). Therefore, it is important to study and 

understand driver lateral (or steering) control on curved roads in order to help reduce or avoid the 

crashes. In this regard, computational modeling of driver lateral control on curves can play a 

significant role in supporting quantitative analysis of driver’s performance. 

Since the last few decades, a variety of modeling studies have been conducted to quantify 

driver behavior in lateral control. One method used was based on control theory that assumes the 

human driver is one of the control elements in the driver-vehicle system (e.g., MacAdam, 2003). 

Another method used for the lateral control modeling was the driver preview model based on 

imitating drivers’ preview/predictive behaviors (e.g., Ungoren & Peng, 2005). Researchers have 

also started to model driver performance using task-independent cognitive architectures, based 

on experimental psychology and neuroscience findings. Examples of cognitive architecture 

based driver model include the Adaptive Control of Thoughts-Rational (ACT-R) (e.g., Salvucci, 

2006), and the QN-MHP (e.g., Liu, Feyen, & Tsimhoni, 2006). 

In this study, I used the QN-MHP cognitive architecture to model driver lateral control on 

curved roads. The QN-MHP is a simulation model of cognitive processing system based on the 
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queueing network theory of human performance (see Liu et al., 2006 for more details). The QN-

MHP architecture is composed of three subnetworks (perceptual, cognitive, and motor) and each 

subnetwork consists of multiple servers representing the functional components of the brain and 

body for human performance. The servers are connected by routes, while entities travel through 

the routes. One of the merits of using the QN-MHP is that it allows more than one server to act 

either in parallel or in serial. Thus, it is possible to model human performance in multi-task 

scenarios represented as multiple flows of entities, such as the driving performance under multi-

task conditions. 

In this study, a novel method, called reference trajectory tracking, was used to control 

vehicle’s lateral motion in order to obtain higher accuracy of modeling both the position and 

time elements. This method was originally used to design autonomous vehicle’s lateral 

movement by minimizing the spatial and temporal errors from the reference trajectory (e.g., 

Aguiar & Hespanha, 2007; Talj, Tagne, & Charara, 2013). Using the reference trajectory 

tracking concept (i.e., by making the virtual vehicle follow the built-in reference trajectory), I 

have developed a model to simulate a vehicle’s lateral movement on curved roads with multiple 

levels of radius of road curvature. After model development for the driver’s lateral control, 

model validation was conducted with the existing experimental data from Tsimhoni & Green 

(2003), with lateral control measurements such as steering wheel angle. 

 

7.2. Computational modeling of lateral control 

The model built in this study combines the original QN-MHP architecture with the road 

curvature information and vehicle dynamics for modeling driver’s lateral control in driving on 

curved roads (See Figure 7.1). The lateral control model is implemented in MATLAB-Simulink 
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and has four main components: (1) road information, (2) vehicle dynamics, (3) visual perception, 

and (4) cognition & motor controls. As shown in Figure 7.1, entities carrying road information 

enter the QN-MHP architecture as well as the vehicle dynamics component: 

 

Figure 7.1 – Structure of four components with the QN-MHP 

 

At the QN-MHP architecture, first, the entities enter the visual perception subnetwork: 

Servers 1 (visual input) → 2/3 (visual recognition/localization) → 4 (visual integration). The 

entities collected in Server 4 move to the cognitive & motor subnetworks by entering through 

Server A (visuospatial sketchpad) and exiting through Server Z (Actuators; connected to the 

hand server in this study). Once the entities arrive at the hand server, a signal is sent to the 

vehicle dynamics component so that the component can prepare the settings for carrying out the 

lateral control (e.g., yaw angle adjustment and near/far angle acquisition). At Server C (central 

executor), driver’s steering wheel angle (φ) is determined (by Equation 5), based on the near/far 

angle obtained from the vehicle dynamics component. In this study, Server C was used (rather 

than the combination with Server F) to perform the driving lateral control because it was 

assumed that adjusting the steer wheel on curved road having a constant radius of curvature is a 

simple cognitive process, compared to such complex cognitive activities, mostly performed 

through Server F (e.g., multiple-choice comparison and decision, and math calculation). 
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On the other hand, the entities that travel from the road information component to the vehicle 

dynamics component carry road information (e.g., radius of road curvature and 2-dimentional 

coordinates of vehicle’s reference trajectory), which are used to predict the yaw angle and 

vehicle’s position, then eventually near angle and far angle (by Equations 3 and 4) at the vehicle 

dynamics component. The output (φ) determined in Server C is used for driver’s lateral control 

when the entities arrive at the vehicle dynamic component in the next cycle after circulating 

through Server A and Server Z (and the hand server). 

7.2.1. Road information component 

One of the major factors that affects driver’s visual perception on the curved road is the 

radius of road curvature (Dickmanns & Zapp, 1987; Shinar, Rockwell, & Malechi, 1980). In 

geometry, the radius of curvature, R, at a particular point is defined as the radius of the most 

approximate circle touching the point. With the assumption that the curve is differentiable up to 

the second order, the formula for the radius of curvature at any point x for the curve z = f(x) is 

given by: 

𝑅 = |
(1+(

𝑑𝑧

𝑑𝑥
)2)3/2

𝑑2𝑧

𝑑𝑥2

|                                                                   (1) 

where x is the lateral coordinate and z is the longitudinal coordinate (Do Carmo, 1976).  

Although this radius varies as the vehicle moves along the curve (Hastie & Stuetzle, 1989), it 

was assumed that the radius of road curvature in the current model indicates the radius when the 

vehicle is at the middle of curve. The road curvature parameter (R) is used as an input to estimate 

the yaw angle (ψ) at the vehicle dynamics component. The built-in reference trajectory data are 

used to determine the 2-dimensional geometrical center of vehicle position at the vehicle 

dynamics component. The details are described in the vehicle dynamics component section. 
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7.2.2. Vehicle Dynamics Component 

In this component, three vehicle dynamics measurements are determined: vehicle 

positions, yaw angles, and near/far angles. The vehicle positions (i.e., lateral and longitudinal 

positions) are determined by minimizing the time/space-based errors from the built-in reference 

trajectory data, using interpolation method. Since the reference trajectory data are designated 

every 100 msec and the current simulation cycle time is every 50 msec, it is necessary to find the 

closest cycle time of reference trajectory; the trajectory data at the closest cycle time are 

regarded as the current vehicle positions. 

In parallel, yaw angles are determined by the simulation cycle time. Yaw motion is one 

of the significant elements for controlling lateral movement in vehicle dynamics (Ackermann & 

Bünte, 1997; Rajamani, 2012). Yaw angle (ψ) is defined as the angle between the direction of the 

vehicle heading and the direction of the lane center. In the current study, the yaw angle was 

determined with the finding from Rajamani (2012): 

𝜓𝑡 − 𝜓𝑡−1 =  
𝑣𝑡·∆𝑡

𝑅
                                                             (2) 

𝑣𝑡 is the vehicle speed at time t, whereas R is radius of road curvature. ∆𝑡 is the time elapsed 

from last cycle. Each cycle time depends on two time components: inter-arrival time and server 

processing time. The inter-arrival time is a fixed time, currently set as 50 msec as the default 

value for the visual stimulus generation rate. The server processing time is set as a shifted 

exponential distribution with mean a and an axis shift b. It is written as E(a) + b: the values of 

parameter <a, b> in this study were set as <17, 25> for perceptual servers, <12, 6> for cognitive 

servers, and <14, 10> for motor servers, based upon Feyen (2002). The present model steers the 

vehicle at a fixed speed of 72 km/h (or 45 mph). Using the lateral vehicle position (𝑋𝑡) and yaw 
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angle (𝜓𝑡) at each cycle time, near/far angles (i.e., the results of Equations 3 and 4) are 

determined at this vehicle dynamics component. 

7.2.3. Visual perception component 

In the current model, the near point and far point were generated every 50 msec and they 

were used as visual stimuli inputs at the visual perceptual servers (Servers 1 - 4). The near point 

indicates a visible point in front of the vehicle that the driver uses for estimating how adjacent 

the vehicle is to the center of lane, whereas the far point represents a visible point in front of 

vehicle that the driver uses to estimate a near future position (See Figure 7.2). 

 
Figure 7.2 – (a) Near/far angles and (b) near/far points (a yellow dot and a red cross, 

respectively) (Feng, 2015) 

 

Figure 7.2 illustrates the near angle and far angle: the near angle refers to the direction 

from the vehicle pointing to the near point relative to the direction of the vehicle heading, while 

the far angle represents the direction from the vehicle pointing to the far point relative to the 

direction of the vehicle heading. 

The near angle and the far angle are determined (by using Equations 3 and 4 below) at 

the vehicle dynamics component after the input data for the component are obtained, such as the 

lateral coordinates of vehicle position (𝑋𝑡) and yaw angles (𝜓𝑡). While nearDistance indicates 



 

130 

 

the near point location (in distance) on the road (set as a constant, 10 m), farTHW represents the 

far point location (in time headway) on the road (set as a constant, 4 s). 

 

      𝜃𝑛𝑒𝑎𝑟,𝑡 = tan−1 (
𝑋𝑡

𝑛𝑒𝑎𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
) + 𝜓𝑡                                                (3) 

 

 𝜃𝑓𝑎𝑟,𝑡 = tan−1 (
𝑋𝑡

𝑓𝑎𝑟𝑇𝐻𝑊·𝑣𝑡
) + 𝜓𝑡                                                   (4) 

 

7.2.4. Cognition and motor controls component 

Once the near and far angles are stored in the cognitive subnetwork, steering wheel angle 

adjustment is conducted at Server C. The present model uses a steering wheel angle (φ) equation 

formulated by Salvucci (2006). 

                      ∆φ  =  𝑘𝑓𝑎𝑟 · ∆𝜃𝑓𝑎𝑟 +  𝑘𝑛𝑒𝑎𝑟 · ∆𝜃𝑛𝑒𝑎𝑟+ 𝑘𝑙 · min (𝜃𝑛𝑒𝑎𝑟 , 𝜃𝑛𝑒𝑎𝑟𝑚𝑎𝑥
)·∆t               (5) 

In which: 𝜃𝑛𝑒𝑎𝑟𝑚𝑎𝑥
  (set as a constant, 0.07 radian) is for limiting the contribution of the 𝜃𝑛𝑒𝑎𝑟 to 

changes in steering wheel angle. 𝑘𝑓𝑎𝑟, 𝑘𝑛𝑒𝑎𝑟, and 𝑘𝑙 indicate the weights for the three terms (set 

as 7, 4, and 3, after the multiple validations to obtain similar results with the experimental data). 

The motor server (indicated as Z in Figure 7.1) sends a signal to the hand server so turning 

actions are performed in the vehicle dynamic component using the data of the change of steering 

wheel angle (∆φ) in each cycle. The turning action time (i.e., steering time), is taken, based on 

the estimation with a steering rate of 963 degree/sec from Forkenbrock & Elsasser (2005). 

 

7.3. Validation results 

The lateral control driving model was evaluated using the empirical data of Tsimhoni & 

Green (2003), conducting a driving simulation experiment with 24 participants (12 younger (M = 

23, SD = unknown); 12 older (M = 68, SD = unknown)). They drove on a 3.6 m wide single-lane 

road made up of a curve (two levels: R = 200 and 400 m) connecting two straight roads before 
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and after of the curved road. The participants were asked to drive with a constant cruise 

controlled speed (72 km/h or 45 mph). 

Figure 7.3-(a) shows the mean yaw angles generated by the vehicle dynamics module (in 

degree; during 10 runs of simulation) during driving on four different radii of road curvature. 

The mean yaw angles are fairly constant over time, and the value decreases as the vehicle is 

driven on a curve with a larger radius. Similarly, the mean steering wheel angle (in degree; 

during 50-second driving) decreases as the driver model drove on larger-radius curves (See 

Figure 7.3-(b)). 

 
Figure 7.3 – (a) Mean yaw angle and (b) steering wheel angle of simulation results (in degree) in 

four different radii of road curvature at 72 km/h 

 

With regard to the comparison between simulation and experimental results, as shown in 

Figure 7.4, the mean steering wheel angles of the driver model quite closely fit the experimental 

data for both radii of road curvature (R = 200 and 400 m). 

 
Figure 7.4 – Mean steering wheel angle comparisons between the QN simulation and 

experimental results 
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7.4. Discussion 

Using the vehicle dynamics and the method of reference trajectory tracking, as seen in 

Figure 7.4, the model simulation was able to generate mean steering wheel angle data that were 

fairly similar to the human experimental study. Furthermore, since the vehicle in simulation was 

to be followed the built-in reference trajectory, the lateral gap between the center of vehicle and 

road was close to zero. 

In Tsimhoni & Liu (2003), a driver steering model was also successfully developed using 

processing logics including detecting orientation, selecting a steering strategy, and steering 

action: the model yielded the steering angle and lateral position in two fixed radii of curvature, 

similar to the experimental data using human subjects. However, one major contribution of this 

current study is that the method of reference trajectory tracking can help prediction of the driving 

performance on different curved conditions (rather than just fixed radius of curvature). In other 

words, once having any built-in reference trajectory data (including vehicle coordinates at each 

cycle time), it will be possible to model the vehicle control on that trajectory. 

Some limitations of the current study are that: (1) the current lateral vehicle control 

model ran with a fixed speed; (2) only the mean steering wheel angle measurement has been 

validated due to the lack of corresponding human experimental data for validation. I am 

extending the present model so that it can run in more complicated settings, including a 

longitudinal speed control, with or without a lead vehicle, and so forth. Moreover, using the 

reference trajectory tracking method which can demonstrate vehicle’s movement in three-

dimensional space (Aguiar & Hespanha, 2007), I plan to model driver elevation control on the 

upward/downward slopes. 

 



 

133 

 

References 

Ackermann, J., & Bünte, T. (1997). Yaw disturbance attenuation by robust decoupling of car 

steering. Control Engineering Practice, 5(8), 1131-1136. 

 

Aguiar, A.P. and Hespanha, J. P. (2007). Trajectory-tracking and path-following of 

underactuated autonomous vehicles with parametric modeling uncertainty. IEEE 

Transactions on Automatic Control, 52(8), 1362-1379. 

 

Dickmanns, E. D., & Zapp, A. (1987, February). A curvature-based scheme for improving road 

vehicle guidance by computer vision. In Cambridge Symposium_Intelligent Robotics 

Systems (pp. 161-168). International Society for Optics and Photonics. 

 

Do Carmo, M. P. (1976). Differential geometry of curves and surfaces (Vol. 2). Englewood 

Cliffs: Prentice-hall. 

 

Feng, R. (2015). Queuing Network Modeling of Human Multitask Performance and its 

Application to Usability Testing of In-Vehicle Infotainment Systems (Doctoral 

dissertation, University of Michigan). 

 

Feyen, R. G. (2002). Modeling human performance using the queuing network-model human 

processor (QN-MHP) (Doctoral dissertation, University of Michigan). 

 

Forkenbrock, G. J., & Elsasser, D. (2005). An assessment of human driver steering capability. 

National Highway Traffic Safety Administration DOT HS 809, 875.  

 

Hastie, T., & Stuetzle, W. 1989. Principal curves. Journal of the American Statistical 

Association, 84(406), 502-516. 

 

Jeong, H., & Liu, Y. (2016, September). Computational Modeling of Finger Swipe Gestures on 

Touchscreen Application of Fitts’ Law in 3D Space. In Proceedings of the Human 

Factors and Ergonomics Society Annual Meeting (Vol. 60, No. 1, pp. 1721-1725). SAGE 

Publications. 

 

Lim, J. H., Liu, Y., & Tsimhoni, O. 2010. Investigation of driver performance with night-vision 

and pedestrian-detection systems—Part 2: Queuing network human performance 

modeling. IEEE Transactions on Intelligent Transportation Systems, 11(4), 765-772. 

 

Liu, Y., Feyen, R., & Tsimhoni, O. (2006). Queueing Network-Model Human Processor (QN-

MHP): A computational architecture for multitask performance in human-machine 

systems. ACM Transactions on Computer-Human Interaction (TOCHI), 13(1), 37-70. 

 

MacAdam, C. C. (2003). Understanding and modeling the human driver. Vehicle System 

Dynamics, 40(1-3), 101-134.  

 



 

134 

 

McGee, H. W., & Hanscom, F. R. (2006). Low-cost treatments for horizontal curve safety (No. 

FHWA-SA-07-002). 

 

Rajamani, R. (2012). Lateral vehicle dynamics. In Vehicle Dynamics and control (pp. 15-46). 

Springer US. 

 

Salvucci, D. D. (2006). Modeling driver behavior in a cognitive architecture. Human Factors: 

The Journal of the Human Factors and Ergonomics Society, 48(2), 362-380. 

 

Shinar, D., Rockwell, T. H., & Malechi, J. A. (1980). The effects of changes in driver perception 

on rural curve negotiation∗. Ergonomics, 23(3), 263-275. 

 

Talj, R., Tagne, G., & Charara, A. (2013, July). Immersion and invariance control for lateral 

dynamics of autonomous vehicles, with experimental validation. In European Control 

Conference (ECC'13) (pp. 968-973). 

 

Tsimhoni, O., & Green, P. (2003). Time-sharing of a visual in-vehicle task while driving: The 

effects of four key constructs. In Proceedings of the Second International Driving 

Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design. Park 

City, Utah. July (pp. 113-118). 

 

Tsimhoni, O., & Liu, Y. (2003, October). Modeling Steering Using the Queueing Network—

Model Human Processor (QN-MHP). In Proceedings of the Human Factors and 

Ergonomics Society Annual Meeting (Vol. 47, No. 16, pp. 1875-1879). SAGE 

Publications. 

 

Ungoren, A. Y., & Peng, H. (2005). An adaptive lateral preview driver model. Vehicle system 

dynamics, 43(4), 245-259. 

 

Wu, C., & Liu, Y. 2008. Queuing network modeling of transcription typing. ACM Transactions 

on Computer-Human Interaction (TOCHI), 15(1), 6. 

 



135 

 

Chapter 8. 

Development and Evaluation of a Computational Cognitive Model  

for In-vehicle Direct/Indirect Manual and Speech Interactions 

 

8.1. Introduction 

To enhance drivers’ safety and convenience in interacting with in-vehicle technologies, a 

variety of in-vehicle information systems (IVISs) using direct and indirect input devices have been 

developed (Harvey, Stanton, Pickering, McDonald, & Zheng, 2011a; Green, 2000; Stevens, 

Quimby, Board, Kersloot, & Burns, 2002). Direct input devices (e.g., touchscreens, light pens, and 

voice input) do not require any translations between actions of the operator and the device, whereas 

indirect input devices (e.g., joysticks, trackballs, and rotary knobs) require the translations between 

actions of the operator and the device (Jacob, 1996; Rogers, Fisk, McLaughlin, & Pak, 2005; 

McLaughlin, Rogers, & Fisk, 2009). Examples of in-vehicle direct devices include touchscreens 

on the center console (e.g., MyFord Touch) and speech interactions systems (e.g., Ford Sync). 

Examples of in-vehicle indirect devices are steering wheel-mounted controls (e.g., cruise control 

buttons in commercial vehicles) and remote rotary knob controls (e.g., Lexus Remote Touch or 

BMW iDrive Controller). 

Many previous automotive studies have found that driver’s visual distraction (i.e., visual 

attention away from the roadway) is one of the critical factors that increase unsafe driving 

performance and car crash risk (Ranney, Mazzae, Garrott, & Goodman, 2000; Klauer, Dingus, 

Neale, Sudweeks, & Ramsey, 2006). In particular, when drivers are involved in secondary tasks 



 

136 

 

using visual-manual interfaces, shorter and less frequent glances are focused on the road, 

compared to using speech (or voice) interfaces (Shutko, Mayer, Laansoo, & Tijerina, 2009; 

Tsimhoni, Smith, & Green, 2004). To minimize visual distraction caused by the visual-manual 

tasks, most of the motor vehicle manufacturers have developed speech interfaces and integrated 

them into their in-vehicle systems. For example, Ford SYNC with MyFord Touch is one of the 

best-known in-vehicle communication systems, including speech interfaces, cluster displays with 

associated steering wheel control, and touchscreen (Shutko & Tijerina, 2011; Lo & Green, 

2013). The speech interfaces can allow drivers to call a person in a phone book list, request a 

song, and operate navigation and climate control systems, and so on. 

Along with developing these IVISs using advanced automotive technologies, it is also 

necessary to evaluate the usability of the IVISs before they are commercialized. Traditional 

methods for evaluating the usability of the products include end-user tests in the laboratory setting, 

heuristic evaluation, and survey (Nielsen, 1993; Dumas & Redish, 1999; Shneiderman, 2010; 

Harvey, Stanton, Pickering, McDonald, & Zheng, 2011b; Ocak & Cagiltay, 2017). However, these 

methods typically involve creating physical prototypes, recruiting human subjects or evaluation 

experts, as well as coordinating the usability experiments; thus, they require costly and time-

consuming efforts to conduct. On the other hand, cognitive modeling methods generally use the 

simulation of human behavior and performance based on scientific and engineering theories and 

knowledge; therefore, they do not require physical prototypes, usability experience expertise, and 

human subjects for the usability tests. 

In this chapter, I introduce a computational cognitive model study for in-vehicle 

direct/indirect manual and speech interaction systems’ usability test. The model was developed 

using the Queueing Network (QN) cognitive architecture (Liu, Feyen, & Tsimhoni, 2006) and 
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evaluated with human subject data from Chen, Tonshal, Rankin, & Feng (2016). 

 

8.2. Background 

Table 8.1 summarizes existing literature of cognitive modeling studies to predict driver 

behavior and performance while using in-vehicle interface systems. All the studies reported in 

Table 8.1 were involved in modeling the use of in-vehicle direct-manual devices (e.g., 

touchscreens or physical keypads). However, only a few of them (Schneegaß, Pfleging, Kern, & 

Schmidt, 2011; Feng, Liu, & Chen, 2017; Purucker, Naujoks, Prill, & Neukum, 2017) dealt with 

indirect-manual controls (i.e., use of rotary knobs) or voice controls (Salvucci, 2009). Almost all 

of them modeled human performance when the vehicle was moving (namely, in the driving 

mode). 

However, there have been no studies that predict human behavior for both the 

direct/indirect manual and voice input controls in a single model. Moreover, none of the previous 

studies modeled the use of steering wheel-mounted buttons, a widely used indirect-manual (or 

remote-manual) device.  
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Table 8.1 – Cognitive modeling studies for in-vehicle interfaces 
Studies Based cognitive 

architecture 

Measures 

validated 

Task type: 

Manual 

(Direct/Indirect 

manual) / Voice 

Driving mode Validation data 

source and 

sample size (N) 

This chapter QN-MHP Task completion 

time, 

Mental workload 

Yes 

(touchscreen/5-

way) / Yes 

Yes Chen et al. (2016) 

(N = 35) 

John & Salvucci 

(2005) 

KLM + ACT-R Task completion 

time, 

Lateral deviation 

Yes 

(touchscreen/no) / 

No 

 

Yes Own 

(N = unknown) 

Pettitt, Burnett, & 

Stevens (2007) 

KLM Total Shutter 

Open Time 

(TSOT), static 

task time 

Yes 

(touchscreen/no) / 

No 

 

Yes Own 

(N = 12) 

Salvucci (2009) ACT-R 

(Distract-R) 

Task time, Lateral 

velocity 

Yes (physical 

keypad/no) / Yes 

Yes Salvucci (2001) 

(N = 16) 

  Lateral velocity 

 

Yes (physical 

keypad/no) / No 

Yes Reed & Green 

(1999) (N = 12) 

Task time, 

heading error,  

Detection error 

Yes (physical 

keypad/no) / Yes 

Yes Greenberg et al. 

(2003) (N = 48) 

Schneegaß et al. 

(2011) 

KLM Task completion 

time 

Yes (physical 

keypad/rotary 

knob) / No 

Yes Own (N = 10) 

Harvey & Stanton 

(2013) 

Critical path 

analysis 

Task completion 

time 

Yes 

(touchscreen/no) / 

No 

No Own (N = 20) 

Feng et al. (2017) QN-MHP Task completion 

time, Total eyes-

off-road time,  

Mental workload 

Yes (touchscreen, 

physical 

keypad/rotary 

knob) / No 

Yes Own (N = 20) 

Purucker et al. 

(2017) 

KLM Total eyes-off-

road time 

(TEORT) 

Yes 

(touchscreen/rotary 

knob) / No 

Yes Own (N = 18) 

 

Using the QN-MHP architecture, Feng et al. (2017) recently developed a cognitive model 

to predict human performance for direct/indirect manual input tasks using an IVIS. In this 

chapter, I describe the research work that extended the functionality of their QN-model by 

additionally enabling it to predict human performance for (1) voice input tasks and (2) advanced 

indirect-manual input tasks (i.e., steering wheel-mounted control). 
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8.3. Model Development 

8.3.1. Task Analysis 

An in-vehicle task, called “Deflate lower lumbar from 50 to 40” studied by Chen et al. 

(2016) was used in this study. This task is to decrease the comfort level from 50 to 40 (note that 

each click decreases 10 levels), using three different methods (i.e., two manual control methods 

and a voice control method). Table 8.2 shows the brief procedures to complete the task, depending 

on the methods used. Direct Manual Control is an input method to click target buttons on the 

touchscreen display located on the center stack in the car. Indirect Manual Control is to press the 

physical buttons on the steering wheel-mounted control while confirming visual feedback on the 

cluster display located on the dashboard. Voice Control is to use a voice command, “deflate lower 

lumbar”. 

Table 8.2 – The task procedures of “Deflate lower lumbar from 50 to 40” 
Method Direct-Manual Control 

(touchscreen buttons) 

Indirect-Manual Control 

(steering-mounted 

buttons) 

Voice Control 

Step 1 Click ‘Settings’ Press ‘↓’ button × 3 times 
Say “deflate lower 

lumbar” 

Step 2 Click ‘Vehicle’ Press ‘OK’ button – 

Step 3 Click ‘Seat Comfort’ Press ‘↓’ button × 2 times – 

Step 4 
Click ‘-’ (deflation) on lower 

lumbar 
Press ‘←’ button – 

 

To perform the QN-MHP modeling, task analysis was conducted using the NGOMSL 

(Natural Goals, Operators, Methods, and Selection rules Language)-style task description (Kieras, 

1999). Three sample results of the task analysis for “Direct-Manual”, “Indirect-Manual”, and 

“Voice” input subtasks are shown in Table 8.3.
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Table 8.3 – NGOMSL-style description of typical “Direct-Manual”, “Indirect-Manual”, and “Voice” input subtasks 
Goal: Click a button on touchscreen  Goal: Press a 5-way button and confirm its visual 

feedback on dashboard-cluster 

 Goal: Say a voice command 

*TC 1: Look-at <target type> on touchscreen at  

          location <x, y> 

 TC 1: Look-at <target type> on 5-way buttons at       

          location <x, y> 

 TC 1: Look-at <target type> on touchscreen at  

          location <x, y> 

TC 2: Store the <target value> on †STM  TC 2: Store the <target value> on STM  TC 2: Store the <target value> on STM 

TC 3: Retrieve the <target value> from STM  TC 3: Retrieve the <target value> from STM  TC 3: Retrieve the <target value> from STM 

TC 4: Compare <target value> to <expected value>  TC 4: Determine-thumb-movement(-for-reaching)  TC 4: Compare <target value> to <expected value> 

TC 5: Decide 

          If results = 1, go to TC 6, else return results = 0 

 TC 5: Reach-with-thumb  TC 5: Decide 

          If results = 1, go to TC 6, else return results = 0 

TC 6: Look-at <target type> on touchscreen at       

          location <x, y> 

 TC 6: Look-at <target type> on 5-way buttons at  

            location <x, y> 

 TC 6: Say <syllables> 

 

TC 7: Store the <target value> on STM  TC 7: Store the <target value> on STM  TC 7: Return with goal accomplished 

TC 8: Retrieve the <target value> from STM  TC 8: Retrieve the <target value> from STM   

TC 9: Determine-hand-movement  TC 9: Determine-thumb-movement(-for-clicking)   

TC 10: Reach-with-hand  TC 10: Click-with-thumb   

TC 11: Look-at <target type> on touchscreen at  

            location <x, y> 

 TC 11: Look-at <target type> on dashboard-cluster  

           at location <x, y> 

  

TC 12: Store the <target value> on STM  TC 12: Store the <target value> on STM   

TC 13: Retrieve the <target value> from STM  TC 13: Retrieve the <target value> from STM   

TC 14: Determine-finger-movement  TC 14: Compare <target value> to <expected value>   

TC 15: Click-with-finger  TC 15: Decide 

            If results = 1, go to TC 11, else return results = 0 

  

TC 16: Return with goal accomplished  TC 16: Return with goal accomplished  *TC = Task component, †STM = Short-term memory                                                 
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8.3.2. Operator Developments 

In the recent QN-MHP development, in addition to visual-manual-related operators (e.g., 

Feng, Liu, Chen, Filev, & To, 2014; Jeong & Liu, 2016, 2017c), several voice-related operators 

(e.g., Say(a-syllable), Listen-to(a-syllable), and Listen-to(a-tone)) have been developed to 

implement any task using auditory stimuli and speech responses (Jeong & Liu, 2017a, 2017b). In 

the current study, I adopted the major operators from these previous studies and extended the 

functions of the Say(a-syllable) operator so that the model can implement a variety of voice 

commands used in the practical driving settings. To do so, a pre-determined voice library module 

(example lists are shown in Table 8.4) was used. This module functions as an intermediary 

between human voice commands and the QN-MHP model, and it was created based upon the 

button information on the device. The voice command execution time (i.e., 130 – 170 msec per 

syllable, depending on the practiced level) was determined by the related finding of John (1990). 

The level of 130 msec per syllable was used, under the assumption that speaking the voice 

commands is highly practiced. For example, the voice command execution time for “de-flate-

low-er-lum-bar” is 6 × 130 = 780 msec. 

 

Table 8.4 – Example lists in the voice library module 

Pronounced words by syllable 
 Button information  

(e.g., words, numbers, and symbols) 

phone  Phone 

help  ? 

nav-i-ga-tion  Navigation 

en-ter-tain-ment  Entertainment 

ei-em  AM 

one  1 

ze-ro  0 

in-flate-low-er-lum-bar  + 

de-flate-low-er-lum-bar  − 

in-flate-up-per-lum-bar  + 

de-flate-up-per-lum-bar  − 
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8.3.3. Digital Mockup Development 

Using MATLAB GUIDE (Graphical User Interface Design Environment), three digital 

mockups of IVIS devices (shown in Figure 8.1) were developed and used as a prototyping tool: 

(a) center stack touchscreen device − for direct-manual and voice controls; (b) dashboard-cluster 

− for indirect-manual control; and (c) steering-wheel-mounted 5-way buttons − for indirect-

manual control. 

Figure 8.1 – Three typical devices for IVISs 

 

8.3.3.1. Center stack touchscreen device 

As shown in Figure 8.2, a digital mockup of the center stack touchscreen device, which is 

a touchscreen-speech interface (MyFord Touch), was developed. The yellow-numbers (i.e., 1 

through 4) indicate the order of buttons to be clicked to complete the direct-manual tasks using the 

center stack touchscreen device. 
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(a) Main Screen 

  
(b) An intermediate screen from Main Screen to the Seat Comfort Screen 

(c) Seat Comfort Screen 

Figure 8.2 – Center stack touchscreen (on the left) and its digital mockup (on the right) 

 

8.3.3.2. Dashboard-cluster 

A digital mockup for the dashboard-cluster was developed (see Figure 8.3). The yellow-

numbers (i.e., 1 through 3) indicate the order of buttons to be selected to complete the indirect-

manual tasks. Note that the dashboard-cluster is not a touchscreen, but a display, and the contents 

on the dashboard-cluster should be selected by the steering wheel-mounted 5-way buttons. On 

the dashboard-cluster, a visual feedback (e.g., highlighted in white or orange) enables drivers to 

confirm the current position of the cursor. In the digital mockup, blue colors and white texts were 

used as a visual feedback. 
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Figure 8.3 – Dashboard-cluster (on the left) and its digital mockup (on the right) 

 

8.3.3.3. Steering wheel-mounted 5-way buttons 

A digital mockup of the 5-way buttons mounted on the steering wheel was developed 

(see Figure 8.4). These 5-way buttons are remotely connected with the dashboard-cluster to 

allow users to conduct indirect-manual tasks. 

Figure 8.4 – Five-way-button device (on the left) and its digital mockup (on the right)  

 

8.4. Model Evaluation 

Task completion time and workload collected in Chen et al. (2016) were used to validate 

the model developed in this chapter. Chen et al. (2016) conducted an experimental study using 35 

participants (15 females and 20 males; all native English speakers) to evaluate three different 

methods of seat comfort adjustment including voice, center stack touchscreen, and five-way push 

buttons mounted on the steering wheel along with a small display on the dashboard-cluster (see 

Figure 8.5). Of the original experimental outcomes, the experimental data from the task, “Deflate 
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lower lumbar from 50 to 40”, were used to evaluate the model. The participants were instructed to 

adjust the firmness of a particular area of the seat from the level of 50 to 40, using voice-activated 

commands (i.e., a voice control), a center stack touchscreen (i.e., a direct-manual control), and 5-

way buttons and a dashboard-cluster (i.e., an indirect-manual control). In Chen et al. (2016), 

workload was measured by NASA’s task load index (TLX) including mental demand, physical 

demand, temporal demand, performance, effort, frustration. For the model evaluation, the average 

of the values from the NASA TLX’s six categories was compared to the model’s estimated 

workload based on the QN’s server utilization (Wu & Liu, 2007). 

 
Figure 8.5 – In-vehicle devices for three methods of seat comfort adjustment (Chen et al., 2016) 

 

Ten model simulations were run and processing times were recorded every 50 msec. 

Waiting time (2 seconds), referring to the time when the user is waiting due to the system’s 

response (Kieras, 1994), was added to the task completion time whenever a voice command was 

used. The amount of waiting time was determined by the average system response time obtained 

through video analysis. The model was able to generate results similar to human experimental 

data. For the task completion time (see Figure 8.6 (a)), the R-square is 88.1%, the root-mean-

square error (RMSE) is 2.40 s. For workload (see Figure 8.6 (b)), the R-square is 68.2%, the root-

mean-square error (RMSE) is 1.46. 
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Figure 8.6 – Modeling results of (a) task completion time and (b) workload in 

comparison to experimental results 

 

8.5. Discussion 

This chapter presents a queueing network-based computational model for three different 

input methods. The model was validated with data from an experimental study, producing similar 

results in task completion time and workload. Beyond the previous QN-MHP models using a 

simple voice-related operator (i.e., syllable-level: Jeong & Liu, 2017b), the current model was able 

to predict the task completion time for a wider range of voice commands (i.e., sentences and words 

including more than one syllable), by using the pre-determined audio module. Furthermore, visual 

feedback using colors and texts was implemented to model human indirect-manual controls. 

Future research includes expanding the modeling scope, such as developing the predictive 

models to predict driving performance (e.g., standard deviation of lane position, steering wheel 

angle) for in-vehicle direct/indirect manual and voice interactions while driving. In addition to the 

task completion time and workload, I plan to predict other quantitative measures, such as the 

percentage of eyes-off-road time and voice recognition rates. 

According to the literature, age is a critical factor that affects human performance for direct 

and indirect devices (Roger et al. 2005, Charness, Holley, Feddon, & Jastrzembski, 2004; Murata 

& Iwase, 2005; Murata & Moriwaka, 2007). Wu and Liu (2007) found that the QN-MHP 
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architecture could account for the age differences in mental workload and performance between 

young and old subjects, by considering an aging factor in the servers’ processing times. In this 

regard, I plan to conduct additional modeling research to investigate how users’ age difference can 

affect the performance of in-vehicle direct/indirect manual and voice input tasks.  
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Chapter 9. 

Conclusion and Future Research 

 

9.1. Conclusion 

Common methods of testing human performance and usability of certain tasks rely on 

experimental settings using human subjects. While these methods could provide useful outcomes, 

it is essential to understand human mental processes in order to effectively improve safety and 

avoid mental overload. In this regard, I have combined computational cognitive modeling and 

experimental methods to study mental processes and identify differences in human 

performance/workload in various conditions, through my dissertation research. 

Overall, this dissertation research contributes to our understanding of multimodal multi-

task interactions in human-machine systems in (1) touchscreen gestures, (2) audio/speech 

interaction, and (3) driving control, using both computational cognitive modeling and experimental 

methods. This is useful especially for human factors engineers and system designers to 

comprehend human multitasking behavior mechanisms so that they can design and evaluate the 

appropriate systems for enhancing human safety and performance. 

Successfully developed computational models using the QN-MHP architecture helped 

produce performance and workload predictions. With minimum manpower resources, the models 

can account for human performance and workload. In other words, these models provided 

significant contributions to reduce the time and costs needed at the early stage, such as creating 

prototypes and conducting usability tests using human subjects. Using multiple validation 
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measures, the models were evaluated by experimental studies and improved so eventually, the 

models were able to provide more solid and reliable predictions. 

 

9.2. Summary of each chapter 

• Chapter 2: An experimental study was conducted to investigate how finger-touch input 

performance (i.e., task completion time, failure status, and error rate) and subjective 

ratings (i.e., performance and physical demand) are influenced by touchscreen 

gestures’ type and direction. The results showed that swipe was approximately 4.5 

times faster than drag, but pinch and spread showed no significant difference in task 

completion time. Dragging and pinching showed more failures or higher error rates 

compared to swiping and spreading, respectively. One-touch gestures in the horizontal 

directions were rated to have higher performance and lower physical demand than 

those in the vertical and diagonal directions. Two-touch gestures in the horizontal 

directions took the shortest time but caused more failures and higher error rates. 

• Chapter 3: A computational model was developed to predict finger-drag gesture 

performance on touchscreen devices, by integrating the queueing network cognitive 

architecture and three-dimensional motion tracking. Specifically, the QN-based model 

was developed to predict two execution times: finger movement time of drag-gesture 

(i.e., only the motion time of the finger touched and dragged on the surface of the 

touchscreen) and a comprehensive process time of drag-gesture (i.e., the entire process 

time to complete the finger-drag task). To develop predictive models for the finger 

movement time of drag gesture, eleven participants’ motion data were collected and a 

regression analysis with parameters of hand-finger anthropometric data and eight 
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angular directions was conducted. Human subject data of Jeong and Liu (2017a) were 

used to evaluate the QN-based model, generating similar outputs (R² is more than 80% 

and RMS is less than 300 msec) of the execution times. 

• Chapter 4: This chapter reported a driving simulation study of the impacts of both secondary 

task modality (4 levels) and road curvature (2 levels) on driver behavior. Eye movements, lane-

keeping performance, and subjective workload of 24 participants were measured. The results 

showed that drivers performing secondary tasks using visual stimuli or manual responses on 

curved roads fixated less frequently and with shorter durations on the road and showed poorer 

lane-keeping performance compared to other modalities. In addition, when driving on sharper 

curves with a secondary task, drivers looked at the road more frequently and longer, but their 

lane-keeping performance was lower (i.e., higher standard deviations of lane position and of 

steering wheel angle). Participants reported higher visual demand when performing visual-

speech types of tasks compared to auditory-manual types of tasks. 

• Chapter 5: This chapter introduced a computational human performance model based on the 

queueing network cognitive architecture to predict driver’s eye glances and workload for four 

stimulus-response secondary tasks (i.e., auditory-manual, auditory-speech, visual-manual, 

and visual-speech types) while driving. The model was evaluated with the empirical data 

from 24 subjects, and the percentage of eyes-off-road time and driver workload generated by 

the model were similar to the human subject data. 

• Chapter 6: The study reported in this chapter aimed to examine the effects of road geometry 

(i.e., road curvature and curve direction) and lead vehicle on horizontal curve driving 

performance. Twenty-four participants performed two driving tasks (i.e., car-following and 

free-flow conditions) in simulated driving scenarios including curved roads in both right and 
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left directions to measure their driving performance (e.g., speed, lane position, steering wheel 

angle, and time and distance headways). The results showed that road curvature affected 

driving performance, especially in mean speed, the variability of lane-keeping performance, 

and headway. Moreover, the mean speed was affected by both road curvature and whether a 

lead vehicle existed. Findings from this study provide empirical data that can be used for 

driving safety on horizontal, curved roads. 

• Chapter 7: To understand and predict driver performance on curved roads, a computational 

model was developed in a cognitive architecture, the QN-MHP, with the integration of 

vehicle dynamics principles (i.e., how to steer based on near and far angles) and the reference 

trajectory tracking method (i.e., how to steer on the road varying with radius of road 

curvature). The model was implemented with four major components: road information, 

vehicle dynamics, visual perception, and cognition & motor controls. The model outputs 

were validated with the corresponding human subject performance in the literature. The 

performance results of the model highly fitted the human subject data such as steering wheel 

angle. 

• Chapter 8: While many human subject studies have been conducted to evaluate in-vehicle 

manual and speech systems, there are few modeling studies using cognitive architectures and 

quantitative prediction methods. This chapter presented a computational cognitive model for 

three different input methods: direct-manual control (using touchscreen buttons), indirect-

manual control (using steering-mounted buttons paired with a small display in the dashboard-

cluster), and voice control. The model was evaluated with data from 35 human subjects in a 

laboratory experiment using in-vehicle interfaces to adjust the comfort level of the driver 
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seat. The model produced results similar to actual human performance (i.e., task completion 

time, workload). 

 

9.3. Future research 

9.3.1. Modeling human performance in other domains 

Currently, the models introduced in this dissertation were mainly on simulating human-

machine interactions while using touchscreen devices and speech interfaces, and driving vehicles. 

Considering the high compatibility of the QN-MHP architecture with other domains, it will be 

possible to expand the scope and application of cognitive modeling. Future research will be to 

extend my QN-MHP computational modeling skills learned through this dissertation to other 

human-machine system domains such as pilot–aircraft, operator–nuclear power system, doctor–

medical device, and human-robot system. The suggested research will be promising in terms of 

the extensibility to these areas in human factors society.   

9.3.2. Modeling human performance for individual differences  

The models developed through this dissertation simulated the “normal and average” human 

behavior, although there exists a wide range of spectrums of the human beings in the real world. 

It would be possible to investigate individual differences in human performance, such as by age, 

gender, anthropometry, trained level, and disabled level, by applying relevant psychology and 

neuroscience findings from the literature to the functions of the QN-MHP architecture. 

9.3.3. Modeling other measures of human performance 

The current models in this dissertation were able to predict general performance 

measures, such as task completion time, workload, eye movement (eyes-off-road time), and 

driving performance (mean steering wheel angle). However, the current models are lack of some 



 

157 

 

performance outcomes, such as error rate in touchscreen finger-input tasks, the error rate in voice 

input tasks, and a variety of driving performance indexes (e.g., speed, lane position, distance and 

time headways). Future studies are to enrich the scope of the model outcomes so that the model 

can predict a wider range of human performance in complex and specific tasks. 

9.3.4. Modeling human performance in combination with other technologies 

The current models in this dissertation were successfully integrated with relevant 

technologies in order to develop new operators for the QN-MHP models, such as three-

dimensional tracking (for touchscreen-related operators in Chapter 4), vehicle dynamics and 

reference trajectory tracking (for steering-wheel- and pedal-related operators in Chapter 7). Going 

forward, further research is to use other technologies for the new operators in the QN-MHP 

multimodal interaction models. For instance, tactile sensory-related operators can be developed, 

using haptic (or tactile) technology. Moreover, eye-tracking pattern-related operators can be 

developed, using computer vision technology that enables identifying visual cues associated with 

humans’ decision-making. 


