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ABSTRACT

Nation-state intelligence agencies have long attempted to operate in secret, but
recent revelations have drawn the attention of security researchers as well as the
general public to their operations. The scale, aggressiveness, and untargeted na-
ture of many of these now public operations were not only alarming, but also
baffling as many were thought impossible or at best infeasible at scale. The secu-
rity community has since made many efforts to protect end-users by identifying,
analyzing, and mitigating these now known operations.

While much-needed, the security community’s response has largely been reac-
tionary to the oracled existence of vulnerabilities and the disclosure of specific
operations. Nation-State Attackers, however, are dynamic, forward-thinking, and
surprisingly agile adversaries who do not rest on their laurels and are continually
advancing their efforts to obtain information. Without the ability to conceptualize
their actions, understand their perspective, or account for their presence, the secu-
rity community’s advances will become antiquated and unable to defend against
the progress of Nation-State Attackers.

In this work, we present and discuss a model of Nation-State Attackers that can
be used to represent their attributes, behavior patterns, and world view. We use
this representation of Nation-State Attackers to show that real-world threat models
do not account for such highly privileged attackers, to identify and support techni-
cal explanations of known but ambiguous operations, and to identify and analyze
vulnerabilities in current systems that are favorable to Nation-State Attackers.

Thesis Statement: By identifying and understanding the characteristics, advan-
tages, and constraints of Nation-State Attackers, we can more easily explain their
known operations, identify and analyze current vulnerabilities that they may ex-
ploit, and build future systems less susceptible to their abuse.

x



CHAPTER 1

Introduction

In recent years, nation-states and their associated intelligence apparatuses have been thrust
unwillingly into the public perception. Whistleblowers like Edward Snowden, Bill Binney,
and Thomas Drake as well as public service organizations such as the Electronic Frontier
Foundation, the American Civil Liberties Union, and the Electronic Privacy Information
Center have greatly expanded the amount of publicly available information about these
intelligence agencies’ operations through the release of documents describing not only their
operations, but also their oversight and compliance histories. This new wealth of information
has spawned thousands of news stories across the world as well as an uncountable number
of discussions at all levels of society about the proper balance of security and privacy.

Within the United States, reactions have ranged from approval to indifference to outrage
with debates about the appropriateness of the Intelligence Community’s (IC) actions have
raged in court rooms, legislative floors, and living rooms across the country. Some argue
that the IC has run roughshod over the very freedoms that this country was built on as an
overreaction to an ever-looming but intangible threat. Others argue that the IC’s actions
are the only available response given the constant threats to the U.S. population and are
necessary for maintaining relative peace and personal safety across the world.

As of yet, neither side has succeeded in convincing the other that their balancing point
is the correct choice and it’s unlikely that either side ever will. But largely overlooked by
many is the fact that the fundamental equilibrium between liberty and privacy has been
debated since before the Revolutionary War. And in the two and half centuries since, we’ve
repeatedly found ourselves struggling with analogous and often identical questions.

Presently, we are questioning the National Security Agency’s collection of digital infor-
mation on nearly every person in the U.S. and large portions of the rest of the world. In
1970s, we were questioning the FBI’s surveillance of celebrities and covert actions against
social-movement groups. In the 1920s, we were questioning the Justice Department’s
harassment and arrest of political activists. As far back as the 1700s, we were questioning
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the English government’s use of general warrants and “writs of assistance” to carry out law
enforcement activities. While similar in concept, one of the major distinctions between pre-
vious and current discussions is not the awareness of the tactic, but the lack of understanding
of the methods used to accomplish those tactics.

The ability to open physical mail and record telephone calls was an explainable tech-
niques, whether legal or illegal, prior to the Church Committee’s revelations of the FBI and
CIA’s actions [56, 70]. Using human spies to gather and report information on adversaries
was a common sense technique long before the 1920s. Even the simple process of physically
searching a house was well known in the 1700s. With regard to the digital age, many of the
basic methods used to monitor Internet communications en masse, and thereby surveil the
population, were either unknown or assumed to be infeasible. In addition, strong encryption
and other proactive protective methods were thought to make even the feasible surveillance
methods ineffective [69, 79, 342]; yet we’ve seen time and time again that their impact is
less than sufficient [359, 383].

The revelations that not only were governments around the world performing these
methods at mass-scale but also able to defeat many of the proactive protections created
chaos and confusion within the computer security community. Researchers, hackers, lawyers,
and security practitioners reacted with amazement, curiosity, and anger as the existence of
NSA operations were revealed. Not only were many of them unexplainable, many of those
that were understood on a technical level were scaled to almost unimaginable levels.

1.1 Computer Security and Nation-State Attackers

Within the computer security community, this newly available wealth of information has
been a window into the most secretive and advanced technical organizations in the world.
Organizations that control million and billion dollar budgets, employ tens of thousands
of workers, and operate on the fringes of the technological frontier by design. These
organizations have succeeded in integrating visionaries, theorists, mathematicians, and
engineers to a degree that would amaze even the most agile Silicon Valley start-up. Just
as amazing is that much of this had been accomplished in near-absolute secrecy with only
rumors of vague capabilities escaping the confines of the intelligence services.

As information became publicly available, it became apparent that Nation-State Attackers
are fundamentally different from the types of attackers that developers and engineers are
accustomed to addressing. Nation-State Attackers themselves have noted the difference
between various other tiers of attackers (Figure 1.1) and the “apex predator”-like nature of
one another [192]. Their use of mass-scale operations, James Bond Q-like custom hardware,
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Figure 1.1: NSA’s Scale of Attackers—Stratification of attackers according to an internal
NSA presentation [74]. The classes are reasonably believed to be grandmother, 13 year
old in the US, script kiddie, 16 year old in Romania, has some talent, has talent, and
nation-state [380, 397].

aggressive maliciousness, and broad reaching judicial abilities have long been speculated but
rarely accounted for in the fundamental systems, protocols, and structures of the Internet.

The most straight-forward example of this is the Public Key Infrastructure used for SSL
certificates within the Transport Layer Security (TLS) protocol. By validating those who
request certificates, limiting the trusted issuers, properly checking the chain of signatures,
and verifying the possession of the associate private key, strong guarantees about the
identities of TLS endpoints can be achieved. This technique has not only transparently
improved the security of nearly all Internet users, but it has also allowed e-commerce to
flourish on the Internet. The base assumption of this type of third party attestation is that it
is prohibitively difficult for an attacker to obtain a valid certificate and its associated private
key required to maliciously impersonate another entity. While neither the protocol, the
implementations, nor the base assumption are infallible [8, 177, 396], they have withstood
many attempts to compromise connections and protected users’ security and privacy for two
decades.

Largely safe with regard to many types of attackers an end-user may face, the base
assumption of TLS authentication fails spectacularly when confronted with Nation-State
Attackers. In reaction to the emergence of the Snowden Documents, the Federal Bureau
of Investigations sought and received a court order requiring Lavabit (an e-mail service
provider believed to be used by Edward Snowden) to surrender the private key for their
browser trusted certificate [336]. The trusted root stores for the majority of devices on the
Internet contain root Certificate Authorities (CAs) that are explicitly controlled by various
government entities [387–389]. There has even been speculation that root CAs not directly
operated by government entities may be compelled to issue fraudulent leaf or intermediate
certificates to government entities on demand [381]. Any one of these possible Nation-State
Attacker actions leads to a complete compromise of TLS’s authentication. Mechanisms such
as Certificate Transparency [50] and HTTP Public Key Pinning [178] provide challenges to
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abuse, even from Nation-State Attackers, but do not provide complete protection.
While this is a simplistic demonstration of how security protections fail when confronted

with Nation-State Attackers, it is nonetheless an ominous one. Without properly addressing
Nation-State Attackers in threat models, security and privacy on the Internet can’t be
adequately protected. Identifying and understanding Nation-State Attackers’ behaviors,
capabilities, and relative advantages and disadvantages is a necessary precondition to
confronting potential abuse by Nation-State Attackers.

1.2 Overview

Since 2013, the year that the Snowden documents were first published, the security commu-
nity has advanced by leaps and bounds in addressing Nation-State Attackers’ known opera-
tions and protecting end-users against mass-scale surveillance efforts. Internet destinations
are moving to protect client-to-server connections through HTTPS [119]. Major providers
now protect internal server-to-server traffic against passive eavesdropping [215, 230]. The
IETF approved RFC 6973 to address privacy-related issues in the design phase of standards
and protocols [65]. Developers have begun to widely deploy end-to-end encryption in inter-
personal communications apps [373, 419]. And many legal challenges have been launched
to end certain practices as well as provide transparency into the use of others [6, 88, 202].
While all of these actions are useful, helpful, and needed, they are reactionary to specific
programs or techniques that were exposed.

I believe that this type of reactive action does not adequately protect end-users against
future Nation-State Attackers’ actions (or possibly current actions). Nation-State Attackers
are a mobile and future-conscious adversary who are always hunting for an exploitable
weakness in next protocol and the next encryption scheme. When their current techniques,
tactics, and procedures cease to provide the wealth of information that they are accustomed to,
they will evolve their strategy to return to their previous position of information dominance.

Thesis Statement By identifying and understanding the characteristics, advantages, and
constraints of Nation-State Attackers, we can more easily explain their known operations,
identify and analyze current vulnerabilities that they may exploit, and build future systems
less susceptible to their abuse.

Structure In Chapter 2, we will outline a framework for understanding Nation-State
Attackers including their characteristics, advantages, constraints, and discuss accounting
for Nation-State Attackers. In Chapter 3, we will discuss the impact of Nation-State
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Attackers on real-world threat models as described in our 2014 publication “Security
Analysis of the Estonian Internet Voting System” [386]. In Chapter 4, we will discuss
explaining and evaluating known Nation-State Attacker operations as described in our 2015
publication “Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice” [8]. In
Chapter 5, we will discuss identifying and analyzing vulnerabilities which favor Nation-State
Attackers as described in our 2016 publication “Measuring the Security Harm of TLS Crypto
Shortcuts” [385]. In Chapter 6, we will briefly discuss appealing directions for future efforts,
review the material presented, and conclude.
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CHAPTER 2

Nation-State Attacker Model

It is by comparing a variety of information, we are frequently enabled to

investigate facts, which were so intricate or hidden that no single clue could

have led to the knowledge of them. In this point of view, intelligence becomes

interesting which but from its connection and collateral circumstances, would

not be important.

– General George Washington [189]

In order to appropriately account for and protect against Nation-State Attackers (NS-
Attackers), we must first attempt to understand them at a fundamental level. Unfortunately,
the opaque and secretive nature of NS-Attackers renders the standard application of the
scientific method impractical for many reasons. Chief among them is the inability to
formulate and conduct an experiment that produces an observable result (an NS-Attacker
behavior).1 Any effort to elicit a measurable reaction from an NS-Attacker that would
constitute a concrete experimental result is fraught with real danger to the researchers’
security and privacy as well as ethical concerns of intentionally diverting NS-Attackers’
resources from more pressing matters.

Instead, we take an inductive approach to extract insights into NS-Attacker operations
and behaviors. While less common in engineering disciplines, this approach is commonly
applied in fields such as economics, physics, and biology where real-world experimentation
is infeasible or similarly constrained by practicality. Inductive reasoning allows us to draw
conclusions based on a set of assumed true and representative observations but not to the
rigor found with deductive reasoning [171]. With regard to NS-Attackers, we have a set of
data-points in the form of publicly known operations and source documents from which we
can generalize and extract higher-order information. We can not, however, assert that our
conclusions are correct or all encompassing; only that, given the information we currently

1In later chapters, we will show that the scientific method is directly applicable to studying and evaluating
their potential impact.
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Figure 2.1: Definition of “person”—Privacy and Civil Liberties Oversight Board’s defini-
tion of “persons” in relation to Section 702 [234].

have, our conclusions are supported by known data-points and are logically consistent
with our understanding of the world. When additional data-points, observations, or source
documents become available, it may be necessary to revisit our analysis and ensure that it is
still consistent with the known information.

In this chapter, we present our results from an in-depth study of the available data-points
and observations of Nation-State Attackers. At a high level, we propose a model of how
we believe NS-Attackers behave and view the world. Specifically, we propose a lexicon
to use when discussing NS-Attackers, describe the characteristics that set NS-Attackers
apart from other attackers, discuss the distinct advantages and constraints of NS-Attackers,
contrast various NS-Attackers’ behavior patterns, and identify concepts which individuals,
organizations, and researchers should recognize and take into account when operating in
scenarios that may include Nation-State Attackers.

2.1 Lexicon

In this section, we define a lexicon for use regarding Nation-State Attackers. Computer
science already possesses a wide array of precise vocabulary to define attackers and attacker
actions, but in many cases, it does not easily translate to NS-Attackers. In addition to
this, “wordsmithing” is a commonly used tactic used by NS-Attackers when forced to
publicly address aspects of their operations. This creates a confusing and counter-intuitive
set of self-referential and intentionally misleading statements by “down-shift[ing]” language
or opaquely responding to broad questions with answers only accurate to a much more
restricted version of the question [89].
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A simplistic example of this is the U.S. Government’s definition of the word “person”.
As seen in Figure 2.1, this definition is significantly broader than would be commonly
assumed and this subtlety can significantly alter the meaning of otherwise obvious statements.
Counter-intuitive terminology of this type is pervasive in source documents and legal
interpretations regarding Nation-State Attackers and a misunderstanding in the vocabulary
or proper connotation can severely degrade comprehension of our Nation-State Attacker
model.

In order to provide a foundation for our discussion, this section presents a lexicon for
the NS-Attacker context that allows us to speak in a direct and concise manner without
sacrificing accuracy. An effort has been made to avoid collisions with other lexicons used by
NS-Attackers or other groups (e.g. two words with conflicting definitions) and we do attempt
to include all reasonable uses of other lexicons’ terminology within ours. Additionally, we
strive to use language whose colloquial definitions closely match the full definition within
our lexicon in order to make it approachable to technical and non-technical persons alike.

2.1.1 Actors

Victim We define a victim as an entity directly affected by an action. Similar to “person”
in Figure 2.1, a victim may be an individual or group of individuals. Additionally, a victim
may or may not be related to the action’s intent but need only be affected by the action. For
example, if an NS-Attacker infects a public library computer with malware that reports back
all keystrokes in order to surveil a particular user of that computer, all users of that computer
are victimized by the action.

We should note that the term “victim” is not intended to imply guilt or innocence, nor
should it be construed to indicate approval or disapproval of any individual action. When
necessary, we use the phrases “justifiable victim” and “unjustifiable victim” to delineate
between specific victims who would or would not be commonly considered an appropriate
recipient of an NS-Attacker’s actions given sufficient characterization.

Nation-State Attacker We define a Nation-State Attacker (NS-Attacker) as an entity

operating on behalf of a recognized government with the characteristics of Sovereignty,

Access, and Money (described in-depth in Section 2.2). While commonly interpreted
as state-sponsored intelligence agencies, our terminology applies to a broader group of
organizations who act directly on behalf of and with the authority of a government similar
to a state-sponsored intelligence agency but not directly attached (described further in
Section 2.5.3). Table 2.1 lists widely acknowledged NS-Attacker entities for major countries.
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For conciseness, we will use the associated abbreviation in instances where we are discussing
a specific NS-Attacker.

2.1.2 Actions

Acquire We define acquisition as the act of deliberately obtaining and storing informa-

tion. Whether it is an RF receiver collecting over-the-air WiFi content, malware reporting
keystrokes, or the date-time of a cellphone call, the important distinction is that the NS-
Attacker retains a record of it. Acquisition does not include ephemeral, non-persistent
storage such as a packet traversing an infected router or being temporarily maintained
in-memory while it is decided whether a record should be created or not.

Intrude We define intrusion as the act of altering the state of a device in a way that is

detrimental to the users of that device. This action covers insertion of functionality (adding
or modifying applications or dependencies), altering configuration, or otherwise interfering
with the standard operation of a device including the degradation of the device’s usefulness.

Within the source documents, this is often referred to as “Computer Network Operations”
(CNO) with sub-classes of “Computer Network Attack” (CNA) and “Computer Network
Exploitation” (CNE). The delineation between CNE and CNA is that the intent of CNE
is to acquire information where as the intent of CNA is to degrade the usefulness of the
device [168]. CNE can be thought of as “surveillance intrusions” and CNA as “destructive
intrusions”.

Defeat We define defeat as the act of overcoming intentional security protections. A
defeat could take the form of evading detection by a host-based antivirus application, using
certain communications channels to avoid network-based detection, or recovering plaintext
of encrypted communications. By definition, a defeat does not rely on the binary exploitation
of any device as that would be considered an intrusion.

While this action could be split into multiple sub-types depending on what is being
defeated, we believe that this broad definition significantly improves the usability of our
lexicon. We should note that while source documents often use the term “defeat” in a way
that closely aligns with our definition [135,262], others use it in relation to responsive results
from a database query that were suppressed [398, 427]. Our definition of defeat explicitly
rejects this search related use of the term as it is a disparate from the colloquial definition
and a collision within NS-Attackers’ own terminology.
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Monitor We define monitoring as the act of retrieving acquired information for the

purpose of analysis. This may be information about a specific victim/device or group of
victims/devices and may consist of content, metadata, or any other derived information.
While many use the term “surveillance” in this way, we believe that this term is overly broad
and encompasses other actions such as acquisition or intrusion. Some make the distinction
between retrieval and use by a human (as a search result) versus an algorithm (as an input
to data-mining) [142] but we do not separate these two cases and consider use of acquired
information in any form to be monitoring.

2.1.3 Descriptive

Active vs. Passive The delineation between active and passive is fairly straightforward and
indicates the ability of the victim to detect the NS-Attacker’s action. An action is considered
detectable (and thereby active) if proof positive technical evidence could be presented by
the victim (with or without attribution) to be independently verified. If a victim could not

present such evidence, it would be considered a passive action.
Proof positive evidence includes a fraudulent SSL certificate or a copy of malware

presented to others who would be able to verify that it exists. More generically for actions
at a network layer, if the end-points of a conversation are able to compare transcripts via
a pristine out-of-band channel, they would be able to determine that a they differ in a
meaningful way (e.g. both sides’ packet captures of a TLS handshake). Conversely, an
example of a passive action is a receive-only RF listening station, a network tap, or a
cryptographic defeat accomplished using only previously acquired ciphertext.

By definition, intrusion actions are always considered active and monitor actions are
(nearly) always passive. In the case of an NS-Attacker who decrypts communications via
stolen cryptographic material, theft of the key material from an end-point is designated as
an active intrusion while the decryption of the communication with that key material is
a passive defeat. Information released by an NS-Attacker or associated entity that could
have been obtained only through the monitoring of a victim (e.g. discussion in an e-mail,
participation in an online community, etc.) is an example of active monitoring.

Targeted vs. Untargeted As opposed to active vs. passive, targeted vs. untargeted is a
more nuanced delineation. An action is designated as targeted or untargeted based on the
relationship of the action to the victim. Targeted actions involve an identity “selector” of
some sort, such as an IP address, e-mail address, or web cookie [2, 142]. Selectors reflect
characteristics of a specific victim or device and not other victims or devices. For example,
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if a source or destination e-mail address determines whether a network tap stores a copy of
a specific e-mail for later monitoring, we label it as targeted acquisition.

Untargeted action either do not use a selector or use selectors that are shared between
both “interesting” victim as well as “uninteresting” victims. If all traffic that passes a
network tap is stored (often described as “full-take” [139, 425] or “bulk unselected” [136]),
we label it untargeted acquisition. Similarly, actions that rely on keyword selectors are
considered to be untargeted as the action’s trigger does not reflect identity information [277].

Terminal vs. Enabling The distinction between terminal and enabling actions is also less
rigid than active vs. passive. Terminal vs. enabling indicates the intent or end-goal of an

action. An action intended to produce actionable intelligence2 or answer crucial analytic
questions is labeled terminal. Acquiring a victim’s e-mail messages in order to receive early
warning of events is terminal acquisition. Conversely, an action that is intended to facilitate
follow-on actions is labeled enabling. Acquiring and monitoring a network administrator’s
communications to learn information about a router or network configuration for follow-on
intrusions is enabling acquisition [134].

In some circumstances, an action can be considered both enabling and terminal. For
example, an intrusion against a network router to steal a point-to-point IPsec PSK for
external traffic is an intrusion to enable a passive defeat of VPN encryption. An intrusion
against a network router install malware that looks for the presence of selectors and reports
communications with those selectors to an external device is a terminal intrusion. If both the
IPsec PSK is stolen and the malware installed by the same intrusion, it is both an enabling
and terminal intrusion.

2.1.4 Usage

For context and real-world usage of our lexicon, Table 2.2 provides example techniques that
an NS-Attacker may employ along with their appropriate classification.

2Actionable intelligence is information that an NS-Attacker can use to accomplish a broader goal such as
counter-terrorism or economic/diplomatic espionage.
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Country Current Organizational Name Abbreviation
Previous/Alternative Organizational

Names and Abbreviations

U.S. National Security Agency NSA -
China Third Department of the People’s Liberation Army Gen-

eral Staff Headquarters Department
GSD 3rd Dept Unit 61398 and APT1 as members of the subordinate

Second Bureau [225, 394]
Russia Special Communications and Information Service of the

Federal Protective Service of the Russian Federation
Spetssvyaz Federal Agency of Government Communications and In-

formation (FAPSI/FAGCI)
U.K. Government Communications Headquarters GCHQ -

Germany Federal Intelligence Service BND Bundesnachrichtendienst

Table 2.1: Nation-State Attackers—Widely recognized NS-Attackers, their host country, and previous names which may be seen in
other publications and source documents.

Description Action Active vs. Passive Targeted vs. Untargeted Terminal vs. Enabling

– Searching a database for a specific person’s communica-
tions to find indications of an attack

Monitor Passive Targeted Terminal

– MitM-ing a network administrator to capture SSH pass-
word

Acquire Active Targeted Enabling

– Storing all data received from a network tap regardless of
user or content

Acquire Passive Untargeted Dual-Intent

– Requiring a service provider to turn over all call records
for all users

Acquire Passive Untargeted Terminal

– Factoring Facebook’s RSA SSL modulus in order to re-
cover the private key

Defeat Passive Untargeted Enabling

– Using a GCD algorithm on all SSL public keys to find
shared factors

Defeat Passive Untargeted Enabling

– Storing TCP streams from a network tap that contain a
specific suspected terrorist’s e-mail address

Acquire Passive Untargeted Terminal

Table 2.2: Terminology Usage—Examples of the terminology used within this text.
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2.2 Characteristics of a Nation State Attacker

In common discussions, NS-Attackers are characterized with hyperbolic language on the
order of “unequaled Gods of all technical matters”. With their army of mathematicians, cadre
of elite hackers, and Enemy of the State-style tactical operations, NS-Attackers constitute
a undoubtedly a formidable adversary. While none of these attributed capabilities are
unwarranted [10, 17, 156], they are not a complete, or necessarily accurate, representation of
NS-Attackers and their abilities. Additionally, more academic descriptions such as “global
passive adversary” [79] or “Advanced Persistent Threat” [35] also fail to fully describe
the attributes of NS-Attackers. In our analysis, NS-Attackers are rational actors whose
seemingly unique and unparalleled abilities stem from three distinct characteristics. In
this section, we identify, discuss, and give known examples of NS-Attacker characteristics:
Sovereignty, Access, and Money.

2.2.1 Sovereignty

A defining characteristic of a NS-Attacker is that it acts with the authority of a sovereign
entity—the respective government—that maintains control of a geographic region and
judicial systems. While various governments and their views on citizens’ freedom of speech
and expression differ, citizens’ rights, and the limits to those rights, are decided by their
respective government.

Legal Writs NS-Attackers exercise this sovereignty by using legal writs to increase
their acquisition capabilities. These writs commonly take the form of search warrants
issued by a judge or magistrate by which an individual or organization can be required to
disclose information to government entities. Depending on the country and specific writ,
they may be unrelated to information about users [336], about all users without regard to
identity [235, 414], or without direct approval from a judge/magistrate [87].

Publicly available transparency reports from major technology companies show that
many countries make use of these writs and that they often affect large numbers of users [115,
160, 241]. While their use has been successfully challenged in some cases [48, 87], compli-
ance is usually encouraged through the use of, sometimes exorbitant, fines [336,350,408,428]
or imprisonment [408].

Policy Influence Another way NS-Attackers use their characteristic of Sovereignty is
by influencing the creation of policy within their respective countries. Most directly, this
approach can be used to either increase their ability to acquire information via legal writs or
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to help shape the interpretation of existing policies more the NS-Attacker’s liking (discussed
more in-depth in Section 2.4.3) [261]. The Russian Yarovaya law [347] and the U.K.
Investigatory Powers Act 2016 [404] explicitly require data retention by providers such
that government entities can later request it. While the USA Freedom Act does not require
retention explicitly for intelligence purposes, retention of certain information is required for
other purposes [362] and the bill explicitly lays out the process for access to that data [221].
In all of these instances, NS-Attackers (Spetssvyaz, GCHQ, and NSA respectively) improve
the usefulness of legal writs they already have the power to leverage.

Another way that NS-Attacker use policy influence is to bound the effort they must
invest for successful defeats. The Russian Yarovaya law requires backdoors in encrypted
communications which allows access to the plaintext contents on-demand [130]. Russia and
China also are exerting pressure on companies who offer VPN and other anonymization
services to reduce the effort required to deanonymize individual users and expose their
communications [251]. While the U.S. does not currently have legal requirements to ensure
law enforcement or intelligence access to information, this was not always the case [125]
and is a source of frequent debate [43, 318].

2.2.2 Access

Another characteristic of NS-Attackers is their vast amount of access to information. As
described above, NS-Attackers are able to acquire information via legal writs issued directly
to a victim or a victim’s service provider. In contrast to this, the Access characteristic is
focused directly on acquiring raw information. While information compelled from others is
highly useful, raw information, such as streaming TCP connections or individual messages
and their timing, allows the NS-Attacker to be more focused on victims’ communications
and avoids the complications of organizations who begrudgingly comply with these legal
writs to the minimum amount necessary [374].

Traffic Concentrations One way of leveraging this access is by taking advantage of
Internet traffic concentrations that exist due to the physical attributes of the Internet as a
whole. While we’ll discuss “choke points” more in-depth in Section 2.6, the broad idea
is that while Internet topology is commonly referred to as a web of connections, it is in
reality more similar to hub-and-spoke configuration. Whether by undersea connections,
high-bandwidth fiber links, or Tier 1 ISPs, paths between endpoints often traverse a relatively
small collections of entities rather than being distributed across all possible paths.

NS-Attackers are aware of and use these concentrations to acquire raw data in massive
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quantities. NSA’s many “Upstream” [23] and “Special Source Operations” programs are
known to “[l]everage unique key corporate partnerships” [390] to acquire data while it tran-
sits one of these links. The GCHQ, BND, and New Zealand’s Government Communications
Security Bureau (GCSB) are believed to possess analogous operations under the “Special
Source Access” [146], WHARPDRIVE [364], and SPEARGUN [250] programs respectively.

Uncommon Vantage Points In addition to network access in locations controlled by
others, NS-Attackers also have the ability to gain access to a specific vantage point if the
need exists. NS-Attackers have a long history of going to great lengths to gain access to
communications they deem important. During the Cold War, Operation Ivy Bells consisted
of specially fitted submarines capable of tapping underseas cables in order to acquire the
information passing through them [153]. The digital age sees an update to that same process.
While it is relatively straightforward to tap fiber-optic cables in ISP facilities [377], it is
widely speculated that underwater fiber-optic tapping is within the repertoire of NS-Attackers
like the NSA [267,337]. NSA also is known to use U.S. Navy subs to act as network bridges
to transit SIGINT data from forward deployed sites to central processing facilities [256].

An especially useful vantage point that NS-Attackers possess is through satellites and
other “overhead” acquisition platforms [372]. These vantage points provide insight into the
base-station-to-satellite transmissions (“uplink”) [167] and other types of transmitters for
both data acquisition [167] and geolocation [371]. The advantage of overhead acquisition
platforms is twofold. First, they are able to cover a substantially larger geographic area than
terrestrial platforms which are limited by radio horizons3. Second, overhead platforms are
also often mobile and can change coverage areas on-demand with substantially less effort
than moving terrestrial RF or link-based platforms.

2.2.3 Money

The final characteristic of NS-Attackers is their ability to leverage resources which would
otherwise be unattainable due to financial constraints. With the exception of the 2013 U.S.
National Intelligence Program budget [254], little is known about the budgets of individual
NS-Attackers. Instead, allocations to parent entities at various levels and of unknown
completeness have been released and estimated.

3A radio horizon is the furthest distance a ground wave can travel and still reach its recipient. While
some frequency bands such as HF can propagate over the horizon via atmospheric refraction, most common
consumer frequency bands are in the VHF/UHF/SHF range and are limited by line-of-sight propagation.
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Country
Military

Budget [247]
Intelligence

Budget
“Cyber-war”
Budget [429]

Est. NS-Attacker
Budget (2016)

U.S. $611B (2016) $70.7B (2016) $7,000M (2016) ~$6,110M
China $215B (2016) - $1,500M (2016) ~$2,250M

Russia $69B (2016) $5.4B (2010) - ~$693M
U.K. $48B (2016) $3.3B (2016) $450M (2016) ~$483M

Table 2.3: Various NS-Attacker Budget Estimates—Intelligence Budget Sources:
U.S. [409], Russia (FSB, SVR, FBO) [66], U.K. (MI5, SIS, GCHQ) [4]

Own Funding Table 2.3 compares the budgets of the four countries at various granularities.
The U.S. National Security Agency (NSA) is the only NS-Attacker with a known budget
datapoint of $10.4B in direct funding for 2011 [254] (13.23% of the entire U.S. IC budget),
but it is assumed that other comparable countries’ NS-Attackers operate on similar portions
of their overall military (~1%) and their intelligence budgets (~10%). The estimate for each
NS-Attacker’s 2016 budget (using 1% of Military Spending) are shows in Table 2.3.

With these massive budgets, NS-Attackers are able to invest in capabilities unavailable
to other types of attackers. Large workforces [4, 254], custom small-scale efforts (e.g. ANT
products) [17], and dedicated super computers [298] are just the start. In the next section,
we will investigate the advantages that this financial capability facilitates.

Others’ Funding While some intelligence services are not as financially well resourced as
others, they are nonetheless characterized as a NS-Attackers. NS-Attackers are also known to
share intelligence [18], techniques [260], expertise [261], and even direct funding [144,253]
with their other NS-Attackers in ‘friendly’ countries. This generosity allow NS-Attackers
who lack their own financial resources to invest in research and development to benefit from
the fruits of others’ investments if they are able to coordinate with NS-Attackers that can.

An example of this is the Bundesnachrichtendienst (BND), Germany’s Foreign Intel-
ligence Service. With a 2016 public budget of approximately $712M [206] to cover both
SIGINT and HUMINT (as well as others) [37], BND is significantly more financially
constrained compared to NSA or GCHQ. Through partnerships, BND gained access to
XKEYSCORE and cryptanalysis capabilities [310] as well as proven tradecraft and method-
ologies [261] in exchange for language support and “unique accesses in high interest target
areas” [261]. By doing this, BND avoids devoting financial and manpower resources to
duplicate already proven systems and techniques. Instead, they can barter for them at little
direct cost.
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2.3 Advantages of a Nation State Attacker

While NS-Attackers’ characteristics set them apart from other types of attackers, there are
distinct advantages that they have compared to other types of attackers. In this section, we
step back and look at four advantages with regard to computer security and exploitation.
Specifically, we discuss: Near Superset Attacker, Specialization, Non-Symmetric Defeats,
and Distant Return Horizons.

2.3.1 Near Superset Attacker

X-KEYSCORE is Bro plus memory. FOXACID is Metasploit with a budget.

QUANTUM is AirPwn with a seriously privileged position on the backbone.

– Bruce Schneier [360]

First, NS-Attackers’ capabilities are a near superset of those available other types of
attackers. By following and staying up to date on the advances in both the academic and
non-academic computer security research communities, NS-Attackers have a consistent
inbound flow of tactics, techniques, software, and discoveries. In some cases, NS-Attackers
may be able to incorporate these external advances with their own in-house advances, but
they can also use them to blend-in with other types of attackers. NS-Attackers are cognizant
that they must “Walk The Line” of advertising their capabilities and “[b]e awesome enough
to be useful [. . . ] but not as awesome as a state actor” [74]. By doing this, NS-Attackers
significantly complicate attribution to the extent that researchers and defenders “can’t easily
tell the difference between a couple of guys in a basement apartment and the North Korean
government with an estimated $10 billion military budget” [361].

Hardware and Software Tools Much of the highly specialized software and hardware
that NS-Attackers use is comparable to publicly available implementations. Table 2.4 shows
a sample of public and private tools with similar functionality. NS-Attackers also are known
to buy Commercial Off The Shelf (COTS) tools to incorporate in their systems. NSA and
GCHQ have experimented and used Cavium hardware accelerators [49] for high-speed
decryption in conjunction with LONGHAUL [132, 306] and the BADDECISION suite is known
to include macchanger, wireshark, nmap, and ettercap [21]

In addition to the tools, many vulnerabilities and exploits are also shared between NS-
Attackers and other classes. Exploit Database [114] and other similar websites provide
annotated, categorized, and ready-to-use exploits for publicly known vulnerabilities. The
former head of NSA’s TAO even claims that any sufficiently large network can be exploited
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Type Description NS-Attacker Publicly Available

Hardware
RF collection DRT [81] HackRF [321]/RTL-SDR [349]
IaaS Private Cloud [379] Amazon AWS
Programable Hardware ICEPIC [280] Papilio [326]

Collection
and
Processing
Software

Packet Collection Packet Splatter [264] tcpdump
TCP Re-assembly xFip [264] libtins [214]/gopacket [161]
Protocol Disector Promotor/GENESIS [264] WireShark
Document Extraction XKEYSCORE [311] NetworkMiner [1]
Logo Detection XKEYSCORE [311] Google Cloud Vision API [159]
Network Analysis IMMINGLE [138] NetMiner [249]

Table 2.4: Tools: NS-Attacker vs. public—A comparison of NS-Attacker tools and their
publicly available equivalents.

with persistence and focus without a 0-day vulnerability [192]. NS-Attackers are also have
the ability to pay the high-prices for vulnerabilities companies that cater to nation-states as
well as the traditional grey/black vulnerability market [5].

Public Information In addition to hardware and software, NS-Attackers also share access
to large amounts of information with other types of attackers in the form of social media,
academic publications, and successful techniques. These shared information sources can
then be imported by an NS-Attacker for direct use or can be leveraged to improve existing
capabilities.

One example is the use of Open-Source Intelligence (OSINT) which NSA and GCHQ are
known to use for advanced warning, target tracking, and target development [192, 320]. By
monitoring public forums and communications channels, NS-Attackers can freely acquire
data with very little investment. NSA also published a 650 page guide on Internet research
covering such topics as “Search Fundamentals”, “Google Hacking”4, “Using the Internet to
Research Companies”, and “Uncovering the “Invisible” Internet” [3].

NSA’s TREASUREMAP program for “a near real-time, interactive map of the global internet”
relies on OSINT, academic, and commercial data sources of information in addition to
internal sources [273]. The evolution of Internet-scale scanning and probing projects such
as Shodan [369] and Censys [82] provide an extra boost to NS-Attackers’ Near Superset
Attacker advantage as they can directly replace internal port and protocol scanning. Of
the four ports/protocols known to be of interest to GCHQ’s HACIENDA program (80/HTTP,
443/HTTPS, 21/FTP, and 111/RPC) [200], half (80/HTTP and 443/HTTPS) are provided in
full and a third (21/FTP) in part by Censys on a rolling basis in addition to other potentially

4Special/advanced techniques for using the Google search engine
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useful protocols such as 22/SSH and 25/SMTP.5

Social Attacks NS- and non-NS-Attacker also share the ability to mix technical and non-
technical approaches. Technical approaches can be used to enable or improve operations
that rely on social or HUMINT (HUMan INTelligence) techniques. An example of this
would be monitoring a victim’s online presence to schedule and improve the success of
in-person actions [143, 183]. In addition, attackers can use traditionally social/HUMINT
operation tactics to improve technical attacks. Phishing, waterholing, and others use trust,
behavior patterns, and/or psychology to improve technical attacks [192].

2.3.2 Specialization

[W]e’ve got people who will know the security functionalities of those devices

[inside the victim network] better than the people who developed the actual

devices

–Rob Joyce (Former head of NSA’s Tailored Access Operations (TAO)) [192]

NS-Attackers can dedicate resources and effort to specific areas or techniques. While
the overall scope of NS-Attackers’ responsibilities are often enormous, the workforce is
able to specialize into narrow areas of concentration and this is reflected in the fractal
nature of NS-Attackers’ organization structure [12, 36, 394]. Each NSA unit is given a
designator of [Directorate][indirect report n][indirect report n−1]. . . [direct report][unit].6

Even within units, individual personnel have specific areas of responsibility whether its a
protocol, database, or victim/geographic area [308].

Area Focus The onboarding process for new NS-Attacker employees is undoubtedly an
exhausting and demanding learning process above and beyond the base skill-set required
for other types of attackers7. Learning the internal minutia, needed historical cultural and
behavioral aspects, opaque program names, and alphabet soup of acronyms [291] is a one-
time cost though. Afterwards, the new employee is able to specialize on their specific duties
due to the expansive workforce. A linguist doesn’t need to know how to most effectively

5In the case of research that does not release raw scan data [384], NS-Attackers can acquire much of the
raw scanning results from the network traffic itself.

6For instance S31176 “Custom Thread Development for Network Encryption” reports to S3117 “Cryptana-
lytic Exploitation & Discovery” who reports to S311 “Office of Target Pursuit”, etc. all within the Signals
Intelligence Directorate [308].

7Examples of base skill-sets needed by other NS-Attacker and non-NS-Attacker workers are linguistic
training, computer science education, understanding of advanced mathematics, etc..
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Figure 2.2: Area Specialization—NSA’s collaborative effort for exploiting VPN traffic for
intelligence [309].

acquire content. An analyst doesn’t need to know how to defeat encryption to gain access to
plaintext content. And a cryptographer doesn’t need to know how to read Russian, Chinese,
or Arabic.

While area focus does exists with non-NS-Attacker communities [325,400], NS-Attackers
are able to leverage this to much more significant levels. Although analysts require un-
derstanding of the largest diversity of technologies, tools, and techniques to perform their
duties, their knowledge is mostly used to know when to use what technique with which tool
to gain actionable intelligence from which technology [287]. Separate groups and teams of
employees are dedicated to each technology and each tool to relieve the analyst from having
to understand each area in depth [309]. Figure 2.2 shows the interaction of these different
groups to successfully monitor victims’ VPN traffic.

Mission Focus NS-Attacker employees have the ability to specialize on a subset of
victims. While some of it is out of practicality (e.g. a Russian linguist will focus on Russian-
speaking victims instead of German), the advantage comes from the deep understanding that
employees are able to build over time. General Hayden describes the usefulness of this type
of focus and deep understanding as it applies to identifying victims by voice, even in the
background, as well as interpreting the “elliptical, metaphorical, indirect, nuanced . . . and
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clever” manner of speech used by non-military victims [168].8 Mission focus applies to
technical matters as well. Setting up a system for vulnerability analysis can take a month or
more and the actual time spent looking for a vulnerability may be multiple months [5].

2.3.3 Non-Symmetric Defeats

So in war, the way is to avoid what is strong and to strike at what is weak.

– Sun Tzu [407]

NS-Attackers have the ability to leverage non-symmetric defeats against victims. In this
context, we use the term “non-symmetric” to indicate that the total resource cost does not
scale linearly with the number of instances defeated. While we will focus on cryptographic
defeats, analogous constructions are available for other types of security protections. We’ll
discuss three specific forms of non-symmetric defeats: multi-target, asymmetric, and guided.

Multi-target Defeat When defeats are evaluated in academic and industry literature, the
dominant metric is usually the cost to defeat a single instance. For example, the security
of a single block AES-128 encrypted message depends on the effort it takes to recover
the plaintext from that ciphertext. Currently, the best known key recovery attack against
full strength AES-128 costs 2126.1 [39] which is approximately 75% less computationally
intensive than the complete 2128 brute-force attack but is still infeasible.

With multi-target defeats, the construction changes from an attacker wishing to defeat
a specific instance to the attacker wishing to defeat any of a set of instances. Expanding
the set of success outcomes substantially alters the investment profile of the defeat. The
computational effort required test n keys against a single ciphertext can instead be used to
test a smaller number of keys against a larger number of ciphertexts in order to change the
expected cost for a successful outcome.

For example, consider a modified version of Bernstein’s “Break a dozen secret keys, get
a million more for free” [30]. Imagine using an exhaustive search of the key space search
against a theoretical protocol which uses AES-128-ECB encryption and whose first cipher-
text message is a confirmation of correct session keys defined as Ek(is-key-correct??).
Against one ciphertext, an attacker expects to invest 2127 work to find the correct key and a
worst-case of 2128. But if the attacker wishes to find the keys associated with 240 cipher-
texts, they can reuse the work for on attempt against all 240 ciphertexts. This results in an

8In some cases, this focus may be less of an advantage. General Hayden also recounts how “targeted
killings” can take an emotional toll on the linguists who have been monitoring the victim [168].
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c t = r e a d c i p h e r t e x t ( )
f o r p o s s k e y i n r a n g e ( 2128 ) :

p o s s c t = e n c r y p t f i r s t ( p o s s k e y )
i f p o s s c t == c t :

r e t u r n p o s s k e y

Figure 2.3: Single-Target Pseudocode

b f i l t e r = b l o o m f i l t e r ( c i p h e r t e x t s )
f o r i i n r a n g e ( 2128 ) :

p o s s k e y = rand ( )
p o s s c t = e n c r y p t f i r s t ( p o s s k e y )
i f p o s s c t i n b f i l t e r :

y i e l d p o s s k e y

Figure 2.4: Multi-Target Pseudocode

expected cost of 288 to find a key for a ciphertext. Figures 2.3 and 2.4 show pseudocode
implementations of both the single-target and multi-target version of this theoretical attack.

While not all attacks nor all protocols lend themselves to this type of construction, ones
that do are highly advantageous to NS-Attackers due to the scale of their operations and
their ability to invest heavily in a small number of defeats.9 Similar to the well-known
space-time tradeoff, these types of attacks often have multiple parameters that can be tuned
for feasibility or a more advantageous trade-off.

Asymmetric Defeats Asymmetric attacks allow the attacker to leverage a one-time re-
source expenditure to reduce the cost of per-instance defeats. A well known example of this
is the use of rainbow tables for pre-imaging hashes. The one-time resource investment to
compute adequate rainbow tables allows a given pre-image defeat to be accomplished with
substantial less effort.

Some asymmetric defeats are made feasible through the use of special-purpose hardware.
Although few special-purpose devices are known to ever been created, many attacks can be
improved through the use of GPUs, FPGAs, or ASICs [131]. These types of performance
enhancements trade generality and money for a reduction in wall-clock time. Precise
estimates of ASIC-based attacks is difficult due to intellectual property constraints and
non-disclosure agreements, but it is estimated that design costs start at $1M and grow with
the complexity [317].

Figure 2.5 shows the estimated cost and performance of various proposed special-purpose
devices of which only EFF’s DES Cracker is known to have been built. The underlying
technology for the year proposed as well as the theoretical nature of these devices explains
the apparent disparate estimates in both cost and time. Attacks using such costly device are
largely out of reach for non-NS-Attackers, but their characteristic of Money puts them within
reach for NS-Attackers. In Chapters 4 and 5, we’ll discuss two of these asymmetric attacks

9Any resources invested on an expensive defeat against a single or small number of instances can instead
be invested in large numbers of instances.
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Cryptosystem Year Proposed Name
Estimated Cost

per Device
Time per

Defeat

DES 1977 unnamed [77] $84.38M 12 hours
DES 1993 unnamed [420] $1.73M 3.5 hours
DES 1998 DES Cracker [155] $0.38M 3 days
RSA-512 1999 TWINKLE [366] $1.50M 9-10 weeks [375]
RSA-512 2003 TWIRL [367] $2.01M 10 minutes
RSA-1024 2003 TWIRL [367] $13.58M 1 year
RSA-1024 2005 SHARK [124] $258.86M 1 year

Table 2.5: Proposed Special-Purpose Defeat Hardware—A sampling of proposed cus-
tom hardware for various cryptosystems at various points. All costs are in 2017 dollars and
with the exception of DES Cracker are the original authors’ estimates.

in depth and analyze not only their feasibility, but also the impact if they were actualized.

Guided Defeats Like asymmetric defeats, guided defeats leverage a one-time effort to
reduce the cost of per-instance defeats. The difference is twofold the one-time investment
for guided defeats is a direct enabling effort against the security protection. Guided defeats
are also comparable to using policy influence to bound the cost of a defeat (Section 2.2.1),
but guided defeats rely on surreptitiously doing so.

The most direct example of this is back doors in cryptographic standards. While not
provably certain, many believe that the Dual EC Random Number Generator is a back-
doored standard due to NSA generating the parameters. It is known that the parameters can
be created in a manner that would also create a secret parameter which allows any entity
with that knowledge to observe output of the RNG, reconstruct the RNG’s internal state, and
then predict future RNG output [32]. When used with TLS, the secret parameter is used
to recreate the random number generator’s state from the plaintext TLS handshake various
values, predict the output used to create the key share, and derive session keys for content
decryption [54]. NSA’s one-time investment of resources [237] and “finesse” [332] towards
standardization and implementation results in a small and parallelizable per-instance defeat
cost [54].

Guided defeats may originate from many sources including standards (Dual EC), source
code (Juniper’s replaced Dual EC constants [53]), or hardware (“enabling for [redacted]
encryption chips” [289]). The important distinction between an asymmetric defeat and
a guided defeat is that a guided defeat is explicitly created by an NS-Attacker and an
asymmetric defeat is discovered.
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Person Country 2017 Position 2007 Position

Donald Trump U.S. President Reality TV Host
Angela Merkel Germany Chancellor Chancellor
Theresa May U.K. Prime Minister Shadow Leader of the House of Commons
Vladimir Putin Russia President President
Xi Jinping China General Secretary Member of Politburo Standing Committee
Hassan Rouhani Iran President Member of Assembly of Experts

Table 2.6: Retrospective World Leader Position

2.3.4 Distant Return Horizons

If it’s not exploitable now, that doesn’t mean it won’t be later

– NSA’s OTP VPN Exploitation Team [308]

The last advantage of NS-Attackers that we’ll discuss is the ability to invest resources
into programs that may never bear fruit in the form of a strategic/tactical advantage or
actionable intelligence. This is similar to standard military endeavors such as nuclear
weapons which are expensive in both finances, manpower, and resources to research, build,
maintain, protect, and destroy but in the best-case scenario will not be used for their intended
purpose.

This NS-Attacker advantage is not purely based on the number of months or years
between initial investment and fruition. While NS-Attackers are known to devote resources
to preparing an action before it is conducted and even intentionally delay an operation until
an opportunity presents itself [192], these are both available to other types of attackers.
Network and personnel reconnaissance is a well known technique used by script-kiddies and
highly talented hackers alike. An intelligent attacker can even gain access to a network, plant
backdoors, and then go dormant for months before returning to profit from their efforts.

One example of this is the practice of storing currently undefeatable (e.g. strongly
encrypted) ciphertext for substantial amounts of time. Without the use of forward secrecy in
TLS connections, a passively acquired TLS connection can be decrypted by any attacker
who gains access to the long-term SSL private key after the fact. As shown in Table 2.5 and
as we’ll discuss in Chapter 4, well resourced attackers can achieve feasibility long before
the general public. While most SSL certificates have moved to 2048-bit RSA moduli [84],
88.35% of TLS connections in 2007 used a 1024-bit RSA modulus [212] and would be
decryptable once the RSA public key was factored. As far back as 2000, 25% of SSL
certificates surveyed were 512 bit or less RSA keys [212] which is now defeatable by anyone
with $75 and access to Amazon EC2 [410].
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For NS-Attackers, their inherent longevity makes these types of attacks feasible as
well as useful. Acquiring ciphertext without a usable defeat does not provide immediate
actionable intelligence, but it does provide a long-term retrospection window into previous
events and behaviors. An NS-Attacker who acquires ciphertext from an adversary’s embassy,
stores it for 10-20 years, and then defeats its protections learns a information about behavior
patterns and individuals’ thought process.

Table 2.6 shows the current major world leaders and their position 10 years ago. With
the exception of Donald Trump, all were high-ranking officials in important positions within
their respective countries and would likely have been targeted for acquisition and monitoring.
If their communications from 10 years ago becomes decryptable today, it provides insights
into that person’s personality and decision making process that are useful in current and
future interactions and conflicts.

2.4 Constraints of a Nation State Attacker

While the advantages of being an NS-Attacker are numerous, there are also distinct con-
straints on NS-Attacker actions. In this section, we identify four of these constraints, discuss
how they can impact NS-Attacker actions, and outline steps an NS-Attacker may take to
mitigate these constraints. The four constraints we will discuss are: Scale, Human Capital,
Oversight, and Required Hard Targets.

2.4.1 Scale

We live in an Information Age when we have massive reserves of information

and don’t have the capability to exploit it.

– 2011 Deputy Director for Analysis and Production at NSA [282]

One disadvantage of NS-Attackers is the sheer number and diversity of threats and
potential victims that they must account for. Terrorists, drug dealers, kidnappers, and child
pornographers are often cited as the “Four Horsemen of the Information Apocalypse” [358]
that governments (and their associated intelligence agencies) are charged with monitoring.
In addition to these, nation-states must be vigilant of other nation-states who wish to monitor
and/or interfere with the country’s internal operations. With these diverse set of actors and a
multitude of possible communications channels that must be monitored, the scale becomes
apparent.

This has created a goal of “collecting it all” [280] such that the fear of missing a useful
data-point causes them to acquire all potentially useful data-points. By the end of 2011,
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Figure 2.5: Tiered Data Types—The tiers of network traffic and the NSA systems which
store and handle that traffic [425].

NSA expected to receive 1 TB of data per second from its various sources (discussed more
below) [282]. One way to mitigate the challenges created by this large amount of information
is to partition acquired data into multiple tiers of usefulness. Each tier is designed and used
for different types of analysis. Because of this, the retention periods of the tiers can be tuned
to account for the usefulness of the data and its quantity. Table 2.7 and Figure 2.5 show
examples of these tiers found in the publicly available source documents.

Pertinent Data The highest tier is pertinent or “tasked” data which consists of data known
to or most likely to contain useful information or actionable intelligence. In Figure 2.5,
“Trafficthief” and “Pinwale” are NSA’s representation of this tier of data. An analyst can
either “task” a selector for a specific victim to ensure that the acquired data is automatically
promoted to this tier [304] or can manually promote data from the other tiers to ensure that
it is retained [425]. In some cases, the presence/lack-of a tasked selector determines whether
the communication is acquired in the first place [234]. In other cases, the data may already
be acquired through bulk/full-take systems and pertinent data is simply marked for specific
handling and routing [265].

By focusing on this data, analysts can ensure that they can effectively monitor these
victims’ communications for actionable intelligence. In addition to reducing the probability
that a useful communication is not evaluated, this also allows analysts, to monitor these
victims and extract higher-order information that may not be apparent from a single commu-
nication. Programs such as TRAFFICTHIEF and SAM PEPYS even provide real-time alerts to
analysts when targeted victims are online and communicating [133, 403].
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Data Type Pertinent Metadata Indiscriminate

VoIP NUCLEON [307] FASCIA [259] XKEYSCORE [307]
Telephony NUCLEON [276] FASCIA II [285] SOMALGET [382]
General Internet Traffic PINWALE [426] MARINA [425] XKEYSCORE [425]
VPN PRESSUREWAVE [265] TOYGRIPPE [308, 309] XKEYSCORE [265, 308]

Table 2.7: Tiered NSA Databases—A sampling of databases NSA analysts use grouped
by their type and tier of data.

Metadata While the full content of a communication is undoubtedly the most useful
for actionable intelligence, the requirement of a priori knowledge of the victims and their
associated selectors is an obvious limiting factor. To address this, the next tier of data is
metadata or “data about data” (MARINA in Figure 2.5). Metadata consists of elements such
as the endpoints of the communication, time of communication, and the like, but, loosely
speaking, not contain the content of the communication.

While the acquired and stored metadata does not contain directly actionable intelligence
(e.g. “Attack at Dawn”), it is highly useful for what’s called “target development” [382] or
“SIGINT development” [425]. Here, an analyst is not necessarily looking for actionable
intelligence, but is instead searching for new or additional selectors for acquiring actionable
intelligence.

A common way to do this is through “contact chaining” where an analyst is able to
monitor the communications metadata between victims in a dataset [64,285]. If many tasked
victims are communicating directly or indirectly with a central victim, it may indicate that
the central victim would be of use in gaining actionable intelligence. This same methodology
can be applied to location metadata and an analysts can determine who was in the same
physical area of a targeted victim, an indicator that they too may be a useful source to task
and promote to pertinent data [278].

Indiscriminate Data The largest tier of data is from indiscriminate or “full-take” [139,
425] acquisition (XKeyscore in Figure 2.5). In this tier, data is acquired and processed with
little consideration of the victim’s identity. This type of data may be filtered for “low value
traffic” [148] such as P2P downloads or publicly available streaming videos10, but removal
of this sort does not affect its label of indiscriminate acquisition.

Compared to the tasked and metadata tiers, indiscriminate data dwarfs them in pure
quantity of information and is vastly overshadowed by them for usable information. But
like metadata, indiscriminate data does have valid use cases from an analyst’s perspective,

10The access to this type of data is likely recorded, but the storage costs of saving the same YouTube or
Netflix video for each victim who watched it is likely too high to be practical.
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which we will discuss more in-depth below.
From the above description, a reader may appropriately ask why pertinent and metadata

are partitioned from indiscriminate rather than being sub-tiers of indiscriminate data. The
reason for this is that the indiscriminate data tier is not intended to be a long-term monitoring
tool. The sheer amount of indiscriminate data fundamentally constrains how long it can be
stored. The actual retention time depends on many factors including the storage location and
date of the source document. One available datapoint from 2009 states that indiscriminate
data is stored for between 1–5 days, metadata for 30 days, and tasked data can be copied to
“any other database for longer retention” [425].

Opportunistic Data The final tier of data is distinct from the pertinent, metadata, and
indiscriminate tiers in that its purpose is explicitly not to provide actionable intelligence
or allow target development. Instead, this type of data which is exceedingly difficult to
acquire on-demand, but is relatively simple to acquire when it is available. The obvious
logic process for opportunistic data is effectively “we might not needed this. . . but we may”.
This tier consists of two types: secrets and measurement data.

Secrets are those which may be disclosed inadvertently by the victim but are not nec-
essarily useful at the time of acquisition. NSA’s DISCOROUTE tool recognizes and stores
router configurations [269] which, among other things, can contain a VPN Pre-Shared Key.
HYDROCASTLE stores “802.11 [WiFi] configuration data extracted from CNE activity” [273]
and likely includes WiFi PSKs and passwords. Either of these would be useful for defeating
encryption if needed, but may require an intrusion or other significant resource expenditure
to obtain if not acquired opportunistically.

The other type of opportunistic data is measurement data which is colloquially described
as “data about data about data” as it is high-level, low granularity metrics. Measurement
data includes information about cryptographic parameter usage [71] or trending technolo-
gies [288] but is specifically not a victim’s information other than what tools/encryption/etc.
that victim is using. While some may consider it metadata, the use case is to provide a
basis for resource allocation and planning instead of target development and actionable
intelligence. As we’ll discuss shortly, the planning and resource allocation decisions are
important for NS-Attackers to maintain the effectiveness.

2.4.2 Human Capital

Special people. And rare. One day I was returning from a meeting at Langley

and my security detail looked a little impatient, as they had to wait for a stream
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of pedestrian traffic flowing outward from the NSA headquarters building. As

they inched the SUV forward, I only half in jest cautioned, “Be careful. They

could be linguists.”

– General Hayden, former Director of the NSA [168]

While NS-Attackers’ Scale constraint is fairly obvious, the Human Capital constraint is
less so given the Specialization advantage is in large part due to the size of their workforce.
Although NS-Attackers’ employees are able to specialize in a relatively small portions of
the entire organization, the employee manpower and skill sets are still a finite resource. To
put it simply, an employee can be the number one cryptographer/linguist/analyst/engineer in
the world, but there is a limit to the number of defeats/victims/systems that person can work
on at a time.

Former NSA Director General Michael Hayden describes this constraint in depth with
regard to linguists. The linguistic manpower needed to effectively monitor even a single
important victim is immense. Every phone call, text message, e-mail, and web-search must
be translated before an analyst can determine whether it is contains useful information [168].
NS-Attackers can take three approaches to mitigate this constraint: deliberate allocation,
automation, and contracting.

Deliberate Allocation The first way to mitigate this constraint is for NS-Attackers to
use manpower and skill-sets efficiently by shrewdly selecting which of the many possible
objectives should take precedence. At a high level, this comes in the form of explicit
strategic plans [290, 296]. These documents lay out the specific countries and topics which
are deemed to be worth the resource investment as well as those of interest but are an
“Accepted Risk” for which resources should not be allocated11.

This approach filters down to the tactical level when deciding protocols, applications,
and technologies to invest employee time and energy into. The specific decision are made
by monitoring the different tools and technologies used by victims and ensuring that any
trends or shifts are noticed. An example of this is shown in Figure 2.6 where the users of
and current capabilities against those technologies are used to determine priorities with
conventional risk management techniques [288].

The tiered data approach described above also accounts for this. The pertinent tier is
highly likely to be useful and therefore likely to be worth allocating disk space, analytic

11As an example, the sale of conventional weapons by “gray arms dealers” is identified as topic for which
NSA resources should be allocated but less so than monitoring the safety of Russian nuclear weapons where
as the state of Egypt’s ballistic missile program is a topic of strategic significance but will not be emphasized
by US SIGINT systems and will knowingly suffer from intelligence gaps [296].
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Figure 2.6: NSA’s Technology Risk Matrix—NSA’s risk analysis matrix used to prioritize
technologies for resource expenditure [288].

effort, and defeat resources for whereas the indiscriminate tier is less likely. This is especially
applicable to encryption schemes which have a known but expensive defeat. The resources
to carry out the defeat are much more likely to be invested against pertinent data than a
randomly selected indiscriminate communication.

Automation The second approach to accommodating the human capital constraint is to
automate as many tasks possible. This “[l]iberates operators for high-order tasks” [270]
so that manpower is used more effectively at the individual level. In order to address the
time and skill requirements of our linguist example above, NSA has invested in machine
translation of text documents [279, 355] as well as speech [145].

In addition to fully automated solutions, machine learning is used to surface data which
is more likely to be worth an employee’s attention. FORESTPROWL ranks audio files for
transcription based on what is likely to be the most useful [276]. Locating potentially useful
data from the sea of indiscriminate and metadata is also an improvement for finding victims
when they change devices [268] or when their behavior is divergent from the norm [293].
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Outsourcing A third method of addressing the Human Capital constraint is through
outsourcing. This can come in the form of hiring contractors, coordinating with non-SIGINT
entities [282], or partnering with other NS-Attackers (Section 2.2.3). In this way, the
NS-Attacker places the onus for manpower and/or skill sets onto another entity.

A simple example of this is the use of linguistic contractors who work for the NSA but
are employed by a contracting company. In in some arrangements, an NS-Attacker can
contract-in such that the contract company finds the required skill set and that linguist then
works alongside direct NS-Attacker linguists and analysts [117]. Alternatively, arrangements
can contracting-out such that the NS-Attacker may send documents, including classified
documents, to a contracting company and receive back the translated text. The National
Virtual Translation Center is an interesting example of this type of outsourcing as it operates
similar to Amazon Mechanical Turk’s approach to ‘gig economy’ human capital [168].

While contracting is a mitigation to Human Capital constraints, it may be a self-defeating
response. General Hayden acknowledges that while effective, reliance on contractors creates
a counter-productive set of incentives to the point that the CIA had become “a bit of a farm
team for our contractors” where employees with the highly needed skill-sets would develop
and practice those skills at the cost of the US government and then leave and join contractors
for more money [168]. As of 2011, contractors made up approximately 20% of the U.S.
Intelligence Community workforce [254].

2.4.3 Oversight

[T]he only way to interpret Section 215 [of the PATRIOT Act] in that fashion

[to allow collection of nearly all domestic records] is to add words to the statute

that it does not contain, subtract words that it does contain, and reinterpret

other words beyond recognition

– Privacy and Civil Liberties Oversight Board [235]

Another constraint that NS-Attackers must account for is the presence of oversight or
approval entity. This usually comes in the form of judicial, legislative, or executive oversight
body who approve the general details of the NS-Attacker’s actions and are charged with
ensuring their compliance with those rules. While other type of attackers must account
for only punitive entities such as law enforcement and criminal courts for their actions,
NS-Attackers must comply with their oversight bodies’ regulations on how to carry out
actions. In Section 2.2, we discussed that NS-Attackers had the ability to influence policy
through the characteristic of sovereignty, but that does not mean that they have the ability to
dictate policy to their will.
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While much of this oversight and compliance occurs outside of the public eye, there
has been a substantial increase in the number of rulings and opinions regarding the U.S.
intelligence agencies available due to the actions of whistleblowers and civil liberties
organizations. Because of this, we primarily focus on the U.S. intelligence community’s
oversight by the Foreign Intelligence Surveillance Court (FISC) and legislative entities.
While judicial, legislative, and cultural differences prevent us from applying the U.S.’s
oversight regime (and therefore NSA’s mitigations) directly to other NS-Attackers, it does
expose a set of behaviors that are likely available for use by others.

For all the privileges and abilities that the U.S. Government has given to NSA and
other intelligence agencies through legislation such as the USA PATRIOT Act, the FISA
Amendments Act of 2008, and the USA Freedom Act, those same laws also place restrictions
on the intelligence agencies with regard to how those abilities can be used. The FISC and
various legislative bodies ensure that the intelligence agencies’ tactics and behavior comply
with U.S. law and can prompt changes to the way NSA acquires, stores, and queries data.

Interpretation One way NS-Attackers can mitigate the effects of oversight on their
operations is by portraying the intent of policy in a way favorable to their wishes. The
text of laws rarely includes detailed descriptions of methods and technical specifications
and instead provides guidance and intent. These texts can be massaged, equivocated,
and mixed with various legal opinions and law texts to argue that a specific NS-Attacker
technique/methodology is supported by statutes.

One example of this is the NSA’s telephony metadata program in which call records
(from, to, etc. but not content) were acquired in large numbers for data mining and call-
chaining. Originally created as the “President’s Surveillance Program”12 in 2001 under
executive order, it was for domestic-to-foreign phone calls where at least one participant
was a non-U.S. person [168]. After disagreements with the Department of Justice in 2004,
the program was transitioned to operate under FISC orders justified by Section 215 of the
PATRIOT Act in 2006 as “business records”. With this transition, the program expanded to
explicitly include domestic-to-domestic call records13 [314].

NSA then determined that the FISC rules on querying the metadata database only
applied to “archived data” and not data acquired and in the process of being archived. This
interpretations was later discovered and corrected [235]. NSA then used the “reenactment
doctrine” after Congress renewed Section 215 in 2010 and 2011 to justify that Congress
had adopted their interpretation used for the program [235]. In 2015, the USA Freedom Act

12Also known as the STELLARWIND program.
13It is thought that this expansion occurred earlier but this is uncertain from the available documents.
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substantially altered the way that NSA acquires call records [221] but they still acquire and
store large numbers of call records for analysis [313].

Stove-piped Knowledge Another approach to mitigating oversight is to control who has
access to the existence, justification, and implementation of specific programs. Even among
those who have access, NS-Attackers can control the extent of understanding the various
oversight bodies have. Just as public awareness and understanding of NS-Attacker operations
is often near zero due to classification and operational constraints, this technique is also
applicable to oversight bodies.

The NSA’s telephony metadata program appears to have relied heavily on this mitigation
from its inception. Initially, the number of people who knew about its existence to an
absolute minimum. From 2001-2003, only three people from the Department of Justice
knew of its existence.14 Even NSA’s own Inspector General did not gain access until
late 2002 [314]. Between 2001 and 2007, only 60 members of Congress and just over
3,000 people total (including NSA analysts and other employees) were ever cleared for the
program [315].15

Even amoung those cleared for access, information and understanding is not spread
evenly across all parties. In some cases, this is done by providing vague, form-letter
justifications [300]. In other cases, it is accomplished by misrepresenting technical and
implementation details to oversight bodies [120] or by overstating the usefulness of a
program to disincentivize its alteration [424].

2.4.4 Required Hard Victims

The last constraint of NS-Attackers that we discuss is the requirement of operating against
exceedingly difficult victims. Whereas many attackers focus on “low hanging fruit” in
order to avoid investing time, energy, and resources into attacking well-defended victims.
For many cases, poorly-defended victims provide the same result the attacker is interested
in. The Mirai botnet, for instance, recruits new nodes largely by searching for default
and common passwords [15]. The botmaster does not care who owned a newly infected
node or what network it was attached to because of the small impact those factors play
in participating in attacks. NS-Attackers, on the other hand, are tasked with monitoring
specific victims (or types of victims) and acquiring specific information. These targets may

14One of these official was OLC Deputy Assistant Attorney General John Woo whose approach to executive
authority has been described as “Article 2 über alles” [168] in a barely veiled comparison to Nazi Germany’s
use of “Deutschland über alles”.

15For comparison, as of 2013, approximately 1.26M persons held Top Secret U.S. clearances [59].
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be hard for one of two reasons: A) Nation-State Defenders and B) latent indicators.
Nation-State Defenders (NS-Defenders) are hard victims because they are defended

by an entity with nation-state resources. While we do not discuss NS-Defenders within
this dissertation, it is a safe to assume that nation-states are more capable of defending
against all types of attackers, including NS-Attackers, than lesser victims. Detection and
prevention could be through discovery of vulnerabilities via acquisition and monitoring [275],
discovery of vulnerabilities through their own efforts [149], or by the use of non-standard
algorithms [297] or equipment [80].

Latent indicators, on the other hand, make for hard victims not because it is difficult to
act against them, but because it is difficult to identify them. The small-cell and “lone-wolf”
nature of many current threats offers examples. One aspect of these type of victims is that
they are often obvious in hindsight. NS-Attackers and law enforcement are often confronted
with questions of why they did not stop a particular incident when the information existed to
put the pieces together, but the connections were not made [168, 197].

Collect-it-all In order to find hard victims, some NS-Attackers adopt a “collect it all”16

strategy as referenced above with regard to both metadata and indiscriminate data. Metadata
allows analysts to trace social networks and identify new victims through contact chaining.
Indiscriminate data allows analysts to find new victims based on the contents of their com-
munications and to locate actionable intelligence from previously unknown victims. Buffer
systems such as XKEYSCORE [226] and TEMPORA [148] are an example of this. Information
acquired from many different sources is funneled into the buffer’s databases and can be
queried based on IP address, URLs, cookies, search terms, attached filenames, or numerous
fields [257].

In addition, large data repositories are well suited for machine learning and similar
automated analytic techniques. Machine learning is known to be used for identifying the
behavior patterns of couriers [294] and detecting social structure changes and automatic
data visualization [137]. Machine learning is well suited to training on large datasets and
then classifying future inputs. While imbalanced datasets are a difficult problem, they are
not an insurmountable one. These large datasets also improve NS-Attackers’ ability to
monitor victims protected by NS-Defenders. Instead of finding victims, the collect-it-all
mentality helps NS-Attackers by increase the likelihood that any leak of information is
acquired and available for exploitation. A victim employed by a government is likely to be
well protected by their NS-Defender resources while at work, but if they are brushing up on
public information for a meeting the next day by reading Wikipedia pages or standards from

16In our lexicon, this would be “acquire it all”, but we will use the phrase as it is well known.
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a residential or mobile network. By acquiring all data from those networks, NS-Attacker
can identify the victim from other traffic and then monitor what they were viewing.

Retrospective Analysis Another mitigation to the Required Hard Targets constraint is the
use of retrospective analysis in addition to prospective analysis. The difference between
prospective and retrospective analysis is that prospective analysis is intended to monitor
victims and provide information about events before they occur. Retrospective analysis,
on the other hand, is meant to provide clarity to and initial leads for events after they
occur. Whether a newly identified lone-wolf, a newly hired NS-Attacker employee, or in the
aftermath of an unexpected event, historical actions and communications from previously
acquired data are useful in extracting intelligence.

An example of this is an Improvised Explosive Device (IED) detonated remotely via
a cellphone [365]. It is infeasible to classify an arbitrary call to an arbitrary cellphone as
a detonation signal or not, especially in real-time. But after detonation, it is possible to
determine the caller and callee from the call records. From there, the initiating handset
can be targeted as it is now associated with a targeted hard victim. Similarly, retrospective
analysis is useful for pruning investigations and allowing the NS-Attacker to focus on
known-unknowns rather than unknown-unknowns.

2.5 Differences between Nation State Attackers

While the previous sections describe characteristics, advantages, and constraints common to
all NS-Attackers, it would be improper to assume that NS-Attackers are a homogeneous
group. The challenge in attempting to differentiate between sub-classes of NS-Attackers is
that the publicly available information is heavily skewed towards NSA and other Five-Eyes
organizations with a much smaller amount of information available on others. Even with
this constraint, we observe three aspects that may indicate sub-categories of NS-Attackers:
treatment of domestic victims, tolerance of public exposure, and delegating operations.

2.5.1 Treatment of Domestic Victims

An NS-Attacker’s treatment of domestic victims appears to depend largely on the country’s
policy regarding its citizens’ freedom and privacy. While we will leave the classification of
a country’s stance and relative attitude towards these issues largely up to other researchers,
we do observe that NS-Attackers’ large-scale censorship operations appear to provide
an adequate proxy for their policies towards domestic victims. Unlike most large-scale
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acquisition actions, censorship is largely an active action that can be both induced and
measured. Because of this, a large amount of research exists measuring censorship tactics
such as DNS manipulation [329], flow disruption [91], or active interrogation [90].

Three countries which are known to engage in widespread censorship as well as wide-
spread internal NS-Attacker operations are China, Iran, and Kazakhstan. China reportedly
monitors in- and out-bound calls in real-time, as well as the geolocation of cellphones in order
to provide ‘public safety’ information [127]. Iran is actively working towards widespread
monitoring of communications and ostensibly social networking usage, though reports differ
about their current capabilities [122]. Kazakhstan even went so far as to require ISPs to
Man-in-the-Middle TLS connections with a government issued root CA [196]. Stepping
back, potentially useful proxy is less surprising given that the technology and tactics needed
to perform widespread censorship is very similar to the technology needed to perform
widespread domestic acquisition operations.

Even countries whose NS-Attacker entities are more respectful of citizens’ personal
freedom and privacy, actions are taken against domestic victims. While the U.S. is known
to acquire large amounts of information about untargeted victims, the majority of efforts
are focused on foreign communications. Obvious and well known counter-examples such
as the now defunct Section 215 [235] telephony metadata program and the President’s
Security Program [314] for Internet metadata exist, but the vast majority of intentionally
domestic actions appear to be much more targeted. Instead, the NSA focuses on acquiring
the communications of non-U.S. persons and takes measures to reduce the possible impact
on U.S. persons’ privacy. These measures include “minimizing” data to U.S. persons’
identifiers as well as segregating known U.S. persons’ acquired data from other victims’
data [175].17

2.5.2 Acceptability of Public Attribution

All NS-Attackers are secretive and attempt to avoid detection and attribution to prevent
victims from avoiding their acquisition and monitoring operations. Quantifying this behavior
pattern is difficult as attribution is challenging and more so with NS-Attackers because
of their Near Superset Attacker advantage.18 Further complications arise from known
connections between NS-Defenders and public organizations that commonly discover and

17While this approach is far from ideal and is known to provide fewer protections than advertised [19], it is
nonetheless a better scenario than the blanket acquisition, long-term storage, and monitoring seen in other
countries.

18As discussed in Section 2.3.1, NS-Attacker are cognizant of their role and explicitly attempt to mimic
other types of attackers.
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attribute NS-Attacker operations [245, 345].19

Even with these constraints, we observe that different NS-Attackers have different views
on public attribution of their operations. On one side, we see a cavalier attitude of “we’re
going to do X and if you find out, then we’ll just keep doing X until it stops working”. To be
clear, this is not an indication of ability or competence to conduct discreet operations, but a
decision that the penalty for detection and attribution is not worth the effort to avoid. These
NS-Attackers are much more likely to conduct aggressive intrusions against large numbers
of victims including corporate and other non-governmental entities. This type of behavior is
seen from China (Operation Aurora [430], Operation Shady RAT [393]), North Korea (Sony
Pictures breach [353], WannaCry [246]), and at times Russia (discussed below).

On the other side, we see a calculating and subtle approach to operations. Compared to
the cavalier attitude described above, these NS-Attackers take a “we’re going to do X, but
you’ll never know” approach. Because of this, the vast majority of known operations come
from whistleblowers (e.g. Snowden Documents) or inadvertent disclosure (e.g. Shadow
Brokers [165]). Operations discovered and attributed to group of NS-Attackers suggest
an enormous amount of effort investment (e.g. Stuxnet [116]). This type of behavior is
seen largely from the Five-Eyes entities (U.S., U.K., Canada, Australia, and New Zealand).
The Snowden Documents include explicit risk-management processes that support this
perspective [141].

2.5.3 Delegating Operations

Another difference we observe in NS-Attackers is their willingness to delegate operations
to external entities. To be clear, we are not discussing the use of publicly available assets
as described in Section 2.3.1 nor are we discussing outsourcing mitigations described
in Section 2.4.2. In those cases, NS-Attackers are importing the product and using it
themselves for their own purposes. With delegated operations, NS-Attackers export their
characteristics, e.g. giving access or sovereignty, to a non-NS-Attacker for use in achieving
the NS-Attacker’s objectives. In our observations, we see three types of behavior: “in-house”
operations, delegation to “cyber militias”, and delegation to “cyber mercenaries”.

In-House Delegation The first type comprises NS-Attackers who prefer to keep their
operations “in-house” and coordinate or delegate operations mainly with other NS-Attackers.
As described in Section 2.2.3, NS-Attackers commonly cooperate with NS-Attackers of

19An operation discovered, disclosed, and attributed to an NS-Attacker by a public entity such as Fireeye or
Kaspersky Lab may or may not have been discovered by an NS-Defender using NS-Defender resources and
the disclosure is laundered through the public entity.
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‘friendly’ countries to mutually enhance their positions by sharing acquired data or tech-
nology. In this case, the NS-Attackers are not so much exporting their own characteristics
as they are exchanging the products of their own characteristics with each other. These
exchanges commonly come in the form of formal agreements that describe the parameters
and constraints of the exchanges [261, 271, 281].

The advantage of inter-NS-Attacker coordination is that secrecy can be maintained.
Tighter control of the actors improves the ability to limit and compartmentalize the effects
of an operation. The disadvantage of this approach is that the NS-Attacker is limited by
their own Human Capital constraint as well as that of the partner(s). Unsurprisingly, many
of the NS-Attackers who are risk averse with regard to public exposure are also averse to
delegating operations.

Cyber Militias The second type of delegation comprises NS-Attackers who delegate
operations to loosely organized public actors often, with assurances of little or no punishment
for otherwise criminal acts. In a way, this exports their characteristic of Sovereignty to the
public actor. These public actors are often individual hackers or hacker collectives which
act as a “cyber militia” [378] similar to traditional militias. The NS-Attacker operations are
then carried out either through a direct order or through veiled persuasion. While toleration
of criminal activity is a known issue in international politics, we will focus on the direct
NS-Attacker operations by non-NS-Attackers.

China and Russia are thought to use this method extensively throughout various interna-
tional incidents. Large-scale website defacements in the immediate aftermath of the 2001
collision of Chinese and American military planes have been attributed to encouragement
from the Chinese government. The DDoS attacks against Estonia in 2007 and Georgia in
2008 were largely conducted by members of the Nashi, a Russian pro-Putin youth movement
headed by an assistant to the Russian parliamentary leader [378].20

By delegating to these militias, the NS-Attacker is able to plead ignorance with regard
to the attack while still accomplishing its goal. Additionally, some countries may use
these militias as a way to recruit manpower and skill sets which they need for internal
operations. The disadvantage, though, is that the NS-Attacker does not have complete
control of the militia that they have trained and equipped. While once a tolerated side-effect,
some countries have begun to crackdown on these types of groups due to the negative effects
of their non-sanctioned operations [378].

20We should note that while Russia and China are the most obvious use of cyber militias, they are not
the only ones. The Syrian Electronic Army and Iranian Cyber Army are thought to be sanctioned by their
respective governments [378], but less is known so we do not focus on them.
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Cyber Mercenaries The third type of delegation is NS-Attackers who delegate operations
and their characteristics to a non-governmental entity (usually a company). As discussed
above, this is not an NS-Attacker buying a product from another entity (e.g. a defense
contractor) to incorporate into an internal system, this is an NS-Attacker either importing an
entire, finished surveillance product or exporting the authorization to conduct operations
and receiving back the final intelligence. In this way, the entities act as “cyber mercenaries”
analogous to how traditional mercenaries are used in kinetic warfare.

Companies such as Hacking Team and Gamma International sell software and infras-
tructures for targeted acquisition, intrusion, defeat, and monitoring out of the box [421].
Bull/Amesys, Trovicor, and Shoghi offer large-scale acquisition and monitoring systems
as a complete package to be installed in network choke points [370, 421]. Companies like
Geofeedia, MediaSonar, and X1 Social Discovery acquire vast amounts of data from social
media websites and simply sell access to their data repositories and monitoring tools [323].

Cyber mercenaries lower the required resource investments as well as barriers to entry.
A single vulnerability can be used by the company in support of multiple NS-Attackers’
goal thereby sharing the resource costs across all participating NS-Attackers. Similarly, the
skill-sets and manpower required to develop large-scale acquisition, storage, and retrieval
systems can be similarly shared. It is likely a consequence of this that the use of cyber
mercenaries is largely by countries without significant technical economies or are in sudden
and immediate need of monitoring. Bahrain, Morocco, and the United Arab Emirates have
been found to use mercenaries’ malware against journalists whereas Libya, Iran, and Yemen
purchased and used the large-scale acquisition systems [421].

2.6 Accounting for NS-Attackers

As seen in many the source documents, all people and groups are potential NS-Attackers
victims. Terrorists [284], activists [166], corporations [267], and other governments of
both the friendly [283] and less-than-friendly [286] variety are known to be victims of
NS-Attackers. Even without actual monitoring, the threat of surveillance is thought to affect
individuals’ behavior and cause self-censorship of lawful actions [330]. Because of this, it
is important to discuss how NS-Attackers affect threat models as well as approaches that
defenders and researchers can use combat those affects.

To be clear, the major take-away from our research and analysis is that preventing
an NS-Attacker from gaining access to a network, devices, or communications is likely
a Sisyphean effort. If a sufficiently advanced and well-resourced NS-Attacker is able to
find a targeted victim and believes that victim is worth the resource investment, there is

39



little that can prevent the NS-Attacker’s eventual success.21 By their nature, software and
hardware have bugs and some of these bugs will be exploitable. The networks, devices, and
communications of relatives, friends, and co-workers are possible sources of information
about the targeted victim. The victim’s external dependencies (ISP, software vendor, supply-
chain) may be used to gain access to the victim’s information. Even if the targeted victim
maintains a near-zero personal digital footprint, surveillance cameras, third-party records,
or even the lack of a footprint may be used to acquire information about and monitor the
victim.22

That being said, there are steps that potential victims can take to impede NS-Attackers’
efforts. While these do not block NS-Attackers, they do “raise the bar” of required effort.
As discussed in Section 2.4, the constraints of NS-Attackers require not only dedication
to specific targets, but also disincentivize NS-Attackers investing resources in arbitrary
victims. In this section, we identify attributes of NS-Attacker which potential victims
and security researchers can use when threat modeling. The intention of this section is
explicitly not to provide an outline of “how to avoid law enforcement” or “how to beat NSA”,
but to describe concepts that potential victims may find insightful and expose additional
concerns they should be cognizant of with respect to NS-Attackers. Specifically, we will
discuss accounting for NS-Attackers from the perspective of individuals, organizations , and
researchers.

2.6.1 Individual Perspective

One improvement that an individual can make is to follow the common “Best Practices” for
protecting against criminals and other non-NS-Attacker actors. Enumeration and discussion
of practices such as strong passwords, HTTPS usage, and updating software are widely
available and we omit their details. With the advantage of being a near-superset attacker,
protecting against non-NS-Attackers also protects against capabilities of NS-Attackers.
Specific to NS-Attackers, there are two concrete steps that individuals can use to improve
their security posture: “tool upgrades” and “cloud aversion”.

21The long delay in catching Osama bin Laden was not cause by the difficulty tracking and monitoring
him; it was finding him in the first place. Once his location was determined, monitoring was relatively
straight-forward [255].

22In the often hyerbolic but insightful words of James Mickens, if you threat is “Mossad doing Mossad
things with your email account”, then your possible solutions are “Magical amulets?”, “Fake your own death,
move into a submarine?”, and “YOU’RE STILL GONNA BE MOSSAD’ED UPON [sic]” [238].
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Tool Upgrades With regard to tool upgrades, the concept that users must be cognizant
of is that there are thresholds for which an action’s cost is acceptable and unacceptable.23

As described in Section 2.4, each action an NS-Attacker conducts, whether acquiring
communications or searching a database, has a cost in the form of resources such as time,
manpower, or computation. Raising the cost of those actions decreases the likelihood that
they will be undertaken without a sufficient incentive. Upgrading tools is the concerted
awareness of and choice to use more secure software when available for little or no negative
impacts.

One example of this is the choice of which instant-message application to use when
communicating with friends, associates, and others. Many different services and protocols
are available with varying threat models. These threat models vary from the “anyone can
listen” model of IRC, forums, and chat-rooms to the “anyone on-path can listen” of SMS
and non-end-to-end encrypted chat apps, to the “only endpoints can listen” of Signal or
WhatsApp. Moving from SMS or Facebook Messenger to Signal forces NS-Attackers to
expend more resources and effort to monitor a victim. To the best of our knowledge, the
best defeat of strong end-to-end encrypted communications protocols such as Signal is
through the use of an enabling intrusion on the endpoints. Even then, an NS-Attacker must
detection of an active intrusion and disclosure of a vulnerability to acquire communications,
decreasing their likelihood of doing so unless they are sufficiently interested in the victim.24

Cloud Aversion The second improvement is by re-evaluating the ubiquitous presence
of cloud services in everyday life; especially when local implementations are available.
A common, but not necessarily precise, idiom is “there is no cloud, just someone else’s
computer”. While imperfect, it sufficiently conveys the risk of cloud providers. When
individuals use remote services to store or process data, they are also giving up large
amounts of control with regard to the security of that data.

One obvious example is the use of cloud backup services such as Carbonite [46] instead
of backing up to a local network drive. The use of a cloud provider exposes an individual
to the risk of an NS-Attacker gaining access to information from the provider through
cooperation, legal writs, and/or enabling attacks. In many cases, cloud providers do not
consider themselves within the threat model for user data. This gives NS-Attackers the
opportunity to leverage forced cooperation of the provider against the individual. One
possible form of this attack is a cloud provider who proactively encrypts data at rest to

23We do not attempt to quantify these thresholds due to the lack of data-points, but the analogy is appropriate
for thought experiments.

24Even those NS-Attackers who are less risk averse to public exposure still risk exposure of vulnerabilities
which are thought to be difficult to obtain.
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Figure 2.7: Tactical Choke Point—An
example of a tactical choke point with
one force stationed north of the river, and
its opposition located across the river to
the south [62].

Figure 2.8: Network Choke Point—An
example of network structure with an un-
derlying choke point [57].

protect it against theft, but also controls the decryption key. Using influence or legal writs, an
NS-Attacker could compel the provider to surrender the decryption key (à la LavaBit [336])
or to decrypt and surrender the plaintext (à la the Yarovaya law [130]).

While we encourage an aversion to cloud services, we do recognize that there are
competing security advantages of cloud-based systems. The most compelling of these is
that proactive cloud providers can dedicate resources to protect individuals’ security and
privacy. Most major cloud providers have large, talented, and dedicated security teams who
are responsible for ensuring that their users’ data is sufficiently protected from attackers.
And while these efforts are not a panacea [331], are undoubtedly more of a barrier to NS-
Attackers’ action than the defenses of an average user. Because of these competing attributes,
we do not advocate a blanket embargo of cloud services but a skeptical examination of and,
when possible, aversion to the use of cloud services on the individual level.

2.6.2 Organizational Perspective

From an organization’s perspective, there are also concepts specific to NS-Attackers that
must be accounted for in their threat model. The use of Best Practices provides a base case
identical to that of individuals, and we refer the reader to external sources for their details
and discussion. For organizations, we identify two concepts for defenders: “choke points”
and “value analysis”.
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Choke Points A “choke point” is a location of increased importance due to its impact on
movement within the organization. While an odd comparison at first glance, Figures 2.7
and 2.8 show how these concepts are nearly identical with regard to analyzing a potential
battlespace whether it is terrain or digital. In Figure 2.7, the river bisecting the map requires
any north-south movement to traverse the single bridge where the opposing force can
concentrate fire. In Figure 2.8, the central switch within the “Core Distribution” is traversed
for nearly all traffic where an acquisition point would be the most effective. In both cases,
movement of forces or information must traverse the choke point.

To an NS-Attacker, choke points are especially advantageous position not only because
they allow the acquisition of large amounts of information from a single location, but also
because they allow the NS-Attacker to compromise assumptions made by the defenders. In
Figure 2.8, a presence on the choke point router allows attackers to avoid the internal “Web
Security” device by simply not forwarding NS-Attacker traffic to it. When these type of
vulnerable network locations are identified, there are two direct steps that defenders can
take to improve their posture. The first is to restructure the network to avoid creating choke
points, forcing an NS-Attacker to conduct multiple separate intrusions.25 The second is to
concentrate monitoring and defense on the choke points, which increases the likelihood that
an NS-Attacker intrusion would be noticed.

Data Value Analysis The second concept important to defenders is to understand the
value of the different types of information being stored by their organization. This element
of a threat model would have been especially useful in the intrusion into the Office of
Personnel Management (OPM). A central repository of detailed background investigations
on nearly all persons who applied for security clearances from the U.S. Government is an
attractive target for NS-Attackers for identifying undercover HUMINT assets as well as
improve the recruitment of new HUMIT assets based on those who provided information
adaptable for blackmail [208].

While few companies store information so directly and obviously useful to an NS-
Attacker, it’s hard to justify that any data would not be useful to an NS-Attacker. In order to
address this, organizations can minimize the data that they collect and store from users. Not
only does this reduce the incentive for NS-Attackers to target an organization for enabling
operations, it also reduces the burden and impact of judicial writs on end user security and
privacy [374].

25A choke point is also a single point of failure so restructuring also improves the network’s resilience to
disruption.
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Figure 2.9: Vuvuzela System Architec-
ture—The design of the Vuvuzela pri-
vate messaging system [411].

Figure 2.10: Hornet System Architec-
ture—The design of the HORNET onion
routing system [55].

2.6.3 Researcher Perspective

The fact that potential victims must alter their threat modeling to account for NS-Attackers
is fairly straight forward, but it is important to address how security researchers and system
designers must account for NS-Attackers. After all, if the security community can not
provide potential victims with tools and techniques to make themselves more difficult to
monitor, any improvement in an individual’s security posture will be of minimal effectiveness.
Here we discuss three concepts which researchers must be cognizant of: “system choke
points” and potential harm.

System Choke Points Just as organizations must account for choke points within their
network infrastructure, researchers must be cognizant of choke points in the design and
deployment of systems. Distributed and federated system design has long been a goal of
many security systems as a way to combat potential bad actors, but recent system proposals
have eschewed this design goal in favor of improving usability and performance as seen by
the user.

A recent example of this is the Vuvuzela private messaging system (Figure 2.9) which
uses tunneled encryption and message shuffling to protect against an adversary who can
observe all inter-participant traffic [411]. While a noble effort, the system requires a static
set of n servers26 to be used by all clients. These servers represent a choke point in system
security as an NS-Attacker has a finite and unchanging set of hosts to which they must gain
access to compromise the system’s security. While defenses can be concentrated on these
three systems, NS-Attackers’ advantages of specialization and near-superset attacker status
require a infinitely powerful defender27 to prevent intrusion of each server.

26The authors propose three.
27A hypothetical person/organization that can defend against all types of attackers including NS-

Attackers [118].
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Along with choke points in system design, security researchers must also be aware of
existing and likely choke points in deployment of systems. These deployment attributes may
result in unexpected choke points that are advantageous to NS-Attackers. In Chapters 4 and 5,
we discuss two examples: standardized Diffie-Hellman groups and TLS Session Ticket
usage. The recent proposal of the HORNET onion routing system [55] also exemplifies how
system design can lead to these types of choke points. HORNET is conceptually similar
to the Tor network [79] in its use of tunneled encryption and multi-hop transportation, but
HORNET makes the design choice to operate on network infrastructure as a platform to
leverage the high bandwidth network connections.28 This is in contrast to Tor’s more general
computing platform with the major use case being general purpose server installations.

Because of this design choice, the pool of possible HORNET node operators is heavily
constrained to those entities with direct access to and ability to extend network infrastructure
as opposed to Tor’s operator pool of entities who are capable of running services on a
public IP. This constrained operator pool is further restricted to those who are willing to
endure the legal and administrative overhead required when participating in an anonymity
network [123]. This logically results in two outcomes: 1) a small set of nodes participating
which reduces the anonymity of the users and creates a choke point similar to Vuvuzela
and 2) an increased likelihood that any user’s path will traverse one or more nodes operated
by law enforcement or NS-Attackers thereby fundamentally compromising many of the
security guarantees.

To address these weaknesses, researchers and system designers should prioritize dis-
tributed systems and untrusted processing. Diversity of locations and operators should also
be highly valued to remove choke points in design and operation. While the Tor network
is not free of vulnerabilities when NS-Attackers are within the threat model [184], the
diversity of nodes, locations, and operators removes many of the potential choke points of
the network.

Potential Harm Finally, we consider ethics. While we do not wish to dive deeply into the
ethics of NS-Attackers’s known operations (from any side) we do believe it is important to
discuss how NS-Attackers complicate ethical dilemmas. In most computer security research,
the adversary is assumed to be be a villain (whether a criminal, hacktivist, or simply a
mischievous actor) whose intent should be thwarted at all times, either by helping find and
remedy weaknesses that are or may be exploited, or by building new systems to increase
user protections Either way, the security researchers’ end-goal is to stop their adversary
without respect to their goal or victim.

28The authors’ performance evaluation assume 10 Gbps links.
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When NS-Attackers are the researchers’ adversary29, this is not as simple an assumption.
NSA, GCHQ, CSE, FAPSI, and other NS-Attackers have an important and difficult duty
to protect their respective countries and citizens which few would argue is conceptually
unneeded or improper. The ethical dilemma for researchers is balancing the potential harm
of publishing against the potential harm of not publishing.

In publishing, the potential harm is that the vulnerability or technique may be integral to
operations against justifiable victims. Publishing alerts those victims that they are, or could
be, monitored by an NS-Attacker thereby increasing the potential for harm against persons
due to the NS-Attacker’s inability to effectively monitor these justifiable victims. On the
other hand, not publishing could expose unjustifiable victims to operations by criminals or
other attackers thereby failing to decrease the potential harm to persons by leaving them
vulnerable. Researchers must take a measured and careful approach to publishing known or
plausible NS-Attacker operations or vulnerabilities.

Our approach to these dilemmas attempts to determine who would benefit more by
publication and by what degree. A weakness in commonly used software or cryptography
that makes all people less secure is likely to be published so that it can be patched, even
though this may cause harm by decreasing the ability of NS-Attackers to monitor and thwart
kinetic incidents.30 A weakness that largely affects the security of justifiable victims and
whose scope is limited to those justifiable victims will likely not be published, even though
it may allow harm to unjustifiable victims by leaving them vulnerable. While these two
examples represent extremes, there exists a wide array of possible scenarios between the
two and of other constructions.31 Most scenarios are significantly more complicated and
involve many unknowns a researcher must account for.

29We intentionally use the term “adversary” and not “enemy”.
30Disclosure policy in and of itself is a separate discussion which we believe is not heavily influenced by

the presence or lack of an NS-Attackers.
31An especially difficult constructions is one where a researcher much decide whether to notify an NS-

Attacker of an existing vulnerability whose disclosure could contribute to potential harm against justifiable
victims.
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CHAPTER 3

Impact on Computer Security

In Section 1.1, we briefly addressed how the SSL PKI’s authentication mechanism as
a defensive measure is fundamentally compromised when confronted with Nation-State
Attackers (NS-Attackers). While a simple and direct example, it fails to show the impact
that NS-Attackers have on threat models as a whole. In this chapter, we will present the
findings from our Internet voting research into the 2013 Estonian Internet Voting System. By
using our Nation-State Attacker model proposed in Section 2, we can see that the Estonian
I-Voting systems is vulnerable to Nation-State Attackers who not only have the ability to
interfere, but also the incentive.

Several countries have experimented with casting votes over the Internet, but no nation
uses Internet voting for binding political elections to a larger degree than Estonia [190].
When Estonia introduced its online voting system in 2005, it became the first country to offer
Internet voting nationally. Since then, it has used the system in local or national elections
seven times, and, in the most recent election, over 30% of participating voters cast their
ballots online [101]. People around the world look to Estonia’s example, and some wonder
why they can’t vote online too [333].

Nevertheless, the system remains controversial. Many Estonians view Internet voting as
a source of national pride, but one major political party has repeatedly called for it to be
abandoned [113]. Although Estonia’s Internet Voting Committee maintains that the system
“is as reliable and secure as voting in [the] traditional way” [102], its security has been
questioned by a variety of critics, including voices within the country (e.g. [219, 316]) and
abroad (e.g. [376]). Despite these concerns, the system has not previously been subjected to
a detailed independent security analysis.

For these reasons, the Estonian Internet voting (I-voting) system represents a unique and
important case study in election security. Its strengths and weaknesses can inform other
countries considering the adoption of online voting, as well as the design of future systems
in research and practice.
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In this study, we evaluate the system’s security using a combination of observational
and experimental techniques. We observed operations during the October 2013 local
elections, conducted interviews with the system developers and election officials, assessed
the software through source code inspection and reverse engineering, and performed tests
on a reproduction of the complete system in our laboratory. Our findings suggest the system
has serious procedural and architectural weaknesses that expose Estonia to the risk that
attackers could undetectably alter the outcome of an election.

Most Internet voting schemes proposed in the research literature (e.g. [7, 52]) use
cryptographic techniques to achieve a property called end-to-end (E2E) verifiability [51].
This means that anyone can confirm that the ballots have been counted accurately without

having to trust that the computers or officials are behaving honestly. In contrast, Estonia’s
system is not E2E verifiable. It uses a conceptually simpler design at the cost of having to
implicitly trust the integrity of voters’ computers, server components, and the election staff.

Rather than proving integrity through technical means, Estonia relies on a complicated
set of procedural controls, but these procedures are inadequate to achieve security or
transparency. During our in-person observations and in reviewing official videos of the 2013
process, we noted deviations from procedure and serious lapses in operational security, which
leave the system open to the possibility of attacks, fraud, and errors. Transparency measures,
such as video recordings and published source code, were incomplete and insufficient to
allow outside observers to establish the integrity of results.

The threats facing national elections have shifted significantly since the Estonian system
was designed more than a decade ago. Cyberwarfare, once a largely hypothetical threat,
has become a well documented reality [225, 354, 405, 406], and attacks by foreign states
are now a credible threat to a national online voting system. As recently as May 2014,
attackers linked to Russia targeted election infrastructure in Ukraine and briefly delayed
vote counting [58]. Given that Estonia is an EU and NATO member that borders Russia, its
threat model should not discount the possibility that a foreign power would interfere in its
elections.

To test the feasibility of such attacks, we reproduced the I-voting system in a lab
environment and played the role of a sophisticated attacker during a mock election. We
were able to develop client-side attacks that silently steal votes on voters’ own computers,
bypassing safeguards such as the national ID smartcard system and smartphone verification
app. We also demonstrate server-side attacks that target the implicitly trusted vote counting
server. By introducing malware into this server, a foreign power or dishonest insider could
alter votes between decryption and tabulation, shifting results in favor of the attacker’s
preferred candidate.
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We conclude that there are multiple ways that state-level attackers, sophisticated online
criminals, or dishonest insiders could successfully attack the Estonian I-voting system. Such
an attacker could plausibly change votes, compromise the secret ballot, disrupt elections,
or cast doubt on the integrity of results. These problems are difficult to mitigate, because
they stem from basic architectural choices and fundamental limitations on the security and
transparency that can be provided by procedural controls. For these reasons, we recommend
that Estonia discontinue the I-voting system.

We returned to Estonia in May 2014 and shared these findings with election officials and
the public. Unfortunately, government responses ranged from dismissive to absurd. The
National Electoral Committee stated that the threat vectors we consider have already been
adequately accounted for in the design, and that the attacks we describe are infeasible [108].
We disagree on both counts, but readers can review the evidence and reach their own
conclusions. Prime Minister Taavi Rõivas and President Toomas Hendrik Ilves insinuated
to the media that we had been bought off by a rival political party seeking to disparage
the system. This we vehemently deny, but it illustrates how the Estonian public discourse
concerning election technology has become dominated by partisanship. We hope that the
country can separate technical reality from political rhetoric in time to avert a major attack.

3.1 Background

Our analysis focuses on the Estonian I-voting system as it was used for the 2013 municipal
elections [104]. In these elections, Internet voting was available for seven days, from October
10–16, and the main in-person poll took place on October 20. Results were declared that
evening. According to official statistics [101], 133,808 votes were cast online, corresponding
to 21.2% of participating voters.1 In this section, we review the design and operation of the
I-voting system. Figure 3.3 gives an overview of the interactions between the main system
components.

3.1.1 National ID Cards

An essential building block of the I-voting system is Estonia’s national ID infrastructure [95],
which plays a central role in the country’s high-tech and e-government strategy [179].
Estonian national ID cards are smartcards with the ability to perform cryptographic functions.
With the use of card readers and client software, Estonians can authenticate to websites (via

1Estonia used the system again, shortly after we made our findings public, for May 2014 European
Parliament elections. There were only minor changes to the software and procedures. The fraction of votes
cast online increased to 31%.
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Figure 3.1: I-voting client—Estonians use special client software and national ID smart-
cards to cast votes online.

TLS client authentication [327]) and make legally binding signatures on documents [96].
The cards are popularly used for online banking and accessing e-government services [103].
In the I-voting system, voters use their ID cards to authenticate to the server and to sign their
ballots.

Each card contains two RSA key pairs, one for authentication and one for making digital
signatures. Certificates binding the public keys to the cardholder’s identity are stored on the
card and in a public LDAP database [98]. The card does not allow exporting private keys,
so all cryptographic operations are performed internally. As an added safeguard, each key is
associated with a PIN code, which must be provided to authorize every operation.

Estonians can also use mobile phones with special SIM cards for authentication and
signing, through a system called Mobile-ID [97]. In the 2013 election, 9% of online votes
were cast using this method [101]. We exclude Mobile-ID from our analysis because we did
not have access to the external infrastructure that would be needed to test it.
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Figure 3.2: Verification app—A smartphone app allows voters to confirm that their votes
were correctly recorded. We present two strategies an attacker can use to bypass it.

3.1.2 I-Voting Server Infrastructure

The majority of the I-voting server source code is published to a GitHub repository 2–
3 weeks prior to the election [112]. The server infrastructure is configured in a public
ceremony one week before the election and consists of four machines:

Vote forwarding server (VFS/HES) The VFS (or HES in Estonian) is the only publicly
accessible server. It accepts HTTPS connections from the client software, verifies voter
eligibility, and acts as an intermediary to the backend vote storage server, which is not
accessible from the Internet.

Vote storage server (VSS/HTS) The VSS is a backend server that stores signed, en-
crypted votes during the online voting period. Upon receiving a vote from the VFS, it
confirms that the vote is formatted correctly and verifies the voter’s digital signature using
an external OCSP server.

Log server This server is an internal logging and monitoring platform that collects events
and statistics from the VFS and VSS. The source code and design have not been published.
While this server is not publicly accessible, it can be accessed remotely by election staff.
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Figure 3.3: I-voting system overview—Major components of the system, and how infor-
mation flows among them.

Vote counting server (VCS/HLR) The VCS is never connected to a network and is only
used during the final stage of the election. Officials use a DVD to copy encrypted votes
(with their signatures removed) from the VSS. The VCS is attached to a hardware security
module (HSM) that contains the election private key. It uses the HSM to decrypt the votes,
counts them, and outputs the official results.
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Figure 3.4: Vote casting process
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Figure 3.5: Vote verification process

3.1.3 Voting Processes

The I-voting system uses public key cryptography to provide a digital analog of the “double
envelope” ballots often used for absentee voting [106]. Conceptually, an outer envelope (a
digital signature) establishes the voter’s identity, while an inner envelope (public key encryp-
tion) protects the secrecy of the ballot. Once each voter’s eligibility has been established,
the signature is stripped off, leaving a set of anonymous encrypted ballots. These are moved
to a physically separate machine, which decrypts and counts them.

Casting At the start of each election, the election authority publishes a set of voting
client applications for Windows, Linux, and Mac OS, which can be downloaded from
https://valimised.ee. The client is customized for each election and includes an election-
specific public key for encrypting the voted ballot and a TLS certificate for the server.

Figure 3.4 shows the protocol for casting a vote. The voter begins by launching the client
application and inserting her ID card. She enters the PIN associated with her authentication
key, which is used to establish a client-authenticated TLS connection to the VFS. The client
verifies the server’s identity using a hard-coded certificate. The server confirms the voter’s
eligibility based on her public key and returns the list of candidates for her district [72].

The voter selects her choice c and enters her signing key PIN. The client pads c using
RSA-OAEP and randomness r, encrypts it with using the 2048-bit election public key, and
signs the encrypted vote with the voter’s private key. The signed and encrypted vote is sent
to the server, which associates it with an unguessable unique token x and returns x to the
client. The client displays a QR code containing r and x.

As a defense against coercion, voters are allowed to vote multiple times during the online
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Figure 3.6: Vote tabulation process

election period, with only the last vote counted. All earlier votes are revoked but retained
on the storage server for logging purposes. While the client indicates whether the user has
previously voted, it does not display the number of times. The voter can also override her
electronic vote by voting in person on election day.

Verification The voter can confirm that her vote was correctly recorded using a smartphone
app provided by the election authority [107, 109, 110], as seen in Figure 3.2. This protocol
is shown in Figure 3.5. The app scans the QR code displayed by the voting client to obtain
r and x. It sends x to the election server, which returns the encrypted vote b (but not the
signature) as well as a list of possible candidates. The app uses r to encrypt a simulated vote
for each possible candidate and compares the result to the encrypted vote received from the
server. If there is a match, the app displays the corresponding candidate, which the voter
can check against her intended choice. The server allows verification to be performed up to
three times per vote and up to 30 minutes after casting.

Tabulation Figure 3.6 shows the sequence that occurs at the conclusion of an election.
After online voting has ended, the storage server processes the encrypted votes to reverify
the signatures and remove any revoked or invalid votes. During a public counting session, of-
ficials export the set of valid votes after stripping off the signatures, leaving only anonymous
encrypted votes. These are burned to a DVD to transfer them to the counting server.

The counting server is attached to an HSM that contains the election private key. The
server uses the HSM to decrypt each vote and tallies the votes for each candidate. Officials
export the totals by burning them to a DVD. These results are combined with the totals from
in-person polling stations and published as the overall results of the election.
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3.2 Observations

The first part of our analysis follows an observational methodology. Four of the authors
(Halderman, Hursti, Kitcat, and MacAlpine) visited Estonia as officially accredited election
observers during the October 2013 municipal elections and witnessed the operation of the
I-voting servers. During that time, they also met with election officials and the I-voting
software developers in Tallinn and Tartu. Later, we closely reviewed published artifacts
from the election: the server source code [112], written procedures [99], and nearly 20 hours
of official videos that recorded the I-voting configuration, administration, and counting
processes [100]. Ultimately, we identified a range of problems related to poor procedural
controls, lapses in operational security, and insufficient transparency measures.

3.2.1 Inadequate Procedural Controls

While the Internet Voting Committee (the administrative body that runs the system) has
published extensive written procedures covering many steps in the election process [99], we
observed that some procedures were not consistently followed and others were dangerously
incomplete.

Procedures for handling anomalous conditions that could imply an attack appear to be
inadequately specified or do not exist. For example, tamper-evident seals are used on the
server racks in the data center.2 When asked what would happen if the seals were found to
be compromised, election staff responded that they were unsure.

Anomalous situations that occurred during the 2013 election were handled in an ad
hoc manner, sometimes at the discretion of a single individual. On multiple occasions, we
observed as data center staff restarted server processes to resolve technical glitches, and
repeated failed commands rather than troubleshooting the root cause. Similar issues were
observed during tabulation when the election officials attempted to boot the vote storage
server to export the encrypted votes. The machine reported errors stating that the drive
configuration had changed—a possible indication of tampering. Instead of investigating the
cause of the alert, staff bypassed the message.

Some procedures appeared to change several times over the observation period. For
example, observers were initially allowed to film and photograph inside the server room, but
were prohibited the next day because of the unsubstantiated claim of “possible electronic
interference.” In a similarly abrupt change in procedure, observers were required to leave

2We note that tamper-evident seals like those used in Estonia are known to be easy to defeat using widely
available tools [185–188]. Their usefulness for election security has been questioned in other countries [16,
422].
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their mobile phones outside the data center after multiple days where this was not the policy.
Rewriting the rules on the fly suggests that the procedures had not been adequately thought
out or were insufficiently defined for staff to implement them consistently.

Even when procedural safeguards were clear, they were not always followed. For
example, procedure dictates that two operators should be present when performing updates
and backups [72]. Yet, on October 14, we observed that a lone staff member performed these
tasks. Without a second operator present, the security of the system relies on the integrity of
a single staff member.

3.2.2 Lax Operational Security

Since the I-voting system treats parts of the server infrastructure as implicitly trusted, the
processes used to install and configure those servers are crucial for the security of the
election. We witnessed numerous serious lapses in operational security both during our
on-site observations and in the official videos released by the Internet Voting Committee.

Pre-election setup Several problems can be seen in the official videos of the pre-election
setup process, which takes place in the National Electoral Committee’s offices in Tallinn.

The videos show election workers downloading software for use in the setup process
from a public website over an unsecured HTTP connection (Figure 3.8). A network-based
man-in-the-middle attacker could compromise these applications and introduce malware
into the configuration process.

In other instances. workers unintentionally typed passwords and national ID card PINs
in view of the camera (Figures 3.9 and 3.10). These included the root passwords for the
election servers. Similar problems occurred during daily maintenance operations in the data
center. Physical keys to the server room and rack were revealed to observers; these keys
could potentially be duplicated using known techniques [211].

The most alarming operational security weakness during pre-election setup was workers
using an “unclean” personal computer to prepare election client software for distribution to
the public. As seen in Figure 3.7, the desktop has shortcuts for an online gambling site and
a BitTorrent client, suggesting that this was not a specially secured official machine. If the
computer used to prepare the client was infected with malware, malicious code could have
spread to voters’ PCs.

Daily maintenance We observed further operational security weaknesses during daily
maintenance procedures that took place during the voting period. The I-voting servers are
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hosted at a government data center in Tallinn, and workers go there to perform operations
at the server consoles. While there were security video cameras at the data center, there
appeared to be no 24/7 security personnel nor any definitive information on who monitored
the cameras.

Standard practice during daily maintenance is for workers to log in to the election
servers under the root account and perform operations at the shell. Logging in as root is
contrary to security best practice, as it simplifies many attacks, disables user-based privilege
separation for operator functions, and increases the risk of human error.

Unencrypted daily backups were casually transported in workers’ personal backpacks.
DVDs holding updated voter lists from the population register were handled in a similarly
casual way after having been created, we were told, by a member of staff at their own
computer. We did not observe any audit trail or checks on the provenance of these DVDs,
which were used daily at the heart of the I-voting system.

Tabulation The tabulation process at the end of the election was also concerning. After
the votes were decrypted on the counting server, an unknown technical glitch prevented
workers from writing the official counts and log files to DVD. Instead, officials decided to
use a worker’s personal USB stick to transfer the files to an Internet-connected Windows
laptop, where the results were officially signed. This USB stick had been previously used
and contained other files, as shown in Figure 3.12. This occurred despite protest from an
audience member and deviated significantly from the written procedure, adding multiple
potential attack vectors. Malware present on the laptop or USB stick could have altered the
unsigned results, or malware on the USB stick could have been transferred to the trusted
counting server.

These instances illustrate a pattern of operational security lapses on the part of the
workers who operated the I-voting system. This is particularly alarming given the high
degree of trust the I-voting system design requires of the election servers, client software,
and the election workers themselves.

3.2.3 Insufficient Transparency

The election officials have implemented a number of transparency measures, including
allowing in-person public observation, publishing videos of operator tasks, and releasing
large parts of the server source code. While these measures appear to be well intended, they
are incomplete and insufficient to fully establish the integrity of election results.

One limitation is that these measures cannot show whether malicious actions were
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Figure 3.7: Official build system is
multi-use— Operators used a PC
containing other software, including
PokerStars.ee, to sign the official
voting client for public distribution.
This risks infecting the client with
malware spread from the PC.

Figure 3.8: Insecure software
downloads—Operators down-
loaded software over insecure
connections for use in pre-election
setup. An attacker who injected
malware into these downloads might
be able to compromise the process.

Figure 3.9: Keystrokes reveal root
passwords—Videos posted by offi-
cials during the election show oper-
ators typing, inadvertently revealing
root passwords for election servers.

Figure 3.10: Video shows national
ID PINs—During pre-election
setup, someone types the secret PINs
for their national ID card in full view
of the official video camera.

Figure 3.11: Wi-Fi credentials
posted—The official video of the
pre-election process reveals creden-
tials for the election officials’ Wi-Fi
network, which are posted on the
wall.

Figure 3.12: Personal USB stick—
Against procedures, an official used a
USB stick, containing personal files,
when moving the official election re-
sults off of the counting server.
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performed on the servers or hard disks before recording and observation commenced. In
practice, they also do not capture everything going on in the facilities. On many occasions,
there were multiple machines or screens in use simultaneously but only a single camera.

Although we attempted to follow these simultaneous operations during our in-person
observations, the operators occasionally appeared to be deliberately evading us. On Monday,
October 14, we were physically present in the server room when one of the servers produced
an abnormal output which appeared to be a failure of the update operation. The official
video recording was following the other display, and the operator, upon seeing the error
message, quickly flushed it from the screen. In another instance when an error appeared on
the server console, an election worker quickly cleared the display and then asked us to rotate
out of the room and let other observers in, allowing him a block of observation-free time.

An auditor from a major international consulting firm had been hired by the Internet
Voting Committee, and his report also documents procedural and operational shortcom-
ings [340]. However, the auditor’s role was chiefly to observe, and he was not provided with
the access needed to confirm secure operation of the system.

Election officials have made large parts of the server software open source [112]. This
is a positive measure as it allows independent review and assessment—indeed, our study
made extensive use of the code. However, security-critical pieces of code are missing from
the published sources, including the entire client application and code that is executed on
every server machine (see Section 3.3.1).

Officials told us that the client source is not released (and furthermore, the client binary
is obfuscated) because they are concerned that attackers might modify it and distribute a
trojan lookalike. Creating client-side malware is feasible without the source, as we show
in Section 3.4.1. At the same time, keeping source code secret prevents the public from
understanding what they are being asked to run on their computers, and it increases the risk
that any centrally introduced malicious changes to the client will go undetected.

As these transparency measures are practiced today, the videos, public observation,
and open-source components risk providing a false sense of security. It is possible for
the systems to be corrupted prior to videotaping, for media used to update servers to be
maliciously modified, or for unpublished pieces of software to contain errors or malicious
code—all invisible to the public under current transparency measures.

To illustrate these limitations, we conducted an experimental server-side attack on a
reproduction of the system, as detailed in Section 3.4.2. We have published a series of videos
(see https://estoniaevoting.org/videos/) matching the procedures in the official videos step-
by-step, but where the result of the election is dishonest because of malware surreptitiously
introduced before the start of pre-election setup.
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3.2.4 Vulnerabilities in Published Code

The published portions of the I-voting server software [112] contain 17,000 lines of code,
with 61% in Python, 37% in C++, and the remainder in shell scripts. The codebase is
quite complex, with a large number of external dependencies, and exhaustively searching it
for vulnerabilities would be a challenging task well beyond the scope of this project. We
understand that volunteers from the Estonian security community have already audited it—a
testament to the virtues of publishing code. Nonetheless, we discovered some minor bugs
and vulnerabilities while examining the code in order to conduct our other experiments. We
disclosed these issues to the Internet Voting Committee in May 2014.

One of the problems we found allows a denial-of-service attack against the voting
process. If a client sends an HTTP request containing unexpected header fields, the server
logs the field names to disk. By sending many specially crafted requests containing fields
with very long names, an attacker can exhaust the server’s log storage, after which it will
fail to accept any new votes. In the 2013 election, the size of the log partition was 20 GB.
We estimate that an attacker could fill it and disable further voting in about 75 minutes.
Curiously, the vulnerable code is only a few lines from the comment, “Don’t write to disk;
we don’t know how large the value is.” This indicates that the developers were aware of
similar attacks but failed to account for all variants.

A second problem we discovered is a shell-injection vulnerability in a server-side user
interface that is intended to allow operators to perform pre-determined administrative tasks.
The vulnerability would allow such an operator to execute arbitrary shell commands on the
election servers with root privileges. Under current procedures, this is moot, since the same
workers perform other administrative tasks at the command line as root. However, shell
injection vulnerabilities can be exceedingly dangerous [423], and the fact that the issue was
not detected in advance of the election is a reminder that open source cannot guarantee the
absence of vulnerabilities [201].

3.3 Experimental Methodology

In order to further investigate the security of the I-voting system, we set up a copy of the
system in our lab, reproducing the software and configuration used for the 2013 election.
While pen testing during a real election would have involved numerous legal and ethical
problems [346], our laboratory setup allowed us to play the role of attacker in our own mock
election without any risk of interfering with real votes.
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3.3.1 Mock Election Setup

To reproduce the I-voting servers, we used the source code published on GitHub by the
election authority [112]. We set up the servers by following published configuration doc-
uments [99] and matching step-for-step the actions performed by election workers in the
official videos [100]. As part of this process, we generated our own key pairs for the web
server TLS certificate and for the election key.

Some components were missing from the published server code, but we attempted to
recreate them as faithfully as possible. First, the software for the log server, the ivote-

monitor package, was not made available; we operated a standard rsyslog [348] server
instead. Additionally, there was no source provided for the evote post.sh script, which
runs on every server during installation of the packages. We attempted to reproduce its
functionality based on output shown during server configuration in the official videos.

In real elections, Estonia uses a hardware security module (HSM) in order to handle the
election private key and decrypt votes. Since we did not have compatible hardware available,
we emulated the HSM in software using OpenSSL and Python. Since this deviates from the
fielded setup, we ensured that none of our attacks depend on vulnerabilities in the HSM.

We set up our own certificate authority and OCSP responder as stand-ins for the national
ID card PKI. This allowed us to generate identities for mock voters. Since we did not have
access to actual Estonian ID cards, we had to emulate them. We replaced the ID card on
the client with a software-based emulator that speaks the protocol expected by the voting
client application. Once again, we ensured that the success of our attacks does not rely on
the changes we made. We assume for purposes of this study that the ID cards and associated
infrastructure are secure.

For the client software, we started with the official voting client from the 2013 election,
which we downloaded from the election website [105] in October 2013. For convenience,
we focused on the Linux version of the client. Since the election public key and server
certificate are hard-coded into the client, we needed to patch it in order to replace these with
the keys of our mock election and server. Similarly, we used the official source code for the
Android-based verification app [111] and modified it to communicate with our server.

Virtual machines we used to reproduce the election, together with source code for our
demonstration attacks, are available online at https://www.estoniaevoting.org.

3.3.2 Threat Model

After setting up the mock election, we attempted to compromise it, allowing ourselves the
resources and capabilities of a sophisticated but realistic attacker. This attacker could be a
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foreign state, a well-funded criminal organization, or a dishonest election insider. These
kinds of attackers are difficult to defend against, but they represent a serious and realistic
threat to modern elections given the enormous political and financial consequences at stake.

Since the time the Estonian system was introduced, cyberwarfare has become a well doc-
umented reality. Chinese espionage against U.S. companies [225], U.S. sabotage of Iran’s
nuclear enrichment program [354], and attacks by the U.K. against European telecommunica-
tions firms [406] are just a few examples. An increasing number of nations possess offensive
computer security capabilities [324], and investment in these capabilities is reported to be
growing at a significant rate [121]. Estonia itself suffered widespread denial-of-service
attacks in 2007 that have been linked to Russia [405]. More recently, in May 2014, attackers
linked to Russia targeted election infrastructure in Ukraine, which uses a computerized
system to aggregate results from around the country. The attackers reportedly attempted
to discredit the election process by disrupting tallying and causing the system to report
incorrect results [58].

A state-sponsored attacker would have powerful capabilities. We assume that they
could obtain a detailed knowledge of the I-voting system’s operation, which can be gleaned
from published sources and reverse engineering (as we did), from insider knowledge, or
by compromising systems used by the software developers and election officials. We also
assume that if reverse engineering is required, the attacker would have sufficient human
and technical resources to accomplish this on a short timescale. For client-side attacks, we
assume that the attacker has the ability to deliver malware to voters’ home computers. This
could be done externally to the voting system, either by purchasing pre-existing criminal
resources, such as a botnet, or by buying or discovering zero-day vulnerabilities in popular
software. Another route would be to compromise the voting client before its delivery to
voters, either by a dishonest insider who can alter the software or by other attackers who can
compromise the computers used to build or distribute it.

3.4 Attacks

We used our reproduction of the I-voting system to experiment with a range of attacks. The
I-voting system places significant trust in client and server components, making these highly
attractive targets for an attacker.

While certain server operations are protected by cryptography (e.g., cast votes cannot
be decrypted on the front-end web server, since it lacks the requisite private key), in other
instances the servers are completely trusted to perform honestly and correctly when handling
votes. Similarly, while the smartphone verification app gives voters some ability to check
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that the client software is behaving honestly, there are major limitations to this safeguard
that can be exploited to hide malicious client behavior.

We experimentally verified that these trusted components are vulnerable by conducting
two sets of demonstration attacks against them in our mock election setting. The first type
are attacks on the client that are within reach of a financially capable attacker, in which an
attacker can change votes in a retail manner for large numbers of individual voters. The
second kind are server-side attacks within the reach of a well-resourced state-level attacker
or dishonest insider, in which an attacker could change the wholesale results of the entire
election by compromising the vote counting server.

3.4.1 Client-side Attacks

The voter’s client machine is a trusted component of the I-voting system, and there are
several ways that an attacker might try to infect a sufficient number of Estonian clients to
alter election results in a close race. One is to rent bots from pre-existing botnets. Botnet
operators frequently offer them for rent on the black market, and these can be targeted
to a specific country or region [73]. A second way would be to discover or purchase a
zero-day exploit against popular software used in Estonia. While this would be expensive,
it would not be out of reach for a state-level attacker—several companies specialize in
selling zero-day exploits to governments [164]. A third strategy would be to infect the
official I-voting client before it is delivered to voters. The operational security problems
documented in Section 3.2.2 suggest that this is a practical mode of attack.

If the attacker’s goal is merely to disrupt the election, far fewer infected system would
be required. Estonian law allows election officials to cancel online balloting if a problem
is detected [169]. In that case, Internet voters would have their electronic votes canceled
and be required to go to the polls on election day. This is a useful emergency measure, but
it requires election officials to both detect the attack and make a snap decision about its
severity. Suppose an attacker infected a small number of clients with vote-stealing malware,
allowed some of them to be detected, and designed the attack such that it was difficult to
quickly determine the size of the infected population. Under these circumstances, officials
might be compelled to cancel the online portion of the election, yet the attacker would need
relatively few resources.

In order to investigate how an attacker could modify votes through the client application,
we implemented two experimental client-side attacks. Both assume that the attacker has
used one of the techniques noted above to initially infect the client machine. Each attack
uses a different mechanism to defeat the smartphone verification app (see Section 3.1.3), the
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Figure 3.13: Malware records secret PINs—Estonians use their national ID smartcards
to sign and cast ballots. We developed demonstration client-side malware that captures the
smartcard PINs and silently replaces the user’s vote.

only tool available to voters to detect whether their ballot choices have been manipulated by
client-side malware.

Both attacks involve hidden malicious processes that run alongside the I-voting client
application and tamper with its execution. In order to develop them, we first needed to
reverse engineer parts of the client software used in 2013. The client is closed source,
and the developers took measures to complicate reverse engineering. The executable is
obfuscated using the UPX packing tool. Strings, public keys, and other resources are hidden
by XORing them with the output of a linear congruential generator. These measures did
not significantly complicate the construction of our attacks. We used the UPX application
with the -d switch to unpack the binary and used the IDA Pro disassembler and Hex-Rays
decompiler to reverse the portions necessary for our attacks.

Ghost Click Attack In the first attack, we use malware on the client machine to silently
replace the user’s vote with a vote in favor of an attacker-selected candidate. At a high level,
the malware silently sniffs the victim’s PIN during the original voting session. The real
vote is cast, and everything appears normal, including the verification smartphone app if the
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voter uses it. Then, the malware waits until it is too late to verify again—either until the 30
minute time limit has passed or until after the user closes the client software and the QR
code can no longer be scanned.

At that point, the malware checks whether the voter’s ID card is still present in the
computer. If so, it opens a copy of the I-voting client in a hidden session and, through
keystroke simulation, submits a replacement vote. If the ID card has already been removed,
the malware remains dormant until the card is inserted again. Since Estonian ID cards are
used for a variety of applications, many voters are likely to use their cards again within the
week-long online voting period.

In our implementation, the malware attaches to the voting client process and captures
PINs by setting breakpoints using ptrace [338]. Upon reaching a breakpoint, it reads the
PIN from the client’s memory and stores it for future use. Although our implementation
runs in userspace, a kernel-level rootkit could be used to make the attack even more difficult
to detect [174]. The malware could be extended to sniff PINs opportunistically any time
voters use their ID cards, such as when logging into a bank.

Bad Verify Attack The Ghost Click attack defeats the verification app, but applying
it on a large scale would lead to a suspiciously high number of replacement votes. We
also experimented with a stealthier but more complicated style of attack that targets the
verification app directly.

The verification app is premised on the notion that the smartphone is an independent
device that is unlikely to be compromised at the same time as the client PC. However,
modern smartphones are not well isolated from users’ PCs, as there is typically regular
communication between the two devices. Users frequently plug their phones into their
PCs to charge them or to transfer files. User content is regularly synchronized between
devices through Google Drive, Dropbox, and other cloud services. Android even allows
users to remotely install applications on their phones from their PCs through the Google
Play Store web interface, and other platforms have similar mechanisms [233]. As a result
of this convergence, there are abundant means by which PC malware can attempt to infect
the user’s phone. This would allow the attacker to deploy a dishonest verification app that
colludes with malware on the PC to fool the voter.

To experiment with such an attack, we implemented tandem PC and smartphone malware.
Malware on the PC detects which candidate the voter selects and modifies the QR code
shown by the I-voting client so that it encodes the voter’s chosen candidate. A malicious
verification app on the voter’s phone behaves just like the real verification app, except that
it displays whatever candidate is embedded in the QR code, rather than the candidate for
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whom the vote was actually cast. This allows the PC malware to arbitrarily change the
submitted vote without being detected by verification or causing a suspicious number of
replacement votes.

This form of attack adds complexity, due to the need to compromise both devices
simultaneously. It also carries an elevated possibility of detection if used on a large scale,
since some voters may attempt verification with devices owned by others. However, it
illustrates that as the PC and smartphone platforms continue to converge, it will become
increasingly unsafe to treat them as independent devices.

3.4.2 Server-side Attacks

The integrity of the count depends on the correct operation of the counting server and its
HSM, which are the only components with the ability to decrypt votes. Similarly, ballot
secrecy depends on the counting server to not leak information about the correspondence
between encrypted and decrypted votes. An attacker who infects the counting server with
malicious software can violate these critical security properties.

Although the counting server is not connected to a network, there are a number of other
means by which it might be attacked. State-level attackers are known to employ firmware-
based malware [17], which could be used to infect the BIOS or hard disk before delivery
to election officials. Sophisticated attackers can also target component supply chains and
distribution infrastructure [193]. We were informed during our observation mission that the
Internet Voting Committee has a bid process prior to every election to rent the servers that
they use, and attackers could try to introduce subverted hardware through this process.

Another infection strategy would be to compromise the server software before it is
installed at the beginning of the election. We pursued this route in our experiments.

Injecting malware Despite procedural safeguards [99], an attacker who strikes early
enough can introduce malicious code into the counting server by using a chain of infections
that parallels the configuration process. During pre-election setup, workers use a develop-
ment machine, which is configured before setup begins, to burn Debian Linux installation
ISOs to DVDs. These DVDs are later used to configure all election servers. If the machine
used to burn them is compromised—say, by a dishonest insider, an APT-style attack on
the development facility, or a supply-chain attack—the attacker can leverage this access
to compromise election results.

We experimented with a form of this attack to successfully change results in our mock
election setup. We first created a modified Debian ISO containing vote-stealing malware
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intended to execute on the counting server. The tainted ISO is repackaged with padding to
ensure that it is identical in size to the original. In a real attack, this malicious ISO could be
delivered by malware running on the DVD burning computer, by poisoning the mirror it is
retrieved from, or by a network-based man-in-the-middle.

Defeating integrity checking During the setup process, election workers check the SHA-
256 hash of the ISO file against the SHA256SUMS file downloaded via anonymous FTP
from debian.org. Since regular FTP does not provide cryptographic integrity checking, a
network-based man-in-the-middle could substitute a hash that matched the malicious ISO.
However, this hash would be publicly visible in videos of the setup process and might later
arouse suspicion.

An attacker who had compromised the DVD burner computer could achieve greater
stealth. To demonstrate this, we implemented a custom rootkit that defeats the hash veri-
fication. Our rootkit is a kernel module that hooks system calls in order to cause the hash
verification to succeed and the original ISO’s hash to be printed. Hash checks applied in
this way are only a minor speedbump under our threat model.

Vote-stealing payload After passing the hash check, the tainted ISOs are used to install
the OS on all election servers, spreading the infection. When the new OS boots, the malware
checks whether the machine is configured as the counting server, in which case it launches
a vote-stealing payload.

During the counting process, this payload acts as wrapper around the process responsible
for using the HSM to decrypt votes. This allows the malware to alter the decrypted votes
prior to returning them to the counting application. (In our demonstration, we change
100% of the votes, but it would be straightforward to implement a more subtle algorithm
that manipulates an arbitrary fraction.) The altered votes are then counted and released as
the official results. Such an attack would be unlikely to be detected, as there is no audit
mechanism to check the accuracy of the decryption.

Other avenues for infection What we have described is far from the only means of
injecting a malicious payload into the servers. Several other pieces of closed-source soft-
ware of unknown or untrusted provenance could be vehicles for attacks. These include the
evote post.sh script, missing from the server source code repository, which runs on all
servers, as well as the driver software for the HSM, which is a closed-source application
manually installed to the counting server from a DVD. These programs all touch critical,
trusted portions of the I-voting system, yet they are not reviewable by the public and not
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integrity checked through any visible procedures.
In fact, during the pre-election server setup process in 2013, workers used an incorrect

version of the evote post.sh script that failed to install the evote analyzer package
on the VFS. Administrators later had to manually install this package during the voting
period, after they realized that the server was not reporting all expected log data [340]. This
provides a case-in-point example of a failure of the procedural protections to ensure that
only the correct software gets installed on the server machines.

Zero-day exploits are yet another potential attack vector, and a source of many “known
unknowns.” One illustration of this is the OpenSSL Heartbleed bug [61], which was not
disclosed until April 2014. The front-end server used during the 2013 election was vulnerable
to Heartbleed, and an attacker who knew about the bug likely could have exploited it to
extract the server’s TLS private key. Then, using a man-in-the-middle attack on connections
from voters, they could have selectively prevented certain voters’ ballots from being received
by the real server.

The key lesson from our server-side attack is that it is extremely difficult to ensure the
integrity of code running on a critical system, particularly when faced with the possibility
of sophisticated attacks or dishonest insiders. If any element in the lineage of devices that
handle the software installed on the counting server is compromised, this could jeopardize
the integrity of election results [402].

3.4.3 Attacking Ballot Secrecy

While our experiments focused on attacks against the integrity of election results, we also
considered ballot secrecy issues, since the secrecy of the voter’s ballot is a critical defense
against voter coercion and vote buying. The I-voting system implements a relatively strong
protection against in-person, individual coercion by allowing voters to cast replacement
votes online or to cancel their electronic ballots entirely and vote in person on election day.
More sophisticated attacks remain possible, however, including spyware on the voter’s PC
or smartphone, as well as server-side attacks.

Server-side attacks on ballot secrecy are particularly troubling, since preserving ballot
secrecy is a main goal of the system’s cryptographic double-envelope architecture. The
I-voting design attempts to ensure that votes remain private by breaking the association
between voters’ digital signatures from their plaintext votes. The encrypted ballots are
separated from the signatures and copied to an isolated machine before being decrypted
and counted. Note that this machine, the counting server, has access to the complete
association between the encrypted ballots and the plaintext votes. An attacker who can
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smuggle this information out through a covert channel can compromise every voter’s secret
ballot.

Unfortunately, the tabulation procedures offer multiple possibilities for exfiltrating this
information. When tabulation is complete, officials use the counting server to burn a DVD
containing both vote totals and log files. Suppose for simplicity that the attacker is a
dishonest insider with access to this DVD and to the complete set of signed, encrypted
ballots (e.g. from a backup disk) and some mechanism for infecting the counting server
with malicious code, such as the routes discussed above. The counting server malware can
sort the encrypted ballots and leak the voter choices corresponding to each as a sequence of
integers in the same order. Since there is typically only one race, only a few bits per ballot
are needed to determine the choices of all voters. The malware could steganographically
encode this data into the log files through the order of entries, or it could simply write this
information to unallocated sectors of the disc. The attacker can then decode this information
and use it to associate every voter’s digital signature (and hence, their identity) with their
vote.

3.5 Discussion

Though we have spent the majority of this report discussing weaknesses and risks, we would
be remiss if we failed to acknowledge the great lengths that the I-voting system developers,
security staff, and officials go to in their efforts to protect the election system.

One core strength of the I-voting system is Estonia’s national ID card infrastructure and
the cryptographic facilities it provides. While the ID cards cannot prevent every important
attack, they do make some kinds of attacks significantly harder. The cards also provide an
elegant solution for remote voter authentication, something few countries do well.

The Internet Voting Committee’s willingness to release source code is a very positive
step for transparency. This shows confidence in the software’s developers and demonstrates
officials’ desire to work with the security community at large. Providing access to the
source allows many parties to analyze it—not only international researchers like us but
also the domestic security community, who have an even greater interest in the system’s
secure operation. For these reasons, we urge the committee to go further and release the
source code to the I-voting client and the missing portions of the server code discussed in
Section 3.3.1.

Finally, we commend the Internet Voting Committee for their dedication to improving
the election system. Since its inception in 2005, the system has undergone significant
changes. From the switch to a standalone client, to the deployment of the log server that

69



enhances forensic and monitoring capabilities, to the addition of the verification app, the
I-voting system has not stood still. Yet as we have argued, even these and an array of
other useful safeguards are not enough to secure Estonia’s online elections in the face of a
determined and well-resourced modern attacker.

Opportunities for innovation While the risks of Internet voting are clear, the benefits
are uncertain. Many Estonians support I-voting because they believe there is widespread
fraud in the country’s paper-based system. Whether or not these concerns are founded,
the I-voting system can do little to help, since nearly 80% of votes are still cast on paper.
Fortunately, there are safe and effective ways to apply new technology to secure paper-based
voting.

In recent years, researchers have developed methods that can dramatically increase the
security of paper ballots. Statistical risk-limiting audits [41, 44, 217, 391] can minimize the
risk of error or fraud during tabulation. Cryptographic techniques that achieve end-to-end
verifiability [28, 52, 351] enable individual voters to verify that every vote has been counted
accurately. Estonia has an opportunity to be the first country in the world to adopt these
technologies on a national scale.

3.6 Conclusions

Compared to other online services like banking and e-commerce, voting is an exceedingly
difficult problem, due to the need to ensure accurate outcomes while simultaneously pro-
viding a strongly secret ballot. When Estonia’s I-voting system was conceived in the early
2000s, it was an innovative approach to this challenge. However, the designers accepted
certain tradeoffs, including the need to trust the central servers, concluding that although
they could take steps to reduce these risks through procedural controls, “the fundamental
problem remains to be solved” [14]. More than a decade later, the problem remains unsolved,
and those risks are greatly magnified due to the rapid proliferation of state-sponsored attacks.

As we have observed, the procedures Estonia has in place to guard against attack and
ensure transparency offer insufficient protection. Based on our tests, we conclude that
a state-level attacker, sophisticated criminal, or dishonest insider could defeat both the
technological and procedural controls in order to manipulate election outcomes. Short
of this, there are abundant ways that such an attacker could disrupt the voting process or
cast doubt on the legitimacy of results. Given the current geopolitical situation, we cannot
discount state-level attacks targeting the system in future elections.
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Due to these risks, we recommend that Estonia discontinue use of the I-voting sys-
tem. Certainly, additional protections could be added in order to mitigate specific attacks
(e.g. [220]), but attempting to stop every credible mode of attack would add an unmanage-
able degree of complexity. Someday, if there are fundamental advances in computer security,
the risk profile may be more favorable for Internet voting, but we do not believe that the
I-voting system can be made safe today.

2017 Update In 2017, researchers from Masaryk University and Enigma Bridge released
the existence of a vulnerability in the RSA prime generation of Infineon’s cryptographic
hardware. The researchers found that more that half of a 10% sample of Estonian national
ID cards were vulnerable to this attack with an expected cost of 50 CPU-years and worst
case of 100 CPU-years. While a non-trivial cost, the attack can be trivally parallelized such
that the wall-clock time can be trivial [248]. Estonian officials have acknowledged that ID
cards issued after October 2014 are vulnerable [93] but proceeded with the October 2017
municipal elections as normal [94]. While the parallel nature of the attack makes the attack
feasible to even moderately resourced attackers, it is a symmetric attack and is not easily
scalable to cast large numbers of fraudulent votes. However it would be feasible to attack
the keys used by election officials to sign the voter roll updates, client binary, or official
election results (assuming that the election officials’ keys are vulnerable).

Nation-State Attacker Model When we look at this research in the context of our NS-
Attacker model, we see many fitting facets. The first and most obvious is the use of the NS-
Attacker’s Near Superset Attacker advantage. In the context of the in-person observations,
published videos, and publicly available documentation, we were able to find and identify
many of the OPSEC and procedural failures and it is highly likely that an NS-Attacker
would too. Additionally, our efforts to reverse engineer and deeply understand the protocol
and infrastructure were successful implying that an NS-Attacker’s would be as well.

Another NS-Attacker advantage is Specialization as it applies to two portions of the
Estonian Internet Voting system. The first is combining skilled linguists to our OPSEC and
procedural analysis. While we gleaned information mainly from recorded computer screens
and Google Translate interpretations of the documents, NS-Attackers would likely be able
to extract additional information by using highly skilled linguists with not only translation
skills but and understanding of culture. A likely source of useful information that we were
not able to exploit is the election officials’ conversations during the configuration ceremony.

Specialization could also be leveraged in reverse-engineering the client application. Our
efforts to deobfuscate and understand the application were successful over the course of a
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few weeks worth of effort and were solely focused on patching the client to communicate
with our server implementation. An NS-Attacker who employs highly skilled and highly
experienced reverse-engineerers would likely not only be able to accomplish the same goal
in significantly less time, but would also likely look for binary weaknesses which they may
be able to leverage for more impact.

Lastly, the NS-Attacker’s characteristic of Access is directly applicable to our server-side
attacks. While we simulated privileged access to the servers, NS-Attackers are known to
use both supply-chain attacks [299] as well as 0-day vulnerabilities [5, 157] as the situation
dictates. Either of these approaches would provide the access needed for our server-side
attacks.
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CHAPTER 4

Explaining and Evaluating Operations

Of all the source documents that have become public in recent years, some of the most
interesting and enigmatic are those related to NSA’s ability to defeat many of the most
popular Internet protocols’ encryption schemes. While none of the documents suggest
defeating these protective measures is trivial, the mere fact that they are exploitable means
that they do not provide the protection expected from strong encryption. TLS, SSH, and
IPsec are among some of the most studied protocols yet documents released by Der Spiegel
indicate that the NSA has wide-reaching abilities to defeat their encryption and gain access
to the plaintext content [272, 305, 308].

In this chapter, we present our 2015 research which provides a plausible technical
explaination as to why the encryption of these often used protocols did not provide the
security we believed it did. The shared facet among all of these breakable encryption
schemes is the use of the Diffie-Hellman key exchange for negotiating the shared secret base
for session keys. We examine how Diffie-Hellman is commonly implemented and deployed
with these protocols and find that, in practice, it frequently offers less security than widely
believed.

We propose two reasons for this unexpected vulerability. First, a surprising number of
TLS servers use weak Diffie-Hellman parameters or maintain support for obsolete 1990s-era
export-grade crypto. Second, the common practice of using standardized, hard-coded,
or widely shared Diffie-Hellman groups has created an asymmetric vulnerability where
resources invested towards “breaking” these common group can be used to break a large
number of instances across a large number of implementations and endpoints.

The current best technique for attacking Diffie-Hellman relies on compromising one
of the private exponents (a, b) by computing the discrete log of the corresponding public
value (ga mod p, gb mod p). With state-of-the-art number field sieve algorithms, computing
a single discrete log is more difficult than factoring an RSA modulus of the same size.
However, an adversary who performs a large precomputation for a prime p can then quickly
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calculate arbitrary discrete logs in that group, amortizing the cost over all targets that share
this parameter. Although this fact is well known among mathematical cryptographers, it
seems to have been lost among practitioners deploying cryptosystems. We exploit it to
obtain the following results:

Active attacks on export ciphers in TLS. We introduce Logjam, a new attack on TLS by
which a man-in-the-middle attacker can downgrade a connection to export-grade cryptog-
raphy. This attack is reminiscent of the FREAK attack [33] but applies to the ephemeral
Diffie-Hellman ciphersuites and is a TLS protocol flaw rather than an implementation vul-
nerability. We present measurements that show that as of 2015, this attack applies to 8.4%
of Alexa Top Million HTTPS sites and 3.4% of all HTTPS servers that have browser-trusted
certificates.

To exploit this attack, we implemented the number field sieve discrete log algorithm
and carried out precomputation for two 512-bit Diffie-Hellman groups used by more than
92% of the vulnerable servers. This allows us to compute individual discrete logs in about a
minute. Using our discrete log oracle, we can compromise connections to over 7% of Top
Million HTTPS sites. Discrete logs over larger groups have been computed before [40],
but, as far as we are aware, this is the first time they have been exploited to expose concrete
vulnerabilities in real-world systems.

We were also able to compromise Diffie-Hellman for many other servers because
of design and implementation flaws and configuration mistakes. These include use of
composite-order subgroups in combination with short exponents, which is vulnerable to
a known attack of van Oorschot and Wiener [413], and the inability of clients to properly
validate Diffie-Hellman parameters without knowing the subgroup order, which TLS has no
provision to communicate. We implement these attacks too and discover several vulnerable
implementations.

Risks from common 1024-bit groups. We explore the implications of precomputation
attacks for 768- and 1024-bit groups, which were widely used in practice and considered
secure. We provide new estimates for the computational resources necessary to compute
discrete logs in groups of these sizes, concluding that 768-bit groups are within range of
academic teams, and 1024-bit groups may plausibly be within range of state-level attackers.
In both cases, individual logs can be quickly computed after the initial precomputation.

We then examine evidence from published Snowden documents that suggests NSA
may already be exploiting 1024-bit Diffie-Hellman to decrypt VPN traffic. We perform
measurements to understand the implications of such an attack for popular protocols, finding
that an attacker who could perform precomputations for ten 1024-bit groups could passively
decrypt traffic to about 66% of IKE VPNs, 26% of SSH servers, 16% of SMTP servers, and
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Figure 4.1: The number field sieve algorithm for discrete log—This algorithm consists
of a precomputation stage that depends only on the prime p and a descent stage that
computes individual logs. With sufficient precomputation, an attacker can quickly break any
Diffie-Hellman instances that use a particular p.

24% of popular HTTPS sites.

Mitigations and lessons. As a short-term countermeasure in response to the Logjam attack,
all mainstream browsers are implementing a more restrictive policy on the size of Diffie-
Hellman groups they accept. We further recommend that TLS servers disable export-grade
cryptography and carefully vet the Diffie-Hellman groups they use. In the longer term, we
advocate that protocols migrate to stronger Diffie-Hellman groups, such as those based on
elliptic curves.

4.1 Diffie-Hellman Cryptanalysis

Diffie-Hellman key exchange was the first published public-key algorithm [76]. In the
simple case of prime groups, Alice and Bob agree on a prime p and a generator g of a
multiplicative subgroup modulo p. Alice sends ga mod p, Bob sends gb mod p, and each
computes a shared secret gab mod p. While there is also a Diffie-Hellman exchange over
elliptic curve groups, we address only the “mod p” case.

The security of Diffie-Hellman is not known to be equivalent to the discrete log problem
(except in certain groups [75,227,228]), but computing discrete logs remains the best known
cryptanalytic attack. An attacker who can find the discrete log x from y = gx mod p can
easily find the shared secret.

Textbook descriptions of discrete log can be misleading about the computational trade-
offs, for example by balancing parameters to minimize overall time to compute a single

discrete log. In fact, as illustrated in Figure 4.1, a single large precomputation on p can be
used to efficiently break all Diffie-Hellman exchanges made with that prime.
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The typical case Diffie-Hellman is typically implemented with prime fields and large
group orders. In this case, the most efficient discrete log algorithm is the number field
sieve (NFS) [163, 191, 357].1 There is a closely related number field sieve algorithm for
factoring [68, 213], and in fact many parts of the implementations can be shared. The
general technique is called index calculus and has four stages with different computational
properties. The first three steps are only dependent on the prime p and comprise most of
the computation.

First is polynomial selection, in which one finds a polynomial f (z) defining a number
field Q(z)/ f (z) for the computation. (For our cases, f (z) typically has degree 5 or 6.) This
parallelizes well and is only a small portion of the runtime.

In the second stage, sieving, one factors ranges of integers and number field elements
in batches to find many relations of elements, all of whose prime factors are less than
some bound B (called B-smooth). Modern implementations use special-q lattice sieving,
which for each special q explores a sieving region of 22I candidates, where I is a parameter.
Sieving parallelizes well since each special q is handled independently of the others, but
is computationally expensive, because we must search through and attempt to factor many
elements. The time for this step depends on heuristic estimates of the probability of
encountering B-smooth numbers in this search; it also depends on I and on the number of
special q to consider before having enough relations.

In the third stage, linear algebra, we construct a large, sparse matrix consisting of the
coefficient vectors of prime factorizations we have found. A nonzero kernel vector of the
matrix modulo the order q of the group will give us logs of many small elements. This
database of logs serves as input to the final stage. The difficulty depends on q and the matrix
size and can be parallelized in a limited fashion.

The final stage, descent, actually deduces the discrete log of the target y. We re-sieve
until we can find a set of relations that allow us to write the log of y in terms of the logs in
the precomputed database. This step is accomplished in three phases: an initialization phase,
which tries to write the target in terms of medium-sized primes, a middle phase, in which
these medium-sized primes are further sieved until they can be represented by elements in
the database of known logs, and a final phase that actually reconstructs the target using the
log database. Crucially, descent is the only NFS stage that involves y (or g), so polynomial
selection, sieving, and linear algebra can be done once for a prime p and reused to compute
the discrete logs of many targets.

Figure 4.2 shows the running time of the NFS precomputation algorithm. This is obtained

1Recent spectacular advances in discrete log algorithms have resulted in a quasi-polynomial algorithm for
small-characteristic fields [25], but these advances are not known to apply to the prime fields used in practice.
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Lp(1/3,(64/9)1/3) = exp
(
(1.923+o(1))(log p)1/3(log log p)2/3

)
Figure 4.2: Running time of the NFS Algorithm

by tuning many parameters, including the degree of f , the sieving region parameter I, and,
most importantly, the smoothness bound B. Early articles (e.g. [163]) encountered technical
difficulties with descent and reported that the complexity of this step would equal that of
the precomputation; this may have contributed to misconceptions about the performance of
the NFS for discrete logs. More recent analyses have improved the complexity of descent
to Lp(1/3,1.442) [63], and later to Lp(1/3,1.232) [24], which is much cheaper than the
precomputation in practice.

The numerous parameters of the algorithm allow some flexibility to reduce time on some
computational steps at the expense of others. For example, sieving more will result in a
smaller matrix, making linear algebra cheaper, and doing more work in the precomputation
makes the final descent step easier. In Section 4.2.3, we show how exploiting these tradeoffs
allows us to quickly compute 512-bit discrete logs in order to perform an effective man-in-
the-middle attack on TLS.

Improperly generated groups A different family of algorithms runs in time exponential
in group order, and they are practical even for large primes when the group order is small or
has many small prime factors. To avoid this, most implementations use “safe” primes, which
have the property that p− 1 = 2q for some prime q, so that the only possible subgroups
have order 2, q, or 2q. However, as we show in Section 4.2.5, improperly generated groups
are sometimes used in practice and susceptible to attack.

The baby-step giant-step [368] and Pollard rho [335] algorithms both take
√

q time to
compute a discrete log in any (sub)group of order q, while Pollard lambda [335] can find
x < t in time

√
t. These parallelize well [412], and precomputation can speed up individual

log calculations. If the factorization of the subgroup order q is known, one can use any of
the above algorithms to compute the discrete log in each subgroup of order qei

i dividing
q, and then recover x using the Chinese remainder theorem. This is the Pohlig-Hellman
algorithm [334], which costs ∑i ei

√
qi using baby-step giant-step or Pollard rho.

Standard primes Generating primes with special properties can be computationally
burdensome, so many implementations use fixed or standardized Diffie-Hellman parameters.
A prominent example is the Oakley groups [319], which give “safe” primes of length 768
(Oakley Group 1), 1024 (Oakley Group 2), and 1536 (Oakley Group 5). These groups were
published in 1998 and have been used for many applications including IKE, SSH, and Tor.
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Source Popularity Prime

Apache 82% 9fdb8b8a004544f0045f1737d0ba2e0b

274cdf1a9f588218fb435316a16e3741

71fd19d8d8f37c39bf863fd60e3e3006

80a3030c6e4c3757d08f70e6aa871033

mod ssl 10% d4bcd52406f69b35994b88de5db89682

c8157f62d8f33633ee5772f11f05ab22

d6b5145b9f241e5acc31ff090a4bc711

48976f76795094e71e7903529f5a824b

(others) 8% (463 distinct primes)

Table 4.1: Top 512-bit DH primes for TLS—8.4% of Alexa Top 1M HTTPS domains
allow DHE EXPORT, of which 92.3% use one of the two most popular primes, shown here.

When primes are of sufficient strength, there seems to be no disadvantage to reusing
them. However, widespread reuse of Diffie-Hellman groups can convert attacks that are at
the limits of an adversary’s capabilities into devastating breaks, since it allows the attacker
to amortize the cost of discrete log precomputation among vast numbers of potential targets.

4.2 Attacking TLS

TLS supports Diffie-Hellman as one of several possible key exchange methods, and about
two-thirds of popular HTTPS sites allow it, most commonly using 1024-bit primes. However,
a smaller number of servers also support legacy “export-grade” Diffie-Hellman using 512-bit
primes that are well within reach of NFS-based cryptanalysis. Furthermore, for both normal
and export-grade Diffie-Hellman, the vast majority of servers use a handful of common
groups.

In this section, we exploit these facts to construct a novel attack against TLS, which
we call the Logjam attack. First, we perform NFS precomputations for the two most
popular 512-bit primes on the web, so that we can quickly compute the discrete log for any
key-exchange message that uses one of them. Next, we show how a man-in-the-middle,
so armed, can attack connections between popular browsers and any server that allows
export-grade Diffie-Hellman, by using a TLS protocol flaw to downgrade the connection
to export-strength and then recovering the session key. We find that this attack with our
precomputations can compromise about 7.8% of HTTPS servers among Alexa Top Million
domains.
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4.2.1 TLS and Diffie-Hellman

The TLS handshake begins with a negotiation to determine the crypto algorithms used
for the session. The client sends a list of supported ciphersuites (and a random nonce cr)
within the ClientHello message, where each ciphersuite specifies a key exchange algorithm
and other primitives. The server selects a ciphersuite from the client’s list and signals its
selection in a ServerHello message (containing a random nonce sr).

TLS specifies ciphersuites supporting multiple varieties of Diffie-Hellman. Textbook
Diffie-Hellman with unrestricted strength is called “ephemeral” Diffie-Hellman, or DHE, and
is identified by ciphersuites that begin with TLS DHE *.2 In DHE, the server is responsible
for selecting the Diffie-Hellman parameters. It chooses a group (p,g), computes gb, and
sends a ServerKeyExchange message containing a signature over the tuple (cr,sr, p,g,gb)

using the long-term signing key from its certificate. The client verifies the signature and
responds with a ClientKeyExchange message containing ga.

To ensure agreement on the negotiation messages, and to prevent downgrade attacks [415],
each party computes the TLS master secret from gab and calculates a MAC of its view of
the handshake transcript. These MACs are exchanged in a pair of Finished messages and
verified by the recipients. Thereafter, client and server start exchanging application data,
protected by an authenticated encryption scheme with keys also derived from gab.

To comply with 1990s-era U.S. export restrictions on cryptography, SSL 3.0 and TLS
1.0 supported reduced-strength DHE EXPORT ciphersuites that were restricted to primes no
longer than 512 bits. In all other respects, DHE EXPORT protocol messages are identical to
DHE. The relevant export restrictions are no longer in effect, but many libraries and servers
maintain support for backwards compatibility. Many TLS servers are still configured with
two groups: a strong 1024-bit group for regular DHE key exchanges and a 512-bit group for
legacy DHE EXPORT. This has been considered safe because most modern TLS clients do
not offer or accept DHE EXPORT ciphersuites.

To understand how HTTPS servers in the wild use Diffie-Hellman, we modified the
ZMap [86] toolchain to offer DHE and DHE EXPORT ciphersuites and scanned TCP/443
on both the full public IPv4 address space and the Alexa Top 1M domains. The scans took
place in March 2015. Of 539,000 HTTPS sites among Top 1M domains, we found that
68.3% supported DHE and 8.4% supported DHE EXPORT. Of 14.3 million IPv4 HTTPS
servers with browser-trusted certificates, 23.9% supported DHE and 4.9% DHE EXPORT.

While the TLS protocol allows servers to generate their own Diffie-Hellman parameters,

2TLS also supports a rarely used “static” Diffie-Hellman format, where the server’s key exchange value is
fixed and contained in its certificate. New ciphersuites that use elliptic curve Diffie-Hellman (ECDHE) are
gaining in popularity, but we focus exclusively on the traditional prime field variety.
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Figure 4.3: The Logjam attack—A man-in-the-middle can force TLS clients to use export-
strength DH with any server that allows DHE EXPORT. Then, by finding the 512-bit discrete
log, the attacker can learn the session key and arbitrarily read or modify the contents. Data f s

refers to False Start [210] application data that some TLS clients send before receiving the
server’s Finished message.

the overwhelming majority use one of a handful of primes. As shown in Table 4.1, just two
512-bit primes account for 92.3% of Alexa Top 1M domains that support DHE EXPORT,
and 92.5% of all servers with browser-trusted certificates that support DHE EXPORT. (Non-
export DHE follows a similar distribution with longer primes.) The most popular 512-bit
prime was hard-coded into many versions of Apache. Introduced in 2005 with Apache 2.1.5,
it was used until 2.4.7, which disabled export ciphersuites. We found it in use by about
564,000 servers with browser-trusted certificates. The second most popular 512-bit prime is
the default used for DHE EXPORT when using mod ssl. It was introduced in version 2.3.0
in 1999. We found it in use by about 89,000 servers with browser-trusted certificates.

4.2.2 Active Downgrade to Export-Grade DHE

Given the widespread use of these primes, an attacker with the ability to compute discrete
logs in 512-bit groups could efficiently break DHE EXPORT handshakes for about 8% of
Alexa Top 1M HTTPS sites, but modern browsers never negotiate export-grade ciphersuites.
To circumvent this, we show how an attacker who can compute 512-bit discrete logs in real
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time can downgrade a regular DHE connection to use a DHE EXPORT group, and thereby
break both the confidentiality and integrity of application data.

The attack, which we call Logjam, is depicted in Figure 4.3 and relies on a flaw in the
way TLS composes DHE and DHE EXPORT. When a server selects DHE EXPORT for
a handshake, it proceeds by issuing a signed ServerKeyExchange message containing
a 512-bit p512, but the structure of this message is identical to the message sent during
standard DHE ciphersuites. Critically, the signed portion of the server’s message fails to
include any indication of the specific ciphersuite that the server has chosen. Provided
that a client offers DHE, an active attacker can rewrite the client’s ClientHello to offer a
corresponding DHE EXPORT ciphersuite accepted by the server and remove other cipher-
suites that could be chosen instead. The attacker rewrites the ServerHello response to
replace the chosen DHE EXPORT ciphersuite with a matching non-export ciphersuite and
forwards the ServerKeyExchange message to the client as is. The client will interpret the
export-grade tuple (p512,g,gb) as valid DHE parameters chosen by the server and proceed
with the handshake. The client and server have different handshake transcripts at this stage,
but an attacker who can compute b in close to real time can then derive the master secret
and connection keys to complete the handshake with the client, and then freely read and
write application data pretending to be the server.

There are two remaining challenges in implementing this active downgrade attack. The
first is to compute individual discrete logs in close to real time, and the second is to delay
handshake completion until the discrete log computation has had time to finish. We address
these in the next subsections.

Comparison with previous attacks Logjam is reminiscent of the recent FREAK [33]
attack, in which an attacker downgrades a regular RSA key exchange to one that uses export-
grade 512-bit ephemeral RSA keys, relying on a bug in several TLS client implementations.
The attacker then factors the ephemeral key to hijack future connections that use the same
key. The cryptanalysis takes several hours on commodity hardware and is usable until the
server generates a fresh ephemeral RSA key (typically when it restarts).

In contrast, Logjam is due to a protocol flaw in TLS, not an implementation bug. From
a client perspective, the only defense is to reject small primes in DHE handshakes. (Prior
to this work, most popular browsers accepted p of size ≥ 512 bits.) Logjam affects fewer
servers than FREAK, but, as we shall see, the cost per compromised connection is far lower,
since the precomputation for each 512-bit group can be used indefinitely against all servers
that use that group, and since each individual discrete log only takes about a minute.

Logjam and FREAK both follow the same pattern as other cross-protocol attacks discov-
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ered in TLS. As early as SSL 3.0, Schneier and Wagner noted a related vulnerability that they
called key exchange rollback [415]. Mavrogiannopoulos et al. showed how explicit-curve
ECDHE handshakes could be confused with DHE handshakes [229]. All these attacks could
be prevented by additionally signing the ciphersuite in the ServerKeyExchange message.
We expect that TLS 1.3 will fix this protocol flaw. More generally, Logjam can also be
interpreted as a backwards compatibility attack [181] where one party uses only strong
cryptography but the other supports both strong and weak ciphersuites.

4.2.3 512-bit Discrete Log Computations

We modified CADO-NFS [22] to implement the number field sieve discrete log algorithm
from Section 4.1 and applied it to three 512-bit primes, including the top two DHE EXPORT

primes shown in Table 4.1. Precomputation took 7 days for each prime, after which com-
puting individual logs took a median of 70 seconds. We list the runtime for each stage of
the computation below. The times were about the same for each prime.

Precomputation As illustrated in Figure 4.1, the precomputation phase includes the poly-
nomial selection, sieving, and linear algebra steps. For this precomputation, we deliberately
sieved more than strictly necessary. This enabled two optimizations: first, with more rela-
tions obtained from sieving, we eventually obtain a larger database of known logs, which
makes the descent faster. Second, more sieving relations also yield a smaller linear algebra
step, which is desirable because sieving is much easier to parallelize than linear algebra.

For the polynomial selection and sieving steps, we used idle time on 2000–3000 CPU
cores in parallel, of which most CPUs were Intel Sandy Bridge. Polynomial selection ran
for about 3 hours, which in total corresponds to 7,600 core-hours. Sieving ran for 15 hours,
corresponding to 21,400 core-hours. This sufficed to collect 40,003,519 relations of which
28,372,442 were unique, involving 15,207,865 primes of at most 27 bits (hence bound B

from Section 4.1 is 227).
From this data set, we obtained a square matrix with 2,157,378 rows and columns, with

113 nonzero coefficients per row on average. We solved the corresponding linear system
on a 36-node cluster with two 8-core Intel Xeon E5-2650 CPUs per node, connected with
Infiniband FDR. We used the block Wiedemann algorithm [67,401] with parameters m = 18
and n = 6. Using the unoptimized implementation from CADO-NFS [22] for linear algebra
over GF(p), the computation finished in 120 hours, corresponding to 60,000 core-hours. We
expect that optimizations could bring this cost down by at least a factor of three.

In total, the wall-clock time for each precomputation was slightly over one week. Each
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Figure 4.4: Individual discrete log time for 512-bit DH—After a week-long precomputa-
tion for each of the two top export-grade primes (see Table 4.1), we can quickly break any
key exchange that uses them. Here we show times for computing 3,500 individual logs; the
median is 70 seconds.

resulting database of known logs for the descent occupies about 2.5 GB in ASCII format.

Descent Once this precomputation was finished, we were able to run the final descent step
to compute individual discrete logs in about a minute for targets in each of these groups. In
order to save time on individual computations, we implemented a client-server architecture
using the ZeroMQ messaging library. The server maintains the precomputed data in RAM
and returns logs for values passed to it by clients.

We implemented the descent calculation in a mix of Python and C. The first and second
stages are parallelized and run sieving in C, and the final discrete log is deduced in Python.
We ran the server on a machine with two 18-core Intel Xeon E5-2699 CPUs and 128 GB of
RAM. On average, computing individual logs took about 70 seconds, but the time varied
from 34 to 206 seconds (see Figure 4.4). This is divided between about 20 seconds for
descent initialization and the remainder on the middle phase. Further optimizations—such
as more effective parallelization on the middle phase or additional sieving—should bring
the median time well below a minute.

For purposes of comparison, a single 512-bit RSA factorization using the CADO-NFS
implementation takes about eight days of wall-clock time on the computer used for the
descent, and about three hours parallelized across 1,800 cores of Amazon EC2 c4.8xlarge

instances.
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4.2.4 Active Attack Implementation

We implemented a man-in-the-middle network attacker that sits between a TLS client
(web browser) and any server that supports DHE EXPORT and uses the most common
512-bit Apache group. Our implementation follows the message sequence in Figure 4.3: it
downgrades the connection towards the server, computes the session keys, and takes over
the connection towards the client by impersonating the server.

The main challenge is to compute the shared secret gab before the handshake completes
in order to forge a Finished message from the server. With our descent implementation, the
computation takes an average of 70 seconds, but there are several ways an attacker can work
around this delay:

Non-browser clients. Different TLS clients impose different time limits for the handshake,
after which they kill the connection. Command-line clients such as curl and git often run
unattended, so they have long or no timeouts, and we can hijack their connections without
difficulty.

TLS warning alerts. Web browsers tend to have shorter timeouts, but we can keep their
connections alive by sending TLS warning alerts, which are ignored by the browser but
reset the handshake timer. For example, this allows us to keep Firefox’s TLS connections
alive indefinitely. (Other browsers we tested close the connection after a minute.) Although
the victim connection still takes much longer than usual, the attacker might choose to
compromise a request for a background resource that does not delay rendering the page.

Ephemeral key caching. Many TLS servers do not use a fresh value b for each connection,
but instead compute gb once and reuse it for multiple negotiations. Without enabling the
SSL OP SINGLE DH USE option, OpenSSL will reuse gb for the lifetime of a TLS context.
While both Apache and Nginx internally apply this option, certain load balancers, such as
stud [395], do not. The F5 BIG-IP load balancers and hardware TLS frontends will reuse
gb unless the “Single DH” option is checked [416]. Microsoft Schannel caches gb for two
hours—this setting is hard-coded. For these servers, an attacker can compute the discrete
log of gb from one connection and use it to attack later handshakes, avoiding the need
to do the computation online. By randomly sampling IPv4 hosts serving browser-trusted
certificates that support DHE, we found that 17% reused gb at least once over the course of
20 handshakes, and that 15% only used one value. However, for DHE EXPORT, only 0.1%
reused gb, likely because Microsoft IIS does not support 512-bit export ciphersuites.

TLS False Start. Even when clients enforce shorter timeouts and servers do not reuse
values for b, the attacker can still break the confidentiality of user requests if the client
supports the TLS False Start extension [210]. This extension reduces connection latency by
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having the client send early application data (such as an HTTP request) without waiting for
the server’s Finished message to arrive. Recent versions of Chrome, Internet Explorer, and
Firefox implement False Start, but their policies on when to enable it vary between versions.
Firefox 35, Chrome 41, and Internet Explorer (Windows 10) send False Start data with DHE.
In these cases, a man-in-the-middle can record the handshake and decrypt the False Start
payload at leisure. We note that this initial data sent by a browser often contains sensitive
user authentication information, such as passwords and cookies.

4.2.5 Other Weak and Misconfigured Groups

In our scans, we found several other exploitable security issues in the DHE configurations
used by TLS servers.

512-bit primes in non-export DHE We found 2,631 servers with browser-trusted certifi-
cates (and 118 in the Top 1M domains) that used 512-bit or weaker primes for non-export
DHE. In these instances, active attacks may be unnecessary. If a browser negotiates a
DHE ciphersuite with one of these servers, a passive eavesdropper can later compute the
discrete log and obtain the TLS session keys for the connection. An active attack may still be
necessary when the client’s ordering of ciphersuites would result in the server not selecting
DHE. In this case, as in the DHE EXPORT downgrade attack, an active attacker can force
the server to choose a vulnerable DHE ciphersuite.

As a proof-of-concept, we implemented a passive eavesdropper for regular DHE connec-
tions and used it to decrypt test connections to www.fbi.gov. Until April 2015, this server
used the default 512-bit DH group from OpenSSL, which was the third group for which we
performed the NFS precomputation. The website no longer supports DHE.

Attacks on composite-order subgroups Failure to generate Diffie-Hellman primes ac-
cording to best practices can result in devastating attacks. Not every TLS server uses “safe”
primes. Out of approximately 70,000 distinct primes seen across both export and non-export
TLS scans, 4,800 were not safe, meaning that (p−1)/2 was composite. (Incidentally, we
also found 9 composite p.) These groups are not necessarily vulnerable, as long as g gener-
ates a group with at least one sufficiently large subgroup order to rule out the Pohlig-Hellman
algorithm as an attack.

In some real-life configurations, however, choosing such primes can lead to an attack.
For efficiency reasons, some implementations use ephemeral keys gx with a short exponent
x; commonly suggested sizes for x are as small as 160 or 224 bits, intended to match the
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estimated strength of a 1024- or 2048-bit group. For safe p, such exponent lengths are not
known to decrease security, as the most efficient attack will be the Pollard lambda algorithm.
But if the order of the subgroup generated by g has small factors, they can be used to
recover information about exponents. From a subset of factors {qe1

1 . . .qek
k } with ∏i qei

i = z,
Pohlig-Hellman can recover x mod z in time ∑i ei

√
qi. If x ≤ z, this suffices to recover x.

If not, Pollard lambda can use this information to recover x in time
√

x/z. This attack was
first described as hypothetical by van Oorschot and Wiener [413].

To see if TLS servers in the wild were vulnerable to this attack, we tested various non-
safe primes found in our scans. For each non-safe prime p, we opportunistically factored
p−1 using Bernstein’s batch method [29]. We then ran the GMP-ECM implementations of
the Pollard p−1 algorithm and the ECM factoring methods [432] for 5 days parallelized
across 28 cores and discovered 36,447 prime factors.

We then examined the generators g used with each prime p. We classified a tuple (p,g,y)

sent by a server as interesting if the prime factorization of p−1 had revealed prime factors
of the order of g, and ordered them by the estimated work required using Pohlig-Hellman
and Pollard lambda to recover a target private exponent x of length ranging from 64 to 256
bits. There were 753 (p,g) pairs where we knew factors of the subgroup generated by g;
these had been used for 40,903 connections across all of our scans.

We implemented the van Oorschot and Wiener algorithm in Sage [392] using a parallel
Pollard rho implementation that we wrote in C using the GMP library. We used the
distinguished points method for collision detection; for a prime known in advance, this
implementation can be arbitrarily sped up by precomputing a table of distinguished points.

We computed partial information about the server secret exponent used in 460 exchanges
and were able to recover the whole exponent used by 159 different hosts, 53 of which
authenticated with valid browser-trusted certificates. In all cases, the vulnerable hosts used
512-bit prime moduli; three of them used 160-bit exponents and the rest used 128 bits. The
order of the largest-order subgroup ranged from 46 bits (which finishes in seconds) to 81 bits
(which took between 50 and 176 hours) implementation. The Pollard lambda calculations
used interval width varying from 40 to 70 bits.

Our computations would have allowed us to hijack connections to a variety of vulnerable
TLS servers, including web interfaces for VPN devices (48 hosts), communications software
(21 hosts), web conferencing servers (27 hosts), and FTP servers (6 hosts). As a proof-
of-concept, we modified our man-in-the-middle attacker of Section 4.2.3 to impersonate a
vulnerable server and capture user credentials. Compared to an attack using NFS, we could
compute the discrete log with a delay hardly noticeable for browser users.
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Misconfigured groups The Digital Signature Algorithm (DSA) [252] uses primes p such
that p− 1 has a large prime factor q and g generates only a subgroup of order q. When
using properly generated DSA parameters, these groups are secure for use in Diffie-Hellman
key exchanges. Notably, DSA groups are hard-coded in Java’s sun.security.provider
package and are used by default in many Java-based TLS servers. However, some servers in
our scans used Java’s DSA primes as p but mistakenly used the DSA group order q in the
place of the generator g. We found 5,741 hosts misconfigured this way.

This substitution of q for g is likely due to a usability problem: the canonical ASN.1
representation of Diffie-Hellman key exchange parameters (coming from PKCS#3) is
a sequence (p,g), while that of DSA parameters (coming from PKIX) is (p,q,g); we
conjecture that the confusion between these formats led to a simple programming error.

In a DSA group, the subgroup generated by q is likely to have many small prime factors
in its order, since for p generated according to [252], (p−1)/q is a random integer. For
Java’s sun.security.provider 512-bit prime, using q as a generator leaks 290 bits of
information about exponents at a cost of roughly 240 operations. Luckily, since the provider
generates exponents of length max(n/2,384) for n-bit p, this does not suffice to recover a
full exponent. Still, this misconfiguration bug results in a significant loss of security and
serves as a cautionary tale for programmers.

4.3 State-Level Threats to DH

The previous sections demonstrate the existence of practical attacks against the Diffie-
Hellman key exchange as currently used by TLS. However, these attacks rely on the ability
to downgrade connections to export-grade cryptography or on the use of unsafe parameters.
In this section we address the following question: how secure is Diffie-Hellman in broader
practice, as used in other protocols that do not suffer from a downgrade, and when applied
with stronger groups?

To answer this question we must first examine how the number field sieve for discrete
log scales to 768- and 1024-bit groups. As we argue below, 768-bit groups, which are still in
relatively widespread use, are now within reach for academic computational resources, and
performing precomputations for a small number of 1024-bit groups is plausibly within the
resources of state-level attackers. The precomputation would likely require special-purpose
hardware, but would not require any major algorithmic improvements beyond what is known
in the academic literature. We further show that even in the 1024-bit case, the descent time—
necessary to solve any specific discrete log instance within a common group—would be
fast enough to break individual key exchanges in close to real time.
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Sieving Linear Algebra Descent

log2 B core-years rows core-years core-time

RSA-512 29 0.5 4.3M 0.33 CADO-NFS defaults

DH-512 27 2.5 2.1M 7.7 10 mins Conducted computation

RSA-768 37 800 250M 100 [204] with less sieving

DH-768 (est) 35 8,000 150M 28,500 2 days [40, 204] & experimentation

DH-768 [205] 36 4,000 24M 920 43 hours Data from [205, Table 1].

RSA-1024 42 1,000,000 8.7B 120,000 Fig 4.2

DH-1024 40 10,000,000 5.2B 35,000,000 30 days Fig 4.2 & experimentation

Table 4.2: Estimating costs for factoring and discrete log—For sieving, we give two
important parameters: the number of bits of the smoothness bound B and the sieving region
parameter I. For linear algebra, all costs for DH are for safe primes; for DSA primes with q
of 160 bits, this should be divided by 6.4 for 1024 bits, 4.8 for 768 bits, and 3.2 for 512 bits.

In light of these results, we examine several standard Internet security protocols—
IKE, SSH, and TLS—to determine the vulnerability of their key exchanges to attacks by
resourceful attackers. Although the cost of the precomputation for a 1024-bit group is several
times higher than for an RSA key of equal size, we observe that a one-time investment
could be used to attack millions of hosts, due to widespread reuse of the most common
Diffie-Hellman parameters. Unfortunately, our measurements also indicate that it may be
very difficult to sunset the use of fixed 1024-bit Diffie-Hellman groups that have long been
embedded in standards and implementations.

Finally, we apply this new understanding to a set of recently published documents leaked
by Edward Snowden [383] to evaluate the hypothesis that the National Security Agency has
already implemented such a capability. We show that this hypothesis is consistent with the
published details of the intelligence community’s cryptanalytic capabilities, and, indeed,
matches the known capabilities more closely than other proposed explanations, such as novel
breaks on RC4 or AES. We believe that this analysis may help shed light on unanswered
questions about how NSA may be gaining access to VPN, SSH, and TLS traffic.

4.3.1 Scaling NFS to 768- and 1024-bit DH

Estimating the cost for discrete log cryptanalysis at longer key sizes is far from straightfor-
ward, due in part to the complexity of parameter tuning and to tradeoffs between the sieving
and linear algebra steps, which have very different computational characteristics. (Much
more attention has gone to understanding 1024-bit factorization, but, even there, many
published estimates are crude extrapolations of the asymptotic complexity.) We attempt
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estimates for 768- and 1024-bit discrete log based on the existing literature and our own
experiments, but further work is needed for greater confidence, particularly for the 1024-bit
case. We summarize all the costs, measured or estimated, in Table 4.2.

DH-768: Feasible with academic power For the 768-bit case, we base our estimates on
the recent discrete log record at 596 bits [40] and the integer factorization record of 768
bits from 2009 [204]. While the algorithms for factorization and discrete log are similar,
the discrete log linear algebra stage is many times more difficult, as the matrix entries are
no longer Boolean. We can reduce overall time by sieving more, thus generating a smaller
input matrix to the linear algebra step. Since sieving parallelizes better than linear algebra,
this tradeoff is desirable for large inputs.

A 596-bit factorization takes about 5 core-years, most of it spent on sieving. In com-
parison, the record 596-bit discrete log effort tuned parameters such that they spent 50
core-years on sieving. This reduced their linear algebra calculation to 80 core-years. We
used this same strategy in our 512-bit experiments in Section 4.2.3.

Similarly, the 768-bit RSA factoring record spent more time on sieving in order to save
time on the linear algebra step. The cost of sieving was around 1500 core-years, and the
matrix that was produced had 200M rows and columns. As a result, the linear algebra took
150 core-years, but taking algorithmic improvements since 2009 into account and optimizing
for the total time,3 we estimate that factoring an RSA-768 integer would take 900 core-years
in total.

For a 768-bit discrete log, we can expect that ten times as much sieving as the RSA
case would reduce the matrix to around 150M rows. We extrapolate from experiments with
existing software that this linear algebra would take 28,500 core-years, for a total of 36,500
core-years. This is within reach by computing power available to academics.

The descent step takes relatively little time. We experimented with both CADO-NFS
and a new implementation with GMP-ECM based on the early-abort strategy described
in [31]. Using these techniques, the initial descent phase took an average of around 1 core-
day. The remaining phase uses sieving much as in the precomputation; extrapolating
from experiments, the rest of the descent should take at most 1 core-day. In total, after
precomputation, the cost of a single 768-bit discrete log computation is around 2 core-days
and is easily parallelizable.

DH-1024: Plausible with state-level resources Experimentally extrapolating sieving
parameters to the 1024-bit case is difficult due to the tradeoffs between the steps of the

3We would lower the smoothness bounds compared to the parameters in [204].
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algorithm and their relative parallelism. The prior work proposing parameters for factoring
a 1024-bit RSA key is thin: [203] proposes smoothness bounds of 42 bits, but the proposed
value of the sieving region parameter I is clearly too small, giving too few smooth results
per sieving subtask. Since no publicly available software can currently deal with values of I
larger than those proposed, we could not experimentally update the estimates of this paper
with more relevant parameter choices.

Without better parameter choices, we resort to extrapolating from asymptotic complexity.
For the number field sieve, the complexity is exp

(
(k+o(1))(logN)1/3(log logN)2/3), where

N is the integer to factor or the prime modulus for discrete log, and k is an algorithm-specific
constant. This formula is inherently imprecise, since the o(1) in the exponent can hide
polynomial factors. This complexity formula, with k = 1.923, describes the overall time
for both discrete log and factorization, which are both dominated by sieving and linear
algebra in the precomputation. The space complexity (the size of the matrix in memory)
is the square root of this function, i.e., the same function, taking k = 0.9615. Discrete log
descent has a complexity of the same form as well; [24, Chapter 4] gives k = 1.232, using
an early-abort strategy similar to the one in [31] mentioned above.

Evaluating the formula for 768- and 1024-bit N gives us estimated multiplicative factors
by which time and space will increase from the 768- to the 1024-bit case. For precomputation,
the total time complexity will increase by a factor of 1220, while space complexity will
increase by a factor of 35. These are valid for both factorization and discrete log, since
they have the same asymptotic behavior. Hence, for DH-1024, we get a total cost for the
precomputation of about 45M core-years. The time complexity for each individual log after
the precomputation should be multiplied by 95. This last number does not correspond to
what we observed in practice; we attribute that to the fact that the descent step has been far
less studied both in theory and in practice compared to the other steps.

For 1024-bit descent, we experimented with our early-abort implementation to inform
our estimates for descent initialization, which should dominate the individual discrete log
computation. For a random target in Oakley Group 2, initialization took 22 core-days,
yielding a few primes of at most 130 bits to be descended further. In twice this time, we
reached primes of about 110 bits. At this point, we were certain to have bootstrapped the
descent, and could continue down to the smoothness bound in a few more core-days if
proper sieving software were available. Thus we estimate that a 1024-bit descent would take
about 30 core-days, once again easily parallelizable.

Costs in hardware Although 45M core-years is a huge computational effort, it is not
necessarily out of reach for a nation state. Moreover, at this scale, significant cost savings
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could be realized by developing application-specific hardware.
Sieving is a natural target for hardware implementation. To our knowledge, the best prior

description of an ASIC implementation of 1024-bit sieving is the 2007 work of Geiselmann
and Steinwandt [151]. In the following, we update their estimates for modern techniques
and adjust parameters for discrete log. We increase their chip count by a factor of ten to
sieve more and save on linear algebra as above, giving an estimate of 3M chips to complete
sieving in one year. Shrinking the dies from the 130 nm technology node used in the paper
to a more modern size reduces costs, as transistors are cheaper at newer technologies. With
standard transistor costs and utilization, this would cost about $2 per chip to manufacture,
after fixed design and tape-out costs of roughly $2M [218]. This suggests that an $8M
investment would buy enough ASICs to complete the DH-1024 sieving precomputation in
one year. Since a step of descent uses sieving, the same hardware could likely be reused
to speed calculations of individual logs.

Estimating the financial cost for the linear algebra is more difficult, since there has been
little work on designing chips that are suitable for the larger fields involved in discrete
log. To derive a rough estimate, we can begin with general purpose hardware and the
core-year estimate from Table 4.2. The Titan supercomputer [312]—at 300,000 CPU cores,
currently the most powerful supercomputer in the U.S.—would take 117 years to complete
the 1024-bit linear algebra stage. Titan was constructed in 2012 for $94M, suggesting a
cost of $11B in supercomputers to finish this step in a year. In the context of factorization,
moving linear algebra from general purpose CPUs to ASICs has been estimated to reduce
costs by a factor of 80 [150]. If we optimistically assume that a similar reduction can be
achieved for discrete log, the hardware cost to perform the linear algebra for DH-1024 in
one year is plausibly on the order of hundreds of millions of dollars.

To put this dollar figure in context, the FY 2012 budget for the U.S. Consolidated Cryp-
tologic Program (which includes the NSA) was $10.5 billion4 [254]. The agency’s classified
2013 budget request, which prioritized investment in “groundbreaking cryptanalytic capabil-
ities to defeat adversarial cryptography and exploit internet traffic,” included notable $100M
increases in two programs [254]: “cryptanalytic IT services” (to $247M), and a cryptically
named “cryptanalysis and exploitation services program C” (to $360M). NSA’s leaked
strategic plan for the period called for it to “continue to invest in the industrial base and drive
the state of the art for high performance computing to maintain pre-eminent cryptanalytic
capability for the nation” [292].

4The National Science Foundation’s budget was $7 billion.
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4.3.2 Is NSA Breaking 1024-bit DH?

Our calculations suggest that it is plausibly within NSA’s resources to have performed
number field sieve precomputations for at least a small number of 1024-bit Diffie-Hellman
groups. This would allow them to break any key exchanges made with those groups in close
to real time. If true, this would answer one of the major cryptographic questions raised by
the Edward Snowden leaks: How is NSA defeating the encryption for widely used VPN
protocols?

Classified documents published by Der Spiegel [383] indicate that NSA is passively
decrypting IPsec connections at significant scale. The documents do not describe the crypt-
analytic techniques used, but they do provide an overview of the attack system architecture.
After reviewing how IPsec key establishment works, we will use the published information
to evaluate the hypothesis that the NSA is leveraging precomputation to calculate discrete
logs at scale.

IKE Internet Key Exchange (IKE) is the main key establishment protocol used for IPsec
VPNs. There are two versions, IKEv1 [47] and IKEv2 [195], which differ in message struc-
ture but are conceptually similar. For the sake of brevity, we will use IKEv1 terminology.

Each IKE session begins with a Phase 1 handshake, in which the client and server
select a Diffie-Hellman group from a small set of standardized parameters and perform
a key exchange to establish a shared secret. The shared secret is combined with other
cleartext values transmitted by each side, such as nonces and cookies, to derive a value
called SKEYID. IKE provides several authentication mechanisms, including symmetric
pre-shared keys (PSK); when IKEv1 is authenticated with a PSK, this value is incorporated
into the derivation of SKEYID.

The resulting SKEYID is used to encrypt and authenticate a Phase 2 handshake. Phase 2
establishes the parameters and key material, KEYMAT, for a cryptographic transport protocol
used to protect subsequent traffic, such as Encapsulating Security Payload (ESP) [199] or
Authenticated Header (AH) [198]. In some circumstances, this phase includes an additional
round of Diffie-Hellman. Ultimately, KEYMAT is derived from SKEYID, additional nonces,
and the result of the optional Phase 2 Diffie-Hellman exchange.

NSA’s VPN exploitation process The documents published by Der Spiegel describe
a system named TURMOIL that is used to acquire VPN traffic and defeat its encryption.
Nothing within the source documents indicate that message injection or a man-in-the-middle
attack against IKE or IPsec is required which leads us to believe that it is a passive defeat.
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Figure 4.5, an excerpt from one of the documents [302], illustrates the flow of information
through the TURMOIL system.

The initial phases of the attack involve acquiring both IKE and ESP payloads as well as
determining whether the traffic matches any tasked selector [303]. If so, TURMOIL transmits
the complete IKE handshake and may transmit a small amount of ESP ciphertext to NSA’s
Cryptanalysis and Exploitation Services (CES) [265, 303] via a secure tunnel. Within
CES, a specialized VPN Attack Orchestrator (VAO) system manages a collection of high-
performance grid computing resources located at NSA Headquarters and in a data center at
Oak Ridge National Laboratory, which perform the computation required to generate the
ESP session key [272,274,302]. The VAO coordinates with a database CORALREEF, which
stores cryptographic values including a set of known PSKs and the resulting “recovered”
ESP session keys [272, 302, 308].

The ESP traffic itself is buffered for up to 15 minutes [295], until CES can respond with
the recovered ESP keys if they were generated correctly. Once keys have been returned, the
ESP traffic is decrypted via hardware accelerators [132] or in software [305, 306]. From this
point, decrypted VPN traffic is reinjected into the TURMOIL processing infrastructure and
passed to other systems for storage and analysis [305]. The documents indicate that NSA is
recovering ESP keys at large scale, with a target of 100,000 per hour [295].

Evidence for a Discrete Log Defeat While the ability to decrypt VPN traffic does not
by itself indicate a Diffie-Hellman defeat, there are several features of IKE and the VAO’s
operation that support this hypothesis. First, the IKE protocol has been extensively ana-
lyzed [45, 232], and is not believed to be exploitable in standard configurations by passive
attackers. In order to recover the session keys for the ESP or AH protocols, the attacker must
at minimum recover the SKEYID generated by the Phase 1 exchange. Absent a vulnerability
in the key derivation function or transport encryption, this requires the attacker to recover a
shared Diffie-Hellman secret after passively observing an IKE handshake.

Second, while IKE is designed to support a range of Diffie-Hellman groups, our Internet-
wide scans (Section 4.3.3) show that the vast majority of IKE systems select one particular
1024-bit DH group (Oakley Group 2) even when offered stronger groups.

Third, given an efficient oracle for solving the discrete logarithm problem, attacks on IKE
are possible provided that the attacker can obtain the following: (1) a complete two-sided
IKE transcript, including the Diffie-Hellman key shares ga and gb as well as the nonces
and cookies transmitted by both sides of the connection, and (2) in IKEv1 only, the PSK
used in deriving SKEYID. Both of the above requirements are also present in the NSA’s
VPN attack system. As Figure 4.5 illustrates, a hard requirement of the VAO is the need
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Figure 4.5: NSA’s VPN Decryption Infrastructure—Acquired IKE handshakes are
passed to CES who uses high-performance computing (HPC) resources to generate the sym-
metric session keys for ESP traffic [302]. For clarity, POISONNUT is a codename sometimes
used in place of VAO [274].

to obtain the complete two-sided IKE transcript [308]. The published documents indicate
that this requirement substantially increases the complexity of the attack execution, since
IKE transcripts must be reassembled (“paired”) whenever the interaction traverses multiple
network paths [258, 265, 266, 301].

The complete attack also requires knowledge of the PSK. Several documents describe
techniques for analysts to locate a PSK, including using a database of router configura-
tions [287, 309], the CORALREEF database of known PSKs [308], previously decrypted
SSH traffic which could include VPN configuration files [308], or system administrator
“chatter” [309]. Additionally, NSA is willing to “[r]un attacks to recover PSK” [308].

This explanation is of course not dispositive and NSA could defeat IPsec using alternative
types of attacks. Certain published NSA documents refer to software “implants” on VPN
devices, indicating that the use of targeted malware is a piece of the collection strategy [308];
however, the same documents also note that decryption of the resulting traffic does not

require IKE handshakes, and thus appears to be an alternative to the VAO attack described
above. The most compelling argument for a pure cryptographic attack is the generality of
the VAO approach, which appears to succeed across a broad swath of non-compromised
devices with only the requirements listed above.
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Vulnerable servers, if the attacker can precompute for . . .

all 512-bit groups all 768-bit groups one 1024-bit group ten 1024-bit groups

HTTPS Top 1M† 45,100 (8.4%) 45,100 (8.4%) 205,000 (37.1%) 309,000 (56.1%)
HTTPS Top 1M 118 (0.0%) 407 (0.1%) 98,500 (17.9%) 132,000 (24.0%)
HTTPS Trusted† 489,000 (3.4%) 556,000 (3.9%) 1,840,000 (12.8%) 3,410,000 (23.8%)
HTTPS Trusted 1,000 (0.0%) 46,700 (0.3%) 939,000 (6.56%) 1,430,000 (10.0%)

IKEv1 IPv4 – 64,700 (2.6%) 1,690,000 (66.1%) 1,690,000 (66.1%)
IKEv2 IPv4 – 66,000 (5.8%) 726,000 (63.9%) 726,000 (63.9%)

SSH IPv4 – – 3,600,000 (25.7%) 3,600,000 (25.7%)

Table 4.3: Estimated impact of Diffie-Hellman attacks—We use Internet-wide scanning
to estimate the number of real-world servers for which typical connections could be compro-
mised by attackers with various levels of computational resources. For HTTPS, we provide
figures with active downgrade (denoted by “†”) and without. All others are passive attacks.

4.3.3 Effects of a 1024-bit Break

In this section, we use Internet-wide scanning to assess the impact of a hypothetical DH-1024
break on three popular protocols: IKE, SSH, and HTTPS. Our measurements indicate that
these protocols, as they are commonly used, would be subject to widespread compromise by
a state-level attacker who had the resources to invest in precomputation for a small number
of common 1024-bit groups.

IKE We measured how IPsec VPNs use Diffie-Hellman in practice by scanning a 1%
random sample of the public IPv4 address space for IKEv1 and IKEv2 (the protocols used
to initiate an IPsec VPN connection) in May 2015. We used the ZMap UDP probe module
to measure support for Oakley Groups 1 and 2 (two popular 768- and 1024-bit, built-in
groups) and which group servers prefer. To test support for individual groups, we offered
only the single group in question. To detect default behavior, we offered servers a variety of
DH groups, with the lowest priority groups being Oakley Groups 1 and 2. When measuring
server preference, we scanned with the 3DES symmetric cipher—the most commonly
supported symmetric cipher in our single group scans. Because of this, the percentages we
present for IKEv1 and IKEv2 are a lower bound for the number of servers that prefer Oakley
Groups 1 and 2.

Of the 80K hosts that responded with a valid IKE packet, 44.2% were willing to accept
an offered proposal from at least one scan. The majority of the remaining hosts responded
with a NO-PROPOSAL-CHOSEN message regardless of our proposal. Many of these may be
site-to-site VPNs that reject our source address. We consider these hosts “unprofiled” and
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omit them from the results here.
We found that 31.8% of IKEv1 and 19.7% of IKEv2 servers support Oakley Group 1

(768-bit) while 86.1% and 91.0% respectively supported Oakley Group 2 (1024-bit). In our
sample of IKEv1 servers, 2.6% of profiled servers preferred the 768-bit Oakley Group 1—
which is within cryptanalytic reach today for moderately resourced attackers—and 66.1%
preferred the 1024-bit Oakley Group 2. For IKEv2, 5.8% of profiled servers chose Oakley
Group 1, and 63.9% chose Oakley Group 2. This coincides with our anecdotal findings that
most VPN clients only offer Oakley Group 2 by default.

SSH All SSH handshakes complete either a finite field Diffie-Hellman or elliptic curve
Diffie-Hellman exchange as part of the SSH key exchange. The SSH protocol explicitly
defines support for Oakley Group 2 (1024-bit) and Oakley Group 14 (2048-bit) but also
allows a server-defined group, which can be negotiated through an auxiliary Diffie-Hellman
Group Exchange (DH-GEX) handshake [126].

In order to measure how SSH uses DH in practice, we implemented the SSH protocol in
the ZMap toolchain and scanned 1% random samples of the public IPv4 address space in
April 2015. We find that 98.9% of SSH servers support the 1024-bit Oakley Group 2, 77.6%
support the 2048-bit Oakley Group 14, and 68.7% support DH-GEX.

During the SSH handshake, the client and server select the client’s highest priority
mutually supported key exchange algorithm. Therefore, we cannot directly measure what
algorithm servers will prefer in practice. In order to estimate this, we performed a scan
in which we mimicked the algorithms offered by OpenSSH 6.6.1p1, the latest version of
OpenSSH. In this scan, 21.8% of servers preferred the 1024-bit Oakley Group 2, and 37.4%
preferred a server-defined group. 10% of the server-defined groups were 1024-bit, but, of
those, near all provided Oakley Group 2 rather than a custom group.

Combining these equivalent choices, we find that a state-level attacker who performed
NFS precomputations for the 1024-bit Oakley Group 2 (which has been in standards for
almost two decades) could passively eavesdrop on connections to 3.6M (25.7%) publicly
accessible SSH servers.

HTTPS DHE is commonly deployed on web servers. 68.3% of Alexa Top 1M sites
support DHE, as do 23.9% of sites with browser-trusted certificates. Of the Top 1M sites
that support DHE, 84% use a 1024-bit or smaller group, with 94% of these using one of five
groups.

Despite widespread support for DHE, a passive eavesdropper can only decrypt connec-
tions that organically agree to use Diffie-Hellman. We can estimate the number of sites
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for which this will occur by offering the same sets of ciphersuites as Chrome, Firefox, and
Safari. While the offered ciphers differ slightly between browsers, this turns out to result in
negligible differences in whether DHE is chosen.

Approximately 24.0% of browser connections with HTTPS-enabled Top 1M sites (and
10% with browser-trusted sites) will negotiate DHE with one of the ten most popular 1024-bit
primes; 17.9% of connections with Top 1M sites could be passively eavesdropped given the
precomputation for a single 1024-bit prime. The most popular site that negotiates a DHE

ciphersuite using one of the two most common 1024-bit primes is sohu.com (ranked 31st
globally).

Mail TLS is also used to secure email transport. SMTP, the protocol used to relay messages
between mail servers, allows a connection to be upgraded to TLS by issuing the STARTTLS
command. POP3S and IMAPS, used by end users to fetch received mail, wrap the entire
connection in TLS.

We studied 1% samples of the public IPv4 address space for IMAPS, POP3S, and
SMTP+StartTLS. We found that 50.7% of SMTP servers supported STARTTLS, 41.4%
supported DHE, and 14.8% supported DHE EXPORT ciphers. 15.5% of SMTP servers used
one of the ten most common 1024-bit groups.

For IMAPS, 8.4% of servers supported DHE EXPORT and 75% supported DHE. How-
ever, the ten most common 1024-bit primes account for only 5.4% of servers. POP3S
deployment is similar, with 8.9% of servers supporting DHE EXPORT and 74.9% sup-
porting DHE, but with the ten most common 1024-bit primes accounting for only 4.8% of
servers.

If each of the top ten 1024-bit primes used by each protocol were compromised, this
would affect approximately 1.7M SMTP, 276K IMAPS, and 245K POP3S servers. Using our
downgrade attack of Section 4.2.3, an attacker with modest resources can hijack connections
to approximately 1.6M SMTP, 429K IMAPS, and 454K POP3S servers.

4.4 Recommendations

Our findings indicate that one of the key recommendations from security experts in response
to the threat of mass surveillance—promotion of DHE-based TLS ciphersuites offering
“perfect forward secrecy” over RSA-based ciphersuites—may have actually reduced security
for many hosts. In this section, we present concrete recommendations to recover the expected
security of Diffie-Hellman as it is used in mainstream Internet protocols.
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Transition to elliptic curves. Transitioning to elliptic curve Diffie-Hellman (ECDH) key
exchanges with appropriate parameters avoids all known feasible cryptanalytic attacks.
Current elliptic curve discrete log algorithms for strong curves do not gain as much of
an advantage from precomputation. In addition, ECDH keys are shorter than in “mod p”
Diffie-Hellman, and shared-secret computations are faster. Unfortunately, the most widely
supported ECDH parameters (those specified by NIST) are now viewed with suspicion due
to NSA influence on their design despite no known or suspected weaknesses. These curves
are undergoing scrutiny, and new curves, such as Curve25519, are being standardized by the
IRTF for use in Internet protocols. We recommend transitioning to elliptic curves where
possible as the most effective long-term solution to the vulnerabilities we describe.

Increase minimum key strengths. Server operators should disable DHE EXPORT and
configure DHE ciphersuites to use primes of 2048 bits or larger. Browsers and clients should
raise the minimum accepted size for Diffie-Hellman groups to at least 1024 bits in order
to avoid downgrade attacks when communicating with servers that still use smaller groups.
Primes of less than 1024 bits should not be considered secure, even against an attacker with
moderate resources.

Our analysis suggests that 1024-bit discrete log may be within reach for state-level
actors. As such, 1024-bit DHE (and 1024-bit RSA) must be phased out in the near term.
NIST has recommended such a transition since 2010 [26]. We recommend that clients
raise the minimum DHE group size to 2048 bits as soon as server configurations allow.
Server operators should move to 2048-bit or larger groups to facilitate this transition.
Precomputation for a 2048-bit non-trapdoored group is around 109 times harder than for a
1024-bit group, so 2048-bit Diffie-Hellman will remain secure barring a major algorithmic
improvement.

Avoid fixed-prime 1024-bit groups. For implementations that must continue to use or
support 1024-bit groups for compatibility reasons, generating fresh groups may help mit-
igate some of the damage caused by NFS-style precomputation for very common fixed
groups. However, we note that it is possible to create trapdoored primes [162, 363] that
are computationally difficult to detect. At minimum, clients should check that servers’
parameters use safe primes or a verifiable generation process, such as that proposed in FIPS
186 [252]. Ideally, the process for generating and validating parameters in TLS should be
standardized so as to thwart the risk of trapdoors.
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Don’t deliberately weaken crypto. Our downgrade attack on export-grade 512-bit Diffie-
Hellman groups in TLS illustrates the fragility of cryptographic “front doors”. Although
the key sizes originally used in DHE EXPORT were intended to be tractable only to NSA,
two decades of algorithmic and computational improvements have significantly lowered
the bar to attacks on such key sizes. Despite the eventual relaxation of crypto export
restrictions and subsequent attempts to remove support for DHE EXPORT, the technical
debt induced by the additional complexity has left implementations vulnerable for decades.
Like FREAK [33], our attacks warn of the long-term debilitating effects of deliberately
weakening cryptography.

4.5 Disclosure and Response

We notified major client and server developers about the vulnerabilities discussed in the
original version before we made our findings public. Prior to our work, Internet Explorer,
Chrome, Firefox, and Opera all accepted 512-bit primes, whereas Safari allowed groups
as small as 16 bits. As a result of our disclosures, Internet Explorer [240], Firefox, and
Chrome are transitioning the minimum size of the DHE groups they accept to 1024 bits, and
OpenSSL and Safari are expected to follow suit. On the server side, we notified Apache,
Oracle, IBM, Cisco, and various hosting providers. Akamai has removed all support for
export ciphersuites. Many TLS developers plan to support a new extension that allows
clients and servers to negotiate a few well-known groups of 2048-bits and higher and to
gracefully reject weak ones [154].

4.6 Conclusion

Diffie-Hellman key exchange is a cornerstone of applied cryptography, but we find that,
as used in practice, it is often less secure than widely believed. The problems stem from
the fact that the number field sieve for discrete log allows an attacker to perform a single
precomputation that depends only on the group, after which computing individual logs in that
group has a far lower cost. Although this fact is well known to cryptographers, it apparently
has not been widely understood by system builders. Likewise, many cryptographers did
not appreciate that the security of a large fraction of Internet communication depends on
Diffie-Hellman key exchanges that use a few small, widely shared groups.

A key lesson from this state of affairs is that cryptographers and creators of practical
systems need to work together more effectively. System builders should take responsibility
for being aware of applicable cryptanalytic attacks. Cryptographers, for their part, should
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involve themselves in how crypto is actually being applied, such as through engagement
with standards efforts and software review. Bridging the perilous gap that separates these
communities will be essential for keeping future systems secure.

2017 Update When the ACM CCS version of this research was published, the latest
discrete log record was a 596-bit computation. Based on that work, and on prior experience
with the 768-bit factorization record in 2009 [204], we made the conservative prediction that
it was possible, as explained in Section 4.1, to put more computational effort into sieving
for the discrete log case than for factoring, so that the linear algebra step would run on a
slightly smaller matrix. This led to a runtime estimate of around 35,000 core-years, most of
which was spent on linear algebra.

This estimate turned out be overly conservative, for several reasons. First, there have been
significant improvements in our software implementation (Section 4.2.3). In addition, our
estimate did not use the Joux-Lercier alternative polynomial selection method [191, Section
2.1], which is specific to discrete logarithms. For 768-bit discrete logarithms, this polynomial
selection method leads to a significantly smaller computational cost.

In 2016, Kleinjung et al. completed a 768-bit discrete logarithm computation [205].
While this is a massive computation on the academic scale, a it has likely been within reach
of NS-Attackers for more than a decade. Kleinjung et al.’s findings are shown in Table 4.2.

Nation-State Attacker Model When we view this research in the context of our NS-
Attacker model, we see many fitting points between the vulnerability attributes and our
model. The most obvious of these is that NS-Attackers’ advantage of Non-Symmetric
Defeats. The index calculus algorithm’s property of only needing the group parameters
for precomputation and not an instance key-share allows this asymmetry to be exploited.
Once the computation is complete and the attacker possess the log database, the per-instance
cost of computing the discrete log of a key-share is significantly smaller than the standard
discrete log attacks.

NS-Attackers’ characteristic of Money provides the ability to conduct the precomputation
in a moderately feasible time-frame. Currently, the best estimate for 1024-bit Diffie-Hellman
is on the order of tens of millions of dollars. While significantly less than our original
estimate of hundreds of millions of dollars, it is still out of reach for other types of attackers.
For the largest NS-Attackers, this a more than acceptable financial cost for the amount of
information it would make available. The characteristic of Money is also not limited to
those that have money, but also extends to those whose allies have money. The simplest way
to leverage this is an API where allies send IKE transcripts and receive the decryption key
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(effectively adding new rules to the “CES Firewall” in Figure 4.5). Another option would
be for the more financially capable NS-Attacker to complete the precomputation and then
transfer the log table used for per-connection descent to less financially capable allies.

NS-Attackers’ advantage of Distant Return Horizons also fits well to this type of attack.
As described in Section 2.3.4, NS-Attackers are able to obtain useful information from
data acquired a decade or more before. While non-forward secret connection would likely
be decryptable long before, the use of Diffie-Hellman would have nullified the usefulness
of possible special-purpose devices described in Section 2.3.3. The index-calculus attack
against Diffie-Hellman would be applicable in defeating the protections of that historical
data as well as current data.

Lastly, NS-Attackers’ attribute of Specialization is applicable in multiple ways. First,
NS-Attackers employ mathematicians who specialize in cryptography [140, 394, 418] as
well as track parameter/algorithm usage (Section 2.4.1). This gives credence to the idea
that our discovery was not the first. Second, NS-Attackers are known to work closely with
foundries [224] and super-computer companies [263, 394] for intelligence purposes which
makes the development process of the ASIC implementations significantly more attainable.
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CHAPTER 5

Identifying and Analyzing Vulnerabilities

While the ability to plausibly explain and add technical depth to known NS-Attacker
operations, it still relies on an oracle to a vulnerability’s existence and connecting the dots
or reverse-engineering to find it. A more useful technique would be to find vulnerabilities
without such an oracle. In this chapter, we present our 2016 research into common TLS
configurations which use “cryptographic shortcuts” that allow an asymmetric defeat well
suited for use by NS-Attackers. In the worst-case scenario, we find that the use of TLS
Session Tickets combined with popular default configurations and the ubiquity of shared-
hosting services allow attackers to retrospectively decrypt a large number of passively
acquired TLS connections, regardless of perfect forward secrect cipher usage, after obtaining
a server-side secret of order 16-bytes.

TLS is designed with support for perfect forward secrecy (PFS) in order to provide
resistance against future compromises of endpoints [78]. A TLS connection that uses a
non-PFS cipher suite can be recorded and later decrypted if the attacker eventually gains
access to the server’s long-term private key. In contrast, a forward-secret cipher suite
prevents this by conducting an ephemeral finite field Diffie-Hellman (DHE) or ephemeral
elliptic curve Diffie-Hellman (ECDHE) key exchange. These key exchange methods use
the server’s long-term private key only for authentication; any attack after the TLS con-
nection has ended will not help the attacker recover the session key. For this reason, the
security community strongly recommends configuring TLS servers to use forward-secret
ciphers [173, 344]. PFS deployment has increased substantially in the wake of the OpenSSL
Heartbleed vulnerability—which potentially exposed the private keys for 24–55% of pop-
ular websites [85]—and of Edward Snowden’s disclosure of NS-Attacker operations to
monitor Internet communications en masse [147, 226].

Despite the recognized importance of forward secrecy, many TLS implementations that
use it also take various cryptographic shortcuts that weaken its intended benefits in exchange
for better performance. Ephemeral value reuse, session ID resumption [11], and session
ticket resumption [92] are all commonly deployed performance enhancements that work by
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maintaining secret cryptographic state for periods longer than the lifetime of a connection.
While these mechanisms reduce computational overhead for the server and latency for
clients, they also create important caveats to the security of forward-secret ciphers.

TLS performance enhancements’ reduction of forward secrecy guarantees has been
pointed out before [209, 399], but their real-world security impact has never been systemati-
cally measured. To address this, we conducted a nine-week study of the Alexa Top Million
domains. We report on the prevalence of each performance enhancement and attempt
to characterize each domain’s vulnerability window—the length of time surrounding a
forward-secret connection during which an adversary can trivially decrypt the content if they
obtain the server’s secret cryptographic state. Alarmingly, we find that this window is over
24 hours for 38% of Top Million domains and over 30 days for 10%, including prominent
Internet companies such as Yahoo, Netflix, and Yandex.

In addition to these protocol-level shortcuts, many providers employ SSL terminators for
load balancing or other operational reasons [236]. SSL terminators perform cryptographic
operations on behalf of a destination server, translating clients’ HTTPS connections into
unencrypted HTTP requests to an internal server. We find that many SSL terminators share
cryptographic state between multiple domains. Sibling domains’ ability to affect the security
of each other’s connections also adds caveats to forward secrecy. We observed widespread
state sharing across thousands of groups of domains, including tens of thousands of sites
that use CloudFlare and thousands operated by Google.

The widespread use of TLS performance enhancements may make them an attractive
target for nation-state adversaries. Our findings show that a relatively small attack against
an SSL terminator (to recover cryptographic state) could be leveraged to trivially decrypt up
to months worth of connections to many different web sites. The cryptographic state could
conceivably also be obtained by legal compulsion, such as a warrant or subpoena.

To our knowledge, we are the first to quantify this attack surface and its dangers, and
the first to show that real-world TLS security benefits far less from forward secrecy than
statistics about support for PFS ciphers would suggest.

5.1 Background

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are
cryptographic protocols that operate below the application layer and provide end-to-end
encrypted channels for diverse applications, including HTTPS, IMAPS, and SMTP. This
section explains how TLS provides forward secrecy and facilitates session resumption. We
refer readers to RFC 5280 [38] for a detailed description of the protocol.
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5.1.1 Forward Secrecy in TLS

In TLS, perfect forward security [78] protects the confidentiality of connections in the event
that the server is later compromised by an attacker. Its threat model is an adversary who
passively observes and records the TLS handshakes and encrypted traffic between a victim
client and server. At some point after the connection has ended, the attacker gains access to
the server’s secret internal state—perhaps by exploiting a memory leak like Heartbleed [61],
by seizing the hardware and performing live-memory forensics, or by computing the server’s
private key by factoring its public RSA modulus [170]. If the server correctly provides
forward secrecy, the attacker will not be able to decrypt connections recorded in the past.

In order to achieve forward secrecy, TLS supports using Diffie-Hellman key exchange
to negotiate temporary symmetric keys for the session. The protocol supports two main
flavors of Diffie-Hellman: finite-field ephemeral Diffie-Hellman (DHE) and elliptic curve
ephemeral Diffie-Hellman (ECDHE). In DHE handshakes, the server selects a finite cyclic
group G and a generator g. It picks a random value a and sends ga mod G to the client, while
the client picks a random b and sends gb mod G to the server. Both sides then compute gab

and use it to derive the session keys. Per RFC 5246 [342], both the client and server should
generate a fresh a and b for each handshake. ECDHE functions similarly but over an elliptic
curve group. The client generates a random dA and sends dAG to the client, while the client
generates dB and sends dBG to the server. Both then derive session keys from dAdBG.

Whether the handshake uses DHE or ECDHE, the server still needs to authenticate itself
to the client in order to prevent man-in-the-middle attacks, and it does so using its long-term
private key and certificate. However, a successful attack on the authentication would require
compromising the private key before the TLS handshake completes. After that, as long as
the client and server both discard the session state, the connection data should be infeasible
to decrypt.

Using forward secret TLS handshakes is considered a security best practice [344], and all
modern browsers support them. However, many server implementations, including Apache
and Nginx, must be manually configured to use them.

5.1.2 Session Resumption

In order to reduce connection overhead, TLS allows subsequent sessions to resume a prior
session without completing a full handshake. The protocol provides two mutually exclusive
mechanisms to do this: session ID resumption and session tickets. Both mechanisms allow
the server to skip a costly public-key operation on later connections, and they save one
network round trip of latency. As we will show, server support for these resumption methods
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is pervasive—50% of Mozilla Firefox TLS sessions are resumptions1 —and of the Alexa
Top Million websites that support HTTPS, 83% support session ID resumption and 76%
support session tickets.

Session ID Resumption Session ID resumption was introduced in SSL 2.0 [172] and
allows a client and server to quickly resume an existing session. During the initial handshake,
the server provides a random session ID, which both the client and server maintain in a
table that maps IDs to session keys and connection states from recent connections. Upon
reconnection, the client provides this session ID in its first protocol message, Client Hello.
If the server recognizes the session, it will respond with a Server Hello message containing
the same session ID, after which both sides immediately resume an encrypted connection
using the original session keys. RFC 5246 suggests a maximum 24-hour session lifetime,
after which the server should discard the cached key and state.

Session Ticket Resumption TLS session tickets were introduced in RFC 4507 [352] and
redefined in RFC 5077 [92]. They allow session resumption without requiring the server
to maintain per-connection state. Instead, the server provides the client with an opaque
encrypted “ticket” containing the session keys and other data necessary to resume the session.
The client includes this ticket in later connections as an offer to resume without the full
handshake. More precisely, when the client first connects, it includes an empty session ticket
extension in its Client Hello. The server includes a corresponding extension in the Server
Hello message and, after the key exchange completes, sends the client an opaque ticket
and a lifetime “hint” in a New Session Ticket message. The client then stores a mapping
of the server’s identity to the session ticket and cryptographic state required for the client
to resume the connection. On subsequent connections, the client includes the ticket in its
Client Hello. If the server accepts the ticket, the pair completes an abbreviated handshake,
like in session ID resumption. During this process, the server can reissue the client a fresh
session ticket, but the cipher and session keys remain constant.

The ticket can contain arbitrary data, but RFC 5077 recommends a structure consisting
of a randomly generated key name (identifying the symmetric keys used to encrypt the
ticket), an IV, the encrypted state, and a MAC. The RFC recommends that the server encrypt
the state using AES-CBC and a 128-bit key and construct the MAC using HMAC-SHA-256
with a 256-bit key. (Note that these keys are never revealed to the client, which merely stores
the encrypted ticket and returns it in later connections.) Throughout this work, we refer to
the symmetric encryption key as the “Session Ticket Encryption Key” (STEK). Common

1As seen by Mozilla Firefox Telemetry [244] from March 3 to March 15, 2016.
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server implementations, including Nginx and Apache, support both loading pregenerated
STEKs from the filesystem and generating random STEKs upon server initialization.

Impacts on Forward Secrecy Both of these performance enhancements degrade the
protection achieved by forward-secret TLS handshakes [209, 399]. The client and server
will store the same symmetric key for use in future sessions, extending the lifetime of the
ephemeral handshake. More importantly, for session tickets, compromising the server’s
STEK would allow decryption of all prior connections for which that STEK was used. If a
server’s STEK never changes, the site provides no effective forward secrecy to connections
that use TLS session tickets, regardless of the key exchange mechanism used.

5.1.3 Reusing Ephemeral Values

While not a session resumption technique, servers will oftentimes reuse DHE and ECDHE
values to reduce computation for each initial handshake. For instance, with DHE, a server
might repeatedly use the same value a so that it does not have to keep computing ga. As we
will discuss later, we empirically find that at least 7.2% of HTTPS domains in the Alexa
Top Million reuse DHE values and 15.5% reuse ECDHE values.

Since the client will generate its own unique values (b, gb), the session keys derived
from gab will differ for every connection. However, an attacker who obtains the server’s
a can compute the session keys for any observed connection that uses it. Thus, forward
secrecy is not actually achieved until the server stops reusing this value and securely erases
it. If the server’s a never changes, then a PFS key exchange does not provide any effective
forward secrecy.

We discuss how session resumption and ephemeral value reuse affect the TLS ecosys-
tem’s attack surface—and attacker incentives—in Section 5.5.

5.1.4 Changes in TLS 1.3

Although still in the draft stage, TLS 1.3 [341] makes many changes to session resumption
and other security properties. Session IDs and session tickets are nominally obsoleted, but
the mechanisms persist via the pre-shared keys (PSKs).

A PSK identifier is issued by the server in a New Session Ticket message after the first
handshake is complete and then included in the second connection’s Client Hello. The
identifier itself may contain a database lookup key (analogous to a session ID resumption)
or an encrypted and authenticated copy of the TLS resumption state (analogous to a session
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DHE

Alexa 1M domains (14Apr2016) 957,116
Non-blacklisted domains 952,991
Browser-trusted TLS domains 427,313
Support DHE ciphers 252,340
≥ 2x same server KEX value 18,113
All same server KEX value 12,461

ECDHE

Alexa 1M domains (15Apr2016) 958,470
Non-blacklisted domains 954,338
Browser-trusted TLS domains 438,383
Support ECDHE ciphers 390,120
≥ 2x same server KEX value 60,370
All same server KEX value 41,683

Session Tickets

Alexa 1M domains (17Apr2016) 956,094
Non-blacklisted domains 951,978
Browser-trusted TLS domains 435,150
Issue session tickets 354,697
≥ 2x same STEK ID 353,124
All same STEK ID 334,404

Table 5.1: Support for Forward Secrecy and Resumption

ticket resumption). Unlike the current TLS versions, version 1.3 explicitly derives a separate
resumption secret.

This resumption secret can be used in two ways for session resumption. The first is for
a direct resumption for a secondary session via the “psk ke” mechanism. The second is
to be used as authentication for resumed connection that conducts a second (EC)DHE key
exchange via the “psk dhe ke” mechanism.

In addition to these two, the resumption secret can also be used for QUIC-like [339]
0-RTT communication. In this case, “early data” is sent by the client while awaiting the
completion of a resumed or new TLS handshake. The data is encrypted to the resumption
secret and can stream until the client receives the server’s Finished message.

5.2 Data Collection

To assess the impacts of session resumption and ephemeral value reuse, we measured
HTTPS behavior of Alexa Top Million domains [9] over a 9-week period in the Spring of
2016. We repeatedly connected to each server on TCP/443 using a version of the ZMap tool
chain [82, 86] that we modified to support session ID and ticket resumption. In all cases, we
restricted our analysis to websites that presented browser-trusted certificates that chain to
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the NSS root store2. Table 5.1 gives high level metrics from conducting 10 TLS connections
in quick succession to each Alexa Top Million domain on the days given.

As with any active scanning research, there are many ethical considerations at play. We
followed the best practices defined by Durumeric et al. [86] and refer to their work for more
detailed discussion of the ethics of active scanning. All scans were completed from the
University of Michigan campus and followed the institutional blacklist. For experiments that
required multiple connections in a single day, we restricted our measurements to popular
sites in the Alexa Top Million for which this load should be negligible. When possible we
used existing data from the Censys Project [82] instead of running redundant scans. We are
publishing all of the data we independently collected on Scans.io [83], and our modifications
have been merged into the main ZMap project.

Alexa Top Million Dataset Our measurements occurred within a 9-week period from
March 2, 2016 to May 4, 2016 and used the Alexa Top Million as the target domains. We
saw a surprising amount of churn within the Top Million domains from day to day. In
total, we scanned 1,527,644 unique domains including over 155K which were in ≤ 7 polls
of the Top Million. Only 539,546 domains remained in the Top Million for the whole 9
weeks. Of these, 369,034 (68%) ever supported HTTPS, 291,643 (54%) ever presented a
browser-trusted certificate, and 288,252 (53%) ever issued a session ticket, completed a DHE
or ECDHE key exchange, or resumed a session. To prevent churn in the Top Million from
biasing our results, we restrict measurements over multiple days to domains that remained
in the list for the entire period.

5.3 TLS Secret State Longevity

In this section, we describe HTTPS domains’ behavior in practice with regard to the lifetime
of cryptographic state, including how long session ID and session ticket resumption is
allowed, the lifetime of session ticket encryption keys, and the reuse of key exchange values.
We find that while session IDs and session tickets are generally only honored for under an
hour (82% and 76%, respectively), session ticket encryption keys (STEKs) persist much
longer.
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Figure 5.1: Session ID Lifetime—We
measured how long Session IDs were hon-
ored by HTTPS websites in the Alexa Top
Million.
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Figure 5.2: Session Ticket Lifetime—
We measured advertised session ticket
lifetime and how long tickets were hon-
ored by Alexa Top Million websites.

5.3.1 Session ID Lifetime

To measure how long session IDs are accepted, we initiated a TLS handshake with each of
the Alexa Top Million domains on April 27, 2016. We attempted to resume each session
one second later and then every five minutes until either the site failed to resume the session
or 24 hours had elapsed. Of the 433,220 domains that supported HTTPS and presented a
browser trusted certificate, 419,302 (97%) indicated support for session ID resumption by
setting a session ID value in the Server Hello message, and 357,536 (83%) resumed the
session after a one second delay.

As shown in Figure 5.1, the distribution of lifetimes is somewhat discrete: 82% of
domains that supported session ID resumption allowed resumption for one hour or less,
and 61% did for less than five minutes. Only 2,845 domains (0.8%) resumed sessions for
24 hours or longer; 86% of those domains belong to or are hosted by Google. We also note
that Facebook’s CDN honored session IDs for more than 24 hours.

These empirical results align with the default configuration of population web server
implementations. Apache enables session ID resumption by default and sets the lifetime
to five minutes [242]. Nginx issues session IDs but does not allow resumption unless it
is explicitly configured; session IDs expire after five minutes when enabled unless the
administrator sets a different lifetime [243]. Microsoft IIS expires session IDs after ten
hours [239], corresponding to the jump seen in Figure 5.1.

2Durumeric et al. find that 99.5% of certificates trusted by NSS are valid in all major browsers and can be
used to estimate browser trusted websites [84].
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5.3.2 Session Ticket Lifetime

We use a similar experiment to measure how long domains allowed session tickets to resume
TLS connections and the hinted lifetime. We initiated a TLS handshake with each site in
the Alexa Top Million on April 29, 2016. We attempted to resume each connection one
second later, then every five minutes until either the domain failed to resume the session or
24 hours had elapsed. If the domain reissued a session ticket during any of the connections,
we continued to attempt resumption with the ticket issued from the first connection. We
found that 366,178 out of the 461,475 domains with a browser-trusted certificate (79%)
issued a session ticket and 351,603 (76%) resumed the session after one second.

Similar to session ID resumption, 67% of domains accepted a session ticket for less
than five minutes and 76% for one hour or less as seen in Figure 5.2. The indicated ticket
lifetime closely follows the advertised lifetime hint, with the exception of 14,663 domains
that leave it unspecified and up to the client’s policy [92]. At the extreme end, we found
that two domains specified a lifetime hint longer than ten days: fantabobworld.com and
fantabobshow.com, both of which specified a 90 day hint. 54,522 unique domains hosted
by CloudFlare resumed for 18 hours, causing the steep increase in Figure 5.2. As with
session ID resumption, 8,969 domains accepted tickets for 24 hours, of which 8,535 were
hosted by Google (95%), which specified a 28 hour lifetime hint.

This behavior also agrees with the known defaults for popular web server implemen-
tations. Apache and Nginx both enable session ticket resumption by default with a three
minute lifetime.

5.3.3 STEK Lifetime

While the time span that domains will accept previously issued session tickets is an important
metric, it reflects only the ticket’s lifetime (set by policy) and not necessarily the time period
for which the associated STEK exists and is used to issue new session tickets. As discussed
in Section 5.1, the content of a historical session can be decrypted using a site’s STEK
regardless of whether a PFS handshake occurs and regardless of whether the ticket’s lifetime
has expired or not. In other words, a “forward secret” session is not actually forward secret
while the STEK that encrypted the associated ticket persists.

While it is not possible to directly detect that the key used to encrypt the session state
has changed, popular server implementations include a 16-byte STEK identifier in the ticket,
as prescribed in RFC 5077 [92]. We reviewed popular open-source TLS implementations,
including OpenSSL, LibreSSL, GNUTLS, mbedTLS, and NSS, and found that all follow
this recommendation except for mbedTLS, which uses a 4-byte STEK identifier. We also
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tested Microsoft’s SChannel implementation and found it to use an ASN.1 encoded object
containing a DPAPI object [42]. For the measurements below, we parsed this object and
extracted the Master Key GUID to use as the STEK identifier.

Between March 2, 2016 and May 4, 2016, we connected to the Alexa Top Million
domains daily and recorded the session ticket that was issued by the server, if one was
issued. We were able to determine the lifetime of each STEK by looking for the first and
last time that the (STEK identifier, domain) pair was seen. As opposed to measuring the
number of sequential days that a domain issues tickets with identical STEK identifiers, this
metric accounts for much of the real-world jitter seen in Internet scanning. This could be
due to the ZMap tool-chain’s choice of A-record entries between days, a poorly configured
load balancer which does not maintain client-server affinity, or simply the server failing to
respond to one our connections. It is highly unlikely that an administrator would switch
static STEKs only to switch back or that a randomly generated STEK identifier would
collide within the bounds of our study. Therefore, we can safely assume that a STEK was
in use between the first and last time that its identifier was seen and that any intermediate
STEK identifiers seen were the result of fluctuations connecting to different servers.

Of the 291,643 browser-trusted sites always in the Alexa Top Million, 66,941 (23%)
never issued a session ticket. 118,835 (41%) used different issuing STEKs for each day.
63,976 domains (22%) reused the same STEK for at least 7 days, and 28,210 domains (10%)
reused for at least 30 days. We show the CDF of these lifetimes in Figure 5.3.

We found a surprising collection of websites, including those of major Internet com-
panies, that fall within the 30+ day reuse. Table 5.2 shows the ten most popular domains
according to their average Alexa ranking that reused a STEK for at least 7 days. While there
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Rank Domain # Days

5 yahoo.com 63
19 qq.com 56
20 taobao.com 63
21 pinterest.com 63
28 yandex.ru 63

Rank Domain # Days

31 netflix.com 54
35 imgur.com 63
41 tmall.com 63
53 fc2.com 18
55 pornhub.com 29

Table 5.2: Top Domains with Prolonged STEK Reuse—We show the most popular
domains (by average Alexa rank) that reused a STEK for at least 7 days.

are many other notable domains, we note that there are a total of eight yandex.[tld] do-
mains, each of which showed 63 days of reuse, slack.com (a popular team communication
service) showed 18 days of reuse, and mail.ru showed 63 days of reuse. 63 days indicates
that it was seen on both the first and last day of our study and was likely in use both before
and after our study.

Figure 5.4 depicts how STEK lifetimes varied with Alexa rank tiers according to the
average rank of each domain over the 9-week period. We observed 56 domains which issued
session tickets in the Alexa Top 100, 494 in the Top 1K, 4,154 in the Top 10K, 37,224 in
the Top 100K, and 224,702 in the Alexa Top Million. Again, these are only domains which
remained within the Alexa Top Million for the entire span of our study.

The longevity of STEK lifetimes can be largely explained by the the popular implemen-
tations. Apache 2.4.0 and Nginx 1.5.7 and later allow an administrator to configure the
server to read 48 bytes of randomness from a file path on disk. This file contains the STEK
identifier, encryption key, and MAC key in order to synchronize STEKs across servers.
This configuration can only be changed via direct interaction from the administrator and
restarting the server process. If this option is not available, or if a key file is not configured,
the server randomly generates a STEK on startup and uses it for the lifetime of the process.

While there is a worrying set of websites that appeared to never rotate STEKs, we note
that many have more reasonable configurations. Google, Twitter, YouTube, Baidu, and
many others never reused an issuing STEK across days. However, as we will discuss in
Section 5.6, that is not always the sole indicator of a secure configuration.

5.3.4 EC(DHE) Value Lifetime

As described in Section 5.1, TLS servers can cache and reuse ephemeral handshake values
(a, ga in a finite-field Diffie-Hellman exchange or dA, dAG in elliptic curve Diffie-Hellman)
to reduce the computational cost of public key cryptography. Table 5.1 shows that 7.2% of
domains in a single Alexa Top Million list reuse a DHE value for some amount of time and
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Figure 5.5: Ephemeral Exchange Value Reuse—We measured how long Alexa Top
Million websites served identical DHE and ECDHE values (note vertical scale is cropped).

15.5% reuse an ECDHE value for amount of time.
To determine how long these ephemeral values persist, we analyzed two sets of daily

scans for the Top Million Domains. One set, obtained from the Censys project [82], offered
only DHE ciphers and the other offered ECDHE and RSA ciphers, with ECDHE as the first
priority.

DHE Of the 291,643 domains consistently in the Alexa Top Million and who support
HTTPS with a valid certificate, only 166,608 (57%) ever connected successfully when the
client offered only DHE ciphers. 12,824 domains (4.4%) reused a DHE value for some
amount of time in the 10 connection scans referenced in Table 5.1. The Censys project scans
show that 3,849 (1.3%) reused a DHE value for at least one day, 3,347 (1.2%) for at least
7 days, and 1,527 (0.52%) for 30 or more days. Figure 5.5 shows this visually.

Table 5.3 shows the top ten domains which reused a DHE value for more than 7 days
as determined by their average Alexa rank. We also find commsec.com.au (an Australian
brokerage firm) with 36 days of reuse and 32 kayak.[tld] domains with between 6 and
18 days of reuse.

ECDHE 234,302 domains 80% of those consistently in the Alexa Top Million who support
HTTPS with a valid certificate, completed an ECDHE handshake. 42,029 domains (14.4%)
reused an ECDHE value for some amount of time in our 10 connection scans referenced in
Table 5.1. In our daily scans, we saw 9,886 domains (3.4%) that reused an ECDHE value
for at least one day, 8,710 (3.0%) reused for at least 7 days, and 4,071 (1.4%) reused for 30
or more days. This is shown visually in Figure 5.5.

Table 5.4 shows the top ten domains that reused an ECDHE value for more than
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Rank Domain # Days

31 netflix.com 59
53 fc2.com 18

392 ebay.in 7
456 ebay.it 8
528 bleacherreport.com 24

Rank Domain # Days

580 kayak.com 13
592 cbssports.com 60
626 gamefaqs.com 12
633 overstock.com 17
730 cookpad.com 63

Table 5.3: Top Domains with Prolonged DHE Reuse—We show the most popular do-
mains (by average Alexa rank) that reused a DHE value for at least 7 days.

Rank Domain # Days

31 netflix.com 59
74 whatsapp.com 62

158 vice.com 26
221 9gag.com 31
322 liputan6.com 28

Rank Domain # Days

353 paytm.com 27
464 playstation.com 11
527 woot.com 62
528 bleacherreport.com 24
615 leagueoflegends.com 27

Table 5.4: Top Domains with Prolonged ECDHE Reuse—We show the most popular
domains (by average Alexa rank) that reused an ECDHE value for at least 7 days.

7 days. Notable domains beyond the top ten include betterment.com (an online investing
service) with 62 days of reuse, mint.com (a budgeting website that connects to banks and
investment services) with 62 days of reuse, and symantec.com, symanteccloud.com, and
norton.com with 41, 16, and 19 days of reuse respectively.

As seen in Figure 5.5, the ephemeral value longevity metrics are fairly consistent with
one another, but are substantially different from the STEK longevity rates seen in Figure 5.3.

5.4 TLS Secret State Sharing

When measuring the increased attack surface resulting from stored TLS secrets, it is also
important to consider cases where secrets are shared across domains, servers, or data
centers. If a shared TLS secret is extracted from a single site, it can be used to compromise
connections to all the other sites regardless of whether they use different long-term SSL
certificates.

We found many “service groups” in which multiple domains shared a session cache,
STEK, or Diffie-Hellman value, making these secrets particularly valuable targets for attack.
While it would be logical for a single domain to use this technique to allow sessions to be
resumed across multiple servers, the magnitude of sharing across domains was surprising.
The root cause of this behavior is likely that domains share an SSL terminator, whether it is
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Operator # domains

CloudFlare #1 30,163
CloudFlare #2 15,241
Automattic #1 2,247
Automattic #2 1,552
Blogspot #1 849

Operator # domains

Blogspot #2 743
Blogspot #3 732
Blogspot #4 648
Shopify 593
Blogspot #5 561

Table 5.5: Largest Session Cache Service Groups

a separate device such as a Cavium card [49] or multiple domains running on the same web
server.

5.4.1 Shared Session ID Caches

To establish a lower bound on how many websites share session ID caches, we conducted
a cross-domain probing experiment where we attempted to resume a TLS connection to
domain b with a session that originated from domain a. If performed exhaustively, this
would require hundreds of thousands of connections to each domain. However, we made the
experiment tractable by limiting groups to a small number of domains from each AS and by
transitively growing the graph. That is, if we observed that ida was valid on domain b and
idb was valid on domain c, we conclude that ida would have also been valid on domain c

and group domains a, b, and c together.
For each site, we randomly selected up to five other sites in its AS and up to five sites

that shared its IP address and tested whether its session ID allowed connection to these other
sites. We note that because servers can expire session IDs at any time, there is no harm to
the server to provide an invalid session ID; the server will simply complete a typical TLS
handshake as if no session ID had been presented.

Of the 357,536 domains that supported session ID resumption in Section 5.3.1, we found
212,491 service groups, of which 183,261 (86%) contained only a single domain. The
largest service group we found belonged to CloudFlare and contained 30,163 domains (66%
of the 45,520 Alexa Top Million domains in their AS). We show the ten largest session
cache service groups in Table 5.5.

As shown in the table, we observed cases where a single logical provider (such as a CDN
or cloud services company) had multiple service groups even within the same /24 CIDR
block. We manually confirmed that this was not an artifact of our grouping methodology and
in fact reflected the remote configuration. While we believe that this measurement technique
is effective, it provides only a lower bound on the true number of domains that share session
caches. Our ability to provide a tighter estimate is limited, since TLS does not provide the
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Operator # domains

CloudFlare 62,176
Google 8,973
Automattic 4,182
TMall 3,305
Shopify 3,247

Operator # domains

GoDaddy 1,875
Amazon 1,495
Tumblr #1 975
Tumblr #2 959
Tumblr #3 956

Table 5.6: Largest STEK Service Groups

Operator # domains

SquareSpace 1,627
LiveJournal 1,330
Jimdo #1 179
Jimdo #2 178
Distil Networks 174

Operator # domains

Atypon 167
Affinity Internet 146
Line Corp. 114
Digital Insight 98
EdgeCast CDN 75

Table 5.7: Largest Diffie-Hellman Service Groups

client any information about the session cache or saved session state other than the random
session ID.

5.4.2 Shared STEKs

To track how STEKs are shared across servers, we connected to each April 17, 2016 Alexa
Top Million domain ten times over a six hour window and grouped sites together that shared
at least one STEK identifier during the scans. Since some providers rotate session tickets
at smaller intervals than six hours, we repeated the experiment with one connection over a
30 minute window, similarly grouped domains, and then joined the two groups.

Of the 354,697 sites that supported session tickets, we found 170,634 STEK service
groups, of which 140,715 (83%) contained only a single domain. As with session IDs,
the largest group belonged to CloudFlare; it contained 62,176 domains. The next largest
belonged to Alphabet (Google’s parent company) and contained 8,973 hosts sharing a STEK.
We show the top ten largest STEK service groups in Table 5.6.

5.4.3 Shared (EC)DHE Values

Lastly, we looked for Alexa Top Million domains that shared DHE or ECDHE key-exchange
values. To do this, we completed 10 TLS handshakes with each Alexa Top Million domain
over a five-hour window. As with the shared STEK experiment, we also performed a scan
that made a single connection to every domain during a 30 minute window. Both scans were

116



Figure 5.6: STEK Sharing and Longevity Visualization—Each box in this illustration is
sized proportionally to the number of domains in that service group and colored according to
the observed longevity of the key. Solid red boxes represent groups of domains that shared a
key that persisted for at least 30 days.

conducted twice, once with only DHE ciphers and once with only ECDHE ciphers, for a
total of four scans.

We found that Diffie-Hellman values were shared in fewer instances and by somewhat
smaller groups than either session caches or STEKs. The most widely shared DHE value
was one we saw 1,368 times across 137 domains and 119 IP addresses, all within AS 20401
(Hostway Corporation). We also found a single ECDHE value shared 1,790 times across
179 domains on a single IP, which appeared to be a Jimdo hosting server [182] on Amazon
EC2.

We labeled servers that ever presented the same DHE or ECDHE key-exchange value
to be part of the same service group. We found 421,492 Diffie-Hellman service groups,
of which 417,397 (99%) contained only a single domain. The largest group belonged to
SquareSpace and contained 1,627 domains. We identify the largest ephemeral value service
groups in Table 5.7.
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5.5 Crypto Shortcut Dangers

As of May 2016, we find that 90.2% of Top Million domains with trusted HTTPS use
forward secret key exchanges for connections from modern browsers. Prior to our study,
we—the authors—would have assumed from this that connections would be forward secret
shortly after the connection has ended. However, when we consider the interaction of crypto
shortcuts and cross-domain secret sharing, we see that this is not the case and that many
popular domains remain susceptible to retrospective decryption.

As opposed to the naive understanding, forward secrecy is not a binary concept being
either forward secret or not forward secret. Forward secrecy is a gradient where the
confidentiality of the data is forward secret after some passage of time dependent on many
different factors. At one extreme, an arbitrarily complex key-ratcheting mechanism could
protect data confidentiality even if an endpoint is compromised while the connection is
in progress. The attacker would be able to decrypt the connection’s content after the
compromise, but not before. At the other extreme, a TLS connection that uses RSA key
exchange is effectively never forward secure. Due to the long-term nature of most SSL
certificates as well as the likelihood that they are stored on disk, recovery is likely possible
even long after the certificate has expired.

To quantify the amount of forward secrecy, we can attempt to establish lower bounds for
each site’s vulnerability window. This is the span of time during which an attacker could
recover the session keys for an observed TLS connection by compromising secret values
stored by the server. Our measurements from the previous sections allow us to estimate lower
bounds for this window, but the true exposure may be much greater. While we can detect
that a server refuses to resume older sessions, we cannot tell whether it has securely erased
the corresponding secrets or whether the secrets may be vulnerable to forensic recovery.

In addition to quantifying the amount of forward secrecy, we also wish to account for
the concentration of the secrets themselves. In a secure world, a compromise of one server
would affect as few connections on as few domains as possible. But as shown in Section 5.4,
this is far from the case and that the compromise of a small number of SSL endpoints could
endanger an out-sized number of domains’ content.

The interaction of these two factors presents an enticing target for an attacker who wishes
to decrypt large numbers of connections for a comparatively small amount of work.

5.5.1 Exposure from Session Tickets

The long-term usage of session ticket encryption keys (STEKs) is the most worrisome
practice we observed. Since the session ticket contains the session keys encrypted with the
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STEK, and since it is sent as part of each TLS connection outside of the TLS tunnel (initially
by the server and subsequently by the client), an attacker who obtains the associated STEK
can decrypt the ticket, recover the session keys, and decrypt the connection contents.

The vulnerability window begins when the STEK is generated (potentially before the
victim connection) and ends when it is securely erased from all servers. As reported in
Section 5.3.3, 36% of the ticket-issuing domains we considered reused the same STEK for
at least a day, 22% for more than a week, and 10% for more than a month.

In Figure 5.6, we visualize the interaction of session ticket service groups and the median
STEK reuse for each service group. The two largest service groups (CloudFlare and Google)
account for 20% of Top Million HTTPS sites and are shown in the far-left column, and
both reused STEKs for less than 24 hours. On the opposite end of the longevity spectrum
were TMall (a Chinese online retailer) and Fastly (a CDN), which are represented by the
largest red elements in the second column of Figure 5.6. Together, they accounted for
1,208 domains. Fastly, which controlled domains such as foursquare.com, www.gov.uk,
and aclu.org, always issued session tickets with the same STEK throughout our 9-week
study.

While not one of the largest service groups, we note a concerning cluster of sites
controlled by Jack Henry & Associates. This service group contains 79 bank and credit
union domains which issued session tickets for 59 days using a single STEK and then all
rotated to a different—but still shared—STEK for the final 4 days of our study.

While we are pleased that many of the largest service groups rotate their STEKs at
least daily, the magnitude of reliance on a small number of secret values is disconcerting.
Current versions of Chrome, Firefox, IE, and Microsoft Edge all offer the session ticket
extension by default and an attacker who could collect the traffic as well as obtain the STEK
within the vulnerability window would be able to decrypt and access the millions of victims’
connection content with ease.

5.5.2 Exposure from Session Caches

When a server supports session ID resumption, an attacker can potentially recover keys for
past sessions as long as they reside in the server’s session cache. As such, the vulnerability
window begins when the victim connection completes its handshake and ends when the
server implementation securely discards the session state.

Our experiments in Section 5.3.1 show that at least 83% of Top Million sites employ
session caching and retain state for some amount of time after a connection, and at least
18% do so for more than 60 minutes. Section 5.4.1 shows that session cache sharing is
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Figure 5.7: Visualizing Session Caches and Diffie-Hellman Reuse—For comparison
with Fig. 5.6, we show similar illustrations of the longevity and cross-domain sharing
exhibited by session caches (left) and repeated Diffie-Hellman values (right).

widespread, with 49% of Top Million domains sharing a cache with at least one other
popular domain. Figure 5.7 shows the interaction of these measurements.

The combined effect of session caching and cache sharing makes large interdomain
session caches a particularly attractive target for attackers. The ten largest shared caches
(Table 5.5) account for 15% of Top Million domains and exhibited median vulnerability
windows of 5 and 1,440 minutes (24 hours). Of these, the five longest-lived all belonged to
Google Blogspot and exhibited median cache lifetimes ranging from 4.5 hours to 24 hours
(the maximum we tested). An attacker who could access the contents of any one of these
caches would be able to decrypt hours’ worth of TLS traffic for hundreds of popular sites.

Compared with Figure 5.6, Figure 5.7 shows a similar distribution within the largest
service groups. Although the maximum vulnerability windows are orders of magnitude
different, the proportional distribution is similar.

5.5.3 Exposure from Diffie-Hellman Reuse

When a server reuses Diffie-Hellman ephemeral values (contrary to the advice of RFC 5246 [342]),
this also leads to an extended vulnerability window. The window last from the time the
server generates its random Diffie-Hellman value (a or dA) until that value is securely erased.
Like session tickets, an attacker who leaks the server’s Diffie-Hellman value can also decrypt
future TLS connections until the server ceases using that value as well as any previous
connections using that value.

Figure 5.7 shows combined effect of longevity and inter-domain sharing was significantly
smaller for Diffie-Hellman reuse than for session resumption, but it still resulted in a few
notable high-value targets. Affinity Internet shared a single Diffie-Hellman value across
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91 domains for 62 days, and Jimdo shared one value for 19 days across 64 domains and
another value for 17 days across a different 60 domains (seen as the red blocks in the far left
column).

5.5.4 Combined Exposure

Since session tickets, session caches, and Diffie-Hellman reuse all lead to an extended
vulnerability window, an attacker with some way of accessing the server’s internal state
could choose to exploit any of them to compromise forward secrecy. A domain’s overall
exposure is determined by the longest vulnerability window it exhibits for any of these
mechanisms.

Of the 291,643 domains that were in the Alexa Top Million for the duration of our
measurements and supported HTTPS with a browser-trusted certificate, 288,252 (99%)
issued a session ticket, resumed a session, or conducted a DHE or ECDHE key exchange.
Figure 5.8 shows the distribution of the maximum vulnerability window found for every
domain.

About 90% of browser-trusted Top Million domains with browser-trusted certificates are
configured to support forward-secrecy with modern browsers, which, as commonly thought
of, would result in a vulnerability window that lasts no longer than the connection. Due
to combined effects of the TLS crypto shortcuts we have discussed, we find that 110,788
domains (38%) have a maximum vulnerability window of more than 24 hours, 65,028 (22%)
of more than 7 days, and 28,880 (10%) of more than 30 days.

5.6 Nation-state Perspective

As seen above, our results indicate that TLS crypto shortcuts leave popular HTTPS sites
significantly less well protected than we thought in the face of server-side information leaks
such as Heartbleed. However, the risks of these mechanisms appear even more severe if
we consider threats from nation-state attackers such as the NSA. In particular, the “shape”
of the vulnerability windows created by session tickets is ideally suited for exploitation
by intelligence agencies for surveillance purposes. In this section, we consider how a
nation-state attacker might seek to exploit TLS crypto shortcuts and we assess the potential
impact on Internet security of such a compromise against one particular high-value target,
Google. Due to the availability of information regarding the NSA and other “Five Eyes”
agencies, we focus on the modi operandi of these groups.

Recent TLS vulnerabilities—such as FREAK [34], Logjam [8], and DROWN [20]—
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Figure 5.8: Overall Vulnerability Windows—This CDF depicts the combined effects of
exposure from session tickets, session caches, and Diffie-Hellman reuse.

require active interference with each connection, making them unsuitable for stealthy,
retroactive, or wide-scale surveillance. Some researchers believe that NSA can currently
defeat TLS encryption when used with 1024-bit RSA [222] or DHE [8]. In either case,
specific non-standard configurations would be required in cipher selection (preferring RSA
client write and DHE ciphers with specific DH constants respectively) to enable passive
decryption. However, there is no credible evidence that they can break the higher-strength
cryptography now used by most popular sites.

5.6.1 The STEK as an Enabling Vector

It is well known that the NSA and other intelligence agencies have the ability to passively
collect vast amounts of Internet traffic. Some collection is “targeted” at a specific person,
website, or IP address, but other collection involves indiscriminately storing all network
traffic in large circular buffers, such as XKEYSCORE [226] and TEMPORA [147], for ex

post facto analysis [417].
These capabilities are almost certainly challenged by the growth of TLS, which has
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accelerated following increased public awareness of surveillance [231] and the availability of
free browser-trusted certificates [180]. Faced with these constraints, nation-state adversaries
might find that session tickets provide an appealing mode of attack. Exfiltrating one 16-
byte STEK from a server would allow the adversary to decrypt every passively collected
connection which uses the TLS session ticket extension during the vulnerability window,
including connections within the window but before the STEK was leaked. As seen in
Figures 5.6, stealing a small number of STEKs would enable decryption of content from a
large number of domains.

Although obtaining a STEK may require attacking the provider and not the end-target,
intelligence agencies have been known to conduct sophisticated intrusions in order to
facilitate later passive surveillance. GCHQ infiltrated SIM card manufacturer Gemalto to
steal the encryption keys used by millions of cellphones [60, 328, 356]. They also attacked
engineers at Belgacom, the largest ISP in Belgium, in order to gain access to traffic from
its core routers [128]. An unknown adversary—thought to be a nation state—infiltrated
Juniper Networks’ code repository and inserted a cryptographic backdoor into the company’s
VPN products [53]. Similar operations could be used to access STEKs from high-value
targets.

It is likely that some domains synchronize STEKs across servers in many network
locations and jurisdictions. A nation-state attacker could attempt to compromise the syn-
chronization mechanism, or they could convince a hosting facility to grant them access to
the equipment for physical attacks [13]. Within its national borders, such an attacker might
use the court system to compel an organization to turn over the STEKs, as Lavabit was
ordered to do with its TLS private key [336]. However obtained, the STEK would provide
global decryption capabilities.

5.6.2 Target Analysis: Google

To provide a concrete example, we simulate a nation-state attacker’s possible analysis of an
attack against Google—a large tech company with experience being attacked by [152, 430]
and defending against [129] nation-state adversaries. As the attacker, our goal is to leverage
our existing passive collection systems—which currently only see TLS ciphertext—in
order to gain insight into a large swath of network communication.

As seen in Table 5.6, a single STEK is shared by nearly all Google web services, in-
cluding Search, GMail, Drive, Docs, Hangouts, and many more. We find that Google also
uses the same STEK for other TLS-based protocols, including SMTP+STARTTLS, SMTPS,
IMAPS, and POP3S. We experimentally determined that Google’s STEK is rolled over
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every 14 hours, but issued tickets are accepted for up to 28 hours, indicating that each key is
maintained at least that long. This implies that only two 16-byte keys must be stolen every
28 hours in order for the attacker to be able to decrypt all Google TLS connections that use
the session ticket extension.

By requesting the MX records for the Alexa Top Million domains, we find that over
90,000 domains (9.1%) point to Google’s SMTP servers. This is likely a reflection of the
Google for Work program in which more than 2 million businesses (including 60% of
Fortune 500 companies) use Google’s service for their internal and external e-mail [158].
So in addition to the e-mail communications and web-app data from @gmail.com addresses,
the content of any company which relies on Google’s cloud service for intracompany e-mail
or web-apps would be decryptable.

The intelligence value from the resulting decryption ability would extend far beyond
Google’s own properties. Google supplies analytics, ads, and APIs to many websites
whose requests would likely send the user’s Google cookies. We have confirmed that
browser connections to these Google dependencies use the same STEK as other Google sites.
Obtaining the Google STEK would allow tracking users even when they are not directly
accessing Google sites.

As this analysis shows, Google’s STEK would be an immensely valuable target, as it
would enable the decryption of a huge amount of encrypted traffic and provide intelligence on
targeted and untargeted individuals. Even if the exploitation required the use of sophisticated,
persistent hardware or software implants, the trade off between the possibility of their
discovery and the rich intelligence that would be gained likely falls within the acceptable
risks category for many nation-state adversaries.

Google’s is the case of a well protected organization with a highly talented security
team. As shown in Section 5.3.3, many other organizations—including large tech and
cloud service companies—appear to be far less cognizant of the risks of TLS performance
enhancements. As an example, Yandex is a Russian Internet company that mirrors Google’s
offerings in search, e-mail, and cloud storage and enjoys a 57% domestic market share [207].
Like Google, Yandex appears to use a single STEK for almost all of its properties, but unlike
Google, this STEK has been in use continuously since at least January 10, 2016—eight
months prior to this writing. A single operation to recover this STEK would immediately
allow decryption of months’ worth of connections.
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5.7 Discussion

While we’ve notified the domains and companies that we explicitly point out above, there
are other ways to address the ecosystem-wide issues we found. In this section we step back
and view the problems found with (EC)DHE values, session caches, and session tickets from
a community level. We draw lessons from our measurements and make recommendations
for server operators.

5.7.1 Security Community Lessons

The security community’s advocacy for the adoption of TLS forward secrecy has shown clear
gains, with over 90% of Top Million HTTPS sites now using forward secret key exchanges
for modern browsers. And the use of forward secret key exchanges is undoubtedly a vast
security improvement from non-forward secret exchanges. However, our results are a
reminder that cipher selection is only one part of the story.

Forward secrecy comes with many critical caveats and nuances of implementation [343].
The security community needs to do a better job of monitoring implementation behav-
ior—through measurements like the ones we present here—in order to have a realistic
understanding of the threats we need to guard against.

The security community also needs to more clearly communicate such caveats to TLS
server operators and implementers so that they can make informed choices about securi-
ty/performance tradeoffs. Absent such knowledge, there is a risk that forward-secret TLS
handshakes can create a false sense of security. In the aftermath of the Heartbleed vulnera-
bility, security experts urged administrators to enable PFS ciphers in order to guard against
retrospective decryption as a result of future server-side memory leaks [85, 431]. However,
only a few experts ever noted that performance enhancements like session resumption
undermine that protection [343], and the fact seems to have been largely overlooked. The
next time there there is such a vulnerability, administrators who enabled PFS as a defense
might mistakenly believe they are safe.

One opportunity to begin such education is protocol standards. As described in Sec-
tion 5.1.4, the TLS 1.3 draft proposes changes that have direct consequences for the pro-
tocol’s vulnerability window. Draft 15 briefly addresses the changes to forward secrecy
cased by PSK connections and 0-RTT, but simply sets a 7 day maximum for PSK lifetimes
without discussion. As shown above, PSKs honored for 7 days (whether database lookups
or encrypted state) require TLS secrets to exist for the same amount of time and may be a
significant risk for high-value domains.
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5.7.2 Server Operators Recommendations

For maximum security, server operators should disable all session resumption and Diffie-
Hellman reuse. And while we are aware that many operators will be understandably
unwilling to do so due to the bandwidth, computation, and latency advantages, there is
a middle-ground between the two that limits vulnerability windows as well as allows the
performance enhancements.

Use HTTP/2 Using HTTP/2 [27] drastically reduces the computation, bandwidth, and
latency of loading a website without requiring any crypto shortcuts. An entire domain’s
contents (base page and all dependencies) can be loaded over a single TLS connection.
This results in the time-to-first byte on the first request being identical to standard HTTP
over TLS, but all follow-on requests are significantly faster without expanding the PFS
vulnerability window.

Rotate STEKs frequently Reducing the time period that a STEK is used to encrypt
session tickets is the simplest way to reduce the vulnerability window when using session
ticket resumption. While Figure 5.3 shows that many domains are already doing this, it also
shows that many are not. Twitter, CloudFlare, and Google have all created their own custom
key rotation solutions [173, 209, 216], but, to our knowledge, no popular server software
does this, with the exception of the most recent release of Caddy [176].

Use different STEKs for different regions Rather than sharing a single session ticket key
globally, large sites should seek geographical diversity by using different keys in different
regions. In addition to limiting exposure if a single server is compromised or physically
attacked, this practice would help constrain the effects of legally mandated STEK disclosure
to connections within a particular jurisdiction.

Reduce session cache lifetimes Specific to session ID resumption, quickly expiring
cached session state is also useful. The number of connections that are at risk of decryption
at any time grows proportionally with the lifetime of the server-side state. By measuring
the duration of a typical user visit, operators can use that to ensure that a user only has to
conduct one full handshake per visit but also refrain from retaining the session state longer
than necessary.

Store, distribute, and erase secrets securely TLS implementations need to ensure that
TLS secrets handled securely before, during, and after their use. For a small site, these details
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should be handled by the TLS implementation. But for more complicated deployments
that involve synchronizing caches or STEKs across multiple servers, operators need to be
more directly involved. Whatever mechanism they design to synchronize STEKs needs to
ensure that these keys are transmitted securely and maintained only in memory (rather than
persistent storage), so that they can be reliably discarded.

5.8 Conclusion

We conducted a 9-week study of HTTPS within the Alexa Top Million with a focus on under-
standing both the prevalence and characteristics of TLS performance enhancements such as
(EC)DHE value reuse, session ID resumption, and session ticket resumption. Through this
study, we were able to characterize the effects of cryptographic shortcuts on the promises
associated with the use of forward-secret ciphers. Our findings show that the TLS ecosystem
achieves much weaker protection from forward secrecy than statistics about support for
forward-secret handshakes would suggest. They also emphasize the need for the security
community to clearly communicate the relevant tradeoffs between security and performance
to server operators.

Nation-State Attacker Model When we view this research in the context of our NS-
Attacker model, we see multiple places where the attributes of our NS-Attacker model apply.
The first and most obvious is NS-Attackers’ advantage of Non-Symmetric Defeats. The
resources investment required to exploit an SSL terminator to acquire the STEK or session
cache as well as the investment to compute the discrete log a long-term DH key share is
assumed to be large. But if successful, this resource investment allows content decryption
at near zero cost per connection. This fits perfectly with the large one-time cost, trivial
marginal cost description type of defeat described in Section 2.3.3.

NS-Attackers’ characteristic of Sovereignty can drastically reduce the one-time resource
investment required for the asymmetric defeat. As described in Section 2.2.1, NS-Attackers
can use legal writs to obtain data from a provider. While it may be technically infeasible,
or at least difficult, to extract any of the shortcut secrets when in default configurations, a
STEK or session cache shared across multiple terminators is likely to be recoverable with
little to moderate effort.

With regard to the constraint of Required Hard Victims, this type of attack could
contribute to both the collect-it-all and retrospective mitigations. Research found that a
small number of domains are dependencies of an amazingly large number of the Alexa
Top Million domains. Of the Top 10 domains loaded by the Alexa Top Million, 8 are
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Google properties including google-analytics.com which is loaded by 67.8%. Acquiring
Google’s STEK would allow the attacker to not only defeat HTTPS protection when victims
are on Google properties, but also enable victim tracking when not on Google properties via
Google cookies.
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CHAPTER 6

Future Work and Conclusion

In only the last decade, Nation-State Attackers have emerged as a recognized threat to not
only the security and privacy of other state actors, but also as a threat to corporate entities
and citizens of all countries as a whole. And while some factions of the security community
were already cognizant of the potential impact, the security community as a whole and the
larger technical community were largely caught off guard by the disclosure of NS-Attackers’
behavior.

In the years since, large and sweeping efforts have been made to curb these activities as
well as construct barriers to other potential NS-Attacker endeavors. But as we discussed in
Chapter 2, NS-Attackers are an agile attacker who can not be expected to concede the loss
of intelligence capabilities nor overlook vulnerabilities which may present themselves in the
future.

In this chapter, we first identify and briefly discuss avenues of future research and
exploration which we believe provide appealing improvements to defenses against NS-
Attackers. Finally, we conclude with a brief summary of our research efforts and our
previous discussion.

6.1 Going Forward

When we examine Nation-State Attackers in the context of our previously presented model
and case studies, we see that Nation-State Attacker have a potentially immense impact on
computer security. In order to ameliorate their potential effects, the security community
must re-examine many of the fundamental assumptions and constructions of the Internet as
it currently exists. In this section, we identify and briefly discuss avenues of research which
we believe many prove to be useful in addressing the dangers of NS-Attackers.
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Personal Clouds As we discussed in Section 2.6, cloud services present an attractive
objective for NS-Attackers. The concentrations of users and data increase the likelihood that
an NS-Attacker would target them for exploitation whether for watering-hole style attacks or
to exploit the veritable “data lake” of information. An appealing avenue of future research
and investment is in breaking up these large concentrations by way of isolating the users
and their data from each other.

The obvious disadvantage of this type of partitioning is that it also splits the efforts
to secure these concentrations as described in Section 2.6. One approach to addressing
this is to abstract the security and privacy decisions away from the individual user in
favor of secure-and-private-by-default configurations. Project such as ownCloud [322] and
Mail-in-a-Box [223] provide drop-in replacements for popular cloud use cases such as file
sharing and e-mail hosting. Lowering the barrier to entry and improving the default security
characteristics of systems such as these has shown to improve the security of the ecosystems
and users as a whole [194].

Security Bastions Where as personal clouds are envisioned to improve the security and
privacy of users’ data, organizations typically deal with substantially more data and interac-
tions. While some organizations have the financial and technical resources to migrate away
from shared cloud services, it is a substantial undertaking. Instead, we see promise in the
use of on-site security bastions as a drop-in security improvement.

With these bastions, organizations could still take advantage of cloud services for storing
and retrieving large amounts of data, but maintain control of the security of that data. As
described in Section 2.6, many cloud providers control the at-rest encryption keys which
substantially reduces the protection of encrypting that data. These security bastions allow
each organization to control their own key material on-site. As envisioned, these bastions
would operate similar to an HTTP proxy which would act as a middle-man encrypting or
decrypting data on its way to the cloud service.

Assumption Identification and Verification Lastly, we believe that it is important for
the security and research community to continue identifying and investigating assumptions
made about how users and implementers realize standards. As seen in Chapter 4 and
Chapter 5, expectations about the use of cryptographic parameters do not always match
reality. Additionally, research into how people use security and privacy is on going and still
evolving.
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6.2 Conclusion

Since 2013, Nation-State Attackers have been thrust into the public’s perception by a series of
leaked documents, declassified reports, and attributed attacks. This new information shows
a level of feasibility, scale, and maliciousness that had previously been largely dismissed
by the security community as a whole. Additionally, many documents included oracles
of effective attacks without technical detail or indication of still strong alternatives to the
now weak systems and protocols. Through wide-ranging and intensive efforts, the security
community was able to reverse engineer and/or rediscover many of these attacks and adjust
the “Best Practices” to account for them. One substantial drawback of this type of effort is
that it inherently relies on an oracle of what is possible. Without proactively studying and
accounting for the fundamental attributes of Nation-State Attackers, the security community
must await the next disclosure and the next oracle to mitigate the next attack.

In Chapter 2, we presented our high-level model of Nation-State Attackers. In addition
to defining a direct and concise lexicon, we also identified the defining characteristics of,
advantages of being, and constraints faced by Nation-State Attackers. We then proposed
ways in which Nation-State Attackers’ operations and behaviors differ from each other as
well as aspects of Nation-State Attackers that individuals, organizations, and researchers
should be cognizant of when designing or implementing systems and protocols.

In Chapter 3, we presented our 2014 publication “Security Analysis of the Estonian
Internet Voting System” which showed the impact that Nation-State Attackers described
by our model can have on real-world threat models. Through a combination of their
characteristic of Access and advantages of Near Superset Attacker and Specialization, we
showed that the Estonian Internet Voting System could not withstand attacks from real-world
adversaries and was susceptible to interference by Nation-State Attackers.

In Chapter 4, we discussed our 2015 publication “Imperfect Forward Secrecy: How
Diffie-Hellman Fails in Practice” which showed how our Nation-State Attacker model can be
used to explain and provide concrete details for known but ambiguous Nation-State Attacker
operations. The asymmetric properties of the Index Calculus algorithm corresponded with
Nation-State Attackers’ advantage of Non-Symmetric Defeats in highly beneficial ways.
Additionally, Nation-State Attackers’ characteristic of Money as well as the advantages
of Specialization and Distant Return Horizons also conformed to the requirements of the
described attack. All of these factors, along with our Internet measurements to determine
the impact of our attack if realized, supported our assertion that the NSA is likely capable of
decrypting large numbers of VPN connections by efficiently defeating the Diffie-Hellman
key exchange using Index Calculus.
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In Chapter 5, we discussed our 2016 publication “Measuring the Security Harm of
TLS Crypto Shortcuts” which showed how our Nation-State Attacker model can be used
to find vulnerabilities without the aid of an existence oracle. Much like the Index Calculus
algorithm, the real-world usage of TLS Session Tickets presented asymmetric properties
that correspond with Nation-State Attackers’ advantage of Non-Symmetric Defeats. TLS
Session Tickets also provided a fitting mitigation to Nation-State Attackers’ constraint of
Required Hard Victims as they can be combined with the Collect-it-All mentality efficiently
defeating large numbers of encrypted communications. When viewed with the characteristic
of Sovereignty, alternatives for the asymmetric defeat’s one-time effort provide additional
forms of this defeat.

In conclusion, we believe that our proposed Nation-State Attacker model is a needed
and useful foundation to security researchers, practitioners, and the community as a whole
when confronting Nation-State Attackers. By stepping back from the intricate and nuanced
details of known operations, our identification and discussion of Nation-State Attackers’
characteristics, advantages, and constraints provides a much more manageable and general
view of these highly privileged attackers. This perspective allows us to not only identify
current vulnerabilities that Nation-State Attackers may exploit, but also to proactively
identify types of system constructions which are beneficial to Nation-State Attackers and
their attributes. Going forward, we believe that our model can be used by the wider security
community to account for Nation-State Attackers and improve the security of users across
the Internet.
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