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Figure 4.3: Percentage recovery of normal shock pressure rise for various confinement ratio
A∗/A and bulk inflow Mach number M0.

4.2.3 Smart one-dimensional model

Smart’s model [116] is derived from the same flux-conserved approach with the addition

of an equation for Ac representing the core flow area such that the mass flow rate ṁ = ρ U Ac.

Figure 4.4 represents the control volume used in Smart’s model to derive the conservation

equations. Wall friction and heat losses are both accounted for. The derivation of the model

equations (Eq. 4.11, 4.8, 4.9) are detailed in Smart [116]. Lastly, an additional equation for

the local spatial pressure growth rate dP
dx

closes the system and allows forward integration

in space. This equation can use any external model. The additional Eq. 4.9 describes the

evolution of the core flow area ratio Ac/A, which has value 1 both at the foot and tail of

the shock train. It marks the points of detachment/reattachment in Smart’s analysis. This

model, therefore, permits to determine both the pseudoshock length and the back pressure

contrary to previously described models. Note that the first line of Eq. 4.9 contains the

isentropic rate of change of Ac/A, while the second one adds wall friction forces to the

analysis and the last one accounts for wall heath losses. This last one will be discarded in

this chapter as all involved datasets assume adiabatic walls.

dM2

M2
= −

(
1 +

γ − 1

2
M2

)[(
2

γM2

A

Ac

)
dP

P
+

(
A

Ac

)
4Cfdx

DH

+
dTt
Tt

]
(4.8)
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A fact that was not explicitly stated in the analysis ofMclafferty [5]
but is an important aspect of constant-area duct flows is that, for a
given inflow, there is only one subsonic downstream solution that
satisfies mass, momentum, and energy conservation if one assumes
no viscous drag or heat loss in the interaction zone. In fact,
Mclafferty’s analysis can be accomplished using the standard normal
shock relations, if the nonuniform inflow entering the interaction
zone is represented as an equivalent one-dimensional flow that has
the same mass flow, momentum flux, and energy as the actual flow
(termed a flux-conserved one-dimensionalization). Note that, in
practice, Mclafferty’s analysis supplies the maximum backpressure
that can be sustained in a constant-area duct.

V. AnalysisMethod for Pseudoshocks in Backpressured
Ducts

The second question, over what length the pressure rise in the
pseudoshock is spread, is more difficult to answer, as it requires a
model for the ability of a separated boundary layer in a duct to sustain
a pressure gradient. To the author’s knowledge, the best attempt to do
this is due to Ortwerth [16], who developed a “diffuser”model based
on the premise that the pressure gradient through the separated region
of a pseudoshock must be equal to that supported by shear in the
separated region. Based on a large amount of experimental data,
Ortwerth [16] determined that the rate of pressure rise (diffusion) in a
duct is directly proportional to the dynamic pressure of the flow and
theminimum skin-friction coefficient at the initial point of separation
in the duct; and it is inversely proportional to the duct hydraulic
diameter. From this, he developed a diffuser model for separated flow
in ducts that can be expressed as

dp

dx
! k

DH
Cf0

!
ρV2

2

"
(3)

where dp∕dx is the local pressure gradient in the pseudoshock region,
DH is the hydraulic diameter of the duct, Cf0 is the minimum skin-
friction coefficient at the initial separation point, and k is an empirical
constant determined through correlation against experimental data.
In essence, this relationship supplies the ability to determine a length
scale over which the pressure rise must be spread in a duct when the
wall boundary layer is separated.
An analytical solution for the length of the separated region in a

pseudoshock, LS, in a constant-area duct assuming flow of a
compressible perfect gas was developed by Ortwerth [16] using
Eq. (3), in combination with the conservation equations for mass,
momentum, and energy. Ortwerth [16] published a comparison of the
predicted complete interaction length with experimental data for
rectangular, circular, and square channels over a Reynolds number
range of 40 and Mach numbers from 1.5 to 5, which is included here
as Fig. 8. He found that a value of k ! 44.5matched the experimental
data, as shown in Fig. 8. This author has found that a value of
k ! 50.0 produces a better match to experimental data, and this is the
constant that will be used in this paper.

A. Analysis Method

An analysis to predict the pressure distribution in backpressured
ducts with known inflow conditions will now be presented. It is quite
general, and it can be used for ducts with specified streamwise
distributions of area, wall shear stress, and heat release. The inflow is
made up of the supersonic core flow atM0, p0, and T0, as well as a
distribution of the boundary layer with properties δ, δ", and θ around
the circumference of the duct. This inflow is converted to an
equivalent flux-conserved 1-D flow at M1, p1, and T1. The method
enables prediction of the pressure distribution in an entire duct,
including the region of the duct affected by the backpressure. It
therefore enables comparison with experimental wall pressure
measurements. These methods follow directly from the classical
quasi-one-dimensional gas dynamics presented by Shapiro [17],with
the addition of Ortwerth’s diffuser model [Eq. (3)] to close the
equation set [16].

A differential element of the separated flow in a duct is shown in
Fig. 9. Here, the area of the core flow passing through the duct Ac is
equal to the geometric area of the duct A if flow is attached, but it is
less than A for separated flow. Heat addition from combustion can
occur in this element, and a friction force of dFr ! τwdAw is applied
by the walls, together with a heat loss to the walls in the amount dQ.
For simplicity of analysis, the flow is assumed to be that of a
calorically perfect gas with constant ratio of specific heats γ, gas
constant R, and specific heat at constant pressure cp. Combustion
heat release is modeled through the use of a heat of combustion hpr.
Following the method of Shapiro [17], it is shown in the Appendix
that the separated flow can be calculated by the simultaneous solution
of following two ordinary differential equations:

dM2

M2
! −

!
1# γ − 1

2
M2

"#!
2

γM2

A

Ac

"
dp

p
#
!
A

Ac

"
4Cfdx

DH
# dTt
Tt

$

(4)
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1#γ−1

2
M2

"
dTt
Tt

(5)

As an example of the use of this method, Fig. 10 shows the
distribution of Mach number, normalized core flow area (Ac∕A0),
and pressure in the interaction region of a constant-area rectangular
duct with an aspect ratio of 3.0 (H ! 50 mm; W ! 150 mm;
DH ! 75 mm) that is long enough to fully contain a pseudoshock.
The inflow Mach number in the duct at the start of the pseudoshock
(x∕DH ! 0.0) isM0 ! 3.5; and the turbulent boundary layer on the
walls has a thickness of δ∕h ! 0.4 (where h ! H∕2 ! 25 mm), a
1∕7th velocity profile, andTw ! Taw. The equivalent flux-conserved
1-D inflow had properties of M1 ! 3.096, T1∕T0 ! 1.183, and
p1∕p0 ! 1.003. The interaction zone starts at the point of separation
(Ac∕A0 ! 1.0), where the skin-friction coefficient is assumed to be
Cf0 ! 2.0 × 10−3. This value is a key parameter in the analysis, as it
dictates the pressure rise able to be sustained by the shear layer
between the core flow and the separated region near the wall. As the
separation grows (Ac∕A0 < 1.0), the normalized pressure starts to rise
and the core flowMach number reduces. The skin friction at the wall
is assumed to be zero in the entire separated region. At x∕DH ∼ 2.4,
the effective flow area reaches a minimum of Ac∕A0 ! 0.572, which
corresponds to ∼43% blockage of the duct. After this, the separation
reduces and reattachment occurs at x∕DH ! 9.59 (Ls∕DH ! 9.59).

Fig. 9 Differential element of separated flow in a duct with variable
area, friction, and heat transfer.
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Figure 4.4: Control volume for the flux conserved analysis of Smart from [116].

d(Ac/A)

Ac/A
=

[
1−M2[1− γ(1− Ac/A)]

γM2Ac/A

]
dP

P
+(

1 + (γ − 1)M2

2Ac/A

)
4Cf
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DH

+(
1 +

γ − 1

2
M2

)
dT + t

Tt

(4.9)

The pressure closure chosen by Smart is Ortwerth’s model [99] (Eq. 4.9). It consists of

a linear correlation between the skin friction upstream of the recirculation bubble and the

conversion rate of kinetic energy density q (Eq. 4.11) into pressure. This model relies on

the observation that higher skin friction usually requires stronger adverse pressure gradients

in order to detach the boundary layer, although a linear dependence is unclear due to data

scattering [99]. Also such model cannot capture the roll-off in pressure profiles observed

in low-Mach number shock train, as previously observed by Smart. It also fails to enforce

consistency between pseudoshock length and pressure rise as seen in Fig. 4.5 for any given

value of k. The next section will present the derivation of a new pressure growth rate closure

equation.

dP

dx
= q

k0
DH

Cf0 (4.10)

q =
ρV 2

2
=

1

2
γPM2 (4.11)
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Figure 4.5: Original Smart model for the Mach 1.92 configuration [120] (Cf1D = 0) for (solid)
k0 = 44.5 and (dashed) k0 = 54.5 matching the pseudoshock length.

4.3 Modified flux-conserved model

4.3.1 Improved pressure growth rate closure equation

As the pressure growth rate equation closes a set of analytically-derived conservation

equations, it is responsible for the model inaccuracies described in Sec. 4.2.3. Orthwert’s

diffusion model consists of converting kinetic energy into internal energy at a linear rate.

Based on the understanding of pseudoshock physics developed in Chap. III and present in

the literature an improved model is derived to resolve the following features:

1. Normal pseudoshock pressure roll-off in the mixing region.

2. The abnormal strong importance of the upstream friction coefficient Cf0 as opposed

to the inlet confinement ratio in determining the pressure growth rate. As seen in

Chap. III, the pseudoshock length varied almost linearly with the momentum thickness

while Cf0 remained constant at 0.00105.

3. The overshoot in pressure maximum recovery currently observed in the baseline model

from Smart. This can be caused by the neglect of wall viscous losses, or by not

accounting for the indirect path of energy conversion by dissipation of turbulent kinetic

energy inside the core flow identified in Chap. III.
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The corresponding modification to the baseline model are the following :

1. First, a pressure roll-off is obtained by changing the correlation constant k into a

function of the local kinetic energy density k(q). A reference Mach number where the

transition between normal and oblique pseudoshocks occurs needs to be determined,

as well as a proper transition function. The transition from a roll-off rate for normal

pseudoshocks into a linear rate for oblique pseudoshocks is mostly a function of the

Mach number, although close to the limit large confinement ratio can also play a

role [52]. Based on Hunt et al. review of experimental datasets (see Fig.15 in [52]), the

transition occurs between Mach 2.0 and Mach 2.5 except for one unusual case where

the boundary layer is almost as thick as the channel half height (δ/h ≈ 0.6). The

new function k needs therefore to be a function of both q and the flux-conserved Mach

number M1. k(q,M1) is presented in Eqns. 4.12, and equal to a ratio between q and q0

to the power κ with an additive constant a. The purpose of a is to smooth the strength

of the roll-off and relax the model stiffness. It will need to be calibrated just as the

constant kref . Equation 4.13. The shape of the transition power κ(M1) (Eq. 4.13)

was guessed from a qualitative observation of various datasets and found after some

trial and error. Figure 4.6 shows how the roll-off function works once the parameters

a,b,c,kref ,α,β and κ are calibrated (this will be the focus of the next section). The

top left figure shows how κ changes for different Mach numbers, with red crosses

corresponding to the cases presented in Tab. 4.1. The bottom left figure shows how

k(q) evolves throughout the pseudoshock (with q/q(x = 0) decreasing) for various of

M1 ranging from normal to oblique pseudoshocks. The figure on the right presents the

overall effect on some normalized pseudoshock profiles, with a sharper initial gradient

compensated by a stronger roll-off for low Mach number (normal pseudoshocks) as

opposed to a more linear pressure rise at high Mach numbers (oblique pseudoshocks).
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k(q,M1) = kref ×
(
a+

q(x)

q(x = 0)

)κ/ 1∫
0

(
a+ y

)κ
dy (4.12)

κ = b (1− tanh(c [Mref −M1])) (4.13)

dP
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= q

k(q,M1)
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Figure 4.6: (Top left) Dependence of κ at pseudoshock foot (q/q1 = 1) on flux-conserved
Mach numberM1. (Bottom left) k(q,M1) dependence on local kinetic energy ratio q/q(x = 0)
andM1. (Right) Normalized pseudoshock profiles for variousM1 using the new roll-off model.

2. The second modification to the original model is to replace the linear Cf0 dependence

of dP
dx

of Ortwert’s model with the nonlinear term Cα
f0σ

β in Eq. 4.14. σ is the efficiency

parameter derived from McLafferty’s analysis. The reason for such modification is

as follow. As seen in Chap. III, an increase in confinement ratio at constant Mach

number and back pressure ratio leads to a longer pseudoshock by reducing the pressure

growth rate of the successive centerline compression cells. This is mostly caused by the
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shrinking of the normal-like section of the leading lambda shock. However, Smart’s

model closed with Ortwert’s correlation does not replicate such dependence. Instead, a

simple increase of A∗ or Aθ causes a decrease of M1 only, which results in a shortening

of the pseudoshock and a reduction of back pressure. Therefore the dependence of

pseudoshock pressure growth rate on initial confinement ratio is accounted for by the

addition of σβ where β is a positive unknown power which will be determined later

but is expected to be close to 1.0 according to Fig. 3.11. The numerical study in

Chap. III didn’t cover a sufficiently large range of Mach and Reynolds number to

precisely determine this dependence yet. As Ortwerth’s correlation is modified, a power

law α is added to the friction coefficient in the closure equation to counterbalance any

effect Cf0 and σ would duplicate. α will also be determined alongside β and expected

to be inferior to 1.0. Note that α needs to be superior to zero to verify the asymptotic

theoretical behavior of a standing normal shock when no boundary layer is present:

i.e. an infinite pressure growth rate for an infinite Cf0.

3. Finally, neglecting friction and viscous losses lead the model pressure to naturally

converge towards McLafferty’s prediction. LDV measurements by Sugiyama [119] and

DNS results from Chap. III on Mach 2.0 pseudoshocks revealed that the recirculation

bubble (negative Cf region, considered friction-less in Smart’s analysis) is localized

in the close vicinity of the leading lambda-shock only, where the adverse pressure

gradient is maximum. On the other hand, no large recirculation bubbles were observed

in oblique pseudoshock where the adverse pressure gradient isn’t sharper at the foot

of the pseudoshock than at its tail (hence the linear pressure growth rate model).

Additionally, the friction term accounts for turbulent/mean energy dissipation into

internal energy by any other mean, such as the corner vortex pairing, and not just wall

friction. Friction was therefore retained in the model in the form of Eq. 4.15 meant to

account for all dissipative processes.
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Cf1 = d + e× Cf0 (4.15)

4.3.2 Determination of model parameters

A set of Npar = 9 parameters [kref ,Mref ,a,b,c,d,e,α,β] needs to be calibrated to ensure that

the model can accurately capture the pressure rise for a wide range of operating conditions

covering both ramjet and scramjet modes. It is important at this point to address the

particular question of what quantities need to be optimized. While numerical simulations

can provide exact flux-conserved profiles along the whole computational domain, available

experimental data usually consist of wall pressure profiles. A wall pressure profile permits to

identify both the pseudoshock length and final pressure rise. The final pressure rise obtained

from the model is flux-conserved, and not necessarily equal to the wall pressure. However, as

the flux-converged final pressure obtained from the model assumes a fully reattached flow,

the outflow is a fully developed turbulent mixing region. According to classical boundary

layer theory, the static pressure profile is therefore constant along the wall normal directions:

the model can, therefore, use the wall PRR as a target PRR to calibrate the parameters.

Also, as flux-conserved profiles cannot be measured experimentally the wall pressure

profile will be used as target profile to resolve the pressure growth roll-off. In the DNS of

Fiévet et al. the difference between integrated pressure and wall profiles were minimal in the

mixing region, but noticeable in the initial steeper rise. The integrated profiles contain more

oscillations due to the centerline compression/expansion cells than the wall profiles. Using

the wall pressure is also preferable since the model only resolve monotonic profiles.

The experimental and numerical datasets used to calibrate the new model are presented in

Tab. 4.1. They will be referred to by their number throughout the chapter. The parameters

are calculated through a minimization process of an error function using the genetic algo-

rithm (GA) of Matlab Global Optimization Toolbox. A genetic algorithm permits to solve

constrained problems by evolving populations of solution vectors using a selective process
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Table 4.1: Pseudoshock flow conditions used to verify/calibrate the 1D model.

Case Type Size [mm] M0 P0 [kPa] Cf0 A∗[%] Aθ[%] M1 P1 [kPa]
1 Exp. [98] � 59.1 1.29 9.20 3.73e−3 3.884 1.757 1.284 8.89
2 Exp. [98] � 59.1 1.37 9.27 3.65e−3 3.476 1.528 1.358 9.05
3 Exp. [98] � 59.1 1.48 9.45 3.73e−3 3.347 1.390 1.464 9.26
4 DNS [33] 57.2× 69.8 1.91 17.35 1.05e−3 19.99 6.335 1.721 16.01
5 Exp. [120] 50.8× 20.3 1.92 104.9 1.54e−3 5.768 1.932 1.86 103.1
6 Exp. [89] 19.1× 9.5 2.83 16.83 2.49e−3 16.55 3.801 2.53 16.78

resembling biological evolution. The population of solutions evolves continuously through-

out the process. At each iteration, a set of current solutions are randomly selected and used

as parents of a newly created generation of children solutions. As the process continues,

generations converge towards the optimal solution as the least effective populations slowly

decay. The error function Eψ,χ is defined in Eq. 4.16 for a certain parameter population (or

solution vector) ψ and a set of calibration cases χ. Additionally, solutions yielding a roll-off

rate too far off (pseudoshock first and second quarters PRR error magnitudes are inferior to

20%) are arbitrarily discarded. Fig. 4.7 presents the evolution of the genetic algorithm for a

typical run (computing time of several minutes on a single core).

Eψ,χ = Σχ(
PRR1D − PRR

PRR
,
L1D − L

L
) (4.16)

Table 4.2 shows the error on pressure rise ratio PRR and pseudoshock length L when

running the GA using different calibrating cases. More cases are progressively included in

order to find a solution minimizing the error over the largest possible range of operating con-

ditions. However, some of the cases are intentionally not used in the optimization process

but will instead assess the model’s accuracy a posteriori. The cases that will be used for

calibration are cases 2, 4 and 6 only, while cases 1, 3 and 5 serve as witnesses. In Tab. 4.2

values labeled with a star represent cases where the pseudoshock length is within the 99%

pressure rise locations (i.e. well within measurement error margins). It can be quite chal-

lenging to identify the exact location of the end of a pseudoshock and its length L due to

the wall pressure roll-off in the mixing region. Indeed, 99% back pressure recovery L/Dh
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Figure 4.7: Example of the evolution of the error function Eψ,χ during the genetic research
of an optimal minimum.

margins are shown in brackets in Tab. 4.3, and are relatively important compared to the

pseudoshock length. Overall, the X = [2,4,6] model is the most accurate as all pressure

errors are around 1%, while all pseudoshock lengths are included in the 99% bounds or have

an error of a few percents maximum. Interestingly, an optimization using all cases does

not improve the solution further, suggesting that either pieces of physics are missing from

the model or that some measurements used for calibration are inaccurate or ill-defined. Ta-

ble 4.3 presents PRR solutions computed from a normal shock on the bulk flow conditions

(PRRNS), or using McLafferty’s prediction (PRRMcL). The table entries of the current 1D

model (PRR1D and L1D) contain the solutions obtained from the GA using X = [2,4,6]. For

this solution, the 6 cases pseudoshock profiles are plotted in Fig. 4.8. The model is found to

correctly resolve the pseudoshock profiles for the witness cases (right side). This important

result shows that a solution for cases 2,4 and 6 is a solution for cases 1, 3 and 5. This is a

testimony to the model robustness. It can even be noticed that single-case calibrations are
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already sufficient to correctly estimate all the PRR within a 5.3% error margin. A possible

improvement to the model would be the replacement of the friction coefficient in Eq. 4.14

with a more complex and universal expression of the boundary layer capacity to withhold ad-

verse pressure gradients. In general, friction coefficients are measured at the centerplane for

the rectangular configurations, or computed from empirical correlations, and do not account

for the low-speed corner flow dynamics.

Table 4.2: Model errors for different calibration cases.

Set χ used
Back pressure rise error [%] Pseudoshock length error [%]

for model
calibration 1 2 3 4 5 6 1 2 3 4 5 6

Case 2 0.0 0.0 0.8 0.4 0.6 1.0 1.5 0.0 7.7∗ 1.2∗ 1.4∗ 10.5
Case 4 2.0 2.4 3.5 0.0 2.5 5.3 23.6 22.9 16.0 0.0∗ 2.8 9.3
Case 6 3.0 3.6 3.1 0.8 0.0 0.0 12.5 15.6 23.9 22.1 11.7∗ 0.0∗

Cases 2, 4 2.2 2.3 1.3 0.3 1.9 3.6 1.0 0.3 5.9∗ 0.1 0.0∗ 0.2∗

Cases 2, 6 1.2 1.5 2.6 6.3 3.4 3.0 1.3∗ 2.2∗ 8.4 13.2 1.3∗ 3.3∗

Cases 4, 6 4.2 4.5 5.2 1.7 0.5 0.6 12.9 11.3 3.6 0.9∗ 3.5∗ 3.2
Cases 2, 4, 6 0.0 0.2 1.1 1.1 1.4 1.2 1.9 0.9 6.3∗ 0.6 0.8∗ 1.2

All cases 0.2 0.5 1.7 1.1 0.8 0.5 2.7 2.3 4.0∗ 4.9 3.6∗ 0.9

The optimized parameters for all the different model calibrations are presented in Tab. 4.4.

Unfortunately, it appears that the solution vectors ψ(X ) do not converge as more cases are

used for calibration. This raises the question of the validity of the solution vectors which

were identified by a stochastic process. Rerunning them can result in different solutions, so

another process should be used to quantify these solutions and identify an optimal set of

Table 4.3: Static pressure rise ratio (PRR) from pseudoshock foot to tail and pseudoshock
length L using different models.

Case PRRNS PRRMcL PRR1D PRR L1D/Dh L/Dh

1 1.77 1.67 1.54 1.55 0.836 [0.758 - 0.820]
2 2.02 1.94 1.72 1.72 1.213 [1.103 - 1.199]
3 2.39 2.29 2.00 2.03 1.669 [1.66 - 1.777]
4 4.09 3.03 2.63 2.66 8.772 8.723
5 4.13 3.99 3.47 3.47 6.207 [5.897 - 6.245]
6 9.18 7.28 6.05 6.03 7.271 [6.82 - 7.20]
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Table 4.4: Model parameters for different calibration sets χ.

Calibration Model parameters obtained from genetic optimization algorithm
set χ kref Mref a b c d e α β

Case 2 103.6 1.170 0.604 23.50 1.664 3.703 1.5e−3 1.034 1.644
Case 4 207.0 1.170 0.347 29.71 1.645 3.102 2.3e−3 1.108 1.689
Case 6 96.5 1.159 1.787 35.26 1.84 2.954 3.9e−3 0.987 1.646

Cases 2, 4 148.0 0.995 1.693 46.55 1.211 3.047 2.3e−3 1.070 2.048
Cases 2, 6 152.2 1.055 0.781 31.97 1.380 3.551 3.4e−3 1.111 1.644
Cases 4, 6 151.9 1.076 0.476 42.12 1.729 3.881 1.7e−3 1.083 1.615

Cases 2, 4, 6 148.0 1.251 0.656 22.79 1.734 3.773 1.3e−3 1.083 1.555
All cases 147.9 1.300 0.934 23.04 1.640 3.529 2.2e−3 1.105 1.125

parameters which would converge as the number of cases used for calibration increase. This

is the focus of the next section.
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Figure 4.8: 1D modeling of all cases 1 to 6 ordered from top left to bottom right by increasing
M1, calibration set χ= [2,4,6]. Dashed lines represent an inviscid simulation where Cf1D = 0.

4.4 Bayesian optimization of the model parameters

The GA has proven that solution vectors yielding a model accuracy within error margin

exist. Yet, in the practical case where this model would be used to predict a pseudoshock
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profile for new flow conditions, one wonders which set of parameters should be selected.

The non-convergence of the parameters renders this selective process impossible using the

results from the previous section. Also, the GA was used to be optimized the model with

datasets naturally including some margin of error. There are many possible sources of

errors, including: pressure measurements uncertainty, identification of pseudoshock bounds

in between microphone spatial step, error in evaluating the skin friction coefficient with

external models, error in δ∗ and θ measurements, negligence of corner effects (affecting the

average skin friction, δ∗ and θ distributions and confinement ratio), etc. Additionally, the

model itself consists of a reduced-order description of a real pseudoshock and necessarily

introduces simplifications inducing modeling errors. Lastly, the model is calibrated on the

wall pressure profile which can contain traces of the strong compression/expansion waves

in the shock train portion. Yet, the model pressure profile cannot resolve these details as

it is monotonic. Therefore a relatively large margin of error should be attributed to each

individual data point to loosely guide the optimum solution towards a smooth profile. All

these concerns can be resolved by resorting to a Bayesian approach to infer the model’s

optimal set of parameters under these circumstances.

4.4.1 Bayesian inference

Bayesian inference is a statistical inference method which models all sources of uncertainty

(including from lack of information) by attributing random variables (i.e. probability distri-

bution functions) instead of fixed values to all parameters. It allows to continuously improve

the optimization as more data becomes available by using the previous joint-distribution

solution as the next initial guess. Bayesian inference procedures are as follows:

1. Build prior distributions for all Npar parameters based on any prior information on

the model and its parameters. It corresponds to the probability of finding a solution

vector ψ and is called Prob(ψ).

2. Define the model likelihood (an Npar dimensional joint-distribution) which evaluates
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the likelihood of a solution vector ψ to describe the datasetData, defined as Prob(Data,ψ)

3. Use Baye’s theorem (Eq. 4.17) and a Markov chain Monte Carlo algorithm to sample

the Npar posterior distributions Prob(ψ,Data):

Prob(ψ,Data) =
Prob(Data, ψ)× Prob(ψ)

Prob(Data)
(4.17)

4. If more data become available subsequently, the posterior distributions become the

next priors and the process repeats.

An example of Bayesian inference of the posterior distribution is shown in Fig. 4.9. Note

that the shapes need not be Gaussian. For complex posteriors, the maximum-a-posteriori

(MAP) corresponds to the most probable solution which compromises both likelihood and

accuracy. The posterior mean minimizes the squared error computed from the maximum

likelihood estimate (see Sec. 4.4.3) while the posterior median minimizes the absolute error.

Therefore, the posterior mean and median solutions trade likelihood for accuracy as they are

further away from the estimated most probable “truth”.

Figure 4.9: Illustration of a prior distribution combined with a likelihood distribution to
obtain the posterior distribution.

4.4.2 Determination of the joint-prior distribution

The Npar priors are determined based on information currently known. In our case,

the GA used in Sec. 4.3.2 has already identified several acceptable solutions ψ. The model

calibrated with a set of parameters ψ is called M(ψ). Figure 4.10 shows how the solutions
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vectors Ψ obtained from the GA and shown in Tab. 4.4 are distributed. A simple Gaussian

distribution fitted through these solutions can serve as a joint-prior for the Bayesian analysis.

It contains preliminary information on the model parameters likely values. Note that the

Gaussian fit gives a non-zero probability to obtain some negative values for coefficients

which should remain position such as Mref . It is not an issue as long as the corresponding

model likelihood function tends towards zero for these values. Uniform priors over a range of

credible values could be simply chosen, yet this would considerably slow the sampling process

of the posterior as many unrealistic solution vectors would not immediately be discarded by

the algorithm.
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Figure 4.10: Solutions from the GA fitted by Gaussian distributions.

The priors standard deviations are called hyperparameters: they are the prior’s parame-

ters and are not being modified throughout the Bayesian inference process. The sensitivity of

the posteriors on the priors standard deviations is investigated below in Sec. 4.4.4.3. Based

on the results discussed below all the priors standard deviations were doubled compared to

the values derived from the GA solutions presented in Fig. 4.10 for the remaining of the

analysis.
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4.4.3 Likelihood function and maximum likelihood estimate

The likelihood function brings information from the datasets into the Bayesian analysis.

The process of computing the likelihood of a particular model defined by a solution ψ involves

the computation of an error function just as in the GA process. Increasing the likelihood is

equivalent to minimizing the error. Once this error is computed it is compared to its margin

of error which has to be previously fixed.

The likelihood function corresponds to the term Prob(Data,ψ)
Prob(Data)

in Eq. 4.17. Let us decom-

pose the whole Data into all its components (all data points for example) Datai with their

corresponding margins of errors σi. The model prediction of the data-element i (in our case,

say pressure at location xi) using solution vector ψ is called Data
M(ψ)
i . Defining the σi

corresponds to evaluating the noise (or error) contained not only in the datasets but in the

predicted value as well due to modeling errors. It can be difficult to evaluate both errors, and

a common assumption [139] is to consider it iso-directional (zero mean), Gaussian and inde-

pendent from all other data-element i. This consists in saying that the error cross-correlation

matrix is diagonal. It can then be written that:

Prob(Data, ψ) =
∏
i=1

Prob(Datai, ψ) =
∏
i=1

constant

σi
exp

(
− (Datai −DataM(ψ)

i )2

2σ2
i

)
(4.18)

which is then simply normalized by Prob(Data) to form the likelihood function. The

maximum likelihood estimate (MLE) is the solution which maximizes the likelihood, i.e.

minimizes the error function. Note that the MAP is equal to the MLE when the priors are

uniform, i.e. when it is unregularized.

It is convenient to manipulate the logarithm of the likelihood commonly called the log-

likelihood throughout the Bayesian inference process. The loglikelihood is simply the sum

of the negative normalized squared errors up to a constant which does not matter to the

optimization. Note that this naturally permits to avoid the calculation of normalization
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constant Prob(Data).

Let us now define in detail what the error function will consists of. As explained in

Sec. 4.3.2 three features need to be resolved by the model: the PRR, the pseudoshock length

and the pressure profile roll-off. The error Ecase was computed for all 6 cases (Tab. 4.1) as an

average of the three errors on these three features called EPRR,case, EPSL,case and EROL,case

respectively. EPRR,case is computed as the normalized squared error on the PRR:

EPRR,case(ψ) =
(PRR

M(ψ)
1D − PRRcase)

2

PRR2
case

. (4.19)

EPSL,case is computed as the squared error on the pseudoshock length:

EPSL,case(ψ) =
(PSL

M(ψ)
1D − PSLcase)2

PSL2
case

. (4.20)

In sec. 4.3.2, EROL,case was grossly accounted by the GA by discarding solutions too

far off at either the first quarter or half pseudoshock length. With the Bayesian approach,

every data point is involved in the calculation of the likelihood function and so EROL,case is

computed as the mean squared error over all the case’s data points:

EROL,case(ψ) =
1

n(case)

n(case)∑
i

(Data
M(ψ)
i,case −Datai,case)2

Data2i,case
(4.21)

with n(case) the number of data points per case.

As observed before, some data points located below a shock or an expansion wave can

deviate from the overall monotonic pressure rise. This introduces an error as the model

cannot resolve this feature, yet data resolving it is used. Additionally, pressure probes also

have a measurement margin of error (typically below 1% for modern devices, here set at

1% considering old experimental data is also used). The precise location of the maximum

pressure rise marking the end of the pseudoshock can also be determined with a margin

of error based on half the experiment pressure probes spatial increment. Lastly, the data

extraction process from old figures is imperfect and introduces error in both location and
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magnitude. Note that the margin of error also measures the “weight” given to a particular

error, so if the main objective is to obtain the correct PRR, one can choose to lower the

σ for this error than the others. As the margin of error is defined as half the confidence

interval usually based on a 99% confidence interval, the data noise standard deviation σi is

about twice smaller for Gaussian noise. Based on this knowledge, we can only estimate the

margin of errors for the different components by arbitrarily choosing the σi (express in [%]).

The σPRR corresponding to all cases EPRR,case was set to 0.5%, the σPSL corresponding to

all cases EPSL,case was set to 1.0%, and the σROL corresponding to all cases EROL,case was

set to 10%. These arbitrary values were changed to [σPRR,σPRR,σPRR] = [1.0,2.0,20.0]%

showing little effect, and set equal to [σPRR,σPRR,σPRR] = [1.0,1.0,1.0]% slightly worsened

the accuracy of the model by forcing the solutions through “out-of-trend” data points.

The final expression of the error E used to compute the loglikelihood for a set of param-

eters ψ is:

E(ψ) =
6∑

case=1

1

3

(
(PSL

M(ψ)
1D − PSLcase)2

PSL2
case2σ

2
PSL

+
(PRR

M(ψ)
1D − PRRcase)

2

PRR2
case2σ

2
PRR

+

n(case)∑
i

(Data
M(ψ)
i,case −Datai,case)2

Data2i,case2σ
2
ROLn(case)

) (4.22)

Note that if the squared differences are all linear functions of ψ, then the joint-likelihood

is Gaussian and the posterior can be resolved analytically as the product between joint-prior

and joint-likelihood. In our case, the error function is highly nonlinear and cannot be defined

analytically. Therefore the class of the joint-posterior distribution is unknown. We need to

resort to a stochastic sampling process in order to build it: a Markov chain Monte Carlo

(MCMC) sampler.
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4.4.4 Markov chain Monte Carlo sampling of the joint posterior distribution

4.4.4.1 Markov chain Monte Carlo sampling

A Markov chain Monte Carlo sampler is a stochastic algorithm which consists in con-

structing a sequential list, called the Markov chain, of walkers (elements) sampled from a

probability distribution function. As a chain walks/samples through the probabilistic do-

main, it progressively increases its size. Eventually, all its walkers can approximate the

distribution they were sampled from. The stochastic process is associated with the decision-

making process of finding the successive walker. The probability distribution gradient serves

as a primary factor as the walkers tend to avoid the low-probability regions, while the

stochastic process permits to satisfy the “Markov property”. This refers to the memoryless

property of the chain: it ensures that the process of finding the next walker is not fully deter-

ministic i.e. solely function of the previous walkers. Eventually, the Markov chain becomes

decorrelated with its initial sequence.

Figure 4.11 shows a typical Markov chain built by sampling on the prior distributions

projected on the (kref ,Mref ) parameters plan.
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Figure 4.11: A fragment of a typical Markov chain sampling from the priors plotted on the
(kref ,Mref ) plane.

Native Matlab MCMC functions were first used for the Bayesian inference algorithm but

were too slow. Instead, functions from the GWMCMC package from Aslak Grinsted are

used throughout this chapter. The package source code relies on the work of Goodman and

Weare [47] and Hogg [50]. A sanity check of the MCMC algorithm was performed on the
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Gaussian priors, using 1000 independent chains composed of 10000 walkers each. As seen in

Fig. 4.12 the Markov chains converge towards the correct result.
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Figure 4.12: Reconstruction of the joint-prior distribution through MCMC sampling.

4.4.4.2 Sampling of the posterior distributions

In Sec. 4.4.4.1 we used the MCMC algorithm to sample from the priors. We now use

the same method to sample from the joint-posterior distribution to construct it. By Baye’s

theorem (Eq. 4.17), drawing samples from the joint-posterior is equivalent to sampling from

the product of the joint-likelihood with the joint-prior. By moving into the logarithmic

space, this product simply becomes the sum of Eq. 4.22 with the “logprior”. The logprior is

the logarithm of the joint-prior 9th dimension Gaussian. It is a simple sum of the 9 priors

without the exponential up to a constant which does not matter to the MCMC sampler.

The logarithm function is monotonic and does not change the optimization process.

The sampling of the joint-posterior was performed through 1000 independent Markov
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chains composed of 20000 walkers each. This computation ran in parallel over 8 cores for

about 8 hours. A typical sampling of the parameter kref over a fraction of a chain is shown

in Fig. 4.13. Auto-correlations of all parameters averaged over the 1000 chains shown in

Fig. 4.14 permit to validate the number of iterations chosen which ensures a large effective

sample size. It is, in fact, necessary to run each chain long enough to ensure that the final

values are uncorrelated with the starting positions. The starting positions are randomly

spawned across the priors.

0 100 200 300 400 500 600 700 800 900 1000

iteration

0

100

200

300

k
re

f

Figure 4.13: Sampling of parameter kref from a typical Markov chain.
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Figure 4.14: Autocorrelations of all parameters averaged over all Markov chains.

Figure 4.15 presents the posterior distributions for the 9 parameters, alongside the 9× 9

cross-correlations forming together the joint-posterior. The cross-correlations between all

parameters show that no parameter is completely independent i.e. a circular shape exists

with the other 8 parameters. c can be considered the most independent parameter, while
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d and e which characterize the amount of friction in the system appear to be related while

independent of the other variables. A particularly strong correlation appears between kref

and α which suggests that one variable could be modeled by the other.

Figure 4.15: Posteriors distributions and cross-correlations between all the 9 parameters.

A comparison of the priors and posteriors for all parameters is shown in Fig. 4.16 high-

lighting the amount of information gained through the Bayesian analysis. Note that no

posterior has the simple Gaussian shape of its corresponding prior.

Figure 4.17 shows the realization of many profiles obtained from 200 independent samples.

The lines are black and transparent such that only large overlap regions are revealed. The

most realized regions coincide with the least-squared error with the DNS dataset and agree
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Figure 4.16: Prior and posterior distributions of the 9-parameters model.

Table 4.5: Model parameters derived from the posteriors distributions.

Posteriors Error kref Mref a b c d e α β

MAP 0.92% 128.0 1.449 1.46 24.8 1.665 3.546 1.70e−3 1.066 1.70
Median 0.57% 133.3 1.431 1.65 25.2 1.659 3.547 1.68e−3 1.067 1.71
Mean 0.48% 137.5 1.424 1.64 25.9 1.660 3.544 1.69e−3 1.064 1.71

to the dataset best. The mean solution is plotted in blue, and the original Smart model

solution is also presented to highlight the improvements that have been made.

Finally, various solutions φ are identified from the joint-posterior which minimizes E(φ).

It is reminded that these errors are summed over the 6 cases.

4.4.4.3 Sensitivity to hyperparameters

Choices were made to find priors based on prior information. Yet, running many more

times the GA would surely result in different priors affecting the posteriors distributions.

Running the MCMC algorithm choosing larger priors standard deviations permits not only
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Figure 4.17: 1D model profiles obtained from 200 independent samples. The lines are trans-
parent and the color is proportional to the number of overlapping.

to explore a larger parametric domain but to acknowledge the uncertainty on the lack of

prior information. Hence a sensitivity analysis was performed on these hyperparameters.

Typical sensitivities of posterior distributions on their priors standard deviations are

shown in Fig. 4.18 for 3 typical parameters. The distributions are converged for a doubled

standard deviation, which is the values of the priors used in Sec. 4.4.4.2. Increasing the priors

standard deviation means that we reduce our confidence in the GA results and allow more

values to be considered in the Bayesian framework. Essentially, it relaxes the bounds of the

plausibility of the parameters while still retaining some of the information obtained from the

GA calculations. Note that the asymptotic profiles (standard deviation tends to infinity)

would result in a flat prior. It would require many more chains to converged towards the

posteriors and would discard the viable and accurate solutions found by the GA. In general,

as the number of data points becomes large the dependence on the prior decreases [139].
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Figure 4.18: Impact of the priors standard deviations on the posterior distributions.

4.4.5 Model order reduction

The Bayesian analysis quantifies the parameters range of likelihood. It offers the oppor-

tunity to identify cross-correlations between parameters. It is then up to the user to make

an active use of these and reduce the order of the model. This will necessarily reduce the

volatility of the parameters and narrow all the posteriors. However, little information can be

lost when the cross-correlation is very high. This is the case for parameters kref and α: the

latter can be defined as a function of the first. This is shown in Fig. 4.19 where a polynomial

function of kref can be fit and replace the ninth parameter, reducing the order of the model

to 8.

Figure 4.19: Cross-correlation between parameters kref and α with a fitting third order
polynom.

Figure 4.20 shows the resulting new joint-posterior based on that compact model.The new
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posteriors are compared with the priors and Nvar = 9 posteriors in Fig. 4.21. Other cross-

correlations were used to reduce the model to order 6 by using the weaker cross-correlations

between parameters d and e and between b and a seen in Fig. 4.15. The resulting joint-

posterior was essentially reduced to 6-dimension joint Dirac function on the minimum error

values. Note that the error was still very low (below 1% just as in Tab. 4.5) but this would

defeat the purpose of the Bayesian analysis which is to provide information over the widest

range in parametric space.

Finally, another important information can be extracted from the current analysis. The

error function used to define the likelihood can be instead be computed in every case sepa-

rately. The 6 resulting joint-posteriors (one per case) are sampled from statistically indepen-

dent datasets. These can then be plotted alongside some of the key characteristics of these

cases such as their confinement ratio or their flux-conserved Mach number M1. This is done

in Fig. 4.22 which presents a 2D contour of the joint-posteriors for the 8-parameters model.

The Y-axis represents the case M1 and the X-axis the posterior distribution. The contours

are linearly interpolated in between M1 values. It can be noticed that contrary to the genetic

algorithm results, the optimized solutions ψ are relatively constant. This analysis permits

to offer a user, given a prominent inflow variable as the M1 for instance, a set of parameters

with an interval of confidence to use with the model. The MAP value offers a compromise

between plausibility and accuracy while the mean values offer the highest accuracy. It is

only possible to identify a set of parameter to model pseudoshocks which inflow properties

are bounded by the cases used during this study (see Tab. 4.1). A Matlab script of the 1D

model calibrated for case 4 is presented in Appendix B.

4.4.6 Notes and instructions to users

A reduced-order model for pseudoshocks based on the flux-conserved approach of Smart

[116] was derived through data-driven optimization. A pressure growth rate, which serves

as a closure equation, is constructed in light of new understanding of pseudoshock physics.
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Figure 4.20: Posteriors distributions and cross-correlations between all the 8 parameters.

Once calibrated, the model is able to predict the pseudoshock length, pressure rise and wall

pressure roll-off over a wide range of inflow conditions relevant to a dual-mode scramjet

isolator. The model is sufficiently robust to estimate these metrics within a 2% error over

the whole dataset when calibrated using only half the available statistically-independent

data. While computationally inexpensive, this model requires a complete description of the
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Figure 4.21: Prior and posterior distributions of the compact 8-parameters model compared
with the Nvar = 9 posteriors.

Figure 4.22: 8-parameters model posteriors calibrated on each case separately and plotted
against the calibrating case’s Mach number.

inlet flow. The model presented in this paper can be used by following these steps:

1. Locate the pseudoshock foot location. This position is located just upstream of the

leading shock, where the wall pressure profile begins to rise due to the shock train.

2. Measure/calculate the bulk flow values at this location: P0, T0, M0, Cf,0, A∗, Aθ, and

Tt.
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3. Compute the flux-conserved state at the pseudoshock foot using Eqn. 4.3 - 4.7.

4. Find a set of model parameters either from:

• Use the MAP solution determined from the whole dataset in Tab. 4.5. These

coefficients should be the safest to use.

• Interpolate in the M1 space the 8 coefficients from Fig. 4.22 using either the MAP

or mean lines. The 9th coefficient, α, is defined as : α = 0.771004521308883 +

0.003574187209155 kref−0.000012561088603 k2ref+0.000000018594761 k3ref . These

coefficients could be more accurate than the previous solution, yet were derived

from a unique experiment. 4.5.

5. Use the 1D script provided in the appendix B with updated coefficients and initial

state.

4.5 Pseudoshock dynamic model

4.5.1 Summary of Chapter III findings

The pseudoshock response to inflow confinement ratio harmonic perturbations was stud-

ied in Chap. III. The motivation was to improve our understanding of pseudoshock response

to inflow perturbations, as could happen during flight as was seen in Fig. 1.5 in Chap. I. The

figure shows the time-signal of the angle of attack measured on the HyShot-II [117] during

reentry when functioning in scramjet mode. Modeling the impact of such instabilities on the

pseudoshock would help design robust isolators.

In particular, Sec. 3.4 showed the existence of a resonance between the pseudoshock foot

and tail oscillation amplitudes. Two mechanics behind this phenomenon were identified and

can be summarized as follow. First, the upstream perturbation propagates through the shock

cells with a certain time-lag, affecting their sizes such that the shock train motion becomes

similar to a spring. The centerline shock-to-shock interactions, therefore, resemble that of a
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simple harmonic oscillator. Second, the trailing shocks would periodically weaken/strengthen

when convecting downstream/upstream, i.e. the shocks pressure rise depends on the local

flow relative velocity (Fig. 3.28). This causes the shock train trailing shocks to disappear

periodically which drastically increase the apparent pseudoshock length oscillation. This

phenomenon is referred to as the apparent Mach number effect, and the shock train is

defined as being in a strong/weak state when convecting respectively upstream/downstream.

Figure 4.23 shows some pressure snapshots at different phase φ revealing the variation of

shock train (hence pseudoshock) length over a half-period.
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Figure 4.23: Static pressure snapshots of normal shock train DNS [33] during forced harmonic
oscillation.

The impact of the shock train strong/weak state on the pseudoshock length is somehow

counter-intuitive. The overall pressure rise occurs either through shock compressions (pres-

sure strain rate source term) or in the boundary layer and mixing region (mean/turbulent

kinetic energy dissipation source term). As the latter energy conversion process has a slower

rate (Sec. 3.3), the same pressure rise caused by shock would occur over a larger distance

through dissipation. As there always is a pressure increase in the mixing region due to the

viscous deceleration of the flow, the shock train pressure rise is inferior to the pseudoshock

PRR. Hence, when the shock train is in a weak state and provides a smaller pressure increase,
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a longer mixing region is necessary to accommodate the same back pressure. The opposite is

true, and a strong shock train typically results in a smaller mixing region and pseudoshock

length. The sketch in Fig. 4.24 illustrates both strong and weak states.

pr
es

su
re

strong state
weak state

shock train
pseudo-shock

centerline pressure
wall pressure

Figure 4.24: Sketch of centerline and wall pressure throughout pseudoshock in both strong
and weak states.

4.5.2 Dynamic model objectives

The objective of this section is to model this resonance effect on pseudoshocks using

the 1D model. As only case 4 (Tab. 4.1) is considered in this section, the optimal χ =

4 calibration set parameters ψ shown in Fig. 4.22 is used. The following notations are

introduced in this section. xX is the time-varying X% pressure rise location measured from

the inlet plane pressure (Pin = 14.5 kPa) to the outflow back pressure (Pout = 46.2 kPa).

φX refer to the phase lag between the pseudoshock foot oscillation with the X% pressure

rise location. Lastly, the oscillation amplitude at the exact excitation frequency (93 Hz)

extracted from spectral decomposition is called EX .

4.5.2.1 Qualitative response

The oscillating pseudoshock datasets comprise one excitation frequency f = 93 Hz on a

spatially-resolved grid, and several inflow oscillations at f = [20, 60, 100, 200, 500, 1000] Hz

on a coarse grid. Only the spatially-resolved case at 93 Hz is used to quantitatively calibrate
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the dynamic model. The following qualitative observations could still be made from the

coarse cases. At the lowest oscillation frequency (20 Hz), the shock train simply moved

around without any apparent change to its inner structure. At intermediate frequencies

( 100Hz), the resonance phenomenon appeared at the end of the shock train while the

first cell size remained approximately constant. At the highest frequency (1000 Hz) the

shock train tail was standing while, most interestingly, the shock train first cells were now

resonating. This suggests that the shock train cells possess different resonating frequencies.

The spring-like shock train structure is revealed by plotting isocontours of positive and

negative streamwise pressure gradient. The shocks are shrinking in size while the local

density and temperature keep increasing. Assuming a local harmonic oscillator response,

the larger shock-to-shock distance would increase the time lag. Also, the local flow density

and speed of sound are related to the acoustic impedance, which is increasing along the

pseudoshock: this suggests fewer reactions to the highest frequencies hence a smaller reso-

nance frequency. All these observations are consistent with those described in the previous

paragraph.

4.5.2.2 Quantitative response

Fig. 4.26 (top) shows the static model pseudoshock compared to the DNS profile. EX

and φX were extracted from the DNS dataset in the PRR space, and are plotted along space

in the bottom figure. Every cross represents a percent increment in PRR from 10 (foot) to

100% (tail). While the 1D model pseudoshock length equals the DNS pseudoshock length,

their PRR profiles can slightly differ along the first Dh. Therefore the EX and φX profiles are

simply projected in space (Ex and φx) such that the 1D model can use the exact same profiles.

Some oscillations due to the centerline shocks are present, and a monotonic approximated

profile is defined. Resolving the approximated profiles of the phase lags and oscillation

amplitudes is the quantitative objective of the dynamic model. Note that the approximated

profiles for EX and φX do not use the last 4 points corresponding to the last 4 percents (97 to
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Figure 4.25: Isocontour of the static pressure gradient ∂P
∂x

in the shock train region.

100% PRR). The reason they are discarded is due to their steeply decreasing signal-to-noise

ratio shown in Fig. 4.27. It is postulated that this is due to the proximity of these points

to the numerical back pressure. The fluctuating wall pressure signal, despite filtering, can

sometimes not find a position corresponding to these PRR percents, especially in weak state.

Hence the signals can suddenly jump in time which results in a higher signal-to-noise ratio

and a collapse of the sinusoidal shape. This explains why φX converges towards zero for X%

> 96 (signals lose coherence), and why the oscillation amplitude decreases beyond 90%.

Fig. 4.26 (bottom) reveals a complex anharmonic response. The initial pseudoshock

portion (the first 2 shock train cells) increase of phase lag with the foot, while the rest of the

shock train increases the oscillation amplitude. The signals similarly start to lose coherence
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Figure 4.27: Local signal to noise ratio along the percentage pressure rise (100 is the pseu-
doshock tail) computed as the ratio between the first and second maximum values of the
local oscillation amplitude spectra. The red line corresponds to 97% PRR.

in the mixing region and collapse near the computational domain outflow. This suggests a

region of higher stiffness and resonance frequency at the pseudoshock foot, and a progressive

decay: once again this is coherent to the qualitative observations made in Sec. 4.5.2.1.
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4.5.2.3 Model input

In Chap. III, the resonance was revealed by wall pressure signals. Finding the precise end

of the pseudoshock becomes impossible when looking at an instantaneous highly fluctuating

pressure profile. The location of 80% PRR (x80) was therefore arbitrarily chosen from the

filtered wall pressure profile (monotonic as seen in Fig. 3.21 (left) or Fig. 4.28 (top)) to

quantify the resonance response. This roughly corresponds to one-third of the pseudoshock

length or half the shock train where the pressure growth rate is high enough to permit

accurate measurements of oscillations amplitude and phase. Figure 4.28 shows on the top a

typical instantaneous and filtered wall pressure profiles from which these signals are again

extracted. These signals are plotted in the bottom left figure, alongside their respective

amplitude single sided spectra (SSA) in the bottom right. As we move further downstream

throughout the pseudoshock, the oscillations start to deform from the inflow purely harmonic

excitation signal. Turbulence and other modes get excited as seen in Fig. 4.28 (spectra are

non-Dirac). Therefore, the peak amplitudes measured from their spectrum E10, E70 and E80

contain only a fraction, albeit dominating, of the whole signal energy. It was decided to

extract this precise harmonic component of interest and discard the rest as noise to build

the dynamic model. However, this reduces the energy of the signal by truncating non-93

Hz responses. This is an approximation as it is expected that turbulence and the shock

train self-oscillations [52] would progressively diffuse the energy of the dominant harmonic

to others. Yet modeling these effects is beyond the scope of the current model.

The DNS 10% pressure rise location signal x10 is also presented in Fig. 4.28. It is located

in the small region upstream of the leading shock where pressure starts to increase due to

diffusion throughout the subsonic boundary layer: it marks the start of the pseudoshock

region. It is almost a purely harmonic 93 Hz signal x10 with E10 = max(SSA(x10)) = 12.0

mm. This suggests that the upstream turbulent boundary layer has efficiently transported

the inflow perturbations with little spectral diffusion. It defines the foot oscillation xf =

Ef cos(ωt) Ef = max(SSA(x10)) = 12.0 mm for the remainder of the study: it is the input
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of the dynamic 1D model. It is reminded that only 4 periods are included in the dataset,

which is the maximum the expensive computational runtime could resolve. All data EX and

φX used to create the dynamic 1D model could be more accurately evaluated had many

more periods be resolved in the simulation. Lastly, one of the perks of the 1D model is the

exact definition of the end of the pseudoshock (where Ac/A = 1): it is therefore possible to

define the tail oscillation signal xt = Et cos(ωt+ φt) where Et is the oscillation amplitude at

the tail of the pseudoshock (i.e. the wall back pressure rise location), and φt is the phase lag

induced by the shock-to-shock interaction (as in a simple spring) up to the shock train tail.
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Figure 4.28: (Top) Typical instantaneous wall static pressure, filtering and pressure rise
location signals extraction. (Bottom left) Time fluctuations of 10, 70 and 80% pressure
rise locations from the oscillation simulation presented in Sec. 3.4.2 (Fig. 3.25) alongside
(bottom right) their respective single-sided amplitude spectra in dB [ref = 1cm].

The model objectives are to resolve both the φ(x) and E(x) profiles and the qualitative

observations when forcing the pseudoshock foot to oscillate at 93 Hz with a 12.0 mm am-

plitude. It is expected that resolving the quantitative observations will naturally result in a

pseudoshock dynamic behavior in agreement with the qualitative observations.
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4.5.3 Anharmonic oscillator model

4.5.3.1 Methodology

Now that the goals are set, the method used to adapt the static 1D model to account

for inlet perturbations is presented. It is derived from the observation that the response is

composed of both a forced driven locally harmonic (hence globally anharmonic) oscillator

component and the apparent Mach number effect (Chap. III). These components will be

calibrated based on the information presented in Sec. 4.5.2.1 and Sec. 4.5.2.2.

The apparent effect accounts for the relative flow speed between the shock and the flow

when computing the real shock pressure rise. It is therefore necessary to first include the

pseudoshock movement caused by the anharmonic component. The locally harmonic oscil-

lator response is therefore quantified first. It will be referred to as the harmonic component

despite its globally anharmonic nature. The oscillation signal for a particular location x is

governed by the following equation:

∂2x

∂t2
+ 2ξ(x)ω0(x)

∂x

∂t
+ ω0(x) x = ω2

0(x) xf , (4.23)

where the harmonic oscillator component of the pseudoshock response is fully quantified

by its local stiffness ξ(x) and natural pulsation ω0(x). The phase lag at every position along

the pseudoshock φ and the oscillation amplitude are evaluated from Eqns. 4.24 and 4.25:

tan(φharm(x)) =
2ω0(x)ξ(x)ω

ω2 − ω0(x)2
, (4.24)

and

Eharm(x) =
ω0(x)2Ef√

(ω2 − ω0(x)2)2 + (2ξ(x)ω0(x))2ω2
. (4.25)

The DNS dataset is used to find the pseudoshock ξ(x) and ω0(x) from φ(x) and E(x).

However, we cannot directly use the measured phase lag and amplitude ratio. Indeed, these
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measurements contain both the effect of the locally harmonic resonators and the apparent

Mach effect. They cannot be used to close the harmonic oscillator system of equations as is

usually done. Instead, we will assume certain profiles for (ξ,ω0) for the time being, allowing

us to fully resolve the pseudoshock response.

Extract from the amplitude spectra Ɛ(x) and phase lag 
φ(x) along the pseudoshock

Apparent MachOscillations = Anharmonic +

Postulate

Apply a harmonic oscillation at the 
pseudoshock foot of f = 93 Hz and 
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Figure 4.29: Schematic of the derivation of the dynamic model parameters.

The second step is to oscillate at 93 Hz and amplitude 12 mm the 1D model foot location

xf . Then, we can apply the harmonic oscillator solution determined in step 1 to compute
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the oscillation amplitude Eharm(x) (necessarily inferior to EX as the apparent Mach effect

increases the amplitude) and phase lag φharm(x) along the pseudoshock. It is now possible

to compute the local convecting velocity at every position along pseudoshock. The local

apparent Mach number is defined as the local Mach number minus the relative Mach number.

The third step is to modify the 1D model local pressure growth rate based on the local

convecting velocity. The apparent Mach effect on the local pressure growth rate must be

quantified first. Figure3.28 showed how the shocks pressure rise increase when in a strong

for Mapp > M and vice versa. Let us define P̃1 the leading shock centerline pressure,

and Ṗ1 obtained by using normal shock relations on the upstream apparent Mach num-

ber. The centerline shock convective velocity can easily be computed from the time-resolved

dataset. However, it is difficult to identify the instantaneous flow velocity because of the

three-dimensional turbulence intensity. Hence it is decided to use the averaged streamwise

velocity right upstream of the leading shock. The sum of the bulk flow speed with the instan-

taneous relative velocity is used to compute the apparent Mach number and corresponding

Ṗ1. Figure 4.30 presents the correlation between Ṗ1 and P̃1. These profiles collapse well on

the identity line despite the highly turbulent nature of the flow, with an average of 1.002

and a correlation coefficient of 0.87. This is remarkable as Ṗ1 is simply computed from the

pre-shock time-averaged streamwise velocity and using normal shock relations, therefore as-

suming that the shock front is perfectly perpendicular at every timestep which is only true

for time-averaged contours. This strongly suggests that the 1D model pressure growth rate

closure equation can be modified to account for the apparent Mach number effect by simply

replacing the kinetic energy q with the local apparent local kinetic energy qapp = q − qrel

with qrel being the relative speed kinetic energy in the streamwise direction.

The last step is to simply iterate on (ξ,ω0) in order to minimize the error between EDNS(x)

and E1D(x) along the pseudoshock.

Figure 4.29 summarizes the methodology used to derive the dynamic 1D anharmonic

oscillator model. Fig. 4.31 shows how the apparent Mach effect affects the pseudoshock
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length and back pressure recovery. The dashed lines correspond to the simple harmonic

model alone, and the solid line represents the full anharmonic model. Note that the effect

is consistent with the illustration of the weak/strong shock trains shown in Fig. 4.24 as the

pseudoshock length increases when moving downstream (Mapp < M) and vice versa. It is

noticed that not only does this effect increases the oscillation amplitude of the pseudoshock

length, but it makes the back pressure oscillates: the model also acts as a transfer function

between pseudoshock instabilities and the outflow pressure signal.
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Figure 4.30: Correlations between Ṗ1 and P̃1 from the DNS dataset of Fiévet et al. [33].
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4.5.3.2 Results

The iterative process was performed until a converged solution minimizing the errors of

φ(x) and E(x) along the pseudoshock. The results are shown in Fig. 4.32 which compares

the approximated target profiles for phase lag and oscillation amplitudes from the DNS and

those obtained by the dynamic model. The corresponding local stiffnesses, characteristic

and resonance frequencies are plotted in Fig. 4.33 from top to bottom respectively. The

dynamic model, which is based on the postulate shown in Fig. 4.29 does verify the qualitative

observations made from the coarse oscillation cases. The start of the pseudoshock does

possess a higher resonance frequency which is consistent with both the spatially resolve 93

Hz oscillation case (the start of the pseudoshock increases the phase lag for minor amplitude

gains) and the coarse grid cases. It is likely that the ξ and ω0 locally depend on the shock

train structure, the number and size of cells particularly. Therefore, this particular solution

would probably be inaccurate for other Mach numbers configurations. Yet, the method itself

would work once the harmonic oscillator component has been quantified. One could imagine

an experiment where pressure transducers are used to measure the phase lag and oscillation

amplitudes along the streamwise directions. Then, the same iterative process is shown in

Fig. 4.29 could be performed. Finally, this model uses as input the physical oscillation of the

pseudoshock foot location. It makes no assumption about the nature of the perturbations

causing these oscillations. It can apply to inlet pressure waves, changes of Mach number

of confinement ratio alike. However, the model would probably not be able to “reversibly”

predict the shock train response to outflow perturbations.

The model has been calibrated for the dominant harmonic of the x10 oscillation. We can

now feed the exact xf = x10 signal as an input with all its spectral components, and compare

what the model gives with the exact measurements. This comparison is presented in Fig. 4.34

and shows how this simple model can reproduce most features presented in these turbulent

signals. While resolving high-frequency noise is beyond the scope of this model, there appears

to be an issue with the resolution of the very low frequencies. Indeed, looking back at
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Figure 4.33: 1D model prediction of the x70 and x80 using xf = x10 as input signal.

the signals single-sided amplitude spectra in Fig. 4.28 it appears that the low frequencies

amplitudes do keep increasing in amplitude which conflicts with the postulates the model is

based upon. Indeed, for frequencies much lower than the resonance frequencies the amplitude

should remain approximately constant. It is possible that these movements could be residue

159



from when the transient pseudoshock was still slowly adapting to the numerical back pressure

and slowly moving towards its equilibrium position in the tunnel. Alternatively, it is possible

that the oscillations interact with the back pressure and reflect back at a very low convective

speed hence the low-frequency boost. Indeed, Wagner et al. observed [134] that upstream-

traveling pressure waves from the outflow travel at an approximately 5% bulk flow speed. If

so, these displacements would be polluting the spectral analysis.

Figure 4.34: 1D model prediction of the x70 and x80 using xf = x10 as input signal.

4.5.4 Model transfer functions

The dynamic 1D model is now used to compute transfer function for a broad range of

perturbations frequencies and amplitudes.

From a practical perspective, the pseudoshock length is usually defined as the distance

over which an arbitrary pressure rise occurs, and it is therefore bounded by particular pres-

sure values. Let us define E90−f the distance of interest between the start of the pseudoshock

and the location where the flux-conserved static pressure reaches 90% of what the static

back pressure is. 1D and 2D Bode diagrams are presented in Fig. 4.35. The resonance

phenomenon is caused by the harmonic component which decays exponentially past the res-

onance frequency. On the other hand, the apparent Mach becomes predominant for large

relative velocities, i.e. for large frequencies and excitation amplitudes. This results in a

strong nonlinearity along the input oscillation amplitude E0 space with potentially result in

a catastrophically large resonating ratio.

Instead of computing the pseudoshock length based on a particular pressure rise thresh-

old, we can simply define it as xt−f = xt − xf the distance between tail and foot. The
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Figure 4.35: (Left) Bode diagram of oscillation amplitude E90 over foot oscillation amplitude
E0 = 12 mm. (Right) Bode surface of oscillation amplitude E90 for the harmonic oscillator
part (in red) and the full model (in blue) for various E0.

oscillation amplitude of xt−f is called Et−f . Likewise, we can still define a E90−f length which

would be practically measurable. Their Bode diagram are shown in Fig. 4.36 (left) for E0 =

12 mm. This time, as frequency increases past resonance, the profiles converge to a similar

limit close to 2% of the static pseudoshock length L. This limit is non-zero as the pseu-

doshock foot still oscillates at 12 mm. The figure on the right presents a Bode surface for

varying excitation amplitudes of the ratio between pseudoshock oscillation amplitude over

its static length.
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Figure 4.36: (Left) Bode diagram of shock train tail oscillation amplitude E100 and E80
over foot oscillation amplitude E0. (Right) Bode diagram of pseudoshock length oscillation
amplitude Epst over idle length Lpst.

As observed in Sec. 4.5.3.1 the pressure rise at the tail of the 1D pseudoshock is affected by

the apparent Mach effect such that spatial oscillations will trigger back pressure oscillations.
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A 2D Bode diagram of these oscillations of Back Pressure Ratio (BPR) referred to as EBPR

is plotted in Fig. 4.37. In this case, the increase of the perturbation amplitude Ef has a

much strong effect on the final ratio E90−f/Ef for the same frequency compared to Et−f/Ef .

This is caused by the local convecting speed being proportional to the input amplitude.

Figure 4.37: pseudoshock back pressure rise amplitude.

The most extreme case (4.0 cm foot oscillation amplitude at resonance frequency) could

theoretically have such catastrophic effects on the shock train that it is unlikely the isola-

tor/combustor equilibrium be sustainable.

4.5.5 Influence of low-pass filter

It appears that resonance can break down the shock train structure quite dramatically

(Figs. 4.36 and 4.37). Fortunately, a low-pass response of the shock train foot was also iden-

tified in Chap. III: higher frequency inflow perturbation are damped and result in a lower

leading shock amplitude oscillation. It was suggested that the low-frequency dynamic of the

recirculation bubble located underneath the leading shock would stabilize its position. In

fact, as the wall pressure distribution inside the bubble is homogeneous (see Fig. 3.9), the

bubble could act as a large moving-averaging filter and damps the smallest wave-numbers. A

more trivial explanation of the shock train foot low-pass response to any kind of inflow oscil-

lation (Mach, pressure, confinement ratio) is as follows. The shock train oscillates between
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two stable positions given by the inflow oscillation bounds. If the inflow oscillation timescale

is superior to the time needed by the shock train to convect to either bound, then the leading

shock amplitude is maximum. However, if the inflow oscillation timescale becomes inferior

to the shock train accommodation timescale, then the leading shock’s oscillation amplitude

decreases. The DNS oscillations are constrained between two stable shock trains which lead-

ing shock are located at 10.5 and 41.9 cm from the inlet plane. Coarse grids simulation for

frequencies 20, 60, 100, 200, 500 and 1000 Hz were carried out, and the shock train foot

oscillation amplitudes were of 26.24, 7.98, 4.84, 3.39, 1.37 and 0.86 cm. A simple first-order

low-pass filter FLP can be constructed with a gain of 1 (determined from the conservation

of energy: 0 Hz oscillation yields a ratio of 1) and accommodation timescale τ0 as shown

in Eq. 4.26. The cut-off frequency is estimated from the 20 Hz oscillation case (having an

amplitude of 15 cm) compared to the half-distance between the steady bounds of 24 cm(see

Fig. 3.9). The simulation dataset presents a decay of -10 dB/decade for the amplitude (i.e.

-20 dB/decade for the power spectrum density) with a dB reference value of 1. A first-order

filter appears to predict well the decay in amplitude of the foot oscillation at high frequencies

as seen in Fig. 4.38.

FLP (iω) =
1

1 + iωτ0
2π

(4.26)
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Figure 4.38: First order low-pass filter of cut-off frequency 17 Hz compared with the shock
train foot amplitude oscillations from Fiévet et al..
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Adding the effect of the low pass preemptive filtering to the pseudoshock foot oscillation

drastically alters the Bode diagrams shown in the Sec. 4.5.4. Bode surfaces showing the ratio

between tail and inflow oscillation amplitudes (not foot) and BPR oscillations are shown in

Fig. 4.39. The resulting Bode surfaces now correspond to the measured Bode diagram

shown in Fig.3.22 showing a decaying amplitude in the high frequencies limit. As observed

in Chap.III the low-pass filter plays a key stabilizing role. Isolators should be designed with

the lowest possible cut-off frequency.

Figure 4.39: Ratio of shock train tail amplitude .

4.5.6 Pseudoshock sensitivity to broadband noise

It is possible to combine several harmonic excitations of different amplitude, frequency,

and phase to observe the pseudoshock sensitivity to broadband perturbations. It is expected

that occasional rogue waves (constructive interference) could sporadically disrupt the shock

train, but that the overall effect would be to damp the apparent Mach effect by destructive

interference. Additionally, the transfer function of the harmonic resonator component of the

shock train will damp the high frequency and increase the magnitude of oscillations around

the resonating frequency.

First, we observe the impact of inflow broadband perturbations (white noise) on the

pseudoshock length. Then, the low-pass filter previously determined will be applied to

this broadband perturbation resulting in red or Brownian noise. A harmonic oscillation of
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frequency f = fr = 93 Hz and amplitude 10 mm is used as the reference. The white and

red noise signals amplitudes are re-scaled in order to have the same energy as the harmonic

reference. For this particular input energy, the reference signal is expected to show the

maximum pseudoshock length oscillation amplitude. The input signals of the shock train foot

location xt are presented in Fig. 4.40 alongside their single-sided amplitude spectrum. The

output is the pseudoshock length L, i.e. the distance xt−xf , and is shown in Fig. 4.41. The

noisy excitations are mostly filtered out while their resonating component and its spectral

surrounding gained amplitude. This results in a much lower Et−{ for those signals than

for the pure harmonic excitation. The SSA also reveals that the resonance harmonics are

excited.
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Figure 4.40: (Left) pseudoshock foot location xf (t) for various inflow excitations. (Right)
Single-sided amplitude spectra of xf in dB [ref = 1cm].
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Figure 4.41: (Left) pseudoshock length L for varying foot location xf (t) presented in
Fig. 4.40. (Right) Single-sided amplitude spectra of L in dB [ref = 1cm].

Figure 4.42 shows how this different noise affects the pseudoshock pressure rise. Again,

the harmonic excitation results in a larger BPR oscillation amplitude than for the white and

red noise excitations. Yet, an unstable pressure rise is attained in all cases. Shock train
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spatial oscillations trigger the emission of pressure waves traveling through the post pseu-

doshock region: this means a time-varying thermodynamic state in the combustor. While

a long isolator could contain the pseudoshock oscillations the issue of traveling back pres-

sure waves remains. Indeed, the excitation of some spatial modes in the isolator results

in the excitation of thermo-acoustic modes in the combustor, potentially affecting ignition.

Should any of the combustor characteristic frequencies be similar to any of the harmonics

of the pseudoshock resonance frequency, these pressure waves could trigger some instabili-

ties downstream. A coupling of such isolator-combustor instabilities could lead to unstart

through coupling of the isolator and combustor resonating modes, especially in ramjet mode

where large subsonic boundary layer allow upstream acoustic feedback. Note that in order

to use this model as a design tool, the dynamic model needs closure by expressing the local

stiffness and resonance frequencies as a function of local quantities resolved by the static 1D

model.
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Figure 4.42: pseudoshock BPR for varying foot location xf (t) presented in Fig. 4.40.

4.6 Chapter conclusions

A 1D model for pseudoshock is built from a parametric optimization study and calibrated

from various existing datasets. This static model is able to accurately predict the time-

averaged pseudoshock roll-off profiles, lengths and pressure rise ratio over a broad range

of flow conditions (Mach numbers, duct aspect ratio, Reynolds number, boundary layer

confinement ratio). The model is then used to derive a dynamic anharmonic oscillator model
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of pseudoshock sensitivity to inflow perturbations. A transfer function is determined which

gives the oscillation of the pseudoshock tail, length and pressure rise ratio as a function of

its foot oscillation. It is able to accurately predict the shock train dynamic observed from

numerical simulations, including a certain resonance effect which could potentially disrupt

the whole engine. This dynamic 1D model could, therefore, prove a valuable and unexpensive

tool in designing DMSJ isolators and addressing the issue of engine unstart.
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CHAPTER V

Effect of vibrational nonequilibrium on pseudoshocks

Numerical simulations of DMSJ engines often rely on the assumption of thermal equilibrium,

where the internal modes of molecular motion are assumed to be in equilibrium. Similarly,

isolator experiments usually run at low-enthalpy conditions where the flow vibrational energy

mode is not activated. Hence, the effect of vibrational nonequilibrium on a pseudoshock

have not been scrutinized yet. The nonequilibrium compressible flow solver presented in

Chap. II is used to investigate the effect of nonequilibrium on the pseudoshock structure. A

geometrical configuration as close as possible as the one used in Chap. III is intentionally

used. It is found that nonequilibrium diminishes the pressure growth rate resulting in a longer

pseudoshock. The outflow thermodynamic is noticeably affected and out-of-equilibrium. The

effect of wall heat losses incidental to high-temperature internal flows is also studied and

found to decrease the size of the recirculation bubbles. This results in a larger normal-like

portion of the leading lambda-shock, hence a smaller pseudoshock. Lastly, the 1D model

derived in the previous chapter is modified to account for these new results. Some of this

work is included in Fiévet and Raman [35].

The chapter is organized as follows:

• Sec. 5.1 further discusses the motivations of this study.

• Sec. 5.2 details the flow configurations, solver and grid resolution.

• Sec. 5.3 studies the impact of wall heat losses on the pseudoshock.
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• Sec. 5.4 studies the impact of vibrational nonequilibrium on the pseudoshock.

• Sec. 5.5 proposes modifications to the 1D model presented in Chap. IV to account for

the high temperature effects presented in this chapter.

5.1 Motivation

As explained in Chap. I, the presence of large gradients is expected to trigger vibrational

nonequilibrium in a scramjet isolator. Numerical simulations would be the ideal tool to

fill this literature gap and quantify this physical phenomenon. Yet, to the best of the

author’s knowledge, all pseudoshock numerical simulations used either the calorically or

thermally perfect gas thermal model. Its impact on pseudoshocks structure has never been

investigated before, although theory shows it can potentially have a noticeable effect on

the thermodynamic properties of the flow. As the airflow exiting the isolator enters the

combustor, it is critical to correctly estimate its temperature, pressure, and mass flow rate.

Failure to do so would result in misdesigning the isolator, increasing the risks of unstart.

A secondary consideration when dealing with high-enthalpy flows is to determine the

thermal boundary conditions. It is common to assume adiabatic wall in the case the run

covers a short time over which thermal exchanges with the wall are negligible. However, in

the case of a steady stream possessing low-speed and recirculating areas close to the wall,

heat losses can become relevant. In this case, a fixed wall temperature is chosen to compute

the flux. A temperature of 300 K corresponding to ambient conditions is very often chosen

in numerical simulations [76, 44, 19, 7]. The impact of this choice on pseudoshock structures

is not well understood yet.

Vibrational nonequilibrium can be numerically resolved using the tools detailed and de-

veloped in Chap. II. The scope of this chapter is to use these tools to simulate the high-

temperature equivalent configuration of the DNS presented in Chap. III. Both equilibrium

and nonequilibrium thermodynamic solvers will be used to quantify the effects of vibrational
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nonequilibrium and assess its relevance for DMSJ design. As the temperature is increased

the impact of wall heat losses will also be quantified as two more simulations assuming

either isothermal/adiabatic wall conditions will be performed. Finally, based on the new

results modifications to the 1D model will be suggested and implemented to account for

these high-temperature effects.

5.2 Numerical details

The numerical details relevant to the isothermal/adiabatic and equilibrium/nonequilib-

rium pseudoshock simulations are presented in this section.

5.2.1 Flow configurations

Three pseudoshock simulations are performed in this chapter. The first two use either adi-

abatic or isothermal wall with wall temperature Tw = 300K and assume a thermally perfect

gas. The last one uses the same isothermal wall condition with vibrational nonequilibrium.

The compressible flow solver uses the same numerical schemes as presented in Sec. 3.1.2.

It is coupled with the multi-temperature description of vibrational energy coupled with the

Landau-Teller model and Millikan and White correlation to resolve the relaxation process as

presented in Chap. II.

These simulations mimic an engine operating in ramjet mode: the post-pseudoshock flow

is subsonic. The vehicle is set to fly at Mach 5.5 at 35 km altitude. Figure 5.1 presents the

ramjet engine intake and isolator section which is the focus of the current analysis. This

simple geometry is inspired by the HyShot-II experiment [117]. It represents a canonical

configuration for a rectangular isolator, and the distance between the boundary layer bleed

and the inlet plane of the computational domain is not specified. Instead, it is assumed

that the flow at the inlet plane is at thermal equilibrium as if the distance was long enough

to permit full relaxation of the vibrational energies of O2 and N2. This means that any

vibrational nonequilibrium observed in the upcoming simulations is triggered by the shock
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Table 5.1: Flow conditions in the model ramjet engine zones for a 35 km altitude flight.

Zone P[kPa] T[K] Mach
1 0.9 240 5.5
2 6.5 627 3.0
A 27.5 1040 2.0
B 88.6 Unknown <1

train itself. This is, therefore, the minimal amount of vibrational nonequilibrium observable

in such engine, as there should realistically be a residual amount of nonequilibrium caused

by the intakes 2 oblique shocks.

The same grid R2 as in Chap. III is used for these three simulations. Likewise, both the

inflow bulk Mach number (M0 ≈ 1.9), inflow confinement ratio (A∗ ≈ 16%) and domain BPR

(70% of a normal shock) are kept as close as possible to case B (see Tab. 3.2). Essentially,

only two variables are changed: the inlet temperature and density. This ensures that the

shock train structure remains similar. Table 5.1 presents the thermodynamic state of the

airflow in the various zones of this model ramjet engine.

intake

cowl

bleed

isolator combustor

1
2 A B

subsonic flowrecirculation bubble18°

Computational domain
no-slip walls

-3°

Figure 5.1: Sketch of ramjet engine inlet and isolator showing the DNS computational do-
main.

5.2.2 Inflow file

The same inflow is used at the computational domain inlet for the adiabatic, isothermal

and isothermal with vibrational nonequilibrium.

The Van Driest transformed wall-normal velocity profiles of the inflow centerplane are

shown in Fig. 5.2 and attest to the quality of the inflow. The wall unit y+ equals 21 µm.

The Van-Driest transformed velocity profile matches the linear and logarithmic growth in

171



the inner/outer regions. Also, the Reynolds stresses profiles compares favorably with other

supersonic turbulent boundary profiles from Martins [84] (Mach 2.32 and Reθ = 4450) and

Bernardini et al. [9] (Mach 2.28 and Reθ = 2500). Note that as the high temperature

naturally increases the viscosity, it was not artificially increased as in the CPG DNS to reach

a DNS-like resolution. The inflow boundary layer thickness δ is equal to 12.3 mm. The

momentum thickness θ = 0.70 mm. The inflow Reynolds number Reθ equals 2474.

This newer inflow was generated in three stages which differs from the previous chapter’s

cold inflow construction process. First, as in the former method, a uniform Mach 2.0 flow

is initiated into same tunnel geometry albeit with streamwise periodic boundary conditions.

Second, rather than sample the outlet plane once the boundary has grown to the target

value (previous method) we sample the first onset of turbulence into an intermediary inflow

file. Third, we feed this inflow file with some artificial randomness into the same tunnel

with streamwise non-periodic and non-reflective boundary conditions. In this last stage,

the tunnel has to be sufficiently long to let the turbulent boundary layer profiles grow to

the target values. As the flow convects through that larger tunnel, the spatial resolution

increases towards the main simulation target grid. The final inflow file is then sampled

wherever in the tunnel the wall-normal velocity profiles are closest to the desired values.

Note that this new method is computationally more expensive as it requires the generation

of an intermediary inflow file. However, it permits to sample longer, decorrelated inflow

files for the main simulation. The boundary layer height also remains rigorously constant

throughout the inflow.

The flow-through time is estimated a posteriori from the mean centerline velocity to be

of 0.97 and 0.84 from the equilibrium and nonequilibrium time-averaged solutions. The new

inflow spawns over 2.5 ms, so almost three centerline flow-through times.
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Figure 5.2: Time-averaged inflow boundary layer profiles of (left) the Van-Driest transformed
streamwise velocity and (right) the Reynolds stresses.

Table 5.2: Different grid resolutions used for the shock train DNS.

Grid Nx Ny Nz ∆x+ min ∆y + /∆z+ max ∆y + /∆z+ Cells <10y+
R2+ 2048 320 256 20.1 0.99 20.6 5
R3+ 3072 480 384 13.2 0.99 14.0 9

5.2.3 Simulations resolution

The parameters known to have the largest impact on the pseudoshock structure were

kept constant from the previous CPG DNS. We therefore expect that a resolution close to

the previously used R2 grid (see Tab. 3.1) is enough to resolve the shock train. The coarser

grid R1 is not investigated at all. A grid with a resolution equivalent to R2 is called R2+.

A finer grid referred to as R3+ with a similar resolution than the R3 grid is also used to

properly verify grid convergence. While grids R2+ and R3+ possess the same number of grid

points than R2 and R3, the resolution in wall unit is slightly different for two reasons. First,

the stretching coefficient used to cluster the grid at the wall was slightly relaxed to barely

reach a 1y+ resolution at the wall. This permits to slightly increase the centerline resolution.

Second, the increased temperature has lowered the inflow Reθ to 2474 such that there was

no need to artificially increase the viscosity as was done before to obtain a tractable wall

unit. The resolutions in terms of y+ for the high-temperature simulations are presented in

Tab. 5.2.

173



The R2+ simulations all ran over 2.4 ms to ensure a proper convergence when construct-

ing their time-average profiles. They used 8000 cores over 24 hours for the equilibrium and

nonequilibrium models. The R3+ simulations all ran over 0.8 ms to ensure a proper conver-

gence when constructing their time-average profiles. A CFL number of 0.9 was used yielding

a typical timestep of 65 ns. They used 10000 cores over 48 hours for nonequilibrium case,

half this amount for the equilibrium case. The adiabatic wall case was only run on grid R2+.

Figure. 5.3 shows time-averaged static pressure contours (from 40 to 120 kPa by increment

of 10 kPa) and streamwise velocity (from 100 to 1000 m/s by increment of 100 m/s) in the

Z-centerplane for both R2+ and R3+ grid for the nonequilibrium case. The time-averaged

location of leading shock xs1 differed from 278 µm: only 0.8 % of a half-channel height.

The complex pseudoshock structure is almost equally resolved by both grids which confirms

that the R2+ grid is fine enough. The subsonic centerline pockets are equally spaced and of

similar size. The boundary layer is also almost identically shaped. Overall, the convergence

of the nonequilibrium pseudoshock structure is verified. It is expected that grid convergence

on this most complex case induces grid convergence on the corresponding TPG simulations

as well.

-1 0 1 2 3 4 5

(x-x
s1

)/h

0

2

y
/h

P = [40:10:120], kPa

-1 0 1 2 3 4 5

(x-x
s1

)/h

0

2

y
/h

u = [100:100:1000], m/s

Figure 5.3: Z-centerplane time-averaged (left) static pressure and (right) streamwise velocity
contours for the equilibrium isothermal wall simulation using either the R2+ (blue) and R3+
(red) grid.

Grid R2+ only will be used in Sec. 5.3 investigating the effect of wall heat loss. The finer

grid R3+ is used throughout Sec. 5.4 which studies vibrational nonequilibrium. A qualitative

view of the computational domain and pseudoshock (equilibrium and isothermal wall case)

is presented in Fig. 5.4.
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5.3 Impact of wall heat losses on pseudoshocks

The pseudoshock structure difference for either isothermal (Tw = 300 K) and adiabatic

wall conditions is investigated in this section.

5.3.1 Centerplane 2D shock train structure

Figure 5.5 shows snapshots and time-averaged Mach contours of both isothermal and

adiabatic simulations. The sonic isoline (Mach number equal to unity) is shown in black

and reveals the strong difference in shock structures between these two cases. The centerline

Mach number tends to drop below one faster than on the shock train edges creating a scissor-

like shape in the isothermal case. The normal-like portion of the leading shock appears to be

smaller in the adiabatic case. This results in noticeably smaller subsonic pockets and larger

cell. This is precisely what was observed for larger inflow confinement ratio in Chap. III,

yet here the inflow is identical. Larger lambda feet are observed in the adiabatic case which

suggests that a larger recirculation bubble is present. By shrinking the normal-like portion

the pseudoshock length would increases. The static pressure and streamwise velocity fields

are also shown in Fig. 5.6. They are plotted in the leading shock reference frame and

highlights the strong variation in shock cells sizes and numbers, resulting in different shock

train length. These results are consistent with Kamali et al.[59] who observed that wall

cooling reduced the cell sizes in a Mach 1.6 shock train.

5.3.2 3D shock train structure

The 3D time-averaged dataset is used to integrate the flux-conserved pressure, density,

and temperature. These profiles are shown in Fig. 5.7 and are consistent with the previous

observation on the pseudoshock structure. Its length varies from approximately 11 to 16

half-channel heights.

The amount of heat lost by the system as the flow convects through the channel can be

computed from the flux-conserved total enthalpy profiles shown in Fig. 5.8. Note that this
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Figure 5.5: (Top) Instantaneous and (bottom) time-averaged contours of the Mach numbers
for the (above) isothermal and (below) adiabatic simulations at the Z-centerplane.

value is computed a posteriori from time-averaged static temperature and velocity fields,

which explains why oscillations are present at the unsteady shock locations. In theory, this

value is supposed to remain constant for the adiabatic case, which is verified as the inlet and

outlet total temperatures are equal. On the contrary, the isothermal wall simulation losses

energy through wall heat losses which has the effect of decreasing its total temperature from

approximately 1600 K (inlet) to 1450 K (outlet) along the channel.

The 3D sonic isocontours of both cases are shown in Fig. 5.9. The plot covers half the

domain (up to half the spanwise domain) and cuts through the shock train. It can be seen

that the differences between the subsonic cells locations/sizes increase further downstream.

Yet, both simulations appear to possess a similar pre-pseudoshock sonic core (this is further

quantified below).

Fig. 5.10 shows how bigger the bottom wall recirculation bubble is in the adiabatic case.
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This effect on the core flow is seen in Fig. 5.11 which presents the Y-centerplane streamlines.

There is a larger detachment of the upstream boundary layer which shrinks the sonic core flow

and the normal-like portion of the leading shock, just as in the Z-centerplane 2D contours

shown in the previous section.

It is well known in boundary layer theory that a positive wall-normal static temperature
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profile (i.e. in the case of wall heat losses) has an effect equivalent to a negative streamwise

pressure gradient: it helps prevent boundary layer separation [140]. Several recent DNS of

STBLI [9, 142, 124, 132] have shown how wall heat losses affect the size of the recirculation

bubble under the leading shock, and the bottom wall compression fan (which corresponds to

the lambda foot in a normal shock train). Bernardini et al. and Volpiani et al. performed

several DNS of STBLI (an oblique shock generated by an upper wedge impinges on a turbu-

lent boundary layer) using various Tw ranging from half to twice the recovery temperature
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Figure 5.10: Velocity vectors and streamlines extracted from the y=60µm plane for (top)
isothermal and (bottom) adiabatic walls cases.

Tr. Their result is particularly relevant to the present study as their inflow boundary layer

Reθ equals 2500 and their bulk inflow Mach number is equal to 2.28, which are both very

close to the present case. They found that wall heat losses bring the upstream boundary

layer sonic line closer to the wall than in the hot wall or adiabatic cases. Hence the subsonic

turbulent streamwise-coherent structures present in all turbulent boundary layers depart

further away from the wall. This would shift upstream the shock foot and increase the size

of the recirculation bubble. Conversely, they found that the size of the recirculation bubble

decreased for large heat losses, and increased when the wall was heated. Figure 5.12 shows

how the impinging shock penetrates deeper in the turbulent boundary layer when the wall

temperature is reduced. Notably Bernardini et al. concluded that the change in STBLI

structure was not due to the heat losses around the separation point, but due to change in

upstream boundary layer profile. Yet, the upstream boundary layer appears to have a similar
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Figure 5.11: Velocity vectors and streamlines extracted from the y=1h plane for (top) isother-
mal and (bottom) adiabatic walls cases.

height for all cases. Additionally, they found that the friction coefficient upstream of the

separation bubble was almost unchanged for all cases. Zhu et al. observed the same result

in a ramp geometry. In the present study, the confinement ratios [A∗,Aθ] are of [0.155,0.065]

and [0.160,0.057] right upstream of the pseudoshock for the isothermal and adiabatic cases

respectively. The bulk Mach numbers are between 1.89 and 1.88. These changes are too

subtle to explain such a large difference with the correlations found in Chap. III. Hence the

wall heat losses must have influenced another parameter which has not been considered yet.

Figure. 5.13 presents the non-streamwise instantaneous velocity fields for the isothermal

case. Large streamwise-coherent structures alternatively positive/negative are observed up-

stream of the separation point, particularly in the w contours. These structures disappear

after they pass the lambda foot (revealed by the strong v magnitudes). The interaction

of these large-scale vortical structures with the lambda foot could play a relevant role in
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Figure 5.12: DNS of STBLI for various wall temperatured from Bernardini et al. [9] and
Volpiani et al. [132].

determining the leading shock cell structure. The vortical skeleton of the pseudoshocks for

both cases is extracted from the time-averaged 3D dataset and analyzed in the next section.
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Figure 5.13: Z-centerplane snapshot of v (wall-normal) and w (spanwise) velocity vector
components for the isothermal walls case.

5.3.3 Vortical structure

As explained in Sec. 5.3.2 the differences observed between the two cases seem to originate

with the leading shock/cell characteristics. Boundary layer cooling likely affects the velocity

profiles and the vortical structure. The vortical structure upstream of the shock train consists
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of pairs of counter-rotating vortex in each corner of the channel shown in Fig. 5.14.

Figure 5.14: Velocity vectors (black) and streamlines (blue) extracted from the x = xs1−0.1m
plane for the adiabatic walls case.

In order to identify and quantify the differences in shock train vortical structures between

both case, the rigid vorticity ωr defined as the rigid-body component of the vortical field is

extracted from the 3D time-averaged dataset using Triple Decomposition Method (TDM)

Kolar et al. [67]. It permits to extract from the vortical fields the strain and shearing due

to the shock waves and wall shear stresses. An illustration of such decomposition is given in

Fig. 5.15. In the current analysis, the decomposition was performed in the Favre-averaged

velocity field.

easily integrable across the vortex region in order to obtain
the integral strength of a vortex. However, the application
of conventional circulation C (calculated as a surface quad-
rature of vorticity) for this purpose is in fact misleading as
the vorticity is misrepresenting the local intensity of the
actual swirling motion of a vortex. For example, one
obtains a net circulation for the region of a simple linear
shearing motion due to a net vorticity.

Furthermore, another requirement – much more trivi-
ally looking than the integral strength of a vortex – is swirl
orientation. Vorticity may answer the question regarding
the swirl orientation in simple problems, however, the local
angle between the vortex-axis tangent and the vorticity vec-
tor may reach large values due to a strong shearing aligned
with the vortex axis (e.g. streamwise vortical structures in a
turbulent boundary layer). This requirement becomes par-
ticularly important in complex 3D vortical flows subjected
to high shear.

As noted by Kida and Miura (1998), it is impossible for
the isosurface representation of a scalar field (applied in
vortex identification) to distinguish between individual vor-
tical structures. This is especially the problem of homo-
geneous turbulence. To avoid ambiguity and vortex
overlaps, the explicit vortex-axis requirements are pro-
posed below.

These additional requirements are quite natural and,
therefore, added to those already mentioned:

• swirl orientation,
• determination of the (integral) vortex strength,
• vortex-axis requirements: existence and uniqueness for

each connected vortex region (to avoid ambiguity and
vortex overlaps).

4. Triple decomposition of the relative motion near a point
and vortex identification

4.1. Triple decomposition of the relative motion near a point

The conventional double decomposition of motion near
a point into a pure irrotational straining motion along the
principal axes of the rate of strain tensor (generally includ-
ing a uniform dilatation) and a rigid-body rotation
expressed by $u = S + X has a long history and stems
from the Cauchy–Stokes decomposition theorem (first
explicitly stated by Stokes, 1845, according to Truesdell
and Toupin, 1960). Basic kinematics in this regard can be
found in many textbooks (e.g. Batchelor, 1967; Panton,
1984).

The triple decomposition of the relative motion near a
point (TDM) has been motivated by the fact that vorticity
cannot distinguish between pure shearing motions and the
actual swirling motion of a vortex. Analogously, strain rate
cannot distinguish between straining motions and shearing
motions. These problems indicate that the double decom-
position may not satisfy all of today’s needs of fluid

mechanics. The aim of the TDM is to decompose an arbi-
trary instantaneous state of the relative motion near a
point into three elementary motions, each described by
an additive part of $u with a distinct tensor character,
explicitly including a pure shearing motion. Therefore,
the present decomposition method is – including its vor-
tex-identification outcome – based on the extraction of a
so-called ‘‘effective’’ pure shearing motion. The TDM is
expressed through the corresponding triple decomposition
of $u introduced in Kolář (2004).

To discuss all of the main aspects of the TDM in 3D
flows is far beyond the scope of this contribution and the
research in this regard is incomplete due to its complexity
(see also the final remark at the end of this subsection).
However, its planar version – including the application to
vortex identification – is very illustrative. Particularly, a
straightforward comparison with the most widely used vor-
tex-identification methods is provided for planar flows in
Section 5.

The qualitative model of three elementary motions of
the TDM is depicted in Fig. 1. The deformable fluid ele-
ment in Fig. 1 consists of discrete undeformable material
points in terms of which the local rate of deformation is
described through their relative motion. The material point
represents – in the present context – ‘‘much less than a fluid
element’’ and generally allows translation and rotation
only. A pure shearing motion near a point is interpreted
in terms of the parallel relative motion of non-rotating
undeformed shearing elements – planes, lines, or points
(depending on flow complexity in 3D).

deformable fluid 
element as a set of 
discrete undeformable 
material points 
(initial state) 

pure shearing 
of planes (lines) 

rigid-body rotation irrotational straining 

Fig. 1. Qualitative model of three elementary motions of the TDM.
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easily integrable across the vortex region in order to obtain
the integral strength of a vortex. However, the application
of conventional circulation C (calculated as a surface quad-
rature of vorticity) for this purpose is in fact misleading as
the vorticity is misrepresenting the local intensity of the
actual swirling motion of a vortex. For example, one
obtains a net circulation for the region of a simple linear
shearing motion due to a net vorticity.

Furthermore, another requirement – much more trivi-
ally looking than the integral strength of a vortex – is swirl
orientation. Vorticity may answer the question regarding
the swirl orientation in simple problems, however, the local
angle between the vortex-axis tangent and the vorticity vec-
tor may reach large values due to a strong shearing aligned
with the vortex axis (e.g. streamwise vortical structures in a
turbulent boundary layer). This requirement becomes par-
ticularly important in complex 3D vortical flows subjected
to high shear.

As noted by Kida and Miura (1998), it is impossible for
the isosurface representation of a scalar field (applied in
vortex identification) to distinguish between individual vor-
tical structures. This is especially the problem of homo-
geneous turbulence. To avoid ambiguity and vortex
overlaps, the explicit vortex-axis requirements are pro-
posed below.

These additional requirements are quite natural and,
therefore, added to those already mentioned:

• swirl orientation,
• determination of the (integral) vortex strength,
• vortex-axis requirements: existence and uniqueness for

each connected vortex region (to avoid ambiguity and
vortex overlaps).
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4.1. Triple decomposition of the relative motion near a point

The conventional double decomposition of motion near
a point into a pure irrotational straining motion along the
principal axes of the rate of strain tensor (generally includ-
ing a uniform dilatation) and a rigid-body rotation
expressed by $u = S + X has a long history and stems
from the Cauchy–Stokes decomposition theorem (first
explicitly stated by Stokes, 1845, according to Truesdell
and Toupin, 1960). Basic kinematics in this regard can be
found in many textbooks (e.g. Batchelor, 1967; Panton,
1984).

The triple decomposition of the relative motion near a
point (TDM) has been motivated by the fact that vorticity
cannot distinguish between pure shearing motions and the
actual swirling motion of a vortex. Analogously, strain rate
cannot distinguish between straining motions and shearing
motions. These problems indicate that the double decom-
position may not satisfy all of today’s needs of fluid

mechanics. The aim of the TDM is to decompose an arbi-
trary instantaneous state of the relative motion near a
point into three elementary motions, each described by
an additive part of $u with a distinct tensor character,
explicitly including a pure shearing motion. Therefore,
the present decomposition method is – including its vor-
tex-identification outcome – based on the extraction of a
so-called ‘‘effective’’ pure shearing motion. The TDM is
expressed through the corresponding triple decomposition
of $u introduced in Kolář (2004).

To discuss all of the main aspects of the TDM in 3D
flows is far beyond the scope of this contribution and the
research in this regard is incomplete due to its complexity
(see also the final remark at the end of this subsection).
However, its planar version – including the application to
vortex identification – is very illustrative. Particularly, a
straightforward comparison with the most widely used vor-
tex-identification methods is provided for planar flows in
Section 5.

The qualitative model of three elementary motions of
the TDM is depicted in Fig. 1. The deformable fluid ele-
ment in Fig. 1 consists of discrete undeformable material
points in terms of which the local rate of deformation is
described through their relative motion. The material point
represents – in the present context – ‘‘much less than a fluid
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Figure 5.15: Vortical triple decomposition method process from Kolar et al. [67].
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Such decomposition is shown in Figs. 5.16 where the top contour shows the vector velocity

field in the Y-centerplane colored by vorticity ωXZ . It is difficult to identify any vortex due

to the high strain and shearing, but the TDM reveals the location of vortex pairs located in

between every shock train cells (bottom contour).
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Figure 5.16: Velocity vectors extracted from the y=1h plane for the adiabatic walls case
colored by (top) plane vorticity ωXZ and (bottom) plane rigid body vorticity ωr,XZ .

The TDM is also used in the streamwise-normal plane YZ and is presented in Fig. 5.17

(first contour). In order to facilitate the analysis and construct a clean 3D shock train

vortical skeleton the following method is used. First, an arbitrary threshold of 104 [s−1] is

chosen to plot the skeleton isocontours. Then, as seen in the second contour in Fig. 5.17

this threshold is used to define a mask value, or Boolean inside/out of all vortices. The next

step consists in integrating ωr,XZ inside every vortex that has been separately identified as

in the third contour of Fig. 5.17. Lastly, a circle of area equal to the Boolean area is placed

in every vortex core location. It is colored by
∫
ωr,XZ . Each vortex is now represented by

a circle giving its size, colored by its strength, and centered on its core location as seen in

the right contour in Fig. 5.17. The same process in the XZ plane is shown in Fig. 5.18 and

shows how it presents a clear, quantified picture of the shock train vortical skeleton upon

which the shocks cells are attached. The same operation is performed across all planes. The

computation of all these fields took about 30h on a single core.

The whole shock train skeleton is then reconstructed in 3D slice by slice. A small spatial-

average filter (less than h/100) is used to smooth its shape, plotted in Fig. 5.19. It reveals
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Figure 5.17: Process of extraction of every vortex
∫
ωr,XZ and construction of the shock

train vortical skeleton.

Figure 5.18: Velocity vectors extracted from the y=1h plane for the adiabatic walls case
colored by (top) isocontours of |ωr,XZ | = 104 [s−1] and (bottom) integrated ωr,XZ within top
contours limit and plotted as a circle centered on vortex core location.

how rigid vortex quartets are positioned in between cells as pillars, progressively weakening

both in size and magnitude as the pressure rise ratio of each successive shock cell diminishes.

We can deduce that they do not increase with the boundary layer height but with the cell size,

i.e. with the adverse pressure gradient. The pre-pseudoshock streamwise vortices disappear

when they reach the recirculation bubble. They reappear after the reattachment point.

Their strength reduces each subsonic cell where the centerline pressure is large and tends to

detach the boundary layer. However, contrary to the XY and XZ vortex quartets they do

not weaken further downstream. In fact, they seem to reach a maximum size and strength

once they reach the pseudoshock fully developed turbulent mixing region: this suggests they

scale with the turbulent boundary layer height. Another pair of streamwise counter-rotating

vortices re-appears at the center of the spanwise wall. They both strengthens right under

each shock and weakens through the expansion waves. Their size appears to slowly decay

through the shock train suggesting that they behave similarly than the XY and XZ vortex
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quartets.
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Figure 5.19: 3D vortical skeleton of the adiabatic walls case shock train.

The strengths of these rigid vortices are integrated and plotted with other quantities of

interests in Fig. 5.20 for both isothermal and adiabatic walls cases. Such quantities are the

wall and centerline pressure profiles (top right), and the sonic core ratio (top left). The

upstream sonic ratio is higher for the cooled wall as observed by Bernardini et al. [9]. The

upstream
∫
ωr,Y Z is stronger for the adiabatic case especially right upstream of the separation

point. They also are much stronger under the first shocks which is consistent with the

larger lambda feet observed in Fig. 5.5 for instance. Interestingly, all vortex quartets are

consistently largely stronger for the adiabatic case (bottom right plots).

This analysis cannot determine whether the increased vortical activity is “responsible for”
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or “a consequence of” the larger shock train cells in the adiabatic case. However, as observed

by the STBLI DNS mentioned in the previous section [9, 142, 124, 132], the upstream

velocity profiles determine how deep the shocks impinge into the turbulent boundary layer.

In conclusion, it is proposed that the larger upstream vortices coupled with the smaller sonic

core are responsible for the change in the leading lambda shock foot, hence the normal-like

portion, hence the compression rate which determines the pseudoshock length.

5.4 Impact of vibrational nonequilibrium on pseudoshocks

The focus of this section is to quantify the impact of vibrational nonequilibrium on the

pseudoshock structure. For the purpose of this discussion, the shock structure simulated

using TPG assumption is referred to as the equilibrium calculation. Likewise, the simula-

tion resolving the vibrational energy relaxation process is referred to as the nonequilibrium
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solution.

5.4.1 Differences in shock train structures

Figure 5.21 shows instantaneous snapshots of Mach number for the equilibrium and

nonequilibrium solutions. In the nonequilibrium case, the specific heat capacity ratio is

computed from the vibrational temperature, which is then used to evaluate the local speed

of sound. The first difference between the cases is in the location of the leading shock, which

is positioned farther upstream in the nonequilibrium case. The leading λ-shock encounters

a slightly thinner boundary layer since the near-wall subsonic region grows in size with

streamwise distance within the isolator. To further understand the structural difference,

sonic isosurfaces of both equilibrium and nonequilibrium cases are shown in Fig. 5.22 up to

half the spanwise domain. Here, the leading edge of the shock train is taken as the origin

in the streamwise direction. It is seen that the effect of vibrational nonequilibrium is quite

minor on the sonic core length. However, the nonequilibrium case has slightly smaller cells,

and this difference accumulates over the length of the domain leading to larger differences in

the location of the sonic core downstream. Overall, the shock trains have the same scissor-

shape sonic core, and the nonequilibrium case needs a longer post-shock train mixing region

to accommodate the same numerical back pressure condition. The pseudoshock length varies

from approximately 11 (equilibrium) to 16 (nonequilibrium) half-channel heights.

Static pressure and streamwise velocity fields are also shown in Fig. 5.23 in the leading

shock’s reference frame. It can be seen that the time-averaged fields are very similar to the

instantaneous snapshots, indicating that the large-scale features of the flow are dominated

by the shock train and the associated shock structures. Further, the shock train itself might

exhibit low-frequency oscillatory motion [52, 33], but the spatial structure remains nearly

unaltered as the entire shock train moves up or downstream in the isolator. Similar to

Fig. 5.22, it is seen that the diamond-like cell formed by the leading shock is smaller in the

nonequilibrium case compared to the equilibrium case. As a result, the shock train from the
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nonequilibrium is shorter than that for the equilibrium case (even though the pseudoshock

is longer for the nonequilibrium case).
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Figure 5.21: Instantaneous contour field of Mach number for the (top) equilibrium and
(bottom) nonequilibrium simulations at the spanwise centerplane.
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Figure 5.22: Isocontours of sonic condition for the equilibrium and nonequilibrium calcula-
tions.

5.4.2 Pseudoshock-triggered nonequilibrium

Figure 5.24 shows the distribution of nonequilibrium throughout the isolator section by

comparing translational and vibrational temperatures. There are significant differences in
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Figure 5.23: Spanwise centerplane (top) instantaneous and (bottom) time-averaged contours
of the (left) static pressure and (right) streamwise velocity. For each figure, the top plot is
the equilibrium solution while the bottom plot is the nonequilibrium solution.

the local temperatures. The instantaneous figures show that the translational temperatures

after each compression shock reaches a high value, where the mechanical compression raises

the internal energy of the fluid. Since O2 relaxes faster than N2, its vibrational temperature

remains close to the translation temperature, albeit with a delayed reaction to temperature

T changes. For instance, in the post-compression region (for each cell), the translational

temperature drops considerably as the fluid expands, but the O2 vibrational temperature

exhibits lower variation as it relaxes towards the varying translational temperature. Very

significantly, N2 does not equilibrate at all in the computational domain, leading to a nitro-

gen distribution that is underpopulated at higher vibrational energies. The increase in N2

temperature occurs mainly in the low-velocity near-wall region, where the higher transla-

tional temperature lowers the relaxation time scale [90]. These features are more prominently

observed in the difference plots shown in Fig. 5.25. As discussed above, the expansion region
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behind each λ-shock leads to a state with a higher vibrational temperature of O2. As a

result, the O2 population is alternately underpopulated and overpopulated throughout the

isolator. As the strength of the shocks decreases with downstream distance, O2 is able to

relax much faster, although these changes have a negligible impact on N2 relaxation.
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Figure 5.24: Spanwise centerplane (left) instantaneous and (right) time-averaged contours
of the (top) static temperature T (center) O2 vibrational temperature Tv,O2 and (bottom)
N2 vibrational temperature Tv,N2 .
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Figure 5.25: Spanwise centerplane (left) instantaneous and (right) time-averaged contours
of the difference between static temperature T and (top) O2 vibrational temperature Tv,O2

and (bottom) N2 vibrational temperature Tv,N2 .

In order to understand the energy partition, the ratios between the local vibrational

energy of a species and its energy at equilibrium, computed from the translational temper-
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ature, are shown in Fig. 5.26. Further, the area-averaged streamwise variation in this ratio

is also shown. It is seen that the ratio shows over and under-population for O2 along the

centerline, consistent with the observations in Fig. 5.25. However, the area-averaged value

shows that both O2 and N2 remain vibrationally cold, but O2 relaxes approximately midway

through the pseudoshock. This is mainly due to the fact that even though the expansion

regions occupy a larger cross-section, the density in this region is lower compared to the

region between the low-speed near-wall flow and the core flow. As a result, the population

at any cross-section along the isolator remains at lower vibrational temperature. This re-

sult would be particularly useful for developing one-dimensional isolator models [116], but

remains outside the scope of the current work.

Figure 5.26: (Left) Centerline and (right) area-integrated ratios between the vibrational
energies and their local equilibrium values evaluated from T .

5.4.3 Effect of nonequilibrium on the pseudoshock location and length

The differences in pseudoshock structure between the equilibrium and nonequilibrium

case were discussed in Sec. 5.4.1. One general conclusion is that nonequilibrium, in an

area-averaged sense, stores some of the kinetic energy in the translational and rotational

mode. Figure 1.14 showed that when cold nonequilibrium (Tv < T ) is present, the higher

energy content of the translational/rotational modes leads to a slight reduction in the static

pressure. In this section, the effect of these two observations on the pseudoshock location

and length is discussed.

The 3D time-averaged dataset is now used to compute the cross-sectional integrals of
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pressure, density, and temperature along the streamline direction. The flux-conserved inte-

grals of the TRE etr, the vibrational energy ev = YO2
ev,O2

+ YN2
ev,N2

and the mean kinetic

energy K are also computed. These profiles are shown in Fig. 5.27. Logically, it appears

that nonequilibrium impacts the pseudoshock pressure, density and temperature profiles very

similarly than for a normal shock (see Fig. 1.14), which is very intuitive as per pseudoshock

definition: a fraction of a normal shock pressure rise occurring over space. The flow is essen-

tially vibrationally under-excited, mostly due to the slow relaxation of N2 molecules, which

causes a significant 90 K difference in outflow temperatures. Likewise, the integrated den-

sity equals 0.0893 kg.m−3 at the inflow plane, and 0.2127 and 0.2033 kg.m−3 for the outflow

equilibrium and nonequilibrium cases respectively.

Also, the pseudoshock length noticeably varies from approximately 11 to 16 half-channel

heights as observed in Sec. 5.4.1. It is shown in the canonical case in Fig. 1.14 that such cold

nonequilibrium decreases the rate of conversion of kinetic into internal enthalpy. Similarly,

the pseudoshock integrated pressure plot (top right in Fig. 5.27) reveals that the shock-

triggered pressure growth rate is indeed hampered by cold nonequilibrium. Hence, while the

equilibrium pseudoshock only needs 11 half-channel heights to rise up to the outlet numerical

back pressure, the nonequilibrium pseudoshock is still 2.489 kPa short at the same length.

Since the shock-based pressure rise is weaker in the nonequilibrium case, a longer post-shock

train turbulent mixing region is needed where pressure will grow up 2.489 kPa through both

viscosity and relaxation of ev,N2
. It was computed that pressure gain in the extra region

through relaxation of ev,N2
only accounted for 0.277 kPa. This suggests that it is essentially

pointless to design isolators long enough to let N2 naturally relax by the combustor, as

Fig. 5.26 showed. Note that 2.489 kPa is only a small fraction of the isolator inlet/outlet

gradient: it represents a 5.1% pressure rise defect only. Yet, the pressure growth rate in the

post-shock train region through viscous dissipation is weaker than through the shock train

[85]. Hence, this modest 5.1% pressure rise defect results in an extra 5 channel half-height:

this corresponds to a 45% pseudoshock length increase. The pseudoshock can only find this
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extra space by shifting upstream, as observed in Fig. 5.21.
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Figure 5.27: (Top) Area integrals of (left) pressure, (center) density and (right) temperature.
(Bottom) Flux-conserved integrals of (left) TRE, (center) vibrational energy and (right)
mean kinetic energy.

Finally, the various energies flux at the inflow and outflow planes are presented in Tab.

5.3 for both cases. It summarizes how the bulk energy conversion process is affected by

nonequilibrium. For both cases, the time-averaged mass flow rate ṁ is constant at 0.405

kg.s−1. The sum of the fluxes is not constant due to wall heat losses. Note that Fiévet et.

al studied the same configuration with adiabatic walls [36] and observed a similarly longer

nonequilibrium pseudoshock. As seen in Tab. 5.3, vibrational energy accounts for 7.2% of the

internal energy flux before the pseudoshock, for 10.2% at the equilibrium outflow plane and

for 7.8% at the nonequilibrium outflow plane. Overall, the defect in N2 vibrational energy

flux is only of 12.8 kJ.s−1, i.e. less than 3% of the internal energy flux. Yet, it is sufficient

to drastically affect the thermodynamic state and the pseudoshock as seen throughout Sec.

5.4.

While these variations are small, they have profound consequences on the location of
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Table 5.3: Inflow and outflow energies fluxes [kJ.s−1] for both equilibrium and nonequilib-
rium pseudoshocks.

Zone Mean kinetic Translational+Rotational Vibrational(O2) Vibrational(N2)
Inflow - both 258.73 313.45 8.59 15.66
Outflow - Eq. 56.12 420.06 14.25 33.52

Outflow - Noneq. 53.68 445.98 17.06 20.77

shock structures and their impact on downstream processes. Due to the lower pressure in

the nonequilibrium case, the pseudoshock is longer in order for the static pressure to reach

the imposed back pressure. This distance to reach the backpressure is controlled only by the

relaxation time for N2, which is large compared to the flow through time. To accommodate

this longer pseudoshock, the shock train has to move upstream. Hence, even though the

pressure differences are minor, the relaxation rate is small enough that a large variation in

shock location is observed. Further, even at the end of the isolator, the N2 population has

not reached equilibrium.

To quantitatively assess this specific impact of nonequilibrium, it is useful to use the

equilibrated state defined in Sec. 2.3.2. As a reminder, the equilibrated temperature T ∗

is defined as the equilibrium temperature obtained from the local sum of internal energies.

Similarly, P ∗ is defined as the pressure corresponding to T ∗ assuming ideal gas law and

local fluid composition. Figure 5.28 shows the area-averaged integral of the equilibrated

static pressure P ∗ with the same pressure plots presented in Fig. 5.27 (top left).
∫
P ∗ and∫

Peq profiles collapse remarkably well, with only minor shifts due to small changes in shock

locations. These two profiles reach the numerical back pressure at the same distance from

their leading shocks, indicating that the extra length of the nonequilibrium pseudoshock

is indeed solely caused by the residual nonequilibrium due to N2. The net pressure defect

due to this nonequilibrium is also shown in Fig. 5.28. At the end of the isolator, there

is still almost 3000 Pa of pressure defect. In other words, if equilibrium is reached, this

net pressure increase will be observed as the local static pressure in the domain. This is

a potential stability issue for DMSJ. Since relaxation can be accelerated by the presence

of water vapor [34], which is the product of combustion downstream, there could a sudden
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increase in pressure that can adversely affect the stability of the propulsion system, leading

to engine unstart [73].
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Figure 5.28: (Left) Area-integrated profiles for static pressures from equilibrium case (Peq),
nonequilibrium case (P ) and nonequilibrium-converted value (P ∗). (Right) Area-integrated
pressure defect.

It is important to recognize that these important effects on isolator flows were caused

by marginal changes in distribution of the internal energy between modes (see Tab. 5.3).

Hence a 2.4% difference in excitation of vibrational energy resulted in this 45% increase of

pseudoshock length. Figure 5.29 presents on the left the percentage of internal energy stored

in vibrational modes for air at different temperatures. The right figures shows for different

flight speed the percentage of internal energy stored in vibrational modes for a ramjet flying

at 35 km altitude and recovering 70% of a normal shock temperature. A flight speed of Mach

4.2 is enough to place 2.4% of the internal energy inside vibrational modes, resulting in the

same amount of nonequilibrium computed from the current pseudoshock simulations. If we

place the threshold of relevance of vibrational nonequilibrium at one symbolic percent, then

the limit is placed at Mach 3.6. However, at lower altitude, the atmospheric temperature

would increase, lowering the flight Mach limit.
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Figure 5.29: (Left) Percentage of internal energy stored in vibrational mode for air. (Right)
Percentage of internal energy stored in vibrational mode for air for a ramjet flight at altitude
35 km, assuming a temperature recovery of 70% of a normal shock.

5.5 Implementation of high-temperature effects in the 1D model

5.5.1 Reformulation of the model using real-gas effect

The results presented in Sec. 5.3 and Sec. 5.4 are now used to improve the pseudoshock

model derived in Chap. IV. First, the model equations must be reformulated to account

for the nonlinearity between energy and temperature. Retaining the Mach number squared

as a variable proved impossible due to the apparition of an implicit equation when trying

to reduced the velocity and thermal variables into one. The model’s equations are therefore

simply derived from the 1D conservation equation with the addition of the ideal gas law and

the same pressure-kinetic energy equation modeling its growth rate derived through Bayesian

analysis in the previous chapter. As for the previous CPG model, the current kinetic energy

is used to compute kq and the closure equation used to evaluate the new dP . Then du and

dh are computed instead of dM , note that the heat losses rate q̇ now need to be evaluated.

The new equations simply are :

dP = kqCf
α
0 σ

β 1

2
ρu2

dx

Dh

, (5.1)

du = −
dp+ 4qCf1

dx
Dh

ρuAc
A

, (5.2)

and
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dh = −udu+ q̇. (5.3)

Then, ChemKin is called to evaluate the temperature corresponding to the new internal

enthalpy. It is simply done through a linear interpolation of an enthalpy-temperature bijec-

tion previously generated. The ideal gas law is used to update density and the new kinetic

energy is computed: everything is ready for the next iteration.

5.5.2 1D modeling of the isothermal and adiabatic pseudoshocks

The new 1D model adapted for TPG gas is then used on the normal shock train equilib-

rium isothermal and adiabatic walls simulations. As the pressure growth rate equation was

calibrated on CPG adiabatic datasets, there is no guarantee that it would retain its accuracy

on a TPG pseudoshock with/without heat losses. Note that the impact of heat losses is an-

alytically accounted by the model (q̇). A smoothed heat loss profile, extracted directly from

the DNS integrated total enthalpy profiles shown in Fig. 5.8, is used. The amount of heat

lost by the end of the pseudoshock is therefore identical. This way, the validity of the CPG

pressure growth rate closure is properly evaluated for TPG pseudoshocks. In general, heat

losses could simply be modeled using a Reynolds analogy for instance as Smart suggested or

a more sophisticated model, but this is beyond the scope of the present work. The results are

shown in Fig. 5.30. It appears that the model evaluates correctly the pseudoshock length and

pressure rise for the adiabatic case, while it largely overestimates the isothermal case length.

This suggests that the CPG/TPG assumption matters little in defining the pressure growth

rate. It also means that accounting for the wall heat losses throughout the pseudoshock is

not enough to model the isothermal case. This is coherent with the conclusions of Sec. 5.3.

Figure 5.31 hints at what changes the pressure growth rate equation needs to better

match the isothermal wall cases. The left figure correlates the first cell size (defined as the

distance between the first 2 centerline subsonic zones) with the pseudoshock length (defined

here as the distance between the leading shock location to the maximum wall pressure value).
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Figure 5.30: Comparison of the isothermal and adiabatic walls simulation with the modified
1D model.

It shows how vibrational nonequilibrium tends to further increase the pseudoshock length

compared to the trend obtained from CPG DNS in Chap. III. The pressure rise ratio (70%

of a normal shock), the centerline inlet Mach number (inflows initiated at uniform Mach

number of 2.0) and the full geometry are kept identical for all these cases. The figure

on the right shows the correlation between the first cell size and the length of the sonic

core (distance between the leading shock and the last sonic streamwise location). As the

correlation holds regardless of the use of adiabatic or isothermal wall boundary conditions

we can deduce that the first cell size is a robust indicator of the shock train size. And the

first cell size depends on the normal-like portion of the leading shock, as shown by the CPG

simulations. Hence, we can deduce that the real impact of heat losses are upstream of the

shock train, not throughout its region. This is once again coherent with the conclusions of

Sec. 5.3. Therefore, there must be a difference in upstream conditions between both cases

which triggers a longer first cell increasing the pseudoshock length. This is evidence that

the model needs to be fixed through the pressure growth rate closure equation by a single

coefficient, function of a new upstream condition function of upstream heat losses.

As explained in section 5.3, the inflow is identical and generated from an adiabatic

channel. The wall heat losses from the inlet to the x = xs1 − 2h position have resulted

in a loss of 50 K in total temperature (see Fig. 5.8). The conditions used for the 1D model

are shown in Tab. 5.4. Note that the boundary layer thickness and displacement thickness

ratio A∗ are roughly equal, and therefore are poor indicators of these boundary layer profiles
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Table 5.4: Isothermal and adiabatic wall cases conditions for the 1D model.

Case M0 P0 [kPa] T0 [K] Cf0 A∗[%] Aθ[%] M1 P1 [kPa] T1 [K]
Isothermal 1.89 32.15 1046 0.75e−3 15.48 6.51 1.78 30.68 1023
Adiabatic 1.88 33.38 1048 1.51e−3 16.04 5.77 1.83 29.01 1002

changes. The main differences are the halved skin friction coefficient and a 16% bigger Aθ.

Such changes are going to affect the pressure growth rate closure equation by reducing both

the efficiency σ and Cf0 which are both taken at the power α and β, resulting in a slower rise

rate. Yet, the opposite happens which show the inadequacy of the current closure equation

to account for the weakening of the vortical structure. Still, Fig. 5.31 suggests some form of

correlation and therefore a new formula could be designed to replace the Cfα0 σ
β term which

was already identified as being the weak part of the model in Chap. IV). Note that it is still

relevant to retain the skin friction coefficient to a positive power to ensure the asymptotic

behavior of a standing normal shock in case of an infinite shear stress. The results of Sec. 5.3

suggest that a parameter quantifying the upstream vortical activity (such as the strength

of
∫
ωr,Y Z) would be a pertinent choice. Unfortunately, more data on high-temperature

shock trains would be necessary to accurately derive a new formula without simply find a

situational correction.
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Figure 5.31: Correlation between the first shock train cell size and (left) the pseudoshock
length or (right) the sonic core length for all the NST simulations.

To conclude, the pressure growth rate equation needs to be revisited to include the

proportionality resulting from the correlation shown in Fig. 5.31. A coefficient function of
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the upstream vortical activity (and possibly other variables) would permit to account for the

larger pseudoshock pressure growth rate for cooled walls. The current coefficients Cfα0 σ
β

have the opposite effect due to the skin friction decreasing as wall viscosity decreases with

the wall temperature.

5.5.3 1D modeling of the vibrational energies relaxation process

The current model works for adiabatic TPG pseudoshocks. it remains to assess its capac-

ity in resolving vibrational nonequilibrium. Admitting that the adjustments to the heat loss

model just discussed could be implemented, the pressure growth rate closure equation is sim-

ply adjusted up to a constant to match the correct pseudoshock length of the nonequilibrium

case. Note that this does not guarantee that the model can correctly estimate the pressure

rise. The 1D model is then adapted to resolve nonequilibrium. As the closure equation was

derived to match equilibrium physics, it cannot be directly used to forward march in space

the nonequilibrium flux-conserved temperature, pressure, velocity and density. Indeed, we

know from Fig. 5.26 that the bulk flow remains vibrationally under-excited throughout the

pseudoshock, which causes a pressure rise lag seen in Figs. 5.27 and. 5.28. However, the

pressure growth rate closure equation gives a rate of change proportional to the local kinetic

energy. And, as shown in Fig. 1.14, the kinetic energy is slightly increased by cold nonequi-

librium to the delay in the conversion of kinetic energy into internal energy. Hence, naively

using the current pressure growth rate model where ∂P
∂x
∝ K on the nonequilibrium value

would result in an opposite trend: a shorter pseudoshock. The correct way of accounting

for nonequilibrium using the 1D model is to resolve at every iteration the state ·∗, i.e. the

equilibrated thermodynamic quantities, and use these to compute the local pressure rise.

Vibrational energies are updated using Landau-Teller model with Millikan-White relaxation

timescales computed from the nonequilibrium temperature and pressure. Then, both source

terms are used to update the next iteration. The steps are summarized as follows for a

typical iteration:
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1. The equilibrated thermodynamic state ·∗ is computed.

2. The dP ∗, du∗ and dh∗ are computed as shown in Eqs. (5.1)-(5.3) from the equilibrated

values P ∗, q∗, ρ∗, u∗, h∗ and A∗c .

3. The vibrational energies source terms dev,O2
and dev,N2

are computed using the LTMW

model with T , P , ev,O2
and ev,N2

.

4. The equilibrated state variables and new vibrational energies are separately updated

using the source terms computed in the two previous steps.

5. Conservation of energy is used to find the new equivalent T , which gives the current

step dT .

6. Having computed dT , the conservation of mass, momentum and energy and ideal gas

law are used to evaluate dP , du and dh.

7. P , u and h are updated from these gradients, and the new area ratio and kinetic energy

are computed.

However, the validity of the Landau-Teller linear relaxation model on 1D flux-conserved

quantities needs to be assessed. Indeed, the relaxation model used so far consists in a

division between the gradient of ev(Tv) and ev(T ) and the relaxation timescale, which is

inversely proportional to the local pressure and temperature to the power 1.5. The resulting

nonlinearity is, therefore, an issue to a 1D approach as further explained. As seen in the

2D contours presented in Figs. 5.23 and 5.25 the areas of larger vibrational energy gradients

coincide with the largest pressure areas: they are located along the centerline shocks. By

definition, a 1D approach would not only smooth these gradients but the local pressure and

temperature are also going to be much lower as being surface-averaged (and never reach a

normal shock-like rise as locally observed along the shock train centerline). It is therefore

anticipated that using the relaxation model on 1D flux-conserved values leads to an under-

estimation of the vibrational energies source terms. In an effort to prove this point, the
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Landau-Teller linear relaxation model is now used to compute relaxation source terms from

the DNS flux-conserved quantities. They are then compared to the exact flux-conserved

source terms locally computed from the time-averaged 3D dataset. The energy source terms

are plotted on the top figure of Fig. 5.32, and appears to be relatively similar for O2 which

is a quick relaxing species. On the other hand, N2 relaxation process heavily relies on the

local gradient since its relaxation timescales are orders of magnitude larger than O2’s, and

its relaxation source terms computed from flux-conserved quantities are under-estimated

compared the exact values obtained from the DNS. The bottom figure shows the exact flux-

conserved vibrational energies (solid lines) compared to the profiles obtained by forward

integration of the 1D source terms from the top figures (dashed lines). As expected a

slower relaxation occurs for N2, and if the residence time was much lower than the local

O2 vibrational relaxation time the same issue would appear for that species too. A simple

solution would, therefore, be to increase P and T used in the Millikan-White correlation of

the relaxation time to account for the large portion of high P and T along the shock train

cells. Likewise, the local equilibrium vibrational energies used to compute the local gradient

could be evaluated with that artificially higher T .

Nonetheless, the current model with correction for nonequilibrium is used to predict the

flux-conserved profiles for ρ, P , T and u of the simulation. It is important to start from the

correct ev,O2
and ev,N2

since the objective is to assess the validity of the parallel equilibrated

computation approach to resolve 1D vibrational nonequilibrium. Therefore the model’s

initial state 1 is determined by the exact flux-conserved quantities integrated from the 3D

time-averaged dataset instead of using the simpler technique presented in Sec. 4.2.2. The

results are present in Fig. 5.33 and show excellent comparison, notably in final amplitudes.

It was decided to use the exact heat loss rate computed from the simulation. The vibrational

energies profiles are shown in Fig. 5.34 and the expected slower relaxation occurs. Note that

this results in less than 7000 J.kg−1 defect for ev,N2
which represents only 0.3% of the internal

energy: the impact on ρ, P , T and u is negligible.
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Figure 5.32: (Top) Landau-Teller relaxation source term for the vibrational energies of O2

and N2 YZ-integrated from (solid) the DNS or (dashed) computed from flux-conserved quan-
tities. (Bottom) Flux-conserved vibrational energies of O2 andN2 compared with profiles
reconstructed from source terms computed from flux-conserved quantities.

To conclude, the 1D model was adapted to account for vibrational nonequilibrium. Yet,

it is unable to correctly predict the effect of upstream wall heat losses due to its strong

dependence on the skin friction which is a crude indicator of a turbulent boundary layer

profile vortical activity. In order to improve the model accuracy, it is necessary to include a

corrective model on top of the Cfα0 σ
β term. More datasets with various amount of wall heat

losses would be needed to perform a Bayesian-regression to calibrate that enhanced model.

CFD would be the perfect tool to generate such datasets as it would permit to accurately

compute wall heat losses throughout the pseudoshock and, as importantly, upstream. It is

possible to use the 1D model to resolve the flux-conserved vibrational relaxation process.

The pressure growth rate equation used the local equilibrated state variables, while the
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Figure 5.33: Flux-conserved (top left) velocity, (top right) static pressure, (bottom left)
temperature and (bottom right) density profiles of the DNS compared with results obtained
from the 1D model corrected with a vibrational relaxation model.

-2 0 4 8 12 16
0.5

1

1.5

2

ev
O

2

 [
J/

k
g
]

10
5

1D model

DNS

-2 0 4 8 12 16

x/h

5

6

7

ev
N

2

 [
J/

k
g
]

10
4

Figure 5.34: Flux-conserved of flux-conserved (top) ev,O2
and (bottom) ev,N2

obtained from
direct integration of the DNS or from the 1D model.

flux-conserved vibrational energies were evolved with the LTMW model. However, the flux-

conserved approach under-estimates the overall relaxation rates. Yet, it appears that the

simple process described in this chapter works to a certain extent: the flux-conserved profiles

and final states are correctly predicted provided the wall heat loss is resolved, and the

corrections suggested are computationally cheap. This approach, therefore, verifies the great

205



conservation principles. While these two issues can appear to be serious for now, future

datasets will help overcome these through Bayesian-regression and the current work could

serve as a baseline.

5.6 Chapter conclusions

A set of high-temperature pseudoshock simulations have been carried out, which corre-

sponds to realistic high-altitude hypersonic flight conditions. The impact of wall heat losses

has been studied, and was shown to decrease the strength of vortices present in the turbulent

boundary layer. As a result, the boundary layer was found to be more resistant to adverse

pressure gradient and separate less. The shrinking of the recirculation bubble resulted in

larger shocks inside the shock train, which increased the pressure growth rate. To conclude,

increasing wall heat losses was found to reduce the pseudoshock length.

The effect of vibrational nonequilibrium on pseudoshocks were investigated using the

nonequilibrium compressible reacting flow solver presented in Chap. II. As the flow convects

through the shock train the vibrational energies of O2 and N2 fall out of equilibrium. While

oxygen relaxes fast enough to reach equilibrium by the shock train tail, N2 molecules are

still vibrationally under-excited. This causes a weaker pressure growth rate along the pseu-

doshock, which results in an increased length in order to accommodate the same numerical

back pressure than in the equilibrium simulation. The pressure defect through shock-induced

compression is compensated by a larger post-shock train mixing region. Viscous dissipation

amounts for the majority of the extra pressure generated to compensate vibrational nonequi-

librium. The outflow possesses a static temperature 90 K smaller than the TPG case, a 5%

smaller density, and has a N2 vibrational temperature 300 K smaller than the translational

temperature. Incidentally, this means that whenever the flow will be brought back to thermal

equilibrium in the combustor through heat release, N2 relaxation will further increase the

pressure by an additional 3000 Pa currently trapped out of the N2 under-excited vibrational

energy. It was estimated that vibrational nonequilibrium effects become non-negligible for
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flight Mach superior to 3.6 at 35 km altitude. This essentially suggests that DMSJ should

always consider resolving the relaxation process of the vibrational energy.

Lastly, the 1D model derived in Chap. IV was modified to include the high-temperature

effects discussed in this chapter. It appears that a sub-model for the integrated relaxation

timescale is needed. The flux-conserved approach was shown to be suited to describe the

relaxation process nonetheless.
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CHAPTER VI

Impact of vibrational nonequilibrium in ignition in

dual-mode scramjet engines

The impact of vibrational nonequilibrium on the combustor region is studied in this chapter

using the DNS approach. Two models of ramjet and scramjet engines are simulated using

either equilibrium/nonequilibrium thermodynamics and the modified reaction rates defined

in chapter II. In some cases, ignition delay can lead to loss of propulsive thrust, as is observed

in the ramjet configuration. In scramjet configuration, however, a complex bow-shock and

horseshoe-like structure forms at the injector porthole. A combined effect of H2-recirculation

bubble with a succession of shock and expansion waves results in faster radicals H and O

formations which enhances the ignition process. Lastly, a comparison with experimental

data shows a closer match when resolving nonequilibrium. Some of this work was published

in Fiévet et al. [39].

The chapter is organized as follows:

• Sec. 6.1 further discusses the motivations of this study.

• Sec. 6.2 presents the simulation and results in ramjet mode.

• Sec. 6.3 presents the simulation and results in scramjet mode.

• Sec. 6.4 presents the simulation of a scramjet experiment and a comparison between

wall pressure profiles.

208



6.1 Motivation

Chemical reactions were shown in Chap. II to be highly sensitive to the vibrational energy

of the reactants. In a rather simplified picture, chemical reactions require that molecules

overcome the activation energy barrier, which is more probable for molecules with higher

vibrational energy. Similarly, any region of the flow that contains molecules with lower-than

equilibrium vibrational energy will likely exhibit lower reaction rates. Since compression

shocks tend to create the latter situation, i.e. the post-compression vibrational distributions

are initially frozen at the conditions prior to the shock, it is expected that chemical reactions

will be suppressed by these conditions. Indeed, in the DNS of Koo et al., [72], the presence

of such a vibrational nonequilibrium in a jet flow led to a delay in flame stabilization and

increase in flame lift-off height.

However, this view of the thermal nonequilibrium effect is very simplified in a DMSJ

context. First, for a constant total energy, any reduction in vibrational energy implies that

the translational (and rotational) energies are larger than the equilibrium values, as was

shown in Sec. 2.3.2. For instance, in the chain-propagating reaction H2 + OH→H + H2O, it

was shown that OH vibrational nonequilibrium only had a marginal effect on the reaction

rate. In other words, the reaction dynamics are insensitive to the vibrational energy of the

OH molecules and depend more on the translational energy to create the products.

Second, in scramjet engines, the flow field near the fuel porthole is very complex as

illustrated by the schematic from Ben-Yakar [4] presented in Fig. 6.1. The interaction be-

tween the airflow and the fuel jet forms recirculation bubbles, a bow shock (triggering cold

vibrational nonequilibrium through compression) and an expansion wave (triggering hot vi-

brational nonequilibrium). Another expansion wave forms inside the fuel stream which is

usually slightly under-expanded to prevent any backflow in the injector.

Such near-injector combustion physics has been widely studied in the past. Ben-Yakar

et al. [4] studied the mixing process using Schlieren imaging, revealing the formation of

large-scale eddies in the shear layer shown in Fig. 6.1. Gamba and Mungal [45] localized
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studies. Instead they find two kinds of vortices originating
from the jet exit boundary layer: !1" regularly formed span-
wise rollers on the upstream and downstream edges !large
scale jet shear layer vortices", !2" quasisteady vortices, the
so-called “hanging vortices” that form in the skewed mixing
layers !mixing layers formed from nonparallel streams" on
each lateral edge of the jet leading to the formation of the
CVP.

The near-field mixing of transverse jets is dominated by
the so-called “entrainment-stretching-mixing process” driven
by large scale jet-shear layer vortices. In the region near the
injector exit, the injectant fluid moves with a higher velocity
tangent to the interface than the freestream fluid. As a result,
large vortices are periodically formed engulfing large quan-
tities of freestream fluid and drawing it into the jet-shear
layer !macromixing". These large scale vortices also stretch
the interface between the unmixed fluids. Stretching in-
creases the interfacial area and simultaneously steepens the
local concentration gradients along the entire surface while
enhancing the diffusive micromixing.

Preliminary examinations5,8 of the convection character-
istics of these large-scale structures, developed in sonic

transverse jet injection into supersonic crossflows, deter-
mined that in the far field the eddies tend to travel with
velocities that are closer to the freestream velocity. This in-
dicates that in high speed freestream conditions, these large
coherent structures, where the fuel and air are mixed by slow
molecular diffusion, will also travel at high speeds. Conse-
quently the combustion process will be mixing controlled.

High mixing efficiency, however, must be achieved in
the near field of the fuel injection for the success of hyper-
sonic propulsion systems. Therefore, it is important to under-
stand how these structures and their growth rates evolve as
flow and jet conditions are changed. Two types of fuel are
being considered for use in supersonic combustion: !1" hy-
drogen and !2" hydrocarbon fuels. The large differences in
the molecular weights of these fuels result in a wide varia-
tion in injection velocities that might lead to a substantial
variation in the jet shear layer growth rate and the mixing
properties. However, none of the previous jet penetration
studies9–14 found any dominant differences between jets with
different molecular weights. Penetration was shown to be
dependent primarily on the jet-to-freestream momentum flux,
J, expressed by

J =
!!u2" j

!!u2""

=
!#pM2" j

!#pM2""

, !1"

where the subscript j corresponds to the jet exit conditions
and " corresponds to freestream conditions ahead of a bow
shock.

One exception to this is the work of Auvity et al.15

where low momentum slot jets of helium and nitrogen are
injected into hypersonic boundary layers. These authors note
a significant difference in the nature of the boundary layer
due to gas composition which might serve as a precursor to
the types of results to be presented below.

Most transverse jet-in-crossflow studies were, however,
carried out in cold supersonic flows !namely low velocities"
generated in blow-down wind tunnels. The freestream tem-
peratures and velocities in these facilities were usually lower
than that expected in a real supersonic combustor environ-
ment. Comprehensive studies still need to be performed to
determine the mixing properties of different types of fuels in
a relatively realistic supersonic combustor environment.
These observations gave rise to the following question: “Is
there any other mechanism or controlling parameter other
than jet-to-freestream momentum flux, which might alter the
large eddy characteristics of the jet shear layer and therefore
affect its near field mixing in realistic conditions?”

Thus, we were challenged to study the flow features of
hydrogen and ethylene transverse jets exposed to high-speed
supersonic freestreams at realistic conditions leading to high
levels of shear. Such an effort requires the use of an impulse
facility to achieve high speed flows with high temperatures.
The application of nonintrusive flow diagnostic techniques at
high repetition rates provides information on the temporal
evolution of fast flow structures. The freestream conditions,
generated using an expansion tube facility, simulate a realis-
tic supersonic combustor environment for a Mach 10 flight
speed.

FIG. 1. Schematic of an underexpanded transverse injection into a super-
sonic crossflow. !a" Instantaneous side view at the centerline axis of the jet;
!b" 3D perspective of the averaged features of the flowfield !Ref. 14".

026101-2 Ben-Yakar, Mungal, and Hanson Phys. Fluids 18, 026101 !2006"

Figure 6.1: Flow structure schematic at the fuel porthole from Ben-Yakar [4].

the flame front by using OH∗-chemiluminescence imaging. They showed that there exists an

intensely burning region located at the bow-shock foot, right in front of the impinging jet.

Also, they revealed that chemical activity decreased inside the expansion region. Last, they

observed the presence of radical OH in the upstream recirculation bubble, which suggests

that fuel can, at least intermittently, recirculate upstream and react within this pocket.

Finally, computational studies using LES [61, 137] proved to be able to resolve this complex

region and evaluate the flame lift-off. They observed the large-scale vorticity in the shear

layer and the intermittent fuel upstream recirculation as well.

In the present study, the fuel stream is choked and under-expanded at the injector port-

hole. It is expected to trigger an expansion wave as observed by Ben-Yakar [4] as the jet

pressure adjusts to the lower combustor pressure. Unlike compression shocks, the vibrational

energy post-expansion is higher than the equilibrium value. Further, fuel-airflow mixing can

also be the source of nonequilibrium as demonstrated in Sec. 2.2.4. Consequently, ignition

is expected to occur within a region where the reactants are not at equilibrium. The flow

structure will also play an important role in determining the impact of nonequilibrium on

chemical reactions.

Third, and perhaps less important, is the effect of nonequilibrium on the bulk properties
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of the fluid. Again, considering a constant energy flow, an increase in translational energy will

increase the viscosity of the flow, which will reduce the turbulent mixing of the fluids. In the

DNS study of Koo et al. [72], it was found that the change in heat release location delayed the

increase in viscosity due to temperature increase, leading to slightly improved mixing. Hence,

the bulk property variations represent a competing effect, where nonequilibrium and the

resultant delayed ignition might increase turbulent mixing (in comparison to equilibrium).

With this background, the objective of this chapter is to determine the effect of nonequi-

librium in DMSJ combustors. To this end, the nonequilibrium solver is used to simulate two

combustor configurations: the first in ramjet mode, the second in scramjet mode. These

combustors essentially consist in jet and subsonic/supersonic crossflow configurations, with

an airflow thermodynamic state corresponding to a 35 km altitude flight at Mach numbers

5.0 and 9.0 respectively (same altitude as in Chap. V). Both equilibrium and nonequi-

librium models will be used, the equilibrium simulations serving as test cases. First, the

ramjet mode will be studied. It will simply consist in an extension of the isolator studied

in the previous chapter. The scramjet mode will be simulated using the HyShot-II [103]

experiment as a model. This configuration has been the focus of many previous numerical

studies using RANS or LES computations assuming thermodynamic equilibrium chemistry

in the combustor [60, 55, 19, 75, 104, 66, 15, 93, 7].

Lastly, a simulation of the HEG experiment [48] mimicking the HyShot-II 28 km hyper-

sonic flight will be performed with both equilibrium and nonequilibrium model to compare

our results with a real-life configuration.

6.2 Ramjet mode

The ramjet-like mode simulations presented in this section consist of a simple extension

of the computational domain presented in Chap. V. The outflow of both equilibrium and

nonequilibrium simulations (for isothermal walls condition) were sampled to generate inflow

files for both cases. A H2 injector was added to the bottom wall, at center and 3 cm from
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the inlet plane. This configuration permits to study how nonequilibrium affects ignition in a

canonical subsonic jet and crossflow configuration. However, this configuration is not based

on any real ramjet design contrary to the following scramjet simulations. Hence, the analysis

presented in this section provides a qualitative view of the problem 1. Still, some of results

and metrics that will be presented will be useful in assessing the effect of nonequilibrium in

the HyShot configuration in the next section.

6.2.1 Numerical details

Figure 6.2 presents a 3D snapshot of the ramjet-like configuration for the (top) equilib-

rium and (bottom) nonequilibrium cases. The length L of the domain has been shortened

to L = 25 cm compared to Chap. V. The grid resolution in the YZ plane matches the res-

olution of grid R2+ presented in Tab. 5.2 while 1000 cells were used along the X-direction,

decreasing the δx+ to 11.8. The inflow is a fully developed 3D turbulent boundary layer as

seen in the last YZ slice in Fig. 5.4. The inflow thermodynamic state comprises the final

values extracted from Fig. 5.27’s plots and are presented in Tab. 6.1 for convenience. The

mass flow rates are both equal to 0.405 kg.s−1.

Table 6.1: Ramjet inflow thermodynamic states for the equilibrium and nonequilibrium
cases extracted from Fig. 5.27 and Tab. 5.3.

Inflow
∫
P [Pa]

∫
T [T]

∫
ρ [kg.m−3]

∫
ṁev,O2

[kJ.s−1]
∫
ṁev,N2

[kJ.s−1]
Equilibrium 8.8e4 1433 0.2127 14.25 33.52

Nonequilibrium 8.8e4 1523 0.2033 17.06 20.77

The injector is located at 3 cm from the inlet plane, in the Z-centerplane and Y-bottom

wall, and it has a diameter Dj of 0.5 cm. The H2 injector is treated as a Dirichlet boundary

condition: all the ghost cells included inside its circular cross-section are updated at every

timestep with the fuel flow values. The injector is choked (Mach number equal unity) and

is injected vertically at a velocity of 1200 m.s−1, a pressure of 1 atmosphere (101.3 kPa)

and a temperature of 250 K. This corresponds to a total temperature of 300 K, which was

1Further, no grid convergence was run on this simulation.
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chosen to match the isothermal wall temperature. The fuel tank total pressure equals 192

kPa. The fuel mass flow rate equals 2.32 g.s−1 resulting in a fuel-oxidizer equivalence ratio of

0.24. The total pressure was chosen to avoid under-expanding the fuel and the appearance

of a strong expansion wave at the bottom wall. The fuel porthole diameter was chosen small

enough to ensure a large L/Dj ratio ensuring that the domain was long enough to capture

the ignition process. These conditions resulted in a lean mixture, as is the case in DMSJ

[76]: an equivalent ratio over 0.4-0.5 puts the engine at unstart risk due to both mass and

thermal choking. The simulations both ran until the flame and mass flow rate stabilized.

Then, it ran over 60 hours on 8400 cores, covering a total time of 3 ms. Statistics were

sampled over a total of 6 flow-through times based on the smallest YZ-integrated velocity

across the computational domain.

In both cases, fuel-air mixing appears to be very turbulent. A small recirculation bubble

is present in front of the injector, and a large one appears right behind the injector as

well. Ignition occurs slightly downstream and is re-attached to the fuel jet by the large

recirculation zone. Hence, the flame front is attached to this zone. The temperature rises

up to 2600 K in both cases, and most of the fuel has been consumed by the outlet plane.

6.2.2 Presence of nonequilibrium

Figure 6.3 presents on the left a snapshot of the Z-centerplane temperatures fields T ,

Tv,O2
, Tv,H2

and Tv,N2 , for the nonequilibrium case from top to bottom. The x-axis origin

is placed at the center of the fuel porthole. The corresponding time-averaged contours are

shown on the right. The flow coming from the isolator is known to be out of equilibrium (see

Tab. 5.3) with a vibrationally under-excited N2 population while O2 is mostly at equilibrium.

A pink dashed line indicates the local stoechiometric line based on the reaction H2 + 1
2

H2

→ H2O. It appears that the presence of combustion and production of H2O contributes

to quench nonequilibrium: N2 barely relaxes in the cold regions while it quickly relaxes in

the flame front. This appears clearly in Fig. 6.4 which shows the local gradient with the
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Figure 6.2: Snapshot of the ramjet-like configuration for the (top) equilibrium and (bottom)
nonequilibrium cases.

translational temperature T . Tv,N2
is closer to T in the flame. Several other observations

can be made from Fig. 6.4. First, there appears to be a T − Tv,O2
gradient at the inlet,

while the isolator outflow O2 species was at equilibrium. This was caused by an interpolation

error in evaluating Tv,O2
from the inflow file ev,O2

, causing an ≈ -30 K defect to occur at

the inlet plane. Still, this corresponds to less than 0.1% of the internal energy flux, hence

this error can reasonably be neglected. The green dashed line corresponds to each species’s
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mass fraction 0.000001 isoline. It can be seen that the H2 coming from the under-expanded

jet flow is vibrationally hot due to the expansion process. However, as it mixes with the

hotter coflow, Tv,H2
becomes smaller than the translational temperature. In Sec. 2.2.4, the

vibrational energy of N2 was coming from both side of the shear layer. If the relaxation

source term were to be arbitrarily set to zero, the energy would linearly mix as the inert

scalar Zmix. However, if a species comes from only one side of the shear layer, the vibrational

energy would remain skewed towards the value of its inflow stream. This was experimentally

observed by Reising et al. [112] in a mixing layer between cold Argon and hot Nitrogen.

Here, the same mixing rule occurs as H2 becomes vibrationally cold in the mixing layer.

Indeed, it appears clearly that Tv,H2
< T outside of the bent jet potential core. Conversely,

O2, coming from the hot airflow, is not vibrationally cold in the mixing layer. In fact, it

appears to be several hundred Kelvin hotter than the fuel jet at the shear layer start. This

results in a stoichiometric line crossing zones of vibrationally cold H2 and vibrationally hot

O2, which can potentially alter ignition as seen in Fig. 2.23.

6.2.3 Impact on reaction rates

To better understand the coupling between nonequilibrium and chemistry, Fig. 6.5 presents

realizations of (T ,Tv,O2
) across the computational domain. The realizations are colored by

(left) efficiency function φF1 − 1 from -1 to 3, (middle) heat released rate q̇ [J.m−3.s−1] and

(right) radical O production [kg.m−3.s−1].

The first figure on the left simply shows that there are many realizations far from equi-

librium. The second figure shows that the reacting zone is overwhelmingly characterized

by vibrationally hot O2, which coincides with the exothermic region. A small endothermic

region is located at the hottest locations where the Tv,O2
is slightly inferior to T and T ¿

1800 K and closer to its peak temperature. This corresponds to a thin reacting region in

the large separation bubble where the entering O2 is colder than the hot burning pocket.

Also, the fresh stream of O2 dissociates through reaction O2 + H −→ OH + O as it enters

215



Figure 6.3: (Left) Snapshot of the of the Z-centerplane temperatures fields T , Tv,O2
, Tv,H2

and Tv,N2 from top to bottom. (Right) Corresponding time-averaged contours. The dashed
pink line indicates local stoichiometric mixing.

this hot, burning, recirculation zone. The C-V coupling in Eq. 2.13 therefore decreases ev,O2

(hence Tv,O2
). As a reminder, the vibrational energy of a reactant species slightly decreases

during a reaction as explained in Sec. 2.2.1. Indeed, as seen in the right figure of Fig. 6.5,

the negative q̇ region corresponds to the region of radical O net production. Conversely, the

exothermic region corresponds to the radical O depletion region. These negative Tv,O2
− T

realizations are observed in the recirculation zone and where the airflow decelerates when in-

teracting with the impinging jet. This instantaneously creates cold nonequilibrium through

compressibility as observed in Sec. 2.2.4.

It is useful to consider the indicator
kFi,qct(T,Tv)

kFi,eq(T ∗)
− 1 [%] for the i-th forward reaction

Fi to understand if a reaction is fastened by nonequilibrium. The numerator is the local
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Figure 6.4: (Left) Snapshot of the difference between the local translational temperature
and species (top) Tv,O2

, (middle) Tv,H2
and (bottom) Tv,N2 on the Z-centerplane. (Right)

Corresponding time-averaged contours. The dashed pink line indicates local stoichiometric
mixing while the green line marks the presence threshold of species mass fraction superior
to 0.00001.
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Figure 6.5: Realizations of T and Tv,O2
colored by (left) efficiency function φF1 − 1 from -1

to 3, (middle) heat released rate q̇ [J.m−3.s−1] and (right) radical O production [kg.m−3.s−1].

nonequilibrium rate kFi,qct(T, Tv) and the denominator is the reaction rate computed from

the equilibrated state kFi,eq(T
∗). This indicator will be referred as the “reaction efficiency

ratio”.

Figure 6.6 shows the scattering of the full chain branching reaction rates (i.e. the rates

times their reactant mole concentrations) against the corresponding reactants vibrational
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temperature ratio. The plots are colored by the local reaction efficiency ratio in percentage.

A value of 0 means that the local rates are identical to their respective equilibrated values,

a negative value means that the equilibrated solutions would have higher reaction rates

and a positive value that it would be lower. The first chain reaction has a pre-exponential

coefficient of 0, hence only the efficiency function ϕF1(T, Tv,O2
) matters, which explains the

easy separation: negative values for Tv,O2
< T , and positive values for Tv,O2

> T . The

second figure corresponds to reaction F2 and possesses essentially two zones: a negative one

in the bottom right and a positive for the higher rates. The overlapping of these regions

prevent from assessing which one dominates, but in general, the amplitudes of the efficiency

ratio (in %) are modest for reaction F2 which is responsible for radical H formation. The

right figure shows that Tv,OH is always lower than T in the reaction zone (F3 is responsible

for H2O formation). This occurs as OH is present in areas where T increases through heat

release: Tv,OH trails behind as it relaxes. Also, the C − V coupling term in Eq. 2.13 means

that combustion decreases the overall vibrational energy of the reacting species as explained

in Sec. 2.2.1. The F3 efficiency function is relatively insensitive to Tv,OH (see Fig. 2.19),

but not to Tv,H2
. Reaction F3’s pre-exponential factor equals 1.51, which appears to be

insufficient to counter-balance the impact of the vibrationally cold H2 on the reaction rate

which is slightly damped by nonequilibrium.

Figure 6.6: Realizations of (left) kF,1[O2][H] with
Tv,O2

T
, (middle) kF,2[H2][O] with

Tv,H2

T
, and

(right) kF,3[OH][H2] with
Tv,OH

T
, colored by their respective reaction rates ratios in percentage.

In order to have a better picture of the location of these increased/decreased kinetic

zones throughout the flame, these scatter plots are spatially distributed along the 3 physical
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axes in Fig. 6.7. The dots are slightly transparent and are size proportionally to the local

full reaction rates. They are colored by the reactions efficiency ratio. The complex flame

front consists of turbulent flame sheets and very fine filament-like structures. Radical O

production is locally enhanced by nonequilibrium when vibrationally hot O2 encounters

radical H. H2 dissociation starts upstream as seen in the middle figure. It is enhanced as H2

vibrational temperature is initially close to its total temperature (300 K) and is therefore

cold throughout the mixing layer. As seen in Fig. 2.22 this results in an increased F2

reaction rate as N2 is also coincidentally vibrationally cold. However, further downstream,

the first two reactions which are the main sources of radicals become either neutral (F1)

or damped (F2). This can be attributed to the excitation of the H2 and N2 population

due to H20 quenching which brings it to equilibrium. N2, therefore, becomes a “useless”

thermal sponge. As for the bottom figure for reaction F3, the reaction rates are decreased

by nonequilibrium as explained in the previous paragraph.

6.2.4 Comparison between equilibrium/nonequilibrium cases

The equilibrium and nonequilibrium simulations can also be directly compared. Fig-

ure 6.8 presents scatter plots of the chain branching full reaction rates weighted by the cell

size for (top) O2 +H→O+OH, (middle) H2 +O→H+OH and (bottom) OH+H2→H2O+H

along the streamwise direction X. The comparison is consistent with the analysis of the rates

efficiency ratio: the first radical-forming reactions are initially higher in the nonequilibrium

case, they then become smaller than the equilibrium case. Overall, the third reaction is

always smaller at nonequilibrium.

The overall influence of nonequilibrium is quantified by integrating along the cross-

sectional area the metrics presented in Figs. 6.7 and 6.8. The top plots in Fig. 6.9 presents

on the top the YZ-integration of the reaction efficiency ratio weighted by the reactants mole

fractions. This weight ensures that the areas of stronger reactions have more influence. It

represents the integral view of Fig. 6.7. A value above unity means that the flow is locally
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Figure 6.7: Scattering in the physical space XYZ of the reaction rates kFi,qct[Xi] colored by

the same efficiency ratio
kFi,qct(T,Tv)

kFi,eq(T ∗)
− 1 [%] plotted in Fig. 6.6 for (top) O2 + H→O + OH,

(middle) H2 + O→H + OH and (bottom) OH + H2→H2O + H.
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Figure 6.8: Scatter plots of the chain branching reaction rates times reactants concentrations
[mol.cm−1.s−1] for (top) O2 + H→O + OH, (middle) H2 + O→H + OH and (bottom) OH +
H2→H2O + H along the streamwise direction X.

reacting faster than if it was suddenly brought to equilibrium.

The bottom figure presents the YZ-integrals of Fig. 6.8 for the three chain reactions.

Each reaction is normalized by its maximum value in the nonequilibrium case over the x =

[-0.5h 1.5h] domain where ignition happens. The equilibrium integrals, also normalized by

the same value, are plotted in dashed lines. The comparison confirms that there exists a

small region from -0.1 h to 0.4 h where nonequilibrium increases the first two rates.

Finally, Fig. 6.10 shows the crossflow plane YZ integral of (left) water vapor mass

ρY (H2O) [kg.m−1] and (right) fuel mass ρY (H2) [kg.m−1] for the equilibrium and nonequi-

librium simulations. These observations are consistent with the previous analysis: there

appears to initially be a faster combustion in the nonequilibrium case, which is swiftly in-

verted by the first 0.4 h. Beyond this inversion point, the equilibrium case seems to have a

higher burning efficiency.
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Figure 6.9: (Top) YZ integration of the reaction rates efficiency ratio weighted by the reac-
tants mole fractions. (Bottom) YZ plane integration of the chain branching reaction rates
shown in Fig. 6.8 (solid: nonequilibrium case, dashed: equilibrium case)

Overall, the differences are modest in this configuration. This can be attributed to several

factors. First, the amount of inflow nonequilibrium is relatively low: less than 3% of the

internal energy is affected as noted in the conclusion of Chap. V. Also, O2 is at equilibrium

by the injector location. Second, the speed is subsonic: the residence time will be much

lower in scramjet mode which will increase nonequilibrium. Third, a large recirculation

region forms behind the impinging jet, which pins the flame front in both cases.

6.3 Scramjet mode

In this section, two DNS of the HyShot-II configuration are carried. A presentation

of some numerical details is given first. Then, the airflow-fuel interaction zone is studied.

The differences between the equilibrium and nonequilibrium solutions are then presented.

Finally, these difference are explain by investigating the impact of nonequilibrium on the
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Figure 6.10: YZ integral of (left) water vapor mass ρY (H2O) and (right) fuel mass ρY (H2)
[kg.m−1].

ignition process.

6.3.1 Numerical details

6.3.1.1 Simulation configuration

The geometry is identical to the HyShot-II experiment [117], albeit only one injector out

of fourth is included in the domain. The isolator and combustor heights are of 9.8 mm.

The spanwise boundaries are treated periodically. The injector has a diameter of 2 mm

and is centered along the 2cm-long periodic spanwise direction which corresponds to the

distance between injectors. This is a common way of simulating the HyShot-II configuration

[75, 19, 60]. The walls are modeled as isothermal at 300 K.

The far-field and flight conditions kept changing and were not steady throughout the

flight-test experiment, mostly due to changes of altitude or oscillation of angle of attack

[117]. This renders a direct comparison with the original dataset difficult. Hence, a steady

realistic flight condition using the same altitude (35 km) than the previous ramjet isolator

and combustor simulations is chosen for the sake of consistency. For both the ramjet isolator

and combustor simulations, the flight conditions were given by Tab. 5.1 based, already, on

a HyShot-II like configuration 5.1. The scramjet mode uses a higher flight Mach number

of 9.0 (instead of 5.0) and an angle of attack of -1 degree (instead of -3). Figure 6.11
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presents the configuration of the scramjet simulation. The air mass flow rate in the isolator

is around 80 g.s−1 at ≈ Mach 2.5. The fuel mass flow rate equals 0.4 g.s−1, which yields an

equivalence ratio of 0.2. An inflow was generated with a simple turbulent boundary layer

which height was estimated by running a RANS of the intake using FLUENT and a k-ω

model. Little effort was spent in ensuring a perfectly resolved boundary layer since its fate

is to be vacuumed into the shock bleed. The bleed primary purpose is to prevent the oblique

shock to enter the isolator and disrupt the mass flow rate. Initially, a simpler version of this

geometry without the bleed was simulated [34]. The shock would hit the bottom wall and

separate the flow, forming a large recirculation bubble on the ramp. As the oblique shock

moved due to the incoming turbulence and due to the dynamics of the boundary layer, part

of the recirculation bubble would occasionally enter the isolator, slightly blocking the flow.

This would intermittently increase the adverse pressure gradient and further separate the

upstream boundary layer: the bubble would grow. It would slowly grow up to a certain

point where flow blockage triggers unstart. In less than a few hundreds of microsecond, a

normal shock would form at the isolator inlet and quickly convect upstream until it attaches

to the inlet plane, unstarting this engine.

18°

x=-28.5[cm] x=0 x=6.0 x=12.3 x=36.5

Ma=8.0 
P∞=1197Pa 
T∞=300K

Ma=1.0 
P0=6.4MPa 
T0=300Kturbulent boundary layer bleed

bow shock

wedge ramp isolator combustor

H2 injector

T[K]

hPa

hPa

Ma=9.0 
P∞=900 Pa 
T∞=240 K 
α= -1° 

Mixing and ignition

Figure 6.11: Configuration the scramjet simulation based on the HyShot experiment.

Figure 6.12 shows the operating scramjet engine for the equilibrium case. Isocontours of

radical OH reveals a lifted turbulent flame. The horseshoe shape forming upstream of the

fuel porthole will be discussed later.
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Figure 6.12: Illustration of the scramjet lifted supersonic turbulent flame (equilibrium case).

6.3.1.2 Grid convergence

A grid of (nx, ny, nz) = (3072, 192, 192) nodes is used to discretize the domain. The

grid spacing is uniform in the streamwise and spanwise direction, while the grid is clustered

closer to the wall in the wall-normal direction. The resolution in wall unit has a range of

∆x = 12y+, ∆z = 10y+ and ∆y = [0.7 : 12]y+ for a y+ unit estimated at 10µm based on a

previous calculation of the HyShot isolator [34].

Numerical convergence is verified by simulating additional coarser grids. The coarsest

grid has (nx, ny, nz) = (1024, 64, 64) and the medium grid has (nx, ny, nz) = (2048, 128, 128)

grid points. Figure 6.13 shows on the left figure the wall-normal profiles in the isolator (at

x = 0.1 m) of static temperature and total energy. It is seen that the medium grid, which is

used here for all discussions of the results, is already sufficiently well-resolved to capture the

trends seen on the finest grid. The figure on the right presents the YZ integration of water

vapor mass for the same resolutions showing the grid appropriately resolves the combustion

process. The x-axis origin is placed at the fuel porthole center. The stairway-like profiles

are caused by an oblique shock train developing through the combustor due to thermal
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choking [76, 75] and will be discussed later. Static pressure contours of the combustor are

presented for all grids in Fig. 6.14, illustrating the capacity of the intermediate resolution

grid to capture the complex shock wave system and accurately resolve the jet and cross-flow

interaction. The finest grid is used from this point.
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Figure 6.13: (Left) Wall-normal total energy and translational temperature profiles in the
isolator for different grid resolutions. (Right) XY-integration of water vapor mass ρY (H2O)
[kg.m−1] for the same resolutions

Figure 6.14: Static pressure contours of the combustor for coarse, medium and fine grid
resolutions from top to bottom.

No turbulent combustion model is used, which can be problematic if the combustion

lengthscales are smaller than the minimum grid size. The Damköhler number Da is a

dimensionless number that measures the relative importance of gas-phase kinetics versus

molecular mass transport. If Da is much greater than 1, then a reaction is fast relative to

transport and a subgrid model is recommended; if it is less than 1, then transport processes

occur on a shorter timescale than the chemical process. Figure 6.15 shows the Da number
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defined as the ratio between the chemical timescale (defined as the inverse of the fastest

species concentration rate-of-change) and the convective residence timescale (defined from

the cell size and local flow velocity). As the values are mostly below unity, and given that

grid refinement does not further improve the amount of H2O formed along the streamwise

direction, it can be argued that the ignition process is well resolved.

Figure 6.15: Damköhler number snapshots throughout the combustor plotted in log10 scale.

6.3.2 Combustor flow

The ignition region is particularly complex in scramjet mode, due to the interaction

between the supersonic airflow and the impinging fuel stream.

6.3.2.1 Fuel-filled horseshoe

Figure 6.16 presents the ignition region for the nonequilibrium case. A bow-shock forms

in the supersonic duct due to the blockage caused by the fuel injection scheme. It creates a

large pressure gradient region in front of the impinging jet. This adverse pressure gradient

creates a large recirculation bubble filled with H2, where it can heat up and react. The

hottest region of the computational domain is located right behind the bow-shock with

temperatures occasionally reaching over 3200 K: this is an area of high-production rates of

radicals. These observations are coherent with the Schlieren imaging of Ben-Yakar [4] and

the OH∗-chemiluminescence measurements from Gamba and Mungal [45].

Figure 6.17 highlights some of the structures discussed in Fig. 6.1 inside the simulation.

A large recirculation bubble inside the horseshoe structure is observed on the time-averaged

solution (green isocontour). Likewise, a large expansion wave is present right behind the

bow-shock (yellow isocontour).
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Figure 6.16: Supersonic wrinkled flame structure.

Figure 6.17: (Left) Time-averaged isocontours of Y (OH) = 0.01 (red) and Y (H2) = 0.1
(blue). (Middle) Isocontour of U = 0 (green) added. (Right) Isocontour of arbitrary pressure
gradient (yellow) highlighting expansion wave front.

The effect of the horseshoe on radical H spatial distribution is an important difference

with the simpler ramjet-like configuration presented in Sec. 6.2. Indeed, H is created as

the cold H2 emanating from the jet recirculates upstream. Inside this pocket, H2 can partly

relax and dissociate. This permits to seed the shear layer with radical H and start up the

first chain-branching reaction earlier than in ramjet mode. A marginal concentration of H

from dissociation is enough to initiate the chain-reactions F1 and F2, which will then form

all the radicals H, O and OH needed.

6.3.2.2 Flame wrinkling and burning pockets

In Fig. 6.1, large-scale eddies form in the shear layer. Their size depends on the jet

Strouhal number [4], hence on its characteristic frequency. These eddies form flame “wrin-
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Figure 6.18: Z-slices showing contours of static temperature (gray) colored by H mass frac-
tions.

kles”, which are also present in the DNS as seen in Fig. 6.19.

 
becomes more diffuse; however, the experimental images do not provide a quantitative measure 
of the OH concentration, so we can not determine if the amount of OH produced in the 
simulation is at the same level as the experiment. The simulations also demonstrate that the large 
shear-layer structures are being captured. 

 

Fig. 20.  Experimental OH-PLIF images (Ben-Yakar et al., top) and simulation OH mole-fraction 
contours (bottom) across center line of jet plume.  

 
To understand how the methods developed perform in realistic scramjet combustor geometries, 
configurations for which experimental data are available were simulated. The first such 
configuration considered is that of Tedder et al. (2005). In this experiment, a model scramjet 
combustor, referred to as the SCHOLAR model, is connected to the nozzle of a combustion-
heated, supersonic facility. Vitiated gas from the heater is accelerated through a Mach 2 nozzle 
before entering the combustion chamber at the test conditions of 926 K (static temperature) and 
101 kPa (static pressure). Hydrogen is injected through a normal, circular injector located 4.6 
injector diameters downstream of a backward facing step 1.02 injector diameters high. The total 
H2 temperature is 290 K, and the total pressure is 1.35 MPa. The target equivalence ratio for the 
combustor is 0.7.  

For the simulations of the SCHOLAR combustor that involve the combustion of hydrogen with 
oxygen, finite-rate chemistry is coupled with the fluid solver. The chemical mechanism used 
relies on the seven-species, eight-reaction mechanism of Evans and Schexnayder (1980). At 
present, a subgrid turbulence-chemistry interaction model has been discussed as part of possible 
future collaborative work with Caltech but is not part of the simulation. Reaction rates are 
evaluated using the resolved quantities of the simulation. It is hoped that the effect of such a 
model on the simulation results will be part of future work.  

The grid used in this simulation was constructed completely out of hexahedral cells using the 
commercial grid generation software GridPro.  The grid extends from 0.1 m upstream of Plane 1 
to Plane 7 in the streamwise direction, such that the length of the combustor being simulated is 
more than 1.2 m. The domain extends to the combustor walls in the spanwise and normal 
directions. In the vicinity of the injector port the grid contains approximately 163 cells per d3, 
with d being the injector diameter. The grid becomes much finer near the exit of the injector port, 
with approximately 643 cells per d3 in that region. Grid resolution decreases downstream such 

   21

Figure 6.19: Comparison between (top) PLIF contours from Ben-Yakar et al. [4] and the
(bottom) simulation Y (OH).

As seen in Fig. 6.16, intermittent radical-rich pockets are located inside these wrinkles.

The intermittency of the radical-rich burning pocket can be quantified by integrating the

production rate of radicals H, O and of heat release q̇ over a small region located around

the start of the O2-H2 mixing layer (in the injector vicinity). The time-signals of these inte-

grals are presented in Fig. 6.20 (top) normalized by their respective maximum value. The

productions of radicals are highly synchronized, and their spectral analysis reveal the same
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dominant harmonics: 193, 322 and 708 kHz by decreasing magnitudes, which are on the

order of the jet characteristic frequency estimated as vjet/Dj = 600 kHz. The heat release

history is highly correlated to the radicals H and O bulk production rate, with correlation

coefficients of 0.85 and 0.81 respectively. They also share the same dominant harmonics. Fig-

ure 6.20 (bottom) shows an instantaneous snapshot of the radical richness indicator defined

as the product of H, O and OH mass fractions normalized by the maximal value over time.

The convective speed of the pockets was computed around 1800 m.s−1. The wavelengths cor-

responding to the harmonics characterizes well the regular spatial intermittency in between

these radical-rich pockets: ≈ 2.5 mm (h/4) in between structures. Overall, the following

explanation is proposed. As the jet interacts with the bow-shock, its penetration distance is

unsteady. When the jet pushes against the bow-shock, the local pressure and temperature

increase, leading to an increased radical production rate. When the jet is pushed towards

the wall, the bow shock angle becomes shallower and provides a smaller compression rate,

hence smaller radical production rates.

Volume integral over x = [-0.5h 0.5h] 
normalized by maximum over time of heat  released dH/dt

Radical richness indicator in the 
outer shear layer (highest is richer)

Streamline crossing the maximum heat released location (+)
Streamline crossing the maximum radical O formation location (+)

Streamline crossing the maximum radical H formation location (+)

dO/dt

Figure 6.20: (Top) Time history of production rate of radicals H, O and OH in the injector
vicinity. (Bottom) Indicator of radical richness.
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6.3.2.3 Thermal shock train

Pressure rises in the combustor through heat release and thermal-choking. Additionally,

the impinging jet creates a bow shock which introduces several oblique shocks reflecting on

the bottom and top wall. As a result, shock structures develop throughout the combustor

forming a thermal shock train (TST). The joint experimental-computational studies of Lars-

son et al. and Laurence et al. [76, 75] on the HyShot combustor showed that increasing

the fuel equivalence ratio would increase thermal choking and push the TST upstream. At

low equivalence ratio, the pressure gradually rises at an almost constant rate, as an OST.

However, at high equivalence ratio (superior to 0.4-0.5 [76]), the pressure growth rate in-

creases and resembles that of an NST. When this occurs, this adverse pressure gradient can

unstart the engine. A TST is also observed in the present simulation. Figure 6.21 shows a

centerplane snapshot of the static pressure field. A standing leading shock marks the start

of the TST.

Hot spots
Standing leading thermal shock

Figure 6.21: Centerplane time-averaged contour of static pressure P in [Pa].

Figure 6.22 shows the (top) instantaneous and (bottom) time-averaged centerplane heat

release rate q̇ [J.m−3.s−1]. The heat release rate increases wherever the TST’s compression

waves crosses the fuel stream. The local increase in pressure fastens reaction rates. This

explains why the
∫
xy
ρY (H2O) in Fig. 6.13 (right) has a stairway-like shape. The convergence

of the shock structures also appear clearly in Fig. 6.14.

The stoichiometric line is plotted in dashed red in Fig. 6.22, in a similar fashion than in

Fig. 6.3. The horseshoe causes it to move upstream of the injector.
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Figure 6.22: Centerplane (top) instantaneous and (bottom) time-averaged contours of heat
release rate q̇ [J.m−3.s−1]. The red dotted line marks the stoichiometric layer.

6.3.3 Comparison between equilibrium and nonequilibrium flame structures

6.3.3.1 Flame lift-off

The supersonic flame structure of the equilibrium and nonequilibrium cases are compared

in Fig. 6.23. While both cases present the same macroscopic features described in Sec. 6.3.2,

the difference in flame lift-off is striking. It is clearly seen in Figs. 6.24 and 6.25 which respec-

tively show instantaneous and time-averaged contours of water vapor mass fraction Y (H2O)

for both cases. In general, ignition in the region right behind the bow shock (x ∈ [03h]) is

both stronger and steady in the nonequilibrium case. However, ignition only intermittently

occurs in this area for the equilibrium case. Indeed, some scattered pockets of H2O are

present in the top contour in Fig. 6.24. This area corresponds to the initial mixing layer

between the fuel and oxidizer which is crossed by the bow-shock expansion wave. It is known

that expansion waves tend to extinguish flames as they brutally drop the gas temperature

and density. However, they also trigger hot nonequilibrium: it could be that the resulting

over-excitation of the reactants vibrational energy permits to sustain this drop in density

and temperature.

Figure 6.26 presents how the ignition delay impacts the fuel burning rate. The left plots

present the Z-centerplane integration of water vapor mass, and the right plot the 3D integral.

The left plot shows that the TST is shifted due to the delay in ignition, hence in thermal

choking. The right plots show that the profiles end up collapsing. This is caused by both
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Figure 6.23: 3D structure of the supersonic flame for the (left) nonequilibrium and (right)
equilibrium.

Figure 6.24: Instantaneous contours of water vapor mass fraction Y (H2O) of the (top)
equilibrium and (bottom) nonequilibrium simulations.

the faster depletion of fuel in the nonequilibrium case, and also by the vibrational relaxation

of the reactants as heavy molecules like H2O or H2O2 appear. These molecules fasten the

V-T relaxation rates. The stairway-like profile is observable when integrating along the

Z-centerplane, not on the full 3D space. The difference in flame lift-off measures about

4 channel heights and the equilibrium case burning rate has caught up by the combustor

outlet, 20 channel heights further downstream.
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Figure 6.25: Time-averaged contours of water vapor mass fraction Y (H2O) of the (top)
equilibrium and (bottom) nonequilibrium simulations.
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Figure 6.26: (Left) 2D-YZ and (right) 3D-XYZ integral of water vapor mass ρY (H2O)
([kg.m−1] and [kg] respectively).

6.3.3.2 Presence of nonequilibrium in the combustor

In Sec. 6.2, nonequilibrium appeared due to mixing between the hot airflow and the cold

fuel stream. The airflow N2 vibrational energy was under-excited, while O2 was at equilib-

rium. In scramjet mode, both the incoming O2 and N2 are vibrationally cold. Furthermore,

the bow-shock followed by its expansion wave and the TST are going to trigger cold and hot

nonequilibrium in the ignition region.

Figure 6.27 presents snapshots of the Z-centerplane temperatures fields T , Tv,O2
and Tv,H2

from top to bottom. The static pressure approaches one atmosphere only after the injector-

triggered bow-shock, while the Mach number remains as high as 2.5. In the ramp and isolator

sections, the local vibrational energy transfer rate from the over-excited translational and

rotational internal energy modes to the vibrational mode is much smaller than the local

234



resident time. For instance, the pressure is barely of a tenth of an atmosphere in the ramp

section (before the bleed). Tv contours do not permit to localize the oblique shock at all.

O2 has partially relaxed inside the isolator and reacts to the bow-shock where the pressure

becomes sufficiently high to let it relax to equilibrium. It then becomes vibrationally over-

excited inside the expansion region. Tv,N2
does not react to the crossing of the bow-shock. By

the combustor outlet, O2 has fully equilibrated while N2 is at equilibrium inside the flame,

and still vibrationally cold near the top wall.

Figure 6.27: Snapshot of the Z-centerplane temperatures fields T , Tv,O2
and Tv,H2

from top
to bottom over the whole computational domain.

Figure 6.28 gives the centerline T , Tv,O2
and Tv,H2

profiles for both equilibrium and

nonequilibrium simulations. As in the nonequilibrium pseudoshock simulation, the compres-

sion stage over-excites the TRE compared to the vibrational energies. The initial vehicle

intake shock brings the flow centerline temperatures up to 910 and 885 for the nonequilib-

rium and equilibrium cases respectively. The cowl shock (which ends into the bleeds) further

increases these temperatures up to 1560 and 1350 K. Hence, a difference of 210 K results

from these compressions, mostly due to Tv,N2
barely reaching 600 K by the combustor. It is
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reminded that in Chap. V the isolator inflow was assumed at equilibrium in order to assess

the minimal effects of vibrational nonequilibrium on the pseudoshock: the inflow Tv,N2
was

around 1000 K.
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Figure 6.28: Centerline temperatures profiles for both simulations. Tnneq and Teq are the
translational temperature on the nonequilibrium and equilibrium simulations respectively.

As previously mentioned, the vibrational energies react differently when crossing the bow-

shock. Figure 6.29 presents centerplane snapshots of vibrational temperatures and difference

with the local translational temperature zoomed in the ignition region x ∈ [−210]h. In both

figures, the green dashed line corresponds to the species α arbitrary “presence” threshold

set to Y (α) = 1e−6. The pink dashed line shows the stoechiometric line. The corresponding

time-averaged contours are shown in Fig. 6.30. The expansion region is clearly identified

by the temperature time-averaged contour (top), and is located in between 0 and 2 channel

heights from the injector porthole. At the bow-shock foot, the time-averaged temperature

and pressure reach their maximal values across the domain (≈ 2800 K and 250 kPa) while

the flow slows down, and even interacts with the recirculation bubble. Hence, O2 and

N2 relax much faster than anywhere else: right above the injector porthole Tv,O2
and Tv,O2

approximately reach 2400 and 1500 K. Consequently, the following expansion creates a region

where Tv,O2
> T , while Tv,H2

< T and even Tv,N2
< T as seen in the bottom contours in

Fig. 6.30. Such conditions were shown to enhance ignition in Fig. 2.23, and in this case the

stoechiometric line crosses through this region.
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Figure 6.29: Centerplane snapshots of vibrational temperature and difference with the local
translational temperature. The dashed pink line indicates local stoichiometric mixing while
the green line marks the presence threshold of species mass fraction superior to 0.00001.

6.3.3.3 Effect of nonequilibrium on ignition

The diluter and reactant species were shown to exhibit significant nonequilibrium in the

ignition region. As the ratios Tv/T deviate from unity, the reactions efficiency factors also

do so. Figure 6.31 presents (top) instantaneous and (bottom) time-averaged contours of the

product of all forward chain branching reaction efficiency functions φF1×φF2×φF3. Pockets

of radicals are also drawn with isoline of (red) Y (H) = 0.004 and (blue) Y (O) = 0.004

to ignition areas. Zero-streamwise velocity isoline is also shown in green. Note that the
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Figure 6.30: Centerplane time-averaged contours of vibrational temperature and difference
with the local translational temperature. The dashed pink line indicates local stoichiometric
mixing while the green line marks the presence threshold of species mass fraction superior
to 0.00001.

ignition region is connected to the tip of the recirculation bubble. Overall, the ignition

region coincides with high efficiencies areas, especially in the first 6 channel heights where

the product φF1 × φF2 × φF3 often increase beyond 10. It is therefore expected that the

equilibrium simulation under-estimate the production rate of radicals, which would delay

ignition. Interestingly, the product φF1 × φF2 × φF3 reaches high values in a very thin layer

in the mixing layer where ignition occurs (x ∈ [02]h). This could transform the flame front
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by “encouraging” combustion along this thin layer.

Figure 6.31: (top) instantaneous and (bottom) time-averaged contours of the product of all
forward chain branching reaction efficiency functions φF1×φF2×φF3. Pockets of radicals are
also drawn with isoline of (red) Y (H) = 0.004 and (blue) Y (O) = 0.004. Zero-streamwise
velocity isoline are shown in green.

Figure 6.32 presents centerplane time-averaged contours of radicals (top two) O and

(bottom two) H mass fractions for the (first) nonequilibrium and (second) equilibrium sim-

ulations. As expected the population of radicals is higher in the nonequilibrium case. Also,

it appears to be more concentrated along the layer of high φF1 × φF2 × φF3. Notably, the

production of radical H downstream in the vibrationally cold fuel jet post-potential core

area, i.e. where element O coming from the airflow is present, is considerably enhanced.

Figure 6.33 presents centerplane time-averaged contours of species (top left) H, (top right)

O, (bottom left) OH, (bottom right) H2O production/depletion rate in [kg.m−3.s−1]. The

region right above the injector porthole was identified as the region of maximum pressure

and temperature. It is not surprising to see that it incidentally is the region of peak radical-

production. The “reserve” of radicals OH then depletes as H2O is produced in the mixing

layer through OH + H2→H2O + H. Both radicals O and OH populations seem to not be

rising beyond that very localized production region, while H still has a net production rate.

Therefore, we can deduce that reaction F1 H + O2→OH + O limits the kinetic of ignition.

This is a known result of H2/O2 combustion [94]. In the context of the present study, we

can conclude that the positive efficiency ratio of reaction F1, thanks to Tv,O2
> T , greatly
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Figure 6.32: Centerplane time-averaged contours of radicals (top two) O and (bottom two)
H mass fractions for the (first) nonequilibrium and (second) equilibrium simulations. The
white dashed line corresponds to one-tenth of the colormap maximum.

contributes to the faster ignition of the nonequilibrium case.

Figure 6.33: Centerplane time-averaged contours of species (top left) H, (top right) O,
(bottom left) OH, (bottom right) H2O production/depletion rate in [kg.m−3.s−1].

Figure 6.34 presents realizations of (T ,Tv,O2
) across the ignition region defined as x ∈

[−12] channel heights around the fuel porthole. The correlation are colored by (left) effi-

ciency function φF1, (middle) heat released rate q̇ [J.m−3.s−1] and (right) radical O produc-
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tion [kg.m−3.s−1]. The shapes of these distributions is similar to Fig. 6.5, as some of the

mechanism observed in ramjet-mode are still present. For instance, the bulk of the O2 flow

is vibrationally hot in the fuel mixing layer, while H2 is conversely cold. Hence, combustion

and heat release occur at Tv,O2
> T . This is further exacerbated as the ignition region crosses

the expansion waves resulting in positive Tv,O2
− T gradients. As observed in Fig. 6.16, the

maximum temperature region is located right behind the bow-shock, in an area where the

sudden compression creates a cold nonequilibrium region Tv,O2
< T . It coincides with a

peak O production rate region as shown in Fig. 6.33. In Fig. 6.34 these realization appear

clearly in the top right corner below the identity line in the second and third plots. In the

third plot, the expanded burning shear layer is an exothermic and O-depletion region: it

corresponds to the blue zone in the top right plot of Fig. 6.33. Overall, it appears that both

the compression and expansion stage of the bow-shock play a critical role in the ignition

process as little combustion occurs around the identity line in these correlation plots.

Figure 6.34: Realizations of T and Tv,O2
in the ignition region colored by (left) efficiency

function φF1, (middle) heat released rate q̇ [J.m−3.s−1] and (right) radical O production
[kg.m−3.s−1].

Figure 6.35 presents realizations of (T ,Tv,O2
) across the combustion region corresponding

to the rest of the domain: x > 2h from the fuel porthole. The correlations are again colored

by (left) efficiency function φF1, (middle) q̇ [J.m−3.s−1] and (right) radical O production

[kg.m−3.s−1]. Unsurprisingly, the flow has equilibrated further downstream and combustion

occurs around the identity line. The red area in the bottom left on the center plot corresponds

to the vibrationally hot O2 mixing with the cold jet near the bottom wall (using an isothermal
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condition with Tw = 300 K). The production of radicals still tends to occur at the flame

front where combustion increases T through heat release and Tv,O2
decreases through CVCV

exchange.

Figure 6.35: Realizations of T and Tv,O2
in the downstream region colored by (left) efficiency

function φF1, (middle) heat released rate q̇ [J.m−3.s−1] and (right) radical O production
[kg.m−3.s−1].

Figure 6.36 shows the scattering of the full chain branching reaction rates (i.e. the

rates times the reactant mole concentrations) against the corresponding reactants vibra-

tional temperature ratio. The plots are colored by the local reaction efficiency ratio defined

as
kFi,qct(T,Tv)

kFi,eq(T ∗)
− 1 in percentage, in the same fashion as Fig. 6.6. The first plot is unsur-

prisingly similar to the first plot shown in Fig. 6.6, albeit with a stronger variation of the

x-axis distribution caused by the compression/expansion structures. On the other hand,

the expansion throughout the ignition region permits to populated the Tv,H2
/T > 1 and

Tv,OH/T > 1 sides. Hence, the second and third reactions are also increased in these regions

thanks to nonequilibrium as opposed to the ramjet mode. In general, the third reaction is

less impacted by nonequilibrium with most relative errors within ±5%.

Figure 6.37 presents on the physical space XYZ the scattering shown in Fig. 6.36 for

(top) O2 + H→O + OH, (center) H2 + O→H + OH and (bottom) OH + H2→H2O + H..

The third reaction plot reveals an overall slightly negative value by a few percents, and no

particular structure appears. The horseshoe structure is a place of increased reaction rates

F1, which increases the amount of radical O. It is followed, in the sense of the flow, by the

bow-shock compression stage. In this zone, the radicals O released upstream now interact
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Figure 6.36: Realizations of (left) kF,1[O2][H] with
Tv,O2

T
, (middle) kF,2[H2][O] with

Tv,H2

T
, and

(right) kF,3[OH][H2] with
Tv,OH

T
, colored by their respective reaction rates ratios in percentage.

with H2 to create radicals H through reaction F2 which is increased by nonequilibrium. As

a result, a larger amount of radicals is formed early on in the nonequilibrium simulation.

The downstream radical-rich expanded zone also presents higher reactions rates for both F1

and F2. On the other hand, nonequilibrium tends to slightly reduce the rates in the “wake”

region. This appears clearly when plotting the product of the efficiency ratios
kF1,qct(T,Tv,O2

)

kF1,eq(T ∗)
×

kF2,qct(T,Tv,H2
)

kF2,eq(T ∗)
× kF3,qct(T,Tv,H2

,Tv,OH)

kF3,eq(T ∗)
− 1 over YZ slices (normal to the streamwise direction).

This contour is shown in Fig. 6.37 for various streamwise locations x ∈ [0, 0.5, 1.0, 1.5, 2.0],

along with equivalence ratio contours equals to [0.5, 1.0, 1.5] times the stoechiometric value.

The fuel-rich size of the shear layer is where nonequilibrium considerably enhance ignition,

as opposed to the wake region. Finally, the integral of the ratios presented in Fig. 6.36

weighted by the local reactant concentrations is plotted in Fig. 6.39, as was done in Fig.

6.9 (top). These profiles are yet another indicator in the integrated sense of the effect of

nonequilibrium on the ignition process. Note that the third reaction is relatively unaffected.

Instead of quantifying the effect of nonequilibrium over the whole domain, the same analy-

sis can be conducted along streamlines crossing through the reacting zones. Figure 6.40 shows

the streamline passing through the maximum heat release location on the time-averaged so-

lution. The contour on the right shows the time-averaged streamwise velocity and reveals the

expansion wave inside the fuel stream. Figure 6.41 presents the temperatures and chain reac-

tions efficiency ratio along this streamline. The streamline crosses the bow shock at around

x = −0.2h, before entering the expansion wave. It can be noted that the low-speed high-

243



Figure 6.37: Scattering in the physical space XYZ of the reaction rates efficiencies
kFi,qct(T,Tv)

kFi,eq(T ∗)
− 1 [%] plotted in Fig. 6.36 for (top) O2 + H→O + OH, (center) H2 + O→H + OH

and (bottom) OH + H2→H2O + H.

temperature area right behind the shock permits to relax all the vibrational temperatures by

about 300 K. Throughout the expansion wave, the vibrational temperature ratios are above

unity, just like the efficiency ratios for reactions F1 and F2. As noted earlier, that the third

reaction efficiency ratio stays around unity. The efficiency ratio uses the local temperature

T ∗ to evaluate the equilibrated reaction rate. Yet, this temperature depends on the amount

of heat that has been released upstream through combustion. Since the efficiency ratios are

244



-1 -0.5 0 0.5 1z/h
0

0.1

0.2

0.3

0.4

0.5

y
/h

0

100

200

300

Figure 6.38: YZ-contours of mixture fraction around the stoechiometric line (0.5, 1 and 1.5)
colored by the products of the three efficiency ratios of the forwards chain reactions rates
shown in Fig. 6.37. The product of efficiency ratios are shown in percentage departure from
-50 to +300 %.

mostly positive in the ignition zone, T ∗ progressively deviates and over-estimates what the

local temperature would have been if the whole domain was brought to equilibrium. Hence,

this indicator does not account for this “snowball-like” effect and under-estimates the effect

of nonequilibrium on the rates.

This section’s findings can be summarized as follows. First, the main difference with

the ramjet-like mode is the appearance of a bow-shock in front of the impinging jet. As a

result of the adverse pressure gradient, a fuel-rich recirculation bubble forms upstream of
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Figure 6.39: YZ integration of the reaction rates efficiency ratio weighted by the reactants
mole fractions along the streamwise direction X for the three chain branching reactions.

Figure 6.40: Time-averaged contours of (left) heat released rate in [J.m−3.s−1] and (right)
streamwise velocity with streamline of maximum heat released rate in dashed red line.

the injector. Inside this bubble, vibrationally cold H2 can relax, heat and dissociate: the

release of radicals H starts up the chain reactions earlier (in a streamwise sense) than for

the subsonic flame case. At the bow-shock, the translational temperature is higher in the

nonequilibrium case due to compression: this fastens chain branching reaction rate F2 and

only marginally slows down F1. Inside this hot low-speed region, species vibrational energies

relax fast. Then, the flow enters the expansion wave. The expansion wave crosses the whole

mixing layer for the first 2 channel heights from the fuel porthole. The species temperatures

increase the reaction rate and sustain ignition, contrary to the equilibrium case where the

expansion wave tends to extinguish the flame.

6.4 HEG-XIII experiment

In this last section, two simulations using either the nonequilibrium or equilibrium solver

will be performed based on the HEG-XIII experiment from Hanneman et al. [48]. The
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Figure 6.41: Profiles of (top) temperatures, (center) temperature ratios and (bottom) re-
action ratio between nonequilibrium and equilibrated thermal state along the streamline
presented in Fig. 6.40.

scope of this comparative study is to verify that the nonequilibrium simulation matches the

experimental data better than the equilibrium simulation. This experiment is also based

on the HyShot-II configuration and the far-field conditions mimic a 28 km altitude flight at

Mach 7.37. As mentioned in Chap. V, Hanneman et al. did verify that their far-field inflow

was at thermodynamic equilibrium: it is, therefore, the only experimental data we can safely

use in this comparative study.

Figure 6.42 shows the computational domain and a typical snapshot of the current sim-

ulation. This time, it was decided to include the vehicle wedge inside the computational

domain. A very coarse grid was used along the wedge and ramp sections, which prevented
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the boundary layer to transition from laminar to turbulent. This is irrelevant as this bound-

ary layer is swallowed by the bleed. Inside the duct, various resolutions were used to verify

the grid convergence. The finest grid has (nx,ny,nz) = (4303,256,256), which is higher than

in the previous section as pressure, hence density, is twice higher at 28 km than at 35 km.

Grid convergence is verified in Fig. 6.43.

Figure 6.42: Computational domain of the numerical simulation of the HEG-XIII experi-
ment.
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Figure 6.43: Time-averaged YZ integration of water vapor mass ρY (H2O) [kg.m−1] for var-
ious grid refinement simulations of the HEG-XIII experiment.

Figure 6.44 shows the comparison of the time-averaged 3D flame structures for both equi-

librium and nonequilibrium simulations of the HEG-XIII experiment. The fastest ignition

of the nonequilibrium flame observed in the previous section still occurs.

Finally, Fig. 6.46 presents a comparison between the experiment and the simulations

of the (top) bottom and (bottom) upper static pressure wall profiles for a fuel-equivalence

ratio of 0.28. The nonequilibrium profiles match the experimental data better than the

equilibrium case. First, the correlation coefficients between the experiment and the equilib-

rium/nonequilibrium cases are respectively of 0.61/0.66 and 0.63/0.93 for the top and bottom
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Figure 6.44: Time-averaged 3D flame structures for both equilibrium and nonequilibrium
simulations of the HEG-XIII experiment.
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Figure 6.45: 3D-XYZ integral of water vapor mass ρY (H2O) [kg].

walls respectively. Also, the mean squared error are of 0.0238/0.000848 and 0.0255/0.0037

for the top and bottom walls respectively. Further downstream, the simulation appears to

under-estimate the pressure growth. It is postulated that this lower pressure rise is caused by

the use of spanwise periodic boundary conditions: in the experiment, wall-confinement helps

the pressure rise through both friction and flow-blockage caused by the side-wall boundary

layer growth. Also, the CVCV model used for some secondary reactions involving HO2 and

H2O2 tends to reduce the rates of reactions converting these species into H2O and other
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radicals. Yet, the locations of the expansion and compression waves appear to match really

well, even if the pressure amplitudes are slightly off. For instance, the small bump formed

by the last 3 pressure probes in the top wall is captured by the nonequilibrium simulation.

Last, the comparison between these case is particularly good considering that a variation of

5% of the equivalence ratio can drastically affect the pressure profiles [48, 76].
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Figure 6.46: Comparison between the experiment and the simulations of the (top) upper
and (bottom) bottom static pressure wall profiles.

6.5 Chapter conclusions

In this chapter, the effects of vibrational nonequilibrium on DMSJ were investigated us-

ing the nonequilibrium compressible reacting flow solver presented in Chap. II. Due to the

presence of compression/expansion waves and the mixing between cold fuel and hot oxidizer,

the reactants species interact at nonequilibrium. The rates of the reactions governing the

ignition process are affected, which modifies the flame structure and burning efficiency. This

is more flagrant in the supersonic flame case where a higher degree of nonequilibrium is

present. Such configuration corresponds to a combustor operating in scramjet mode. The

complex interactions between the fuel stream and the airflow results in the subsequent occur-
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rence of both compression and expansion zones, hence trigger both cold and hot vibrational

nonequilibrium. Overall, ignition is enhanced thanks to the release of more radicals H, O

and OH throughout the mixing layer. The mixing layer is crossed by an expansion wave

which extinguishes the flame in the equilibrium case, while the high Tv/T ratio sustains

combustion in the nonequilibrium case.

Finally, the results obtained in this study permit to highlight a few interesting points

relevant to scramjet design. First, in both ramjet and scramjet modes, it is preferable to

keep the N2 vibrational energy as low as possible. Not only does this allow to over-excite

the translational and rotational modes of all species, but it also increases the vibrational

energy of any other fast-relaxing species such as O2. In scramjet mode, the flow speed is so

high that O2 might not have reached equilibrium by the combustor. If it had, its vibrational

temperature would be even higher throughout the mixing layer, hence production of O would

be more efficient. The fuel injection scheme could also be designed to favor the size of the

horseshoe-like structure which was shown to enhance ignition. Also, the expansion wave

contributed to enhancing ignition: it would perhaps be interesting to inject the fuel in a

diverging duct. To conclude, the effects of vibrational nonequilibrium on ignition permit to

explore new design concepts and radical farming mechanisms.
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CHAPTER VII

Conclusions and future work

The work performed for this dissertation aimed at improving our understanding of some

of the underlying physics in DMSJ engines as part of a broad effort to address the issue of

unstart. To this end, highly-detailed numerical simulations of DMSJ engines components

were performed. Large computational resources, in the millions of processor-hours, were

utilized to generate this diverse collection of numerical datasets.

Four types of numerical simulations were carried out, each of them pertaining to DMSJ

propulsion. First, DNS of cold isolator flows based on the experiment of Hunt et al.[52] were

performed in order to study the pseudoshock’s sensitivity to variations of inflow confinement

ratio. Second, DNS of pseudoshocks at realistic flight conditions, i.e. with total temperatures

high enough to excite the molecular vibrational energy modes, were carried. They allowed

studying the effect of wall heat loss and vibrational nonequilibrium on the isolator shock

structure. Third, numerical simulations of DMSJ combustor flows were performed in both

ramjet and scramjet mode in order to investigate the effects of vibrational nonequilibrium

on the ignition process. Ab. initio reaction rates accounting for vibrational nonequilibrium

were derived for these calculations. Fourth, DNS of high-temperature free shear flows using a

state-specific description of the vibrational energy state distribution were carried out to study

the coupling between vibrational nonequilibrium and turbulent mixing in a compressible

environment.
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The results and conclusions drawn from these numerical studies can be summarized as

follows:

Simulations of low enthalpy isolators: DNS of pseudoshocks based on the experiment

of Hunt et al.[52] were performed. Three inflow files were generated from auxiliary DNS

using different confinement ratio. The turbulent inflow momentum thickness measured at

z = 0 bottom wall ranged from 43 to 86 µm. All inflow turbulent boundary layer velocity

profiles correctly captured the inner (linear growth) and outer (logarithmic growth) regions.

These three inflows were used to generate three different isolator flow solutions.

1. The DNS appropriately reproduced the main features of a normal shock train compris-

ing lambda-shocks, diamond cells located in the core flow composed of compression and

expansion waves, and a subsonic outflow. Notably, the wall pressure profile compared

favorably well with the experimental data from Hunt et al. for the case matching the

experiment’s inflow confinement ratio.

2. When the inflow confinement ratio increased, the pseusodoshock’s cells were contracted

around the centerline. Notably, this shrank the normal-like portions of the lambda-

shocks, which progressively converted the normal shock train into an oblique shock

train. Since the normal-like portion of the lambda-shock decelerates the flow more effi-

ciently than its oblique feet, the pseudoshock pressure growth rate decreased through-

out the pseudoshock when the inflow confinement ratio increases. Hence, the pseu-

doshock length increased in order to match the same pressure rise and was pushed

further upstream. This increase was found to scale almost linearly with the inflow

Reθ.

3. Variations in time of the inflow confinement ratio forced the shocks to oscillate at the

same frequency. The pseudoshock response depended on the excitation frequency. Too

low of a frequency simply displaced the pseudoshock in between the two stable locations
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of the inlet confinement oscillation bounds. Too high of a frequency caused the pseu-

doshock to stand still, as the perturbation timescale became smaller than its reaction

timescale: the isolator acts as a low-pass filter in this sense. Interestingly, a resonance

frequency was discovered in between where the pseudoshock tail oscillates at a much

higher amplitude than its foot. This was shown to be caused by the periodic weak-

ening/strengthening of the compression waves when traveling downstream/upstream,

i.e. when the flow relative velocity to the shock fronts would decrease/increase. As a

result, the length of the pressure rise region was drastically affected, which can poten-

tially have catastrophic results on the scramjet compression stage. The low-pass and

resonance responses define the pseudoshock as an anharmonic oscillator.

4. The energy conversion process was quantified throughout the pseudoshock. Logically,

it showed that the pressure work through shock compression was responsible for most

of the conversion of kinetic into internal enthalpy. Notably, the analysis revealed that a

slower and indirect conversion path exists where the mean kinetic energy first converts

into turbulent kinetic energy, which later dissipates into internal enthalpy.

5. A pseudoshock pressure growth rate model was derived in light of these new findings.

was calibrated using a Bayesian approach to datasets from diverse configurations. The

end result is a 1D model which can accurately predict the pseudoshock wall pressure

rise, roll-off rate and length over a wide range of inflow conditions pertaining to both

ramjet and scramjet operational modes.

6. This pressure growth rate model was embedded into a flux-conserved 1D modeling

for pseudoshocks, which was then calibrated using Bayesian inference. The end result

is a reduced-order model for isolator flows that accurately estimates the pseudoshock

length and pressure rise over a wide operational range pertaining to both ramjet and

scramjet modes.

7. The 1D model was then converted into an anharmonic oscillator which was calibrated
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to match the phase lag and oscillation amplitude measured from the forced-oscillation

DNS. This dynamic model was subsequently found to reproduce the main features of

the DNS filtered wall pressure signals, and serve as a real transfer function between

isolator inflow and outflow time-resolved signals.

Simulations of high enthalpy isolators: Several DNS computations of the isolator

configuration discussed above were then performed but with higher inflow enthalpy. The

two sets of simulations (low and high enthalpy configurations) share the same bulk inflow

Mach number (M = 2.0), isolator pressure rise ratio (70% of a normal shock rise) and

inflow confinement ratio (A∗ = 16%). The main differences are a change of inflow density

and temperature to mimic realistic high-altitude hypersonic flight conditions (flight speed of

Mach 5.5 at 35 km altitude). This resulted in a temperature range across the domain ranging

from 300 to 1650 K, which is high enough to populate higher vibrational energy levels. Three

DNS computations were performed. The first two assumed equilibrium thermodynamics with

either isothermal (300 K) or adiabatic wall boundary conditions. The third DNS resolved

vibrational nonequilibrium and used a 300 K isothermal wall boundary condition. The

relaxation process of species vibrational energies was resolved using a multi-temperature

model coupled with the compressible flow solver.

1. The vortical skeleton of a normal shock train was revealed by applying a triple de-

composition method to the 3D Favre-averaged datasets on the equilibrium solutions.

The decomposition revealed that pairs of counter-rotating vortices are located in each

corner of the duct, upstream of the pseudoshock. These vortices disappeared where the

boundary layer separates under the leading lambda-shock due to the strong adverse

pressure gradient. Contrary to the common assumption, the recirculation bubble did

not spread along the whole shock train, but was instead located under the leading

shock, which coincided with the highest wall pressure growth rate region. Notably,

two opposing pairs of counter-rotating vortices formed in the streamwise-normal plane
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in between each successive shock. These vortices were located under the shock fronts,

and progressively decreased in amplitude along the pseudoshock.

2. It was found that wall heat losses decreased the size and strength of the turbulent

boundary layer vortices. It also considerably reduced the size of the recirculation

bubble. This resulted in a smaller detachment and a larger sonic core region. Hence,

the shock structure was larger, particularly the normal-like portion of the lambda-

shock. In agreement with the previous observations on the effect of confinement on cold

pseudoshocks, this also resulted in a higher pressure growth rate along the pseudoshock.

Therefore, the pseudoshock was smaller in the isothermal wall case.

3. By comparing the solutions obtained from the equilibrium and nonequilibrium ther-

modynamic models, several important results were found. First, the presence of com-

pression waves introduces cold nonequilibrium. O2 relaxes sufficiently fast such that it

has reached thermal equilibrium by the shock train tail. Interestingly, the alternating

compression and expansion waves in each diamond cell create subsequent regions of

vibrationally cold and hot O2, respectively. N2 remains vibrationally cold throughout

the whole pseudoshock and does not reach equilibrium even at the isolator outflow.

Hence, the thermodynamic state of the airflow entering the combustor is altered due

to this noequilibrium phenomenon. Specifically, the nonequilibrium airflow possesses

a temperature 90 K higher, and a 9.4 g.m−3 smaller density.

4. The rate of conversion of kinetic into internal enthalpy is lowered by the presence of

vibrationally cold gas, just as in a simple normal shock configuration. Coincidentally,

the pressure growth rate was reduced throughout the shock train. This caused the

shock train to move upstream to allow for a longer pseudoshock length in order to

reach the prescribed isolator exit pressure.

5. The vibrationally cold N2 causes a pressure-defect at the isolator outflow. This pres-

sure will be recovered further downstream once N2 equilibrates. In this sense, the N2
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population can be viewed as a thermal time-bomb.

6. It was estimated that these effects become important for flight speed beyond Mach 3.6

for a 35 km flight altitude. Decreasing the altitude would also lower this limit.

7. Last, a direct correlation was found between the size of the shock train sonic core

(defined as the distance between the leading shock and the most downstream sonic

location) and the first shock train diamond cell size (defined as the centerline distance

between the first and second shocks).

Simulation of DMSJ combustors: Simulation of DMSJ combustors operating in both

ramjet and scramjet modes were performed to analyze the impact of vibrational nonequilib-

rium on the ignition process. The ramjet-mode simulations simply consisted of an extension

of the hot isolator configuration with a H2-injector placed at the center of the bottom wall.

The scramjet-mode simulations replicated the HyShot-II geometry for a 35 km Mach 9.0

flight.

1. Ab initio reaction rates derived from a QCT approach were used to quantify the effect

of vibrational nonequilibrium on key chain-branching reaction rates. It was shown that

some reactions were less sensitive than others to their reactants vibrational tempera-

tures. As a result, reactions can even be counter-intuitively fastened under particular

vibrationally cold conditions. For instance, at constant internal energy, it is preferable

to under-excite the vibrational energy of the diluter and transfer this energy into the

gas translational mode: it would increase the reaction rates of H2 + O→H + OH.

2. The scramjet simulations revealed a complex ignition region. A bow-shock formed in

front of the cold impinging fuel stream, and the resulting adverse pressure gradient

created a horseshoe structure. Intermittent radical-rich pockets convected through the

mixing layer of the lifted supersonic flame.
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3. The ramjet and scramjet modes simulations revealed that the reactants species inter-

acted at nonequilibrium, mostly due to the upstream compression waves and by the

mixing between the cold fuel and hot airflow. The rates of the chain reactions governing

the ignition process were affected. This results highlights the importance of resolving

nonequilibrium throughout the isolator in order to properly estimate the combustor’s

inflow Tv,O2
and Tv,N2

.

4. In both cases, the incoming O2-stream was vibrationally hot, which increased the for-

mation of radicals O. However, in ramjet mode, the absence of a region of vibrationally

hot H2 and OH decreased the rate of the other chain reactions. The scramjet mode

presented two major differences. First, at the bow-shock foot, the temperature be-

comes higher than 3000 K while Tv,N2
is less than 1500 K. This considerably enhanced

the production of radicals H and OH in this low-speed area which coincides with the

origin of the mixing layer. Second, an expansion wave crossed the mixing layer which

created a vibrationally hot ignition region. This considerably increased the production

rates of radicals H, O and OH. As a result, the flame lift-off distance was reduced

compared to the equilibrium case by a distance of approximately 4 channel heights.

5. DNS of the experiment of Hannemann et al. (also based on the HyShot-II geometry)

were also carried out. A comparison of the wall pressure profiles between the two DNS

and the experiment showed that the nonequilibrium matched the experiment better

considering both the mean squared error and correlation coefficients.

6. Based on these results, it can be concluded that vibrational nonequilibrium does appre-

ciably affect the ignition process, especially in scramjet mode. Given the understanding

developed in the present study, several guidelines to DMSJ designs are suggested. First,

it is preferable to keep the vibrational energy of the diluter N2 as low as possible to

over-excite the other modes. For instance, strong shocks located right upstream of the

combustor and an isolator as short as possible would both ensure that Tv,N2
< T in the
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mixing region. Second, it is counter-intuitively interesting to generate an expansion

wave inside the ignition region. Perhaps a convecting/diverging duct could be used in

ramjet/scramjet modes. Third, the injector scheme could be placed against the flow

stream to generate a locally supersonic relative velocity even in ramjet mode, resulting

in the appearance of a bow-shock.

State-specific simulations: Two DNS computations of a N2 turbulent planar jet were

carried out using both the multi-temperature approach and a state-specific method. This

latter method consists in transporting the vibrational energy states populations instead of

assuming it to always remain as a Boltzmann distribution with a prescribed vibrational

temperature. Since the maximum temperature is 4000 K, 10 energy states are sufficient to

adequately resolve the distribution. The state-specific relaxation rates are derived using a

QCT approach.

1. Vibrational nonequilibrium appeared due to the flow compressibility. When the flow

accelerated, T decreased triggering hot nonequilibrium. Conversely, when the flow

decelerated, T increased triggering cold nonequilibrium.

2. The turbulent mixing of the bulk vibrational energy was similarly resolved by the

multi-temperature and the state-specific methods.

3. The distribution of the vibrational energy states deviates from a Boltzmann distribu-

tion. Notably, the highest energy states are considerably over-populated as they reach

local equilibrium fast. On the other hand, the population in the slowly-relaxing lowest

energy states were lower than their local Boltzmann numbers. An intermediate state

level presented both over/under-population on each side of the mixing layer.

4. This suggests that chemical reaction rates computed using a multi-temperature ap-

proach would be underestimated, since reactions are driven by the most energized
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molecules. Hence, state-specific reaction and relaxation rates would permit a higher-

order description of the effect of vibrational nonequilibrium on ignition. This demon-

strates the interest of the use of state-specific rates for DMSJ calculations and motivates

further research.

To conclude, this research work has provided novel and critical insights into the func-

tioning of a dual-mode scramjet engine. By combining supercomputing resources with state-

of-the-art modeling, an unprecedented level of detail could be simulated. These insights

have guided the derivation of a new reduced-order model for pseudoshocks, the accuracy

of which has been demonstrated over a wide range of flight conditions. The main finding

of these highly-resolved numerical simulations is the demonstration of the importance of

vibrational nonequilibrium for supersonic air-breathing engines. Failure to resolve the relax-

ation process of the vibrational energies can lead to misprediction of both the pseudoshock

length, the combustor airflow thermodynamic state, and of the ignition process. As a result,

engine unstart would become less predictable and occur more easily if equilibrium models

were used to design the engine. Conversely, by gaining a sufficient understanding of these

effects, it becomes possible to use vibrational nonequilibrium to improve the efficiency of

scramjet engines. Last, this work motivates further research into state-specific approaches in

order to improve the accuracy of nonequilibrium simulations in the context of DMSJ. These

studies, results, and models contribute to the design and development of stable and robust

hypersonic vehicles.

Several issues, follow-up questions and potential improvements were highlighted through-

out these studies, which would require the following additional work:

1. The dynamic reduced-order model for pseudoshock still needs closure. To this end,

the pseudoshock’s local stiffness ξ and characteristic pulsation ω0 have to be derived

as a function of values obtained from the static profile (such as pressure and Mach

number). It is suggested that an inverse power law would serve as a good starting

point. However, more data is needed to derive a robust function.
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2. The pseudoshock DNS could use a less diffusive numerical scheme in the shock-less

regions. Namely, the implementation of continuous hybrid schemes would be a valuable

addition to UTCOMP.

3. Due to a lack of available potential energy surfaces, many reactions did not use QCT-

derived efficiency functions, but relied on the CVCV model designed for dissociating

reentry flows, not for internal reacting flows. Hence, the use of QCT rates for all

reactions would improve the model accuracy. It would be interesting to see how it

affects the chain-terminating reactions rates and the distribution of HO2 inside the

combustor.

4. Likewise, the lack of PES for many sorts of molecular collisions prevented the derivation

of state-specific relaxation rates for all the species involved in H2-O2 combustion. It

is estimated that a state-specific approach will require the transport of ≈ 100 scalars

(≈ 10 states’ population densities are needed per species to appropriately define the

distribution at temperatures below 3000 K). Furthermore, it would even be possible

to use state-specific reaction rates and better resolve the effect of nonequilibrium on

ignition.

5. Another kind of engine which relies on shock-based compression is the rotating det-

onation engine (RDE). In an RDE, a traveling detonation wave burns the fuel-air

mixture: the ignition zone is located right behind the shock front. Hence, the reactant

species are vibrationally under-excited. Interestingly, Taylor et al. [123] found that

detonation cell sizes for H2-O2-Ar mixtures (mono-atomic diluter) were bigger than

for H2-O2-N2 mixtures (diatomic diluter), and attributed this difference to the slow

vibrational relaxation process of the diluter N2 through the reaction layer.
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• Fiévet, R., Koo, H., Raman, V., Auslender, A., Numerical simulation of shock trains
in a 3D channel, 54th AIAA Aerospace Sciences Meeting, AIAA 2016-1018, 2016.
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APPENDIX A

Turbulent mixing of vibrational energy states

populations - Reversed configuration

The reversed configuration presented in Sec. 2.2.4.3 (case 2, see Tab. 2.1) with a jet

hotter than the coflow was also simulated. Spatial resolution was not verified in this case as

the jet possesses a lower Reynolds number due to its higher viscosity and lower density than

for case 1. Hence, its Kolmogorov lengthscales are larger such that the grid is relatively finer.

A comparison of the mixing of various states populations are shown in Figs. A.1 A.2 and

A.3. Case 2 presents larger vortical structures compared to case 1 due to its lower Reynolds

number, and a logically reversed mixing process. The radial profiles of all states populations

are simply inverted as seen in Fig. A.2, notably for state level i = 2.

The error between the local bulk vibrational energy ev and its equilibrated values e∗v

(as was shown in Fig. 2.13) is plotted in Fig. A.4. The flow is dominantly vibrationally

under-excited as observed in case 1. However, the volume entrainment ratio is now close to

1.0. Hence the compressibility is evenly distributed throughout the mixing layer as seen in

Fig. A.5, with occurrences of both flow compression and expansion. This suggests that there

should be more vibrationally hot areas, yet this is not the case.

Realizations of ev-e
∗
v relative errors shown in Fig. A.6 (analogous to Fig. 2.14). The left

figure simply mirrors case 1. The right figure shows that a flow fraction greater than case
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Figure A.1: Snapshots of vibrational state population number densities φi for levels i ∈
[1 2 4 9] from top to bottom for the (left) cold jet and (right) hot jet.

1 has a negative compressibility as observed in Fig. A.5. However, the correlation between

compressibility and ev-e
∗
v relative errors reveals that, contrary to case 1, the realizations

are skewed towards the bottom quadrants (cold nonequilibrium). As can be observed in

the zoomed zones, wherever the compressibility factor is neutral the flow is still in cold

nonequilibrium. This suggests that another process triggering nonequilibrium through the

mixing layer happens in case 2, but was absent from case 1. As the mass entrainment

ratio increased from 1.0 to 2.1 from case 1 to case 2, the mixing theory of Reising et.

al now predicts a predominantly cold nonequilibrium instead of a neutral mixing. It is

postulated that the combination of both compressibility effects and Reising et. al ’s theory

explain the current results. Note that in order to solely investigate Reising et. al ’s turbulent
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Figure A.2: Snapshots of Ei [%] for levels i ∈ [1 2 4 9] from top to bottom for the (left) cold
jet and (right) hot jet.

mixing theory, any compressibility-triggered nonequilibrium should be canceled. A uniform

inflow velocity should therefore be used across the inlet plane. Unfortunately, we found that

Rayleigh-Taylor instabilities were not sufficient to create turbulence, and were unable to

study such configuration.
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Case 1 Case 2

Figure A.3: Realizations of Ei [%] for i ∈ [1 2 4 9] from top to bottom with Zmix for the
(left) cold jet and (right) hot jet.
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Figure A.4: Snapshots of error between ev and ev
∗ [%] for case 2. Red/blue indicate a locally
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Figure A.6: Realizations of error between ev and ev
∗ [%]. Red/blue indicate a locally vibra-

tionally over/under-excited population.
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APPENDIX B

1D model Matlab script

A functional implementation of the 1D model derived in Chap. IV is presented in the

Matlab script below. It is calibrated to match case 4 (see Tab. 4.1) and is compared with

the DNS wall pressure profile.

1 clear all;close all;clc;format long

2 % DNS data

3 xDNS = [0.0700 0.5356 1.0011 1.4667 1.9322 2.3978 ...

2.8634 3.3289 3.7945 4.2600 4.7256 5.1912 5.6567 ...

6.1223 6.5878 7.0534 7.5190 7.9845 8.4501 8.9157];

4 yDNS = 1.0e+04*[1.6706 2.2949 2.9484 3.1253 3.4122 ...

3.5160 3.6412 3.7776 3.8377 3.8935 3.9519 4.0137 ...

4.0588 4.1091 4.1480 4.1730 4.1995 4.2251 4.2475 ...

4.268];

5

6 % Model parameters

7 parameters = 1.0e+02 *[ 0.0347 0.0000170 0.0151 0.259 1.355 ...

0.0164 0.0176 0.01428 0.0106];

8 Cfr = parameters(1);

9 Cfr cst = parameters(2);
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10 slope = parameters(3);

11 refMach1 = parameters(4);

12 kref = parameters(5);

13 scalar1 = parameters(6);

14 power2 = parameters(7);

15 Mref = parameters(8);

16 power5 = parameters(9);

17

18 % Case parameters

19 M0 = 1.906;

20 Dh = 2*0.0572*0.0698/(0.0572+0.0698);% Hydraulic diameter

21 gam = 1.4;

22 BackPressure = 42561;

23 P0 = 1.7314e4;

24 Cf0 = 1.05e-3;

25 P1 = 16000;

26 M1 = 1.721056629837177;

27 recoveryEfficiency = 0.769520803266958;% Computed from McLafferty ...

model (see Fig. 4.2)

28

29 % Vectors initialization

30 Nx = 2500;

31 Lx = 10*Dh;

32 dx = Lx/Nx;

33 xx = linspace(0,Lx,Nx)';

34 Aratio = ones(length(xx),1);

35 Mach2 = ones(length(xx),1)*M1ˆ2;

36 dPP = zeros(length(xx),1);

37 p = ones(length(xx),1)*P1;

38 q1 = gam*M1ˆ2*P1/2;

39 q = ones(length(xx),1)*q1;

40

41 % 1D model
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42 k0 = kref*recoveryEfficiency ˆpower2;

43 Cf1 = Cfr cst+Cfr*Cf0;

44 powerQ = refMach1*(1-tanh(slope*(M1-Mref)));

45 for i=1:length(xx)-1

46 q(i) = gam*Mach2(i)*p(i)/2;

47 kq = k0*[(scalar1 + q(i)/q1)ˆ(powerQ)] / [ ( ...

(scalar1+1)ˆ(powerQ+1)-scalar1ˆ(powerQ+1) )/(1*(powerQ+1)) ];

48 dPP(i)= kq/Dh*Cf0ˆpower5*gam*Mach2(i)*dx/2;

49 Mach2(i+1) = Mach2(i) - Mach2(i)*[(1+(gam-1)/2 * Mach2(i)) * ...

[(2/gam/Mach2(i)/Aratio(i)) * dPP(i)] + 4*Cf1/Dh*dx/Aratio(i) ];

50 Aratio(i+1) = Aratio(i) + ...

Aratio(i)*([1-Mach2(i)*(1-gam*(1-Aratio(i)))]...

51 /(gam*Mach2(i)*Aratio(i))* dPP(i) + ...

52 (1+(gam-1)*Mach2(i))/2/Aratio(i)*4*Cf1/Dh*dx);

53 p(i+1) = p(i) + dPP(i)*p(i);

54 end

55 % Cut solution where reattachment occurs

56 Aratio = min(1.0,Aratio);iA1 = find(Aratio(2:end)==1, 1, 'first');

57 p(iA1:end) = p(iA1);Mach2(iA1:end) = Mach2(iA1);

58

59 % Plotting some of the DNS data wall pressure profile on top of 1D ...

model profile

60 p1=plot(xx/Dh,p/P1,'LineWidth',1,'Color',[0 0 0]);hold on;

61 plot(xDNS,yDNS/P1,'LineStyle','none','LineWidth',2,'Marker','+',...

62 'Color','r','MarkerSize',10,'MarkerFaceColor',[1 1 1]);

63 legend('1D model','DNS','Location','SouthEast');

64 set(gca,'YLim',[1 3]); set(gca,'XLim',[0 10]);

65 set(gca,'Xtick',[0:2:12]);set(gca,'Ytick',[0:4]);

66 set(gca, 'fontsize', 18, 'fontname', 'times');

67 grid on;

68 set(get(gca,'Xlabel'),'String','x/D h')

69 set(get(gca,'Ylabel'),'String','P/P 1')
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