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ABSTRACT

Mixing is a fundamental fluid mechanism that is crucial to the engineering

of industrial processes within the chemical, pharmaceutical, petrochemical, food,

and many other industries. Mixing is also important to areas of science including

oceanography, turbulence, and atmospheric sciences. An important question to

many domains is “How does one mix efficiently?” We strive to make progress

towards this question by studying a series of optimization problems on mixing.

The first study presented is on optimization of a shell model of mixing. This

model is based on a system of ordinary differential equations which mimic the

time evolution of the Fourier spectrum of a dye concentration governed by the

advection-diffusion equation. We investigate the local-in-time and global-in-time

optimization within this model and show that mixing can be limited by diffusion.

The second study investigates local-in-time optimization of the advection-

diffusion partial differential equation. We demonstrate that many of the observa-

tions seen in the shell model extend to this setting such as evidence of a limitation

on mixing by the inclusion of diffusion.

Lastly, we explore global-in-time optimization of the advection-diffusion equa-

tion. This last study is ongoing research at the moment: current results on this

topic are presented and a comparison between local-in-time and global-in-time

optimization is discussed.

xi



CHAPTER I

Introduction

1.1 Why study fluid mixing?

Fluid mixing happens in a gust of wind and in a cup of morning coffee with

cream. This phenomena is commonplace and plays an important role in many

natural and engineering systems that humanity depends on. Our current lack of

fundamental understanding of mixing impedes our ability to understand natural

systems such as atmospheric and oceanic processes that impact our global climate.

Mixing also serves as a key industrial process crucial for production within the

food, chemical, pharmaceutical, and petrochemical industries. Thoughtful design

of industrial mixing is essential for maximizing product yield and product quality

throughout these industries. In addition, poor mixing design can come at a cost.

In 1989, the cost of poor mixing was estimated to be $1 – $10 billion US dollars in

the chemical industry alone [36]. Nearly everyone depends on these industries for

basic household products, health needs, travel, and food. And in most situations,

the cost in production is inevitably paid by consumers — that includes you and

me.

Although mixing is highly prevalent and often utilized, its fundamental princi-
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Figure 1.1:
Top transformation is a reduction in the scale of segregation. Bottom
transformation is a reduction in the intensity of segregation

ples are still not fully known especially concerning how the interplay of advection

and diffusion processes affect mixing rates and achievable filamentation length

scales. To make progress on understanding the systems that involve mixing, we

must understand mixing itself. Thus, the approach taken here is to study a the-

oretical and mathematical framework of mixing that has been stripped down to

its essential elements. The perspective taken in this work is that one must under-

stand the idealized problems first before tackling problems with added complexity.

An idealized Carnot engine provides efficiency expectations of real-world heat en-

gines each unique with its own complexity. By analogy, we hope the idealized

mixer presented here will provide theoretical principles on mixing efficiency about

real-world mixers as well.
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1.2 What does well-mixed mean?

In the pioneering work of P. V. Danckwerts (1952) [11], the author identifies

two indicators of mixed-ness: the scale of segregation and the intensity of segre-

gation. The scale of segregation is the characteristic length scale present in the

concentration. For instance, the process of thinning, elongating, and folding of

a blob, as seen in the top graphic of figure 1.1, reduces the scale of segregation

by creating a rich maze-like pattern with thin strands of dye. The intensity of

segregation refers to the variation of the concentration amplitude. This is nat-

urally done by diffusion. The bottom graphic of figure 1.1 shows a reduction in

the overall variation and the concentration tends towards a state with a uniform

concentration.

1.3 Fluid mixing stages and mechanisms

The seminal work of C. Eckart [14] describes the three stages of mixing:

1. The initial stage: The mixedness of the initial state will dictate the amount

of ‘work’ necessary to mix to a desired state. Typically, there will be large

volumes of dye visible throughout the fluid. Thus the preparation of the

initial concentration is a stage in its own right before the fluid mechanisms

are called into action.

2. The intermediate stage: Advection, or colloquially the act of stirring, will

distort, stretch, and fold the volumes of dye to produce large gradients

throughout the fluid and reduce the scale of segregation.

3. The final stage: Lastly the gradients will disappear under the action of

diffusion. Diffusion refers to molecular diffusion throughout this work and

3



not to be confused with its occasional usage of dispersal (to spread a dye

thoughout space).

The intermediate and final stages are shown to happen sequentially in time. This is

not completely accurate. These processes occur concurrently as we will investigate

throughout this work.

In the stages above, we have introduced the two main mechanisms at play —

advection and diffusion. Advection is a fluid mixing mechanism that when used

appropriately can be an excellent way to reduce the scale of segregation.

1.4 A mathematical framework for studying mixing

The effect of advection and diffusion on the rate of fluid mixing depends on the

particular mixing situation characterized by the unique fluid properties, specific

mixing flow, and boundary geometry. In view of the vast complexity of the mixing

situation, general principles of mixing underlying these various situations would be

beneficial. In particular, it is valuable to determine how the mixing rate (typically

the most optimal mixing rate) depends on aggregate flow intensity measures such

as the stirring flows’ energy and/or enstrophy. This is the objective of the research

program encompassing many efforts [40, 24, 43, 28, 43, 18, 32, 49, 30, 8, 34, 33]

in last decade.

With these goals in mind, a common approach taken throughout the literature

is to consider the evolution of a tracer quantity θ advected by an incompressible

(∇ · u = 0) flow u with mild physical constraints within a periodic box D of side

length L in d dimensions. All numerical simulations are done in 2 dimensions

while analytical results are generally presented in arbitrary dimension. We will

assume that θ has zero mean throughout this work. The tracer concentration field

4



θ evolves according to the advection-diffusion equation,

∂tθ + u · ∇θ = κ∆θ, (1.1)

with initial data θ(x, 0) = θ0(x), where κ is the molecular diffusion coefficient and

∆ = ∇2 is the Laplacian operator. The flow intensity is constrained by enstrophy

‖∇u‖L2 =

√√√√∫
D

|∇u|2 ddx = ΓLd/2 (1.2)

or energy

‖u‖L2 =

√√√√∫
D

|u|2 ddx = ULd/2 (1.3)

where Γ is the root mean square rate-of-strain and U is the root mean square

speed. We will also consider the time-average versions 1
T

∫ T
0
‖∇u‖2

L2dt = ΓLd/2 or

1
T

∫ T
0
‖u‖2

L2dt = ULd/2.

The form above shows that the evolution of the tracer concentration θ is slaved

to a given flow u which embodies, in many cases, most of the complexity of a par-

ticular mixing problem. The details of u alone can be complicated since in natural

settings u is a solution of the Navier-Stokes equations. Although flow situations

can be vastly different, they can still share commonalities such as incompress-

ibility and similar amount of total energy or enstrophy. Note that enstrophy is

proportional to the dissipation power for Newtonian fluids. We will only consider

flows constrained by these properties for the purposes of simplicity and generality.

The negative Sobelov norms H−n [32, 31, 43, 28] are measures of mixing used

throughout the literature and the H−1 norm (and sometimes referred to as the

mix-norm) will be used here. The H−n norm for mean-zero scalar fields θ are

5



given by

‖θ‖H−n = ‖∇−nθ‖L2 =

√√√√∫
D

|∇−nθ(x, t)|2 ddx =

√√√√∑
k 6=0

Ld
|θ̂k(t)|2
|k|2n (1.4)

where ∇−1 = ∇∆−1, the operator ∆−1 acting on a function ρ returns the solution

φ of the Poisson equation ∆φ = ρ, and θ̂k(t) = 1
Ld

∫
D
θ(x, t)e−ik·x ddx. Lower

values of the H−1 norm correspond to a more mixed state. Note that H−1 norm

can decrease in two ways. The first way is to decreasing the amplitudes of |θ̂k|

for k 6= 0. This matches our first sense of mixing — homogenization. The second

way is by transferring spectral mass from the lower wave numbers to the higher

wave numbers to take advantage of the 1/|k|2 weighting of amplitudes at different

length scales. This produces a scalar field with sharp gradients and small length

scales which matches our second sense of mixing — filamentation. Thus we can

see that the H−1 norm embodies both senses.

The L2 norm ‖θ‖L2 defined by

‖θ‖L2 =

√√√√∫
D

|θ(x, t)|2 ddx =

√∑
k

Ld|θ̂k(t)|2 (1.5)

and the H1 norm ‖∇θ‖L2 defined by

‖θ‖H1 = ‖∇θ‖L2 =

√√√√∫
D

|∇−1θ(x, t)|2 ddx =

√∑
k

Ld|k|2|θ̂k(t)|2 (1.6)

are also common measures of mixing and will be considered as well. For those

interested in other measures of mixing, see [43].

6



1.5 Pure diffusive mixing

In the case without advection (u = 0), equation (1.1) reduces to the classical

heat equation [15]. The Fourier modes evolve according to θ̂k(t) = θ̂k(0)e−κ|k|
2t.

Thus we have explicit analytical results for the decay of the H−1 norm by simply

substituting this result. Note that H−1 norm will surely decay monotonically

since the amplitude of each mode does. Diffusion is unable to transfer spectral

mass from the low wave number modes to the high wave number modes and

thus is incapable of filamentation. Thus the pure diffusion case solely exploits

homogenization. Also notice the unequal weighting attach to each mode. The

Fourier modes with large wave number |k| decay at a much faster rate relative to

the decay of those with small wave number.

1.6 Pure advective mixing

In the case without diffusion (κ = 0), pure advection of the flow is the only

method of mixing, colloquially known as stirring. For a flow that is constrained by

enstrophy, the mix-norm decays at most exponentially where the exponential rate

is proportional to Γ [24, 40]. This was mathematically proven by two separate

approaches: G. Iyer et. al. [24] used regularization results of partial differential

equations [9] while C. Seis [40] used methods from optimal transportation theory

[46]. Furthermore, enstrophy-constrained flows that realize this exponential decay

rate have been constructed analytically [1]. On the other hand, energy-constrained

flows can achieve even faster mixing rates. In fact they can achieve perfect mixing

in finite time which means that the H−1 norm reaches zero in finite time as

opposed to approaching zero in infinite time as exhibited in the case for enstrophy-

constrained mixing. This can be demonstrated by a ‘checkerboard’ flow [30] where

7



the mix-norm achieves perfect mixing in finite time via linear decay. For either

flow intensity constraint, note that H−1 norm decreases by exclusively exploiting

filamentation without homogenization. This is exactly opposite to the purely

diffusive case.

Many works [10, 29, 31, 8, 18, 28, 30, 16, 3, 22, 45] have framed mixing en-

hancement in terms of optimization and optimal control theory. Mathew et al. [31]

studied pure advection of a concentration field by a velocity field u =
∑N

i=1 αiui

where {ui} is a finite set of divergence-free velocity fields and {αi} is a set of

time-dependent weights. The weights {αi} were chosen to minimize the final-time

H−1/2 mix-norm subject to a fixed value of action or equivalently a fixed value

of time-averaged energy. Necessary conditions for optimality were numerically

solved by conjugate gradient. The authors considered two examples each using

u1 and u2 as given cellular flow velocity fields. In both examples, they found that

the H−1/2 norm of the computed concentration field decayed at an exponential

rate. Furthermore, the authors demonstrated that the kinetic energy must be con-

served at all moments in time due to optimality conditions even though they only

required that the time-averaged energy be fixed — analogous results hold true in

this work as well. For this particular choice of velocity fields, the enstrophy turns

out to also be conserved. This is consistent with other theoretical and numerical

works [40, 24, 28, 1] reporting exponential decay rates under fixed enstrophy.

Cortelezzi et al. [8] also considered controlling two given flows to enhance

mixing. But rather than considering a superposition of two flows, the authors

considered switching entirely between one flow and the other. In particular, the

authors considered controls that picked one of two sine flows u1 = sin(2πy)x̂ and

u2 = sin(2πx)ŷ at uniformly spaced switching times. The authors divided the

optimization task into multiple optimization sub-problems performed over short

8



time horizons covering the entire time interval. They found, in the presence and

absence of diffusion, that the mixing efficiency, as measured by the H−1/2 mix-

norm, of the short-horizon optimization schemes was substantially better than

the periodic control that alternates between the two flows at each switching time.

They also concluded that mixing can be greatly enhanced when optimizing over

very short time horizons.

Lin et al. [28] explored short-time considerations even further. They found an

analytic expression for the instantaneous optimal choice of velocity field given the

current concentration field under fixed energy and enstrophy constraints. This was

done by minimizing the time derivative of the H−1 norm at each instant. Using the

resulting expression, they numerically integrated the advection equation forward

in time while determining the optimal velocity field at each time step. For an

enstrophy-constrained flow, they numerically demonstrated exponential decay of

the H−1/2 and H−1 norms consistent with [40, 24, 1, 31]. Lunasin et al. [30]

also performed a similar analysis as Lin et al. for flows with fixed palenstrophy

(‖∆u‖L2). This form of optimization is referred to as local-in-time optimization

and will be discussed further shortly.

1.7 The interplay of advection and diffusion

Finally, the case with diffusion and advection is the least explored in this

framework and the focus of this thesis. It is known that the evolution of the H−1

and L2 norms decrease monotonically under the checkerboard flow introduced by

[30] while the H1 increases until it reaches a peak and then decreases [18]. This

peak corresponds to a time when the length scales developed are small enough

for diffusion to effectively act on steep gradients. In contrast to the ‘pure’ cases
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mentioned earlier, it is important to note that the H−1 can now decrease by the

two avenues of homogenization and filamentation simultaneously.

At this point, we can already see a glimpse of a conflict between diffusion and

advection for the ultimate goal of optimal mixing. Pure advection succeeds at

filamentation by transferring spectral mass from the low wave number modes to

the high wave number modes in a continuous fashion. However in the presence of

diffusion, a once optimal pure advection flow exceptional at filamentation will be

met with potential conflict since homogenization by diffusion can stifle its progress

in transferring spectral mass to high wave number modes. Given that diffusion is

ubiquitous, we must come to terms with this conflict to produce efficient mixing.

1.8 The question and goals

In this work, the interplay of advection and diffusion is explored to determine

its impact on the rate of mixing. As we have mentioned in the last section, there

appears to be a conflict between advection and diffusion that arises when both

are acting to reduce homogenization through reduction in scale and intensity of

segregation simultaneously. The main question underlying this entire thesis work

is:

What is the optimal mixing rate achievable under the enstrophy and

energy constrained flows when both advection and diffusion are active?

We hope to make progress in answering this by posing the question as an

optimization problem. We will consider the local-in-time optimization problem:

min
u

d

dt
‖∇−1θ(·, t)‖2

L2 (1.7)
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where the flow intensity is constrained by enstrophy

‖∇u‖2
L2 = Γ2Ld (1.8)

or energy

‖u‖2
L2 = U2Ld. (1.9)

We also consider the global-in-time optimization problem:

min
u
‖∇−1θ(·, T )‖2

L2 (1.10)

where the flow intensity is constrained by time-averaged enstrophy

1

T

T∫
0

‖∇u‖2
L2 = Γ2Ld (1.11)

or time-averaged energy

1

T

T∫
0

‖u‖2
L2 = U2Ld. (1.12)

For all formulations, the flow is always required to be divergence-free (∇·u = 0)

and θ solves the advection-diffusion equation with initial data θ(x, 0) = θ0(x).

1.9 Organization of dissertation

The rest of this dissertation is organized as follows: Chapter II describes the

local- and global-in-time optimization within the context of a shell model, a model

representing the spectral dynamics of the advection-diffusion equation. Here we

find the first indication that diffusion in some cases can penalize mixing perfor-

mance. This work was published in the Journal of Nonlinear Science in 2017 [33].
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Chapter III studies local-in-time optimization in the context of the advection-

diffusion partial differential equation. Here we investigate further the impact of

diffusion. We find that diffusion can in some cases negatively impact the long-

term mixing rate for local-in-time optimal flows. This work has been accepted for

publication in Nonlinearity [34]. Chapter IV presents on-going work on global-

in-time optimization of the advection-diffusion equation. An analytical result is

presented showing that it is optimal to expend the stirring budget uniformly in

time for the pure advection case. This result appears in an Appendix section of

the 2017 Journal of Nonlinear Science article [33].
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CHAPTER II

Shell model 1

2.1 Introduction

Shell models are systems of ordinary differential equations that mimic the

mathematical structure of the spectral representation of a partial differential equa-

tions [13]. They were introduced in the context of the Navier-Stokes equations

to study turbulent cascade dynamics [25, 21, 48] while avoiding mathematical

difficulties inherent in the full nonlinear partial differential equation. We pro-

vide a similar treatment of the advection and advection-diffusion equations in the

context of transient mixing and use optimization techniques to study shell-model

stirring strategies to optimally mix a tracer concentration.

The shell model is designed to show qualitative features of advection, notably

conservation of the tracer density variance, i.e., the L2 — or more precisely `2

— norm of the tracer concentration. Mixing is quantified by a negative Sobolev

norm, the H−1 norm, for the tracer concentration, with a natural extension to the

shell model, that can measure tracer dispersion even in the absence of diffusion.

The shell model also displays quantitative correspondence with results for maximal

1The content of this chapter has been published in the Journal of Nonlinear Science (2017)
[33].
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mixing in the partial differential equation formulation including perfect (complete)

mixing in finite time for sufficiently weak constraints on the stirring flow field and

exponential decay of the mix-norm for other protocols. We extend the optimal

stirring analysis to make predictions for the influence of diffusion on mix-norm

decay.

This chapter is organized as follows. In Section 2.2 we introduce the shell

model. Local- and global-in-time optimization schemes are described in, respec-

tively, Sections 2.3 and 2.4. The two shell model stirring strategies are compared

without diffusion in Section 2.5 and with diffusion in Section 2.6. The concluding

section 2.7 contains a discussion of the results. Appendix A contains exact ana-

lytical results for a three-shell truncation and derivations of lower bounds on the

mix-norm.

2.2 A shell model

Shell models are coarse-grain versions of the spectral representation of a partial

differential equation. In particular the Fourier transform of the advection-diffusion

equation (1.1) becomes the infinite set of coupled ordinary differential equations

∂tθ̂(k, t) + i
∑
j=1,2,3

∑
k′∈K

ûj(k− k′, t) k′j θ̂(k
′, t) + κ |k|2θ̂(k, t) = 0.

We course-grain this relation by ‘binning’ the Fourier variables θ̂(k, t) with

wavenumbers 2n−1k0 < |k| < 2nk0 (k0 = 1
2L

) into a single variable θn(t) for

n = 1, 2, . . . ,∞. This binning process divides k-space into concentric shells and

hence the name—shell model. We similarly course-grain the Fourier amplitudes

of the flow field ûi(k, t) into the variables un(t) and look for the simplest shell
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model that retains mode-coupling between neighboring shells. Thus, we choose

the following form:

d

dt
θn = kn−1un−1θn−1 − knunθn+1 − κ k2

nθn, n = 1, 2, . . . , (2.1)

where kn = k02n and θ0 ≡ 0 ≡ u0. κ has units of L2/T ; kn has units of 1/L;

un has units of L/T ; and θn is unitless. We may also consider N -shell truncated

models with n = 1, 2, . . . , N where θn≥N+1 = 0 = un≥N . See references [25, 47, 13]

for alternative shell models of advection-diffusion.

This construction is not intended to be mathematically rigorous. Rather, it is

meant to mimic the natural cascade of the spectrum of the tracer, progressively

visiting each shell as stirring stimulates smaller length scales. Note that this

model preserves the relation d
dt
‖θ‖2

L2 = −2κ‖∇θ‖2
L2 (found by multiplying the

advection-diffusion equation by θ and integrating over D), but now in an l2 sense:

d

dt

∑
n=1

θ2
n = −2κ

∑
n=1

k2
nθ

2
n. (2.2)

It follows that the l2 norm is conserved for the non-diffusive case.

Lastly, we define the hα shell-model Sobolev norm as

‖ψ(t)‖2
hα ≡

∑
m=1

k2α
m ψ

2
m(t). (2.3)

for any vector ψ = (ψ1, ψ1, . . . ). The shell-model h−1 mix-norm is defined as

‖θ(t)‖h−1 . We denote the intensity constraints of the shell-model flow in terms of

‖u(t)‖2
hα . When α = 0 this is the `2 analog of the energy and α = 1 returns an

expression for enstrophy. The norm operator ‖ · ‖hα has units of L−α.
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2.3 Instantaneous optimization

We begin by asking, “What admissible control will produce the best instanta-

neous mixing rate?” The analysis shown here parallels the work done by Lin et

al [28] in the partial differential equation setting. We formulate this question as

the following: find the u that realizes

min
u

d

dt
‖θ(t)‖2

h−1 (2.4)

at each time t subject to the constraint

‖u(t)‖hα = W (α) (2.5)

where W (0) = U (energy) and W (1) = 1/τ (enstrophy). The root-mean-square

rate-of-strain Γ is given by Γ = 1/τ .

Differentiating the mix-norm and using (2.1), we find

d

dt
‖θ(t)‖2

h−1 = 2
∑
n=1

(
k−2
n+1 − k−2

n

)
θnθn+1knun − κ θ2

n (2.6)

and the optimization problem is solved by the method of Lagrange multipliers.

The solution is

u(α)
n (t) = − W (α)γ

(α)
n (t)

kαn‖γ(α)(t)‖l2
(2.7)

where γ
(α)
n (t) ≡ (k−2

n+1 − k−2
n )k1−α

n θn(t) θn+1(t) — at least, when ‖γ(α)(t)‖l2 6= 0.

An alternative stategy is needed when ‖γ(α)(t)‖l2 = 0. An analgous situation

arises in the partial differential equation setting [28] and the second derivative

d2

dt2
‖θ(t)‖2

h−1 is minimized instead at these instances. We will do the same here.
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We write the second derivative as

d2

dt2
‖θ(t)‖2

h−1 = uTBu+ cTu+ d (2.8)

where

Bnm ≡



2(k−2
n+1 − k−2

n )k2
n(θ2

n − θ2
n+1) m = n

−2(k−2
n+1 − k−2

n )knkn+1θnθn+2 m = n+ 1

2(k−2
n+1 − k−2

n )knkn−1θn−1θn+1 m = n− 1

0 otherwise

,

cn = −2κ (k−2
n+1 − k−2

n )(k2
n+1 + k2

n)knθnθn+1, and d =
∑
n=1

4κ2 k2
nθ

2
n.

We want to find the minimum of (2.8) subject to the intensity constraint (2.5). By

the method of Lagrange multipliers, the optimizer satisfies the following system

of equations:

(
BT +B − λK(α)

)
u = −c (2.9a)

‖u‖hα = W (α) (2.9b)

where λ is a lagrange multiplier and K(α) = diag(k2α
1 , . . . , k2α

N−1). The general

local-in-time strategy is to minimize the (n + 1)th time derivative of ‖θ(t)‖h−1 if

the control u does not affect the 1st through nth derivatives. We will soon return

to the local-in-time strategy when applying it in sections 2.5 and 2.6.

2.4 Global-in-time optimization

Let’s explore the global-in-time strategy which optimizes mixing at the end

time rather than instantaneously. In this case we wish to solve the following
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global-in-time optimization problem: at some final time T > 0 find

min
u
‖θ(T )‖2

h−1 (2.10)

subject to the time averaged intensity constraint 1
T

∫ T
0
‖u(t)‖2

hα dt = [W (α)]2. To-

ward this end we introduce the augmented Lagrangian

L{θ, u, φ, µ} =
1

2

∑
n=1

θ2
n(T )

k2
n

+

T∫
0

{∑
n=1

φn

(
kn−1un−1θn−1 − knunθn+1 − κk2

nθn − θ̇n
)

+
µ

2

(∑
n=1

k2α
n u

2
n − [W (α)]2

)}
dt

where for truncated shell models the first two sums above run up to n = N while

the third terminates at N − 1. At extrema the first variations vanish with respect

to the variables θ, φ, u and µ:

δL
δθn(T )

= 0⇒ θn(T )

k2
n

− φn(T ) = 0 (2.11a)

δL
δθn

= 0⇒ φ̇n − kn−1un−1φn−1 + knunφn+1 − κ k2
nφn = 0 (2.11b)

δL
δφn

= 0⇒ θ̇n − kn−1un−1θn−1 + knunθn+1 + κ k2
nθn = 0 (2.11c)

δL
δun

= 0⇒ knφn+1θn − knφnθn+1 + µk2α
n un = 0 (2.11d)

δL
δµ

= 0⇒ 1

T

T∫
0

‖u(t)‖2
hα dt− [W (α)]2 = 0 (2.11e)

Thus, (2.11) holds true for all extrema of the augmented Lagrangian and therefore

gives necessary conditions for a global optimizer.

For the non-diffusive case, an explicit calculation of the time derivative of
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‖u(t)‖hα reveals that ‖u(t)‖hα is conserved for an optimal trajectory by making

use of (2.11) as done in Appendix A.3. This is interesting, since we only demanded

that the time-average of stirring strength be fixed and equal toW (α). An analogous

statement holds in the context of the partial differential equation as well (see

Chapter IV) which is an extension of the results first demonstrated by Mathew

et al [31]. The theory developed here will be applied to various cases in the next

two sections.

2.5 Mixing without diffusion

We will first consider the local-in-time strategy starting from the most un-

mixed state. Then we study the three-shell truncated model which demonstrates

the difference between local-in-time and global-in-time strategies. Lastly before

introducing diffusion, we will show that the key features of global-in-time opti-

mization shown in three-shell truncated model carry over naturally to models with

a larger number of shells.

2.5.1 Local-in-time strategy for infinite system

Consider the enstrophy-constrained case and start the infinite system with the

most unmixed possible state, θ(0) = (1, 0, 0 . . . )T . The local-in-time strategy uses

each component of the control vector u sequentially and in a piecewise fashion

over time. We segment time into intervals, [tn, tn+1], of equal duration where

tn = τ(n−1)π
2

is the time when the state vector is entirely in the nth shell (θn = 1

and θm 6=n = 0). More precisely for t ∈ [tn, tn+1], the optimal control is un = 1
τkn

and um 6=n = 0 while the state vector is given by θn(t) = cos((t − tn)/τ) and

θn+1(t) = sin((t− tn)/τ) and all other components of θ are identically zero. The
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local-in-time strategy is shown graphically in figure 2.1. We find that the mix-

norm evaluated at times tn falls off exponentially; Given that ‖θ(tn)‖2
h−1 = 1

2k2n
=

1
2 22n−2 and using the relation tn = τ(n−1)π

2
, we find that

‖θ(tn)‖h−1 = ‖θ(0)‖h−1 exp(− log(2)tn/πτ). (2.12)

We highlight that this exponential decay agrees qualitatively with known results

on the mixing rate with the enstrophy constraint [24, 40, 28, 1, 49]. In fact it

can be shown definitively that the mix-norm decays no faster than exponentially.

More precisely, (see Appendix A.1 for derivation)

‖θ(t)‖h−1 ≥ ‖θ(0)‖h−1 exp

(
− 3t

2τ

)
(2.13)

for every stirring strategy. The local-in-time strategy is illustrated in figure 2.1

and compared to this bound (2.13).

For the energy-constrained case, we again segment time into intervals [tn, tn+1]

which are geometrically decreasing in duration where the times tn are defined by

tn+1 = tn + ∆tn, t1 = 0, and ∆tn = π
2Ukn

. During each interval [tn, tn+1], the

control is given by un = U and um6=n = 0 while the state vector is given by

θn(t) = cos(knU(t − tn)) and θn+1(t) = sin(knU(t − tn)). Therefore the solution

is similar to the enstrophy-constrained case except now the intervals are shrink-

ing at a geometric rate. Thus the mix-norm goes to zero (limn→∞ ‖θ(tn)‖h−1 =

limn→∞
1
kn

= 0) in finite time since

(t∞ ≡) lim
n→∞

tn =
∞∑
n=1

∆τn =
π

2k0U
. (2.14)

Note that if the entire concentration starts in the mth shell (θ(0) = em), then
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t∞ becomes the partial sum t∞ =
∑∞

n=m ∆τn. Once more we get qualitative

agreement with known results from fluid mixing. Lunasin et al [30] showed that

perfect mixing in finite time for a simple binary distribution with fixed energy is

indeed possible.

We also obtain a lower bound for the energy-constrained case: (see derivation

in Appendix A.2)

‖θ(t)‖h−1 ≥ ‖θ(0)‖h−1(1− t/tc) (2.15)

where tc = 2
3U

‖θ(0)‖h−1

‖θ(0)‖l2
. Figure 2.1 shows the local-in-time strategy for this case

compared to the bound (2.15) shown above.

In either constraint, the state vector moves from plane to plane. The state

vector first rotates in the θ1-θ2 plane from the θ1 axis to the θ2 axis and then

rotates in the θ2-θ3 plane from the θ2 axis to the θ3 axis and so forth. Note

that for this particular initial condition, the analysis holds for N -shell truncated

models and the above strategy holds for times t < tN . When t = tN , the state

vector has reached the final shell and it is no longer possible to decrease the mix-

norm any further. Note that the local-in-time strategy behaves somewhat like a

discrete analog to the self-similar strategies [1, 49] found in the continuous partial

differential equation problem since the same transformation is applied sequentially

at piecewise time intervals at smaller and smaller scales.
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Figure 2.1:
Local-in-time strategy without diffusion starting initially from the
most unmixed state. The entrophy-constrained case ( 1

τ
= 1) is shown

on the left subplots where (A) shows the state, (B) shows the control,
and (C) shows the mix-norm. The energy-constrained case (U = 1)
is shown on the right subplots where (D) shows the state, (E) shows
the control, and (F) shows the mix-norm.

2.5.2 Global-in-time strategy for 3-shell truncated model with enstro-

phy constraint

The diffusionless 3-shell truncated model, given by


θ̇1

θ̇2

θ̇3

 =


0 −k1u1 0

k1u1 0 −k2u2

0 k2u2 0


︸ ︷︷ ︸

≡A(t)


θ1

θ2

θ3

 , (2.16)
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is the simplest reduced model that retains many interesting features of the full

infinite system. From the last section, we know that the local-in-time strategy is

to move along planes one by one. This holds for the 3-shell truncated model as

well.

Now, let us determine how you can improve upon the local-in-time strategy

by considering the global-in-time strategy. We would like to minimize ‖θ(T )‖2
h−1

subject to the enstrophy constraint, 1
T

∫ T
0
‖u(t)‖2

h1dt = 1
τ2
. It is shown in Appendix

A.4 that the solution to (2.11) for N = 3 has the following form:

k1u1 =
1

τ
cos(ωt) and k2u2 =

1

τ
sin(ωt) (2.17)

where ω is a real number left to be determined. To help determine the solution to

(2.16) given this optimal control (2.17), we decompose A as A = k2u2Sx+k1u1Sz =

B ·S where B = [k2u2, 0, k1u1] and S = [Sx, Sy, Sz] whose elements are a common

choice of basis for so(3) given by

Sx =


0 0 0

0 0 −1

0 1 0

 Sy =


0 0 1

0 0 0

−1 0 0

 Sz =


0 −1 0

1 0 0

0 0 0

 .

Notice that these elements satisfy the following commutation relations: [Sx, Sy] =

Sz, [Sy, Sz] = Sx, and [Sz, Sx] = Sy. Given the above reformulation, we arrive at

d

dt
θ = B · S θ (2.18)

which is similar to the Schrödinger equation for a magnetic field-spin interaction.

In this view the optimal solution behaves like a rotating magnetic field as seen in
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nuclear magnetic resonance. As a result this system ‘maps’ to a two-state spin

system coupled with a driven oscillatory magnetic field [17, 41, 39]. We adapt

well-known techniques [38] from this area to arrive at the solution (see Appendix

A.5)

θ(t) = exp(ωtSy) exp

(
−ωtSy +

t

τ
Sz

)
θ(0) (2.19)

or rewritten as [2]

θ(ω, τ, t) =


cos(ωt) cos(νt) + ω

ν
sin(ωt) sin(νt)

1
ντ

sin(νt)

− sin(ωt) cos(νt) + ω
ν

cos(ωt) sin(νt)

 (2.20)

where ν =
√
ω2 + 1

τ2
. Given the end condition φn(T ) = θn(T )/k2

n and the opti-

mality condition (2.11d), we arrive at the system of nonlinear equations:

F1 (ω, µ; τ, T ) ≡ µ
T

τ
cos(ωT )−

(
1

k2
1

− 1

k2
2

)
θ1 (ω, τ, T ) θ2 (ω, τ, T ) = 0 (2.21a)

F2 (ω, µ; τ, T ) ≡ µ
T

τ
sin(ωT )−

(
1

k2
2

− 1

k2
3

)
θ2 (ω, τ, T ) θ3 (ω, τ, T ) = 0. (2.21b)

Using parameters 1/τ = 2 and T = 1, we numerically computed ω ≈ 1.249

from (2.21). Thus, (2.17) and (2.20) are known functions of time. With these

parameters, the local-in-time and global-in-time trajectories evolve on a sphere

with a radius defined by ‖θ(0)‖l2 in θ-state space. And, the global-in-time strategy

‘takes a shortcut’ past the θ2 axis relative to the local-in-time strategy as shown

in figure 2.2. This short-cutting feature generalizes to truncated shell models with

larger N as shown in the next section.
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Figure 2.2:
Global-in-time and local-in-time trajectories for 3-shell model with
1
τ

= 2 and T = 1 confined to a sphere with a radius given by the
conserved quantity ‖θ‖l2 . The color indicates the degree of mixing
quantified by the mix-norm ‖θ‖h−1 .

When 1
τ

= 1
τ∗ ≡

√
3π

2T
, the optimal control is given by

k1u1 =
1

τ ∗
cos(ω∗t) k2u2 =

1

τ ∗
sin(ω∗t). (2.22)

where ω∗ = π
2T

. (2.22) satisfies the budget constraint. This form is again the same

as (2.17) and therefore the state vector solution is given by (2.20) with 1
τ

= 1
τ∗

and ω = ω∗. By evaluating (2.20) at t = T , we find that θ(T ) = (0, 0, 1)T which is

the most mixed state. Therefore the proposed control (2.22) is a global optimum.

The parameter regime with 1
τ
> 1

τ∗ is not of interest since this corresponds to

having excess budget. To handle this situation, introduce an inequality rather

than equality in our budget constraint. If this change is made, (2.22) would be

the optimal solution for all values 1
τ
> 1

τ∗ .
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2.5.3 Global-in-time strategy for N-shell truncated models

Figure 2.3:
Global-in-time strategy applied to the 6-shell truncated model starting
initially from the most unmixed state. The entrophy-constrained case
( 1
τ

= 1, T = 3.77) is shown on the left subplots where (A) shows
the state, (B) shows the control, and (C) shows the mix-norm. The
energy-constrained case (U = 1, T = 2.06) is shown on the right
subplots where (D) shows the state, (E) shows the control, and (F)
shows the mix-norm.

It is uncertain if an analytic solution can be found for arbitrary shell truncation

number N and constraint type (enstrophy or energy). However, it is possible to

solve the general case numerically by using a gradient-based method (classical

gradient descent adapted to converge to a saddle point rather than a minimum).
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The algorithm begins with an initial guess for u(t) = u(0)(t) and µ = µ(0). Given

u, we numerically integrate (2.11c) forward in time to determine θ(t). We then use

the terminal condition φn(T ) = θn(T )
k2n

to provide an ‘initial’ condition for φ when

evolving (2.11b) backwards in time. We relax the optimality condition (2.11d)

and budget constraint (2.11e). Our update rules for u(k) and µ(k) are given by

u(k+1)
n = u(k)

n − νu
δL
δun

(2.23)

µ(k+1) = µ(k) + νµ
δL
δµn

(2.24)

where

δL
δun

= knφn+1θn − knφnθn+1 + µk2α
n un (2.25)

δL
δµ

=
1

T

T∫
0

‖u‖hαdt− [W (α)]2. (2.26)

Our convergence criteria is given by

∥∥∥∥ δLδun
∥∥∥∥
l∞
< δ and

∣∣∣∣δLδµ
∣∣∣∣ < δ

where both inequalities above must be true to deem convergence with tolerance

δ.

Using this method, we computed the optimal solution for the 6-shell truncated

model. We choose 1
τ

= 1 for the enstrophy-constrained case and U = 1 for the

energy-constrained case. Both cases are shown in figure 2.3 – this should be

compared with the local-in-time strategy for both constraint types. The rate

of mixing with the global-in-time strategy shows improvement over local-in-time
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strategy in both the enstrophy and energy constrained cases. As first seen in

3-shell truncated model, we again see the ‘short-cutting’ feature where the state

vector never visits a θn axis as seen in the local-in-time case. Although we only

show the case for N = 6 as an example, this feature was observed for larger values

of N . Figure 2.3 also shows how the mix-norm over time compares to the lower

bounds derived in Appendices A.1 and A.2.

2.6 Mixing with diffusion

In this section, we will see how diffusion affects the dynamics. One key char-

acteristic is that the quantity ‖θ‖l2 is no longer conserved as shown clearly by the

relation (2.2) with positive κ.
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Figure 2.4:
Local-in-time optimal strategy with diffusion (κ = 0.01) and fixed
enstrophy (1/τ = 1). The state trajectory is indicated in red and the
normalized eigenvectors are purple. The fixed point at the origin is a
stable spiral for low values of n and becomes a stable node when n is
greater than 4.

We again consider the same initial condition and local-in-time optimization
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Figure 2.5:
Local-in-time strategy with diffusion (κ = 0.01) starting initially from
the most unmixed state. The entrophy-constrained case ( 1

τ
= 1) is

shown on the left subplots where (A) shows the state, (B) shows the
control, and (C) shows the mix-norm. The energy-constrained case
(U = 1) is shown on the right subplots where (D) shows the state, (E)
shows the control, and (F) shows the mix-norm. Lower bounds from
applying Theorem 2 in Appendix A.6 are also shown in subplots (C)
and (F).

problem seen in 2.5.1. Recall that the initial state is the most umixed state,

θ(0) = (1, 0, 0, . . . )T . We deal with the generalized constraint (2.5) parameterized

by α. By employing results from the section 2.3, the optimal strategy is to initially

use u1 = W (α)/kα1 with the other components of u set to zero. Thus, the motion

will initially be in the θ1-θ2 plane with the following reduced state equation
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d

dt

 θ1

θ2

 =

 −κk2
1 −k1u1

k1u1 −κk2
2


 θ1

θ2

 .

Once the state encounters the axis (0, 1, 0, 0, . . . )T , the optimal strategy will switch

to u2 = W (α)/kα2 until the state encounters the next axis (0, 0, 1, 0, 0 . . . )T . This

trend will continue as long as the state keeps visiting each axis. In general, the

motion is governed piecewise in time by the following state equation

d

dt

 θn

θn+1

 =

 −κk2
n −knun

knun −κk2
n+1


 θn

θn+1

 (2.27)

after visiting the nth axis where un = W (α)/kαn . The eigenvalue problem can be

solved to produce the eigenvalues,

λ± = −1

2
κ(k2

n+1 + k2
n)± 1

2
β(α)
n (2.28)

where β
(α)
n =

√
κ2(k2

n+1 − k2
n)2 − 4k

2(1−α)
n [W (α)]2, and eigenvectors, in the θn-θn+1

plane,

Θ± =

 1
2
κ(k2

n+1 − k2
n)± 1

2
β

(α)
n

k1−α
n W (α)

 . (2.29)

Define Θn(t) = (θn(t), θn+1(t))T . With the initial condition Θn(0) = (θ̄n, 0) where

θ̄n is the initial value of θn at the nth time interval, we obtain the solution

Θn(t) =
θ̄n

β
(α)
n

[
eλ+tΘ+ − eλ−tΘ−

]
. (2.30)

The fixed point at the origin is a stable spiral for low values of n. However,
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when

n > nc =
1

1 + α
log2

(
2W (α)

3κk1+α
0

)
, (2.31)

the origin transitions to a stable node. At this point, the trajectory cannot move

to the next plane since it must intercept the θn+1 axis to do so. Figure 2.4 shows

how the phase portrait changes with shell number n for the enstrophy-constrained

case. Figure 2.5 shows the local-in-time strategy for both the fixed enstrophy and

energy cases. In other words, it is no longer optimal to keep progressing to the

next shell. This result demonstrates that even the slightest degree of diffusion

prohibits the local-in-time strategy from performing perfect mixing in finite time

which was possible with the perfectly non-diffusive case (κ = 0).

After seeing how diffusion can drastically change the system behavior under

the local-in-time scheme, it is natural to ask “Is perfect mixing in finite time im-

possible?” For the enstrophy-constrained case, we apply Theorem 2 in Appendix

A.6 to the initial condition θ(0) = (1, 0, 0, . . . )T with κ = 0.01 and τ = 1. We find

the lower bound on the mix-norm,

‖∇−1θ(t)‖L2 ≥ A exp(r+t) (2.32)

where A = 0.0625 and r+ ≈ −2.69249. For the energy-constrained case with

identical parameters and initial condition, we have the lower bound,

‖∇−1θ(t)‖L2 ≥ A exp(r+t) (2.33)

where A = 0.007 and r+ ≈ −199.805. This shows that perfect mixing in finite

time is indeed impossible with diffusion.

For global-in-time optimization, we use the same numerical scheme detailed in
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Figure 2.6:
Global-in-time strategy applied to truncated shell model (N = 5) with
diffusion (κ = 0.01) starting initially from the most unmixed state.
The entrophy-constrained case ( 1

τ
= 1, T = π) is shown on the left

subplots where (A) shows the state, (B) shows the control, and (C)
shows the mix-norm. The energy-constrained case (U = 1, T = 0.8π)
is shown on the right subplots where (D) shows the state, (E) shows
the control, and (F) shows the mix-norm.

section 2.5.3 here with κ 6= 0 in equation (2.11). Figure 2.6 shows the numerical

solution for a truncated shell model with N = 5 and κ = 0.01. The global-in-time

strategy appears similar to that with non-diffusive situation in the sense that we

see the feature of ‘short-cutting’ relative to local-in-time strategy. We also notice

the expected overall decay of the l2 norm of θ. We see that the optimal control

no longer conserves energy or enstrophy with diffusion. Specifically, we see that

it is optimal to use more of the budget earlier on rather than later for both the

energy and enstrophy constrained cases.
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2.7 Discussion

We first focused on mixing without diffusion. The enstrophy-constrained local-

in-time strategy exhibited exponential decay while energy-constrained local-in-

time strategy showed linear decay — and hence perfect mixing in finite time.

We obtained an analytic solution to the global-in-time optimization problem of

the 3-shell truncated model by using methods from nuclear magnetic resonance.

The global-in-time strategy applied to the 3-shell truncated model showed an

improvement on the mixing rate relative to that of the local-in-time strategy by

using a short-cutting method (illustrated in figure 2.2). This short-cutting feature

generalized to models with higher truncation number N . We were surprised to

find that it is optimal to use the (energy or enstrophy) budget uniformly in time

(rather than consuming more budget earlier than later or vice versa). This is

consistent with the work of Mathew et al. [31] that demonstrated this feature in

the partial differential equation context.

Mixing with diffusion was explored and demonstrated interesting effects. Per-

fect mixing in finite time for the local-in-time strategy, while constraining either

energy or enstrophy, becomes impossible (recall that it was at least possible for

the energy-constrained case without diffusion). The local-in-time dynamics were

restricted to θn-θn+1 planes piecewise in time similar to that of the local-in-time

strategy seen without diffusion. As the state vector progressed to θn-θn+1 planes

of larger n, the diffusive terms progressively dominate over the advective terms in

our shell model. Thus, a plane is eventually reached where it is no longer advan-

tageous to progress to the next plane. This suggests that we have succeeded at

mixing to a length scale where diffusion can then take over. For energy-constrained
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flow, this length scale is

lu =
3

2
κ/U. (2.34)

For the enstrophy-constrained case, this length scale is

lτ =

√
3

2
κτ (2.35)

which is naturally interpreted as the Batchelor length scale in turbulent mixing

theory [12, 23, 42, 4, 7, 35]. In fact, (2.35) has the same scaling in molecular

diffusivity κ and rate-of-strain 1/τ as the turbulent theory type. Local-in-time

optimization may suggest that we should mix the tracer concentration until we

arrive at these small critical length scales.

But, how should one use a flow intensity budget over time during this approach

to small scales? For this, we turn to global-in-time optimization. Recall that

global-in-time optimization without diffusion revealed that it is optimal to use

your budget uniformly in time. We find however that this is no longer the case

with diffusion. It is optimal to use more of the (energy or enstrophy) budget

earlier than later. Therefore, this suggests that budget use is more effective at

larger scales away from the Batchelor length scale.

These observations prompt the following questions: “Will diffusion always

dominate advection eventually?” and “If so, does this mean that perfect mixing

in finite time is impossible?” We showed in Appendix A.6 that perfect mixing in

finite time is indeed impossible for the enstrophy and energy local-in-time con-

straints by producing exponential lower bounds on the mix-norm in both cases.

In conclusion the developed shell model preserves many known features of the

partial differential equation problem. For instance, the shell model performed
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Figure 2.7:
The mix-norm over time for the local-in-time (same data from figure
2.1) and global-in-time (same data from figure 2.3) strategies applied
to the 6-shell truncated shell model without diffusion. The initial con-
dition is θ(0) = e1. The left plot (A) shows the enstrophy-constrained
case with τ = 1 and the right plot (B) shows the energy-constrained
case with U = 1.

Figure 2.8:
The mix-norm over time for the local-in-time (same data from figure
2.5) and global-in-time (same data from figure 2.6) strategies applied
to the 5-shell truncated shell model with diffusion. The initial condi-
tion is θ(0) = e1. The left plot (A) shows the enstrophy-constrained
case with τ = 1 and the right plot (B) shows the energy-constrained
case with U = 1.

perfect mixing in finite time without diffusion and with an energy constraint

(Lunasin et al. [30]), and showed exponential mix-norm decay without diffusion
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Figure 2.9:
The possibility of perfect mixing in finite time with energy constraint
‖u‖L2 = U and diffusion constant κ.

and with an enstrophy constraint (Seis [40] and Iyer et al. [24]). For the case with

diffusion in the partial differential equation setting, it remains to be shown that

exponential bounds on the mix-norm exist (as it was shown for the shell model)

with L2 norm constraints. However for the L∞ extensions of these constraints,

strictly positive lower bounds on the mix-norm can be derived by extending the

analysis of Poon [37]. This rules out the possibility of perfect mixing in finite time

for this situation (and will be discussed further in the next chapter).

Like any reduced model, there are limitations. Some of the bound estimates

obtained rely on series inequalities where their integral analogs do not hold (i.e.

for series, we have
∑

n anbn ≤
∑

n an
∑

m bm for an, bn > 0; while for integrals, the

analogous expression
∫
f(x)g(x)dx is not less than

∫
f(x)dx

∫
g(x)dx for f, g > 0

in general). Dimensional effects such as incompressibility or integrating volume

factors originating in Fourier transforms are neglected.

Nevertheless, we were able to obtain insights into mixing and arrive at the

following answers, in the context of the shell model, to the questions 1 and 2

presented in the introduction:

1. Global-in-time performed slightly better than local-in-time with and without
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diffusion (See figures 4.5 and 2.8).

2. Without diffusion it is optimal to use a stirring budget uniformly in time;

with diffusion it is optimal to expend more of the stirring budget earlier than

later.

In fact, it is optimal to use a stirring budget uniformly in time also in partial

differential equation context without diffusion (see Chapter IV). We surmise that

the other conclusions hold true in this setting as well.

Furthermore, we found that perfect mixing in finite time is impossible for

the enstrophy constraint ‖u(t)‖h1 = 1
τ

for all values of rate-of-strain 1
τ
≥ 0 and

κ ≥ 0. As for the energy-constraint ‖u(t)‖l2 = U , perfect mixing in finite time

is impossible for most of the U -κ parameter space (see figure 2.9) except for the

singular case of κ = 0 and U ≥ 2
3T

‖∇−1θ(0)‖L2

‖θ(0)‖L2
that was realized by the local-in-time

strategy. Therefore perfect mixing in finite time is a phenomena confined to pure

advection (κ = 0).

37



CHAPTER III

Local-in-time optimization 1

3.1 Introduction

In this chapter, we make progress towards answering “What is the most opti-

mal mixing rate in the presence of diffusion for an enstrophy or energy constrained

flow?” This question was also asked in the context of the shell model. We would

like to determine if the predictions of the shell model hold in the partial differential

equation setting.

We approach the posed question by considering the general setup, introduced

in the introduction chapter, of the evolution of passive scalar in a periodic box.

We consider the local-in-time optimization problem introduced by Z. Lin et al.

[28] in context of pure advection. We now study this optimization problem with

the inclusion of diffusion. Local-in-time optimization seeks to find the optimal

flow that achieves the best instantaneous mixing rate. We will see that the best

choice leads to a u that depends on θ. This feedback causes the dynamics of θ

governed by (1.1) to be nonlinear.

We will demonstrate that homogenization via diffusion and filamentation via

1The content of this chapter is included within a journal article accepted for publication in
Nonlinearity [34].
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advection can sometimes be in conflict and collectively produce a negative impact

on mixing. We show numerical evidence that filamentation length scale appears

to be limited by the Batchelor scale as seen in the shell model. Even when actively

trying to choose the most optimal flow to enhance filamentation. Thus, this may

suggest that the Batchelor scale does not only limit turbulent flows but also all

incompressible flows under the flow constraints considered here. Although these

quantities have been known in the context of turbulence theory, the impact of

these limitations on mixing rates has not been fully studied to our knowledge.

The chapter is organized as follows. We introduce the necessary theory regard-

ing local-in-time optimization, a shell model, and L∞ flow constraints in section

3.2. Section 3.3 details the methodology and results of numerically implementing

local-in-time flow optimization. Lastly, we finish with a discussion and conclusion

in sections 3.4 and 3.5 respectively.

3.2 Theory

3.2.1 Local-in-time flow optimization

We will consider the evolution of a tracer quantity θ governed by equation 1.1

under an the incompressible flow u. Recall the flow is constrained by enstrophy

‖∇u‖L2 = ΓLd/2 or energy ‖u‖L2 = ULd/2 where Γ is the root mean square

rate-of-strain and U is the root mean square speed.

For the enstrophy-bounded flow problem, we choose the same length scale

L, the velocity scale LΓ, and the time scale 1/Γ. For the energy-bounded flow

problem, we non-dimensionalize the system by choosing L as the length scale,

U as the velocity scale, and L/U as the time scale. Both scalings produce the
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following form of the advection-diffusion equation,

∂tθ + u · ∇θ =
1

Pe
∆θ, (3.1)

where Pe = ΓL2

κ
for the enstrophy-constrained case and Pe = UL

κ
for the energy-

constrained case. The non-dimensional flow constraints become ‖∇u‖L2 = 1 or

‖u‖L2 = 1.

We consider the local-in-time optimization strategy first introduced by Lin et

al. [28] in the case without diffusion. We find that this strategy generalizes to the

case with diffusion. The local-in-time optimal velocity fields maximize the instan-

taneous mixing rate by minimizing d
dt
‖∇−1θ‖2

L2 . We highlight that local-in-time

optimization is not the same as global-in-time or finite-time optimization where

the objective is to minimize ‖θ( · , T )‖H−1 at the final time T . These objectives

generally produce different results. In the context of the shell model, however,

these strategies yielded similar decay rates. The differences between these two

objectives under the evolution of (3.1) will be the focus of the next chapter and

future study.

The optimal velocity fields are given instantaneously for the enstrophy case by

(in non-dimensional form)

u =
−∆−1P(θ∇∆−1θ)

〈|∇−1P(θ∇∆−1θ)|2〉1/2 (3.2)

and for the energy case by

u =
P(θ∇∆−1θ)

〈|P(θ∇∆−1θ)|2〉1/2 (3.3)

where P is the Leray divergence-free projector given by P(v) = v −∇∆−1(∇ · v)
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and 〈·〉 is the spatial average. These flows will be studied numerically later and

is the main focus of this chapter.

We introduce the following measures as useful observables of mixing over time.

we use the H−1 norm to define the (exponential) rate of mixing as

r(t) = −
d
dt
‖∇−1θ‖L2

‖∇−1θ‖L2

. (3.4)

We define the following ratio as a measure of the characteristic filamentation

length scale:

λ(t) ≡ 2π
‖∇−1θ( · , t)‖L2

‖θ( · , t)‖L2

. (3.5)

Note that if the tracer concentration field is composed of only one Fourier mode

with wave number k (i.e. θ(x, t) = Re[Ae−ik·x] where A is a complex constant),

then λ(t) returns the wavelength of the wave number k. In general, λ is the

weighted root mean square wavelength with weights given by |θk|2/‖θ‖2
L2 .

3.2.2 Shell model predictions of local-in-time optimization

The shell model is a model that mimics the spectral dynamics present in

the advection-diffusion equation. The model consists of a system of ordinary

differential equations with nearest-neighbour coupling between ‘shells’ in wave

number space. [33] performed local-in-time mixing optimization in this model.

The shell-model analysis predicts a limiting length scale given by the Batchelor

scale, ΛΓ =
√

κ
Γ

and its generalization ΛU = U
κ

. The non-dimensional versions are

given by λΓ = 1√
Pe

and λU = 1
Pe

. From here forward, we will refer to the Batchelor

scale to mean either λΓ or its generalization λU . The predicted long-term rates

(after reaching the Batchelor scale) are given by RΓ = κ/λ2
Γ and RU = κ/λ2

U . The

non-dimensional versions are given by rΓ = 1 and rU = Pe.
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3.2.3 Bounds for L∞ constrained flows

We now consider a subset of L2 constrained flows — those belonging to L∞.

In this restricted setting the rate-of-strain and speed are bounded point-wise uni-

formly in space and time rather than demanding that they merely be L2 integrable

as before. Similar analysis of what follows has been attempted in the context of

L2 constrained flows, but without success, and appears to be challenging. Thus,

we focus on these restricted L∞ constrained subsets of flows where we have been

successful at determining bounds on λ and measures of mixing.

3.2.3.1 Results for ‖∇u‖L∞ = 1

From (3.1), we find

1

(2π)2

dλ2

dt
=

2

Pe

[‖∇θ‖2
L2‖∇−1θ‖2

L2

‖θ‖4
L2

− 1

]
+ 2

∫
D
∇−1θ · ∇u · ∇−1θ ddx

‖θ‖2
L2

and by Hölder’s inequality, we deduce

1

(2π)2

dλ2

dt
≥ 2

Pe

[‖∇θ‖2
L2‖∇−1θ‖2

L2

‖θ‖4
L2

− 1

]
− 2

(2π)2
λ2.

This establishes a lower bound on λ at each instant: by apply Grönwall’s inequality

and the fact that the bracketed term is greater than or equal to zero, it follows

that

λ(t) ≥ λ(0)e−t. (3.6)
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Furthermore,

d

dt

(‖∇θ‖2
L2

‖θ‖2
L2

)
=
‖θ‖2

L2
d
dt
‖∇θ‖2

L2−‖∇θ‖2L2
d
dt
‖θ‖2

L2

‖θ‖4
L2

=
−2

∫
D∇θ·∇u·∇θ ddx− 2

Pe
‖∆θ‖2

L2

‖θ‖2
L2

+ 2
Pe

‖∇θ‖4
L2

‖θ‖4
L2

= − 2
Pe

(‖∆θ‖2
L2

‖θ‖2
L2
− ‖∇θ‖

4
L2

‖θ‖4
L2

)
− 2

∫
D∇θ·∇u·∇θ ddx

‖θ‖2
L2

≤ 2
‖∇θ‖2

L2

‖θ‖2
L2

and using d
dt
‖θ‖2

L2 = − 2
Pe
‖∇θ‖2

L2 , it follows that

‖θ‖L2 ≥ ‖θ0‖L2 exp

[
− 1

2Pe

‖∇θ0‖2
L2

‖θ0‖2
L2

(
e2t − 1

)]
. (3.7)

Using this with (3.6), we deduce the double exponential lower bound

‖∇−1θ‖L2 ≥ ‖∇−1θ0‖L2 exp

[
−t− 1

2Pe

‖∇θ0‖2
L2

‖θ0‖2
L2

(
e2t − 1

)]
. (3.8)

Therefore, perfect mixing in finite time is impossible for bounded rate-of-strain

flows.

3.2.3.2 Results for ‖u‖L∞ = 1

Here we follow and refine an analysis of Poon [37] to show that the presence

of diffusion also rules out perfect mixing in finite time for bounded velocity flows

as well. First note that

‖∇θ‖2
L2 = −2

∫
D

θ∆θ ddx

= Pe

∫
D

θ

(
∂tθ −

1

Pe
∆θ

)
ddx− Pe

∫
D

θ

(
∂tθ +

1

Pe
∆θ

)
ddx,

43



d

dt
‖θ‖2

L2 = 2

∫
D

θ∂tθ d
dx

=

∫
D

θ

(
∂tθ −

1

Pe
∆θ

)
ddx +

∫
D

θ

(
∂tθ +

1

Pe
∆θ

)
ddx,

and

d

dt
‖∇θ‖2

L2 = −2

∫
D

∂tθ∆θ d
dx

= Pe

∫
D

(
∂tθ −

1

Pe
∆θ

)2

ddx− Pe
∫
D

(
∂tθ +

1

Pe
∆θ

)2

ddx.

Then simplify and compute:

d

dt

(‖∇θ‖2
L2

‖θ‖2
L2

)
=

1

‖θ‖4
L2

[
‖θ‖2

L2

d

dt
‖∇θ‖2

L2 − d

dt
‖θ‖2

L2‖∇θ‖2
L2

]
=

1

‖θ‖2
L2

[
Pe

∫
D

(
∂tθ −

1

Pe
∆θ

)2

ddx

−Pe
∫
D

(
∂tθ +

1

Pe
∆θ

)2

ddx

]

− 1

‖θ‖4
L2

[
Pe

∫
D

θ

(
∂tθ −

1

Pe
∆θ

)
ddx

2

−Pe

∫
D

θ

(
∂tθ +

1

Pe
∆θ

)
ddx

2 ]
.

Using Hölder’s inequality and (3.1), this simplifies to the observation originally

noted by Poon [37]:

d

dt

(‖∇θ‖2
L2

‖θ‖2
L2

)
≤ Pe

‖θ‖2
L2

∫
D

(u · ∇θ)2 ddx

 . (3.9)
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Now applying Hölder’s inequality again we have

d

dt

(‖∇θ‖2
L2

‖θ‖2
L2

)
≤ Pe

‖∇θ‖2
L2

‖θ‖2
L2

(3.10)

and thus

‖∇θ‖L2

‖θ‖L2

≤ ‖∇θ0‖L2

‖θ0‖L2

exp

(
Pe

2
t

)
.

The inequality ‖∇θ‖L2‖∇−1θ‖L2 ≥ ‖θ‖2
L2 then ensures that

λ(t) ≥ 2π
‖θ0‖L2

‖∇θ0‖L2

exp

(
−Pe

2
t

)
. (3.11)

Using (3.10) together with d
dt
‖θ‖2

L2 = − 2
Pe
‖∇θ‖2

L2 we observe that

‖θ‖L2 ≥ ‖θ0‖L2 exp

[
− 1

Pe2

‖∇θ0‖2
L2

‖θ0‖2
L2

(
ePe t − 1

)]

and this combined with (3.11) implies another (distinct) double exponential

‖∇−1θ‖L2 ≥ ‖θ0‖2
L2

‖∇θ0‖L2

exp

[
−Pe

2
t− 1

Pe2

‖∇θ0‖2
L2

‖θ0‖2
L2

(
ePe t − 1

)]
. (3.12)

3.3 Numerical experiment: local-in-time optimization

3.3.1 Methodology

We solve (3.1) with either flow (3.2) or (3.3) by using a Fourier basis to repre-

sent the discretized spatial domain with a 4th order Runge-Kutta time-stepping

method. We slightly perturb the concentration field θ0(x) = sin(2πx/L) by evolv-

ing the field according to (3) with a steady sin flow given by u(x) = sin(2πy/L)x̂

for a time duration of 0.01. The concentration field, resulting from this short time
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integration, is then used as an initial condition for the local-in-time optimization

scheme. This perturbation is necessary since the denominator is zero in both

expressions (4) and (5) for pure Fourier modes such as θ0 [2]. The number of

Fourier modes is chosen large enough to resolve the spatial resolution and give by

the following criteria N = min
[
2ceil(log2(4(M−1)+6)), 512

]
where M = L/(0.25λB)

and λB is the appropriate Batchelor scale; The choice of N = 2ceil(log2(4(M−1)+6))

is suggested as a rule-of-thumb by Ref. [6]. The cap of 512 is suitable for the

range of Pe values considered — the Batchelor wavenumber kB = 2π/λB is well

within the range of Fourier modes present even after considering 2/3 dealiasing.

The time step is chosen by the CFL condition dt = 0.25 min [L/(UN), L2/(κN2)]

for the enstrophy-constrained case and dt = 0.25 min [1/(ΓN), L2/(κN2)] for the

energy-constrained case. All simulation code was created in the programming

language Python with package modules, pyfftw and numpy. The code is provided

in Appendix B.

3.3.2 Results

We now investigate the mixing performance under the local-in-time optimal

flows. Figure 3.1 and 3.2 show how the different mixing measures (H−1, L2, and

H1 norms) vary in time for different values of Pe for the enstrophy and energy

constrained cases respectively. Notice how the long-term mixing rate appears to

be exponential for all three mixing measures. This exponential rate is consistent

with shell model predictions, yet weaker than the double-exponential decay rate

derived by the L∞ constrained flow analysis.

Figure 3.3 shows the evolution of a scalar field under the optimal flow for

the enstrophy constraint. The top film strip corresponds to Pe = ∞ while the

bottom is Pe = 256. The time evolution is initially similar but soon diverges over
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Figure 3.1:
H−1, L2, and H1 norms of the concentration field under the optimal
enstrophy-constrained flow.
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Figure 3.2:
H−1, L2, and H1 norms of the concentration field under the optimal
energy-constrained flow.

t = 0.00 t = 1.82 t = 3.77 t = 5.59 t = 7.40 t = 9.22 t = 11.17 t = 13.00

Figure 3.3:
Local-in-time optimization with enstrophy constraint. Top filmstrip
is for Pe =∞ and the bottom filmstrip is Pe = 2048. Note that the
grey-scale for the Pe = ∞ is constant in time while it is adjusted to
show the tracer concentration structure in the finite Pe case.
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t = 0.00 t = 0.11 t = 0.22 t = 0.32 t = 0.43 t = 0.54 t = 0.65 t = 0.75

Figure 3.4:
Local-in-time optimization with energy constraint. Top filmstrip is
for Pe = ∞ and the bottom filmstrip is Pe = 32. Note that the
grey-scale for the Pe = ∞ is constant in time while it is adjusted to
show the tracer concentration structure in the finite Pe case. The
numerical computation is truncated at time t = 0.34 due to length
scales rapidly decreasing past the grid size resolution immediately af-
ter t = 0.34. Fixed energy constrained flows that produce infinites-
imally small lengths in finite time have been constructed [30]. We
suspect that the same phenomena may be occurring here.
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Figure 3.5:
The left subplot shows the filament length λ over time subject to the
optimal enstrophy-constrained flow. The right subplot is the same
data except scaled: λ(t)/λΓ = λ(t)

√
Pe.
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Figure 3.6:
The left subplot shows the filament length λ over time subject to the
optimal energy-constrained flow. The right subplot is the same data
except scaled: λ(t)/λU = λ(t)Pe.
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Figure 3.7:
Mixing rate r(t) over time when subject to the optimal enstrophy-
constrained flow.

time. Figure 3.4 shows the evolution for the energy constraint. The top film strip

corresponds to Pe = ∞ while the bottom is Pe = 32. Notice that, unlike the

Pe = ∞ cases, the flows with finite Pe are incapable of creating length scales

arbitrarily small for either the energy or enstrophy cases. The left subplot of

Figures 3.5 and 3.6 shows this phenomena more quantitatively by showing λ over

time eventually reaching a plateau. The shell-model prediction of this limiting

length scale is the Batchelor scale given by λΓ = 1/
√
Pe for the enstrophy case

and λU = 1/Pe for the energy case. The right plots of Figures 3.5 and 3.6

shows scaled versions of λ given by λ/λΓ and λ/λU respectively. Notice how

they plateau around an O(1) constant. Thus this result is consistent with the

shell-model predictions.

The mixing rates for the enstrophy case are shown in Figure 3.7. The rate
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Figure 3.8:
The left subplot shows the mixing rate r(t) over time when subject
to the optimal energy-constrained flow. The right subplot is the same
data except scaled: r(t)/rU = r(t)/Pe.
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during the transient phase is Γ which is consistent with rates expected from Pe =

∞ mixing studies. For all Pe considered, there is an increase in the rate of mixing

after transient behaviour has finished to a long-term rate. Perhaps surprisingly,

this long-term mixing rate appears to be independent of Pe for fixed enstrophy.

This suggests that the optimal long-term rate of mixing is only dependent on the

rate-of-strain Γ and not influenced by the strength of diffusion.

It should be noted that the onset of the long-term rate is affected by the value

of Pe. When there is strong diffusion (small Pe), the Batchelor scale is reached

quickly. From the work of G. Iyer et al. [24] and C. Seis [40], we know that λ

decreases at most exponentially for Pe =∞. If we assume that the local-in-time

optimal flows nearly saturate this bound in the transient phase, we model λ as

λ(t) = λ(0) exp(−αt) during this time. We expect the critical transition time tc

that marks the end of this transient period to satisfy λ(tc) = λΓ. This time is

theorized to be tc = 1
α

ln(λ(0)/λΓ) = 1
α

ln(
√
Pe) for Pe > 1 (If Pe ≤ 1, then

there is no transient phase). Hence, a smaller value of Pe will result in an earlier

onset of the long-term rate of mixing. Therefore, it is advantageous to have strong

diffusion (small Pe) so that there is an earlier onset of the long-term mixing rate

(although independent of Pe) which is an improvement over the mixing rate of

the purely non-diffusive situation (Pe =∞).

For the energy case, the long-term mixing rate decreases with decreasing Pe

(see the left subplot of figure 3.8). Thus, strong diffusion results in a weak long-

term mixing rate. The right subplot of Figure 3.8 is r/rU = r/Pe. We see

oscillations of r/rU around a value that is O(1) which indicates that our numerical

results are consistent with our predictions from the shell model. Thus, the long-

term mixing rate is proportional to Pe in contrast to the long-term mixing rate

of enstrophy which carries no dependence on Pe.
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For the energy case, the onset of the long run-mixing behaviour can be deter-

mined by the following model. From the work of E. Lunasin et al. [30] on the

fixed energy case, λ(t) can decrease linearly in time to produce perfect mixing in

finite time. We model the transient phase as λ(t) = λ(0)(1 − βt). Therefore, we

theorize that the critical transition time is tc = 1
β
(1 − λU/λ(0)) = 1

β
(1 − 1/Pe)

with Pe > 1 (If Pe ≤ 1, there is no transient phase) for the energy case. Thus,

it is true that one can still achieve an earlier onset of the long-term mixing be-

haviour by choosing a smaller Pe. However, an earlier onset time is accompanied

by a slower long-term mixing rate. As for choosing a large Pe, the onset time

is bounded above by 1
β

and results in a faster long-term mixing rate. Thus, it

is advantageous to have weak diffusion (large Pe) for mixing in the fixed energy

case. This benefit is well illustrated by H−1 norm in figure 3.2. Notice that the

mixing rate is initially slow for Pe = 512 but then out competes the mixing rate

of smaller values of Pe.

3.4 Discussion

The local-in-time optimization results suggest that there is a limiting length

scale for passive tracer mixing whenever L2 flows (either ‖u‖L2 or ‖∇u‖L2) are

instantaneously optimized to decrease the H−1 norm. The bounds derived under

both L∞ constrained flow assumptions did not result in proving this observation,

but they did definitively rule out the possibility of perfect mixing in finite time

for these L∞ flow constraints.

We suspect that the bounds obtained for L∞ flows are not sharp and could

be improved further. The L∞ flow analysis produced a double-exponential lower

bound on theH−1 norm rather than exponential as possibly expected given the nu-
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merical results for local-in-time optimal L2 flows. The double-exponential bounds

arise from the use of exponential upper bounds on the quantity
‖∇θ‖L2

‖θ‖L2
in time for

both L∞ flow constraints considered. We surmise that in fact
‖∇θ‖L2

‖θ‖L2
< C (where

C is a constant) for all time t as suggested by the numerical results. If this is

true generally for the L∞ flows, then our previous analysis would demonstrate

that the H−1 norm is bounded below by a single exponential instead of a double

exponential.

Note that the pure diffusive case discussed in the introduction can always be

employed as a mixing strategy by simply not having a flow field at all (u = 0)

provided that the flow intensity constraints are generalized to inequalities such as

‖u‖ ≤ ULd/2 and ‖∇u‖ ≤ ΓLd/2. This is a valuable strategy if one is content

with mixing at a long-term rate of κk2
min where kmin = min{|k| : |θ̂k(0)| > 0}.

This may be advised in fact if kmin > 2π/λB. This may well be the most optimal

strategy. Invoking a flow may cause the lower wave number modes to become

‘populated’ and therefore may limit the mixing rate. It is important to keep this

simple strategy in mind when trying to rigorously prove bounds on the H−1 norm.

This strategy has an important implication — there does not exist a lower bound

on the H−1 norm of the form ‖∇−1θ‖L2 ≥ Ae−rt where r is independent of the

initial data.

In the next chapter and future work, we will consider the optimal control

problem with finite-time optimization to minimize the H−1 norm at the end time

rather than instantaneously attempting to minimize its decay rate. This might

lead to flows that can produce even smaller length scales. In Miles and Doer-

ing [33], finite-time optimization was explored in the context of the shell model

where it was found that global-in-time and local-in-time optimization appeared to

give similar mixing rates. For the shell model, however, the analysis was consis-
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tent with computation. In the partial differential equation case, the gap between

analysis and computation remains to be closed.

3.5 Conclusion

Our numerical study of local-in-time optimization suggests that there is a lim-

iting length scale, a generalized Batchelor length scale, which in turn determines

a long-term mixing “Batchelor rate”. In dimensional form, this Batchelor rate

was found to be proportional to Γ for the fixed enstrophy case and U2/κ for the

fixed energy case. These rates are consistent with those found in the context of

the shell model. Although the Batchelor scale has been a theorized lower bound

on the length scales present on turbulent flows, it has not been proven rigorously.

We hope this numerical study provides insight and promotes investigation into

mathematically proving what conditions are necessary on the flow for a length

scale limitation. This is especially important since it plays a crucial role in the

achievable mixing rates. Furthermore, we provided numerical evidence that (1),

for fixed enstrophy optimal flows, strong diffusion can benefit from an early onset

of a long-term mixing rate (where the rate itself however is independent of diffu-

sion strength) while (2), for energy fixed optimal flows, strong diffusion weakens

the long-term mixing rate.
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CHAPTER IV

Global-in-time optimization

4.1 Introduction

In this chapter, we explore global-in-time or finite-horizon optimization. The

objective is to maximize mixing at a prescribed final time as oppose to instan-

taneously as before. This optimization problem employs the techniques from

calculus of variations and optimal control [26, 20, 19, 44, 5, 27]. We will fo-

cus primarily on the enstrophy-constrained case but will explicitly mention when

analogous results carry over to the energy-constrained problem.

This chapter is organized as follows. We introduce the theory and setup of

the optimization problem in Section 4.2. This section introduces the associated

Euler-Lagrange equations and total variation. Section 4.3 describes two numer-

ical methods for solving the Euler-Lagrange equations. Lastly, analytical and

numerical results are presented in Section 4.4 for the pure advective case (κ = 0).

This project is currently ongoing and the work done so far is presented.
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4.2 Theory

4.2.1 The optimal control problem

Here we describe the global-in-time optimization problem for enstrophy-constrained

flows. Let D = [0, L]d be our domain where L is the side length and d is the total

number of spatial dimensions. All functions defined on D have periodic boundary

conditions. We are interested in the following optimization problem:

min
u
‖θ( · , T )‖2

H−1 (4.1)

subject to the constraints

∂tθ + u · ∇θ = κ∆θ (4.2)

with

∇ · u = 0 (4.3)

and a time-averaged enstrophy constraint

1

T

T∫
0

∫
ddxdt|∇u|2 = Γ2Ld. (4.4)

In addition, we are provided with initial data

θ(x, 0) = θ0(x). (4.5)

4.2.2 First and total variation for enstrophy-constraint

Calculus of variations provides the appropriate framework for investigating

the conditions placed on optimizers of functionals. Here we present the first and
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total variation results for the enstrophy-constrained case with diffusion. Prior to

presenting these results, it is useful to make the following definitions:

• Definition The pair of functions {θ∗(x, t),u∗(x, t)} on D is said to be ad-

missible if it satisfies the following constraints

∂tθ + u · ∇θ = κ∆θ

∇ · u = 0

T∫
0

∫
D

ddxdt|∇u|2 = Γ2LdT

and the initial data θ(x, 0) = θ0(x).

• Definition An admissible pair {θ∗(x, t),u∗(x, t)} on D is said to be an

optimal solution, minimizer, or minima of the cost functional C if the

total variation

∆C = C{θ, u} − C{θ∗, u∗}

is non-negative for all admissible pairs {θ,u}.

• Definition A pair {θ(x, t),u(x, t)} on D is said to be an extrema for the

cost functional C if the pair is admissible and the first variation

δC = lim
ε→0

C{θ + εθ̃,u + εũ} − C{θ,u}
ε

vanishes.

It remains to be shown that a minimizer exists within the constrained set of

velocity fields satisfying incompressibility and in the H1 Sobolev space (required
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by the enstrophy constraint). Is this a sufficient restriction to ensure that a mini-

mizer exists? Proving the existence of a minimizer typically requires demonstrat-

ing weakly lower semicontinuity of the cost functional for a sufficiently restricted

set of velocity fields. Furthermore, it remains to be shown that a minimizer is

an extrema and thus must satisfy the Euler-Lagrange equations which require

sufficient regularity of the cost functional. In the context of traditional calculus,

this is analogous to ensuring that a minimizer of a function coincides with a point

where the derivative is zero. Nevertheless, it is still worthwhile to solve the Euler-

Lagrange equations for candidate solutions. To determine the Euler-Lagrange

equations, we introduce the associated augmented Lagrangian

L =
1

2

∫
D

ddx|∇∆−1θ(x, T )|2 +

∫
D

ddxφ0(θ(x, 0)− θ0(x))

+

∫
D

ddx

∫
dt
{
φ(∂tθ + u · ∇θ − κ∆θ) +

µ

2
(|∇ × u|2 − Γ2) + p(∇ · u)

}
(4.6)

where φ0, φ, µ, and p are Lagrange multipliers introduced to enforce the system

constraints. Assuming that a minimizer is an extrema, we find that a minimizer

must satisfy the Euler-Lagrange equations:

δL
δθ(T )

= 0 ⇒ ∆−1θ(x, T )− φ(x, T ) = 0 (4.7a)

δL
δθ

= 0 ⇒ ∂tφ+ u · ∇φ+ κ∆φ = 0 (4.7b)

δL
δu

= 0 ⇒ φ∇θ −∇p− µ∆u = 0. (4.7c)

δL
δφ

= 0 ⇒ ∂tθ + u · ∇θ − κ∆θ = 0 (4.7d)
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δL
δp

= 0 ⇒ ∇ · u = 0 (4.7e)

δL
δµ

= 0 ⇒
T∫

0

∫
ddxdt|∇ × u|2 − Γ2LdT = 0 (4.7f)

δL
δφ0

= 0 ⇒ θ(x, 0)− θ0(x) = 0. (4.7g)

Note that equation 4.7b has the same analytic and numerical challenges as the

backwards heat equation given the sign of diffusion term. As a consequence, this

equation will be solved backwards in time in our numerical schemes presented in

a later section.

We highlight that 4.7 provides necessary, but not sufficient, conditions for an

optimal solution. To prove optimality, it suffices to show the total variation at an

extrema (see Appendix C.1 for calculation details)

∆C =

∫∫ {
∇φ · δuδθ + µ|∇δu|2

}
dxdt+

∫
D

|∇−1δθT |2dx ≥ 0 (4.8)

for all perturbations δθ = θ̃ − θ and δu = ũ − u about the candidate solution

{θ,u} where {θ̃, ũ} is admissible. That said, this is a non-convex optimization

problem so this is not a trivial task.

4.2.3 First and total variation for energy constraint

The analysis for the energy-constrained problem with 1
T

∫ T
0
‖u‖2

L2 = U2L2 is

similar to that for the enstrophy-constrained problem. Here we simply state the
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analogous results. The augmented Lagrangian for energy constrained problem is

L =
1

2

∫
D

ddx|∇∆−1θ(x, T )|2 +

∫
D

ddxφ0(θ(x, 0)− θ0(x))

+

∫
D

ddx

∫
dt
{
φ(∂tθ + u · ∇θ) +

µ

2
(|u|2 − U2) + p(∇ · u)

}
. (4.9)

The Euler-Lagrange equations are

δL
δθ(T )

= 0 ⇒ ∆−1θ(x, T )− φ(x, T ) = 0 (4.10a)

δL
δθ

= 0 ⇒ ∂tφ+ u · ∇φ+ κ∆φ = 0 (4.10b)

δL
δu

= 0 ⇒ φ∇θ −∇p+ µu = 0. (4.10c)

δL
δφ

= 0 ⇒ ∂tθ + u · ∇θ − κ∆θ = 0 (4.10d)

δL
δp

= 0 ⇒ ∇ · u = 0 (4.10e)

δL
δµ

= 0 ⇒
T∫

0

∫
ddxdt|u|2 − U2LdT = 0 (4.10f)

δL
δφ0

= 0 ⇒ θ(x, 0)− θ0(x) = 0 (4.10g)

and the total variation at an extrema is

∆C =

∫∫ {
∇φ · δuδθ + µ|δu|2

}
dxdt+

∫
D

|∇−1δθT |2dx (4.11)

for all perturbations δθ = θ̃ − θ and δu = ũ − u about the candidate solution

{θ,u} where {θ̃, ũ} is admissible.
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4.2.4 Optimal control problem with inequality constraints

One may be interested in the following inequality constraint on u in place of

equations (4.4):
T∫

0

∫
ddxdt|∇ × u|2 ≤ Γ2LdT (4.12)

This formulation allows for the possibility of not consuming the entire stirring

budget. Intuitively, this seems an unlikely scenario since it seems inefficient not

to use of one’s stirring resources. We provide the following argument that the

inequality constraint is likely saturated for κ = 0 but not necessarily for κ 6= 0.

Consider the enstrophy constraint with κ = 0. Suppose {θ∗, u∗} are minima

where (4.12) is not saturated and
∫ T

0

∫
ddxdt|∇×u|2 = mΓ2LdT with 0 ≤ m < 1.

Then one can construct new variables θ̃, ũ as θ̃(x, t) = θ∗(x, ct) and ũ(x, t) =

cu∗(x, ct) defined for t ∈ [0, T/c]. Any intermediate c (1 < c < 1
m

) will produce

the original final-time mix-norm value but at an earlier time t = T/c with available

budget (1− c2m2)Γ2LdT left over. Therefore, if there exists any u defined for the

remaining time (t ∈ [T/c, T ]) that is able to decrease the mix-norm by even the

slightest amount with budget remaining, then this new candidate solution (ũ for

t ∈ [0, T/c] and u for t ∈ [T/c, T ]) defeats the supposed minima {θ∗,u∗}. The

instantaneous optimal strategy from the previous chapter is a good candidate,

however there are cases where the first derivative of the mix-norm can not be

controlled. This case must be dealt with to make this argument rigorous.

Nevertheless, it still remains worthwhile to formulate the inequality-constrained

optimal control problem. We may have confidence that the bound is saturated

in the κ = 0 case (given the argument above), but it not obvious that it will

always be saturated with diffusion. In fact, there are trivial cases where u = 0 is
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a reasonable choice. Consider the enstrophy case with initial data θ(x, 0) given by

a Fourier mode with large wavenumber k0 and with a corresponding wavelength

that is much smaller than the Batchelor wavenumber kB =
√

Γ/κ. If u = 0, then

the advection-diffusion equation becomes simply the diffusion equation, and the

mix-norm exhibits exponential decay with rate −κk2
0. However from the local-in-

time optimization study of the previous chapter, we found that when advection

and diffusion are both actively attempting to minimize the mix-norm, the scalar

field develops length scales comparable to the Batchelor scale in the long run.

Therefore, a rough approximation of the long-term exponential rate is likely to be

−κk2
B = −Γ. Therefore in the case were Γ < κk2

0, then u = 0 may be a reasonable

choice. In other words, stirring (when u 6= 0) may move some spectral mass to

wave numbers less than the Batchelor wavenumber and be disruptive. This ar-

gument gives reason to believe that the optimal strategy may not always benefit

from saturation of the budget.

4.3 Numerical method for pure advection (κ = 0)

4.3.1 Gradient descent algorithm

Here we describe a numerical method for solving the Euler-Lagrange equations

(4.7a) – (4.7g) corresponding the enstrophy-contained problem in 2 dimensions.

We use a gradient-based method with line search. The overall strategy is to solve

(4.7a) – (4.7g) per iteration except (4.7c). The left hand side of (4.7c) is in fact

the gradient of the cost with respect to the velocity field over space and time

that is valuable for our iterative update scheme on u. To see that this is the

gradient, consider the first variation of the entire augmented functional. If all
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first variations vanish except the variation with respect to u, then

δL =

∫∫
(φ∇θ −∇p− µ∆u) · δu dxdt.

If in addition θ + δθ, u+ δu remains admissible, then

δC

δu
=
δL

δu
= φ∇θ −∇p− µ∆u (4.13)

for variations respecting the constraints.

We discretize space as an N by N grid and time from 0 to T uniformly with M

time points. Thus, u is an array of shape (M, 2, N,N). θ and φ are arrays of shape

(M,N,N). The approach requires satisfying all the Euler-Lagrange equations

except (4.7c) per iteration. The update is of the following form:

uk+1 = N

(
uk − ηδC

δu
(uk)

)
. (4.14)

where η is the step size. Note that this updates the velocity field at all points of

space and time. N(v) enforces the enstrophy constraint: it is defined as N(v) =

αv where α is a normalizing factor and chosen so 1
T

∫ T
0
dt‖∇N(v)( · , t)‖2

2 = Γ2L2.

To calculate δC
δu

(uk) = φk∇θk −∇pk − µk∆uk, we must find θk, φk, µk and pk.

θk is determined at each iteration from uk by integrating the advection-diffusion

equation with initial condition θ0. Then the terminal condition φk(x, T ) = ∆−1θk(x, T )

is used to provide an ‘initial condition’ for φk. The velocity uk is used to evolve ad-

joint equation for φk backwards in time given φk(x, T ). Both integrations forward

and backwards in time are done with a Fourier basis with N modes to represent

the spatial domain and a 2nd order Heun’s time-stepping method. N is chosen

sufficiently large to to resolve spatially for all time. dt is chosen small enough to
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satisfy both advective and diffusive CFL conditions. This criteria is compactly

stated as dt = 0.25 min[1/(ΓN), L2/(κN2)]. If we demand that the updated uk+1

be incompressible, then this requires that δC
δu

(uk) be incompressible. Towards this

goal, we take the divergence of both sides of (4.13) and require that it vanish.

This gives the following choice of pk = ∆−1∇ · (φk∇θk) which is equivalent to

applying the divergence-free projection operator P to δC
δu

(uk) where the projector

P(v) is defined as P(v) = v −∇∆−1(∇ · v). Lastly µk is chosen so that the up-

date obeys the enstrophy constraint. This restriction is captured in the condition∫ T
0

∫
D

∆u · δukdxdt = 0 where δu = uk+1 − uk. According to our update and for

small δu or equivalently η, this is approximately given by δu ≈ η δC
δu

(uk). We then

calculate:

0 =

T∫
0

∫
D

dxdt∆uk · δu (4.15)

= η

T∫
0

∫
D

dxdt∆uk · (φk∇θk −∇pk − µk∆uk) (4.16)

= η

T∫
0

∫
D

dxdt∆uk · (P(φk∇θk)− µk∆uk) (4.17)

(4.18)

Therefore, we find that

µk =

∫ T
0

∫
D
dxdt∆uk · P(φk∇θk)∫ T

0

∫
D
dxdt∆uk ·∆uk

. (4.19)

This choice µk is chosen to enforce the enstrophy constraint. Note that (4.15) is

the linearized constraint condition. This is why we enforced this constraint by

introducing the normalizing operator N(). The method as a whole is summarized
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in Figure 4.1.

We perform the following validation of the gradient by considering its projec-

tion onto the search direction d = − δC
δu

at u (chosen to be local-in-time velocity

field). We first computing the directional analytical gradient by

Ga =

∫ T
0

∫
D
dxdt δC

δu
· d∫ T

0

∫
D
dxdtd · d

. (4.20)

and the finite-difference approximation with step ε given by

Gε =
C(u + εd)− C(u− εd)

2ε
(4.21)

We can then compare the analytic gradient Ga and its approximation Gε to find

the relative error R defined as

R =
|Ga −Gε|
|Ga|

(4.22)

as function of ε as shown in figure 4.2. Note that we get a decay in the relative

error with smaller ε which eventually plateau to R ≈ 10−3 which is likely due

to truncation error associated with our choices of N and M . If N and M are

increased, we would expect this saturated plateau to decrease. Improvements to

determining an accurate gradient will be investigated further since it is important

to have an accurate gradient for an efficient gradient descent search.

4.3.2 Target algorithm

The previous gradient descent algorithm picks the search direction d to be

proportional to the negative gradient. Here we purpose a different search direction

that has improved convergence at least demonstrated in practice for the problem
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1: function Gradient Descent(u0,θ0,tol)
2: u ← zeros array of shape (M,2,N,N)
3: θ ← zeros array of shape (M,N,N)
4: φ ← zeros array of shape (M,N,N)
5:

6: u[0] ← u0

7:

8: while ‖ δC
δu
‖ ≥ tol do

9: θ ← integrate forward(u ,θ0)
10: φ[M − 1] ← ∆−1(θ[M − 1])
11: φ ← integrate backward(u ,φ[M − 1])
12:

13: δC
δu
← compute gradient(θ, φ, u)

14: d←divergence free projection(− δC
δu

)
15: η ← line search(u,d)
16: u← normalize(u+ ηd)

17: return u

Figure 4.1: Gradient descent for final-time optimization
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Figure 4.2:
The relative numerical error between analytical and finite-difference
gradient as a function of the finite-difference step size ε.
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of interest and parameters chosen. The update is

uk+1 = N(uk + ηdk) (4.23)

where dk = ukt − uk and ukt is the ‘target’ solution given by

ukt = N(∆−1P(φk∇θk)). (4.24)

φk and θk are determined by integrating forward and backwards in time with uk

as seen before in the gradient descent algorithm. The above expression can be

viewed as the solution to φk∇θk − ∇pk − µk∆ukt = 0 where the ukt takes the

place of uk in the gradient expression while keeping θk and φk as solutions to the

state and adjoint equations corresponding to uk. µk and pk are embodied in the

normalization and divergence-free projection operators that require ukt to satisfy

incompressibility and the intensity constraint. The algorithm is summarized in

figure 4.3.

4.4 Results for pure advection (κ = 0)

4.4.1 Optimal budget use is uniform in time

Recall that the velocity field is required to have a fixed mean enstrophy of Γ

over time. Surprisingly, we find that it is optimal to expend enstrophy uniformly
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1: function Target(u0,θ0,tol)
2: u ← zeros array of shape (M,2,N,N)
3: θ ← zeros array of shape (M,N,N)
4: φ ← zeros array of shape (M,N,N)
5:

6: u[0] ← u0

7:

8: while ‖d‖ ≥ tol do
9: θ ← integrate forward(u ,θ0)
10: φ[M − 1] ← ∆−1(θ[M − 1])
11: φ ← integrate backward(u ,φ[M − 1])
12:

13: utarget ← compute target(θ, φ, u)
14: d← utarget − u
15: η ← line search(u,d)
16: u← normalize(u+ ηd)

17: return u

Figure 4.3: Target algorithm for final-time optimization

in time. This is shown by the calculation using the Euler-Lagrange equations:

d

dt

∫
D

ddx|∇ × u|2 = −
∫
D

ddx∆
∂u

∂t
· u

= − 1

µ

∫
D

ddx

(
∂φ

∂t
∇θ + φ∇∂θ

∂t
−∇∂p

∂t

)
· u

= − 1

µ

∫
D

ddx

(
∂φ

∂t
∇θ + φ∇∂θ

∂t

)
· u

= − 1

µ

∫
D

ddx

(
∂φ

∂t
u · ∇θ − u · ∇φ∂θ

∂t

)

= 0

Thus, enstrophy is utilized uniformly in time for a minimizer to problem (4.1)

(provided that the minimizer satisfies the Euler-Lagrange equations). This shows

another commonality between the partial differential equation and shell model.
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t = 0.00 t = 0.43 t = 0.86 t = 1.29 t = 1.71 t = 2.14 t = 2.57 t = 3.00

Figure 4.4:
The top filmstrip is the local-in-time strategy while the bottom film-
strip is the global-in-time strategy. Γ = 1.0.

A similar calculation reveals that energy is conserved in time for the energy-

constrained problem.

4.4.2 Comparison with local-in-time optimization

We investigate the performance of global-in-time optimization relative to in-

stantaneous optimization for Γ = 1.0, κ = 0, L = 1.0, M = 1000, N = 64

and T = 3.0. We consider the performance of mixing the initial condition

θ0(x) = sin(2πx/L). We use the numerical scheme described in section 4.3.2.

Python code is provided in Appendix C.2. The resulting flow is shown in the

bottom filmstrip of Figure 4.4 while the local-in-time flow is shown in the top

filmstrip for comparison. Quantities of interests for this global-in-time optimal

flow are shown in Figure 4.5. The top subplot of Figure 4.5 shows how the H−1

mix-norm varies in time. Note how initially the local-in-time flow outperforms

the global-in-time optimal flow for short times, obviously due to the fact that it

is a greedy algorithm maximizing mixing in the near future. However, note that

the global-in-time flow eventually outperforms local-in-time by the final time as

expected. Furthermore, observe that enstrophy is expended uniformly in time as
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Figure 4.5:
The top subplot shows a comparison of local-in-time agains global-in-
time optimization for fixed enstrophy (Γ = 1.0). The bottoms subplot
shows uniform expenditure in time of the stirring budget as expected.
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expected by the previous analytical result.
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CHAPTER V

Conclusion and Future Directions

In this dissertation, new results on the optimization of mixing are uncovered.

In the first study on optimization of a shell model, it is discovered that the mix-

ing rate is limited by the presence of diffusion. We investigated both local- and

global-in-time optimization for various shell model truncations. The 3-shell model

was particularly informative since analytical solutions for Euler-Lagrange equa-

tions were obtained by using methods familiar to the theory of nuclear magnetic

resonance. These analyses demonstrated clearly how the global-in-time optimiza-

tion strategy can outperform the local-in-time optimization scheme by a clever

‘rotation’ in state space.

In the local-in-time optimization study of the advection-diffusion equation,

it is demonstrated numerically that a generalized Batchelor length scale places

restrictions on the rate of mixing. Many other observations from the shell model

also carried over to this setting. For the enstrophy constrained problem, the

long-term mixing rate is shown to be independent of diffusion coefficient. For

the energy-constrained problem, we found that the mixing rate was dependent on

diffusion coefficient in a perhaps surprising way — increased diffusion can decrease

the mixing rate as measured by the H−1 norm. Diffusion is usually thought to
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benefit mixing as it tends to homogenize dye throughout a fluid, so its detrimental

effect on the process is unexpected.

Finally, results are presented on our ongoing project on global-in-time opti-

mization. In this study, we found that it is optimal to use the stirring budget

uniformly in time when we only demanded that the time-averaged enstrophy be a

desired fixed value. We also found this to be the case for the energy-constrained

problem. This is consistent with the work of G. Mathew et al. [32] that found a

uniform use of the stirring budget when controlling a superposition of a restricted

set of enstrophy and energy constrained flows. We also presented the global-

in-time strategy for a short time period which (as expected) outperformed the

local-in-time strategy at the end time. However, the improvement is not dramatic

in this short time period.

Global-in-time optimization is computationally challenging due to the large

dimensionality of the search space. Improvements are being considered such as

employing other gradient descent and line search methods. The primary bottle-

neck in the algorithm is the computation of gradient with respect to u (and equally

true for the computation of the ‘target’ velocity field) which requires time integra-

tion forwards and backwards in time. Methods for approximating this gradient

would be valuable to speed up the computation, especially at earlier iterations

where precision is not necessary until near the convergence point. The inclusion

of diffusion will most likely require a formulation with inequality intensity con-

straints since it is not obvious that the intensity budget will be saturated given

the argument of the previous chapter. In terms of future theoretical and ana-

lytic work on global-in-time optimization, it is still important to determine the

existence and uniqueness of optimizers for the presented problem. What function

space restriction is necessary to ensure that a minimizer exists?
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These studies suggest the following questions to the mixing community:

• Can one demonstrate the mixing rate limitation of the Batchelor scale rig-

orously? What are the restrictions on the control u for this limitation to

hold? Can one construct a flow that surpasses the Batchelor scale in the

long-run?

• Related to the previous question, can one derive a single exponential lower

bound of the H−1 norm with diffusion for energy or enstrophy stirring in-

tensity constraints? Without diffusion, the rate is shown to depend on the

support of the initial condition [24]. How does diffusion affect this depen-

dence on the initial condition?

It is natural to ask “Are optimal flows as defined feasible?” and “How would

one generate such flows in reality?” The purpose of this study is not to tackle these

questions directly since our formulation is not entirely suitable for these questions.

The purpose of this study is to consider idealized mixing to provide expectations

in the best-case scenario with absolute control over the velocity field under the

assigned constraints. In reality absolute control is generally not obtainable.

Although we do not fully address feasibility in the series of studies presented

here, we acknowledge that feasibility is an important issue and encourage research

in this direction. With the goal of feasibility in mind, we can work backwards from

a desired flow u to obtain the required forcing f on a fluid. This can be found by

simply substituting a discovered (local- or global-in-time) optimal velocity field u

into the Navier-Stokes equation to find:

f = ρ∂tu + ρu · ∇u +∇p− µ∆u (5.1)
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where ρ is the fluid density, µ is the viscosity, p is the fluid pressure, and f is

the required forcing. If f and the initial condition v0(x) = u(x, 0) are given, the

solution v to the Navier-Stokes equation, ρ∂tv + ρv · ∇v = −∇p + µ∆v + f , is

precisely the desired flow field: v = u(x, t). The next natural question is “How

could you construct a mixing device to create the forcing f?” Although we do

not provide an answer, the derived forcing f at least gives us a target to aim for

when tasked with the engineering problem of designing a mechanical mixer that

realizes the flow u.

The required mechanical power to operate a mixing device is also useful mea-

sure for evaluating feasibility. For instance if the mechanical power blows up in

finite time, this would rule out its feasibility. The mechanical power P expended

by an agent exerting the force f on the flow can be found by multiplying (5.1) by

u and integrating over the domain D to arrive at

P =

∫
D

f · u ddx =
d

dt

ρ
2

∫
D

|u|2 ddx

+ µ

∫
D

|∇u|2 ddx (5.2)

Note that, for the enstrophy-constrained case, the last term on the right-hand side

of (5.2) is constant. Thus the required mechanical power changes in time according

to the rate of change of the total kinetic energy. For the energy-constrained case,

the first term on the right-hand side of (5.2) vanishes. Therefore the mechanical

power is proportional to the enstrophy of the flow which could potentially increase

dramatically due to the development of small length scales. Note for inviscid flows

the power in the energy case is zero.
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APPENDIX A

Shell model

A.1 Lower bound for non-diffusive enstrophy-constrained

case

Recall equation (2.6) from section 2.3:

d

dt
‖θ(t)‖2

h−1 = 2
∑
n=1

(
k−2
n+1 − k−2

n

)
θnθn+1knun (A.1)

using κ = 0 since we are considering the non-diffusive case. Rewrite (A.1) as

d

dt
‖θ(t)‖2

h−1 = v · w (A.2)

where v and w are infinite-dimensional vectors with components vn = knun and

wn = 2
(
k−2
n+1 − k−2

n

)
θnθn+1 respectively. Using Cauchy-Schwarz and ‖v‖l2 =

‖u‖h1 , we have

d

dt
‖θ(t)‖2

h−1 ≥ −‖u‖h1‖w‖l2 . (A.3)
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‖w‖l2 and ‖θ‖h−1 are related by the following estimates and manipulations:

‖w‖l2 =

√
4
∑
n=1

(k−2
n − k−2

n+1)2θ2
nθ

2
n+1 (A.4)

=

√
9
∑
n=1

k−2
n k−2

n+1θ
2
nθ

2
n+1 (using kn+1 = 2kn) (A.5)

= 3

√∑
n=1

(θ2
nk
−2
n )(θ2

n+1k
−2
n+1) (A.6)

≤ 3

√∑
n=1

(θ2
nk
−2
n )
∑
m=1

(θ2
mk
−2
m ) (A.7)

= 3
√
‖θ‖2

h−1‖θ‖2
h−1 (A.8)

= 3‖θ‖2
h−1 (A.9)

Using this with (A.3), we conclude

d

dt
‖θ‖2

h−1 ≥ −3‖u‖h1‖θ‖2
h−1 . (A.10)

If ‖u(t)‖h1 is in L1([0, T ]), then we can use Grönwall’s inequality to deduce

‖θ(t)‖h−1 ≥ ‖θ(0)‖h−1 exp

−3

2

t∫
0

‖u(t′)‖h1dt′
 . (A.11)

A.2 Lower bound for non-diffusive energy-constrained case

Now we choose to represent equation (2.6) with κ = 0 in the following alter-

native form:

d

dt
‖θ(t)‖2

h−1 = u · y (A.12)
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where y is an infinite-dimensional vectors with components

yn = 2kn
(
k−2
n+1 − k−2

n

)
θnθn+1.

Using Cauchy-Schwarz, we find that

d

dt
‖θ(t)‖2

h−1 ≥ −‖u‖l2‖y‖l2 (A.13)

By similar techniques seen for bounding ‖w‖l2 in the previous section, we can

relate ‖y‖l2 to ‖θ‖h−1 and ‖θ‖l2 as follows:

‖y‖l2 =

√
4
∑
n=1

k2
n(k−2

n − k−2
n+1)2θ2

nθ
2
n+1 (A.14)

=

√
9
∑
n=1

k−2
n+1θ

2
nθ

2
n+1 (using kn+1 = 2kn) (A.15)

= 3

√∑
n=1

(θ2
n)(θ2

n+1k
−2
n+1) (A.16)

≤ 3

√∑
n=1

θ2
n

∑
m=1

θ2
mk
−2
m (A.17)

= 3
√
‖θ‖2

l2‖θ‖2
h−1 (A.18)

= 3‖θ‖l2‖θ‖h−1 (A.19)

Using the relation above with (A.12) and the fact that ‖θ(t)‖l2 = ‖θ(0)‖l2 , we find

that

d

dt
‖θ‖h−1 ≥ −3

2
‖u‖l2‖θ(0)‖l2 . (A.20)
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Therefore, we can obtain the following lower bound provided that ‖u(t)‖l2 is in

L1([0, T ]),

‖θ(t)‖h−1 ≥ ‖θ(0)‖h−1 − 3

2
‖θ(0)‖l2

t∫
0

‖u(t′)‖l2dt′. (A.21)

A.3 Global-in-time optimal strategy requires uniform use

of budget in time

It is useful to introduce matrix notation to assist our calculation. Let

B(n) =



. . . . . . . . .

0 0 0

0 0 −kn
kn 0 0

0 0 0

. . . . . . . . .


, K =



k1

k2

k3

. . .


,

(A.22)

M = K−1K−1, and A =
∑
n

unB
(n). (A.23)

With this notation, we can write can write (2.11) with κ = 0 as

Mθ(T )− φ(T ) = 0 (A.24a)

φ̇− Aφ = 0 (A.24b)

θ̇ − Aθ = 0 (A.24c)

φTB(n)θ + µk2α
n un = 0 (A.24d)

1

T

T∫
0

uTK2αu−W (α) = 0 (A.24e)
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We calculate that

d

dt
(uTK2αu) = 2

∑
n

unk
2α
n

dun
dt

= − 2

µ

∑
n

un

(
φTB(n)dθ

dt
+
dφT

dt
B(n)θ

)
(using (A.24d))

= − 2

µ

∑
n

un
(
φTB(n)Aθ + φTATB(n)θ

)
(using (A.24b and A.24c))

= − 2

µ

∑
n

unφ
T
(
B(n)A− AB(n)

)
θ (AT = −A)

= − 2

µ

∑
n

unφ
T
[
B(n), A

]
θ ([·, ·] is the commutator.)

= − 2

µ

∑
n

∑
m

unumφ
T
[
B(n), B(m)

]
θ

= 0 (antisym. w.r.t. n & m).

Thus, uTK2αu is conserved in time.

A.4 Optimal control solution to 3-shell truncated model

By differentiating (2.11d) and simplifying, we find

d

dt
k1u1 = − 1

µT
(φ1θ3 − φ3θ1)k2u2 (A.25)

d

dt
k2u2 =

1

µT
(φ1θ3 − φ3θ1)k1u1. (A.26)

Differentiating the quantity (φ1θ3 − φ3θ1) and using (2.11), you can show that

d

dt
(φ1θ3 − φ3θ1) = 0. (A.27)
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Thus, equations (A.25) and (A.26) take the form

d

dt
k1u1 = −ωk2u2 (A.28)

d

dt
k2u2 = ωk1u1 (A.29)

where

ω =
1

µT
(φ1θ3 − φ3θ1) (A.30)

is a constant. The initial condition θ(0) = (1, 0, 0)T translates into the following

initial condition for u = (± 1
τ
, 0, 0) by making use of equations (2.11d) evaluated at

t = 0 and the constraint 1
T

∫ T
0
‖u(t)‖2

h1dt = 1
τ2

. If we choose the u with a positive

first component, then we find that

k1u1 =
1

τ
cos(ωt) k2u2 =

1

τ
sin(ωt).

A.5 State solution to 3-shell truncated model

We solve (2.16) given the optimal control by making a unitary transformation,

θr = U rθ where U r = exp(−ωtSy). Using this transformation we find a new

‘rotated’ state equation,

θ̇r = U rAθ + U̇ rθ = [U rA(U r)−1 + U̇ r(U r)−1]θr = θ̇r = [U rA(U r)−1 − ωSy]θr

where

U rA(U r)−1 = exp(−ωtSy)
(

1

τ
sin(ωt)Sx +

1

τ
cos(ωt)Sz

)
exp(ωtSy).
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The time derivative of U rA(U r)−1 is calculated as

d

dt
U rA(U r)−1 =

d

dt

(
exp(−ωtSy)

(
1

τ
sin(ωt)Sx +

1

τ
cos(ωt)Sz

)
r exp(ωtSy)

)
= exp(−ωtSy)

(
1

τ
sin(ωt)[Sx, ωSy]

+
1

τ
cos(ωt)[Sz, ωSy]

)
exp(ωtSy)

+ exp(−ωtSy)
(

1

τ
ω cos(ωt)Sx −

1

τ
ω sin(ωt)Sz

)
exp(ωtSy)

= exp(−ωtSy)
(

1

τ
ω sin(ωt)Sz −

1

τ
ω cos(ωt)Sx

)
exp(ωtSy)

+ exp(−ωtSy)
(

1

τ
ω cos(ωt)Sx −

1

τ
ω sin(ωt)Sz

)
exp(ωtSy)

= 0.

Thus, U rA(U r)−1 is constant. Hence, we can evaluate it at any time. If we choose

t = 0, we find that U rA(U r)−1 = 1
τ
Sz. The rotated state equation becomes

θ̇r =

(
1

τ
Sz − ωSy

)
θr.

Since
(

1
τ
Sz − ωSy

)
is time-independent, we can write the solution as

θr(t) = exp

(
−ωtSy +

1

τ
tSz

)
θr(0).

We can write this in terms of θ to get

θ(t) = exp(ωtSy) exp(−ωtSy +
1

τ
tSz)θ(0).
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The rotation of a vector x about an arbitrary axis n̂ = (nx, ny, nz)
T by an angle

ψ is performed by acting on the vector x with the operator, exp(ψn̂ · S). If we

define

Z =


0 −nz ny

nz 0 −nx
−ny nx 0

 ,

the expression exp(ψn̂ · S) is given by [2]

exp(ψn̂ · S) = I + (sinψ)Z + (1− cosψ)Z2.

Using this fact, we rewrite our solution as

θ(ω, τ, t) =


cos(ωt) cos(νt) + ω

ν
sin(ωt) sin(νt)

ρ
ν

sin(νt)

− sin(ωt) cos(νt) + ω
ν

cos(ωt) sin(νt)



where we assume θ(0) = (1, 0, 0)T and define ν ≡
√
ω2 + 1

τ

2
.

A.6 Perfect mixing in finite time is impossible with diffu-

sion

Let

d

dt
θn = kn−1un−1θn−1 − knunθn+1 − κ k2

nθn, n = 1, 2, . . . (A.31)
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and u be constrained by

‖u(t)‖hα = W (α) (A.32)

at all times t. We define

xm =

(
m∑
n=1

θ2
n

)1/2

, ym =

( ∞∑
n=m+1

θ2
n

)1/2

, and βm = ym/xm. (A.33)

Also we define

β±m = γm ±
√
γ2
m − 1

and γm = 3κk1+αm

2W (α) .

Lemma 1:

(a) If βm(0) ≤ β+
m and γm ≥ 1 , then βm(t) ≤ β+

m for all time t. (A.34)

(b) If βm(0) ≤ β−m and γm ≥ 1 , then βm(t) ≤ β−m for all time t. (A.35)

Proof:

We find that

1

2

d

dt
x2
m = −kmumθmθm+1 − κ

m∑
n=1

k2
nθ

2
n (A.36a)

1

2

d

dt
y2
m = kmumθmθm+1 − κ

∞∑
n=m+1

k2
nθ

2
n. (A.36b)

Using the following inequalities,

• |θm| ≤ xm

• |θm+1| ≤ ym

• |um| ≤ W (α)

kαm
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• ∑m
n=1 k

2
nθ

2
n ≤ k2

mx
2
m

• ∑∞n=m+1 k
2
nθ

2
n ≥ k2

m+1y
2
m,

we find that

dxm
dt
≥ −k1−α

m W (α)ym − κk2
mxm (A.37a)

dym
dt
≤ k1−α

m W (α)xm − κk2
m+1ym. (A.37b)

Taking the derivative of ym/xm,

d

dt

(
ym
xm

)
=
xmy

′
m − ymx′m
x2
m

≤ 1

xm
(k1−α
m W (α)xm − κk2

m+1ym)

− ym
x2
m

(−k1−α
m W (α)ym − κk2

mxm)

= k1−α
m W (α)

(
1 +

y2
m

x2
m

)
− κ(k2

m+1 − k2
m)
ym
xm

(A.38)

Using the definition βm = ym/xm, we write this as

dβm
dt
≤ k1−α

m W (α)
(
1 + β2

m

)
− κ(k2

m+1 − k2
m)βm = k1−α

m W (α)(βm − β−m)(βm − β+
m)

(A.39)

where β±m are the roots of the right-hand side given by

β±m = γm ±
√
γ2
m − 1.

The roots β±m are real when γm = 3κk1+αm

2W (α) ≥ 1. The differential inequality (A.39)

implies conditions (A.34) and (A.35).

Theorem 1:
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Let there exist a smallest integer p such that xp(0) > 0 and yp(0) < ∞. It

follows that perfect mixing in finite time is impossible (‖θ‖h−1 > 0 for all finite t).

Furthermore, for

m = max

{⌈
1

1 + α
log2

(
2W (α)

3κk1+α
0

γ∗
)⌉

, p

}
(A.40)

with γ∗ ≡ max
{

1+β2
p(0)

2βp(0)
, 1
}

and βp = xp/yp, we have that

‖θ(t)‖h−1 ≥ xm(0)

km
exp(−(k1−α

m W (α)β+
m + κk2

m)t). (A.41)

Proof:

Assume that there exists a smallest integer p such that xp(0) > 0 and yp(0) <

∞. Thus, βp(0) < ∞. If we choose m ≥ p large enough so that γm ≥ γ∗ ≡

max
{

1+β2
p(0)

2βp(0)
, 1
}

, then this ensures that βm(0) ≤ βp(0) ≤ β+
m and the hypotheses

of Lemma 1.a are satisfied. Therefore, by choosing

m = max

{⌈
1

1 + α
log2

(
2W (α)

3κk1+α
0

γ∗
)⌉

, p

}
(A.42)

we have that

ym(t) ≤ β+
mxm(t). (A.43)

Note that (A.37a) remains true. We use (A.37a) with the above relation to give

dxm
dt
≥ −(k1−α

m W (α)β+
m + κk2

m)xm. (A.44)
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By Grönwall’s inequality, we have that

xm(t) ≥ xm(0) exp(−(k1−α
m W (α)β+

m + κk2
m)t). (A.45)

Since

‖θ‖2
h−1 ≥

m∑
n=1

θ2
n

k2
n

≥ 1

k2
m

m∑
n=1

θ2
n =

x2
m

k2
m

, (A.46)

we have that

‖θ(t)‖h−1 ≥ xm(0)

km
exp(−(k1−α

m W (α)β+
m + κk2

m)t) > 0. (A.47)

Therefore, perfect mixing in finite time is impossible. The exponential decay rate

is exactly equal to the eigenvalue λ− (see definition (2.28)) from the local-in-time

analysis with diffusion.

Theorem 2:

Let p be an integer such that θq = 0 for all q ≥ p. It follows that perfect mixing

in finite time is impossible (‖θ‖h−1 > 0 for all finite t). Furthermore, for

m = max

{⌈
1

1 + α
log2

(
2W (α)

3κk1+α
0

)⌉
, p

}
(A.48)

we have that

‖θ(t)‖h−1 ≥ xm(0)

km
exp(−(k1−α

m W (α)β−m + κk2
m)t). (A.49)

Proof:
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Assume there exists an integer p such that θq(0) = 0 for all q ≥ p. Then, we have

that βq(0) = 0 for all q ≥ p. By choosing

m = max

{⌈
1

1 + α
log2

(
2W (α)

3κk1+α
0

)⌉
, p

}
(A.50)

we have that γm ≥ 1 and βm(0) = 0 ≤ β−m. Thus, we satisfy the hypotheses of

Lemma 1.b and arrive at

ym(t) ≤ β−mxm(t). (A.51)

The remaining argument is identical to the argument from inequality (A.43) for-

ward in the previous proof with the substitution of β+
m for β−m. We find that

‖θ(t)‖h−1 ≥ xm(0)

km
exp(−(k1−α

m W (α)β−m + κk2
m)t) > 0. (A.52)

Therefore, perfect mixing in finite time is impossible. The exponential decay rate

is exactly equal to the eigenvalue λ+ (see definition (2.28)) from the local-in-time

analysis with diffusion.

Remark: Note that Theorem 1 proves perfect mixing in finite time is impossible

for a larger set of initial conditions than that considered by Theorem 2. Theorem

2, however, provides a tighter lower bound than that given by Theorem 1.
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APPENDIX B

Local-in-time optimization

B.1 Local-in-time optimization code: lit.py

1 import t o o l s

2 import numpy as np

3 import matp lo t l i b . pyplot as p l t

4 import copy

5 import time

6 import os

7 import sys

8 import p i c k l e

9 import ppr int

10

11

12 c l a s s s o l ( ob j e c t ) :

13 de f i n i t ( s e l f ) :

14 s e l f .M = 0 # Number o f t o t a l s t ep s

15 s e l f .N = 0 # Number o f s p a t i a l g r i d po in t s in a s i n g l e

↪→ dimension
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16 s e l f .T = 0 . # Fina l time

17 s e l f . dt = 0 .

18 s e l f . Pe = 0 . # Pec l e t

19 s e l f . L = 0 . # Length o f box s i d e

20 s e l f . h i s t th hm1 = [ ]

21 s e l f . h i s t t h l 2 = [ ]

22 s e l f . h i s t t h h1 = [ ]

23 s e l f . h i s t t h t ime = [ ]

24 s e l f . h i s t t h = [ ]

25

26 s e l f . h i s t u = [ ]

27 s e l f . h i s t u t ime = [ ]

28 s e l f . h i s t u h1 = [ ]

29 s e l f . h i s t u l 2 = [ ]

30

31

32 de f sim (N=128 , M=1000 , T=1.0 , L=1.0 , gamma=1.0 , U=1.0 , Pe=1024 ,

33 T kick =0.01 , s ave th eve ry =10, save u eve ry =10, p i c k l e f i l e=

↪→ None ,

34 p lo t=False , c on s t r a i n t=’ enstrophy ’ ) :

35

36 de f f ( th , u ) :

37 th d = s t . d e a l i a s ( th )

38 re turn s t . d e a l i a s (−1.0 ∗ np . sum( vt . d e a l i a s (u) ∗ s t . grad ( th d )

↪→ , 0)

39 + kappa ∗ s t . lap ( th d ) )

40

41 de f f l i t ( th ) :

42 re turn f ( th , u l i t ( th ) )

43

44 de f u l i t e n s t r o phy ( th ) :
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45 th d = s t . d e a l i a s ( th )

46 u l i t = th d ∗ s t . g rad inv lap ( th d )

47 u l i t = − vt . inv lap ( vt . d i v f r e e p r o j ( u l i t ) )

48 u l i t = gamma ∗ L ∗ u l i t / s t . l2norm ( vt . c u r l ( u l i t ) )

49 re turn u l i t

50

51 de f u l i t e n e r g y ( th ) :

52 u l i t = s t . d e a l i a s ( th ) ∗ vt . d e a l i a s ( s t . g rad inv lap ( th ) )

53 u l i t = vt . d i v f r e e p r o j ( u l i t )

54 u l i t = U ∗ L ∗ u l i t / vt . l2norm ( u l i t )

55 re turn u l i t

56

57 i f c on s t r a i n t == ’ enstrophy ’ :

58 u l i t = u l i t e n s t r o phy

59 e l i f c on s t r a i n t == ’ energy ’ :

60 u l i t = u l i t e n e r g y

61

62 # Parameters

63 h = L / N

64 kappa = 1 . / Pe

65

66 # ## Double p r e c i s i o n

67 f type = np . f l o a t 6 4

68 ctype = np . complex128

69 t o t a l s t e p s = M

70 dt = T / M

71 pr in t ( ’ dt = ’ , dt )

72 f i n a l t im e i n d = t o t a l s t e p s

73 t o t a l t im e p t s = t o t a l s t e p s + 1

74

75 X = np . mgrid [ : N, :N ] . astype ( f type ) ∗ h
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76 Nf = N // 2 + 1

77 kx = np . f f t . f f t f r e q (N, 1 . / N) . astype ( i n t )

78 ky = kx [ : Nf ] . copy ( )

79 ky [−1] ∗= −1

80 K = np . array (np . meshgrid (kx , ky , index ing=’ i j ’ ) , dtype=in t )

81

82 s t = t o o l s . Sca larToo l (N, L)

83 vt = t o o l s . VectorTool (N, L)

84

85 th0 = np . s i n ( 2 . ∗ np . p i ∗ X[ 0 ] / L)

86 th = copy . copy ( th0 )

87

88 # I n i t i a l k i ck

89 # The de f au l t va lue f o r T kick equal to 0 .01 i s s u f f i c i e n t to

90 # i n i t i a t e LIT opt imiza t i on .

91

92 num steps k ick = in t (max( round ( T kick / dt ) , 10) )

93 dt k i ck = T kick / num steps k ick

94

95 u k i ck = np . z e ro s ( ( 2 , N, N) , dtype=f type )

96 u k i ck [ 0 , : , : ] = np . s i n ( 2 . ∗ np . p i ∗ X[ 1 ] / L)

97

98 f o r i in range ( num steps k ick ) :

99 k1 = f ( th , u k i ck )

100 k2 = f ( th + 0 .5 ∗ dt k i ck ∗ k1 , u k i ck )

101 k3 = f ( th + 0 .5 ∗ dt k i ck ∗ k2 , u k i ck )

102 k4 = f ( th + dt k i ck ∗ k3 , u k i ck )

103 th = th + dt k i ck ∗ ( 1 . 0 / 6 . 0 ) ∗ ( k1 + 2 .0 ∗ k2 + 2 .0 ∗ k3 +

↪→ k4 )

104

105 time = 0 .0
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106

107 h i s t t h = [ th ]

108 h i s t t h t ime = [ time ]

109 hist th hm1 = [ s t . hm1norm( th ) ]

110 h i s t t h l 2 = [ s t . l2norm ( th ) ]

111 h i s t t h h1 = [ s t . h1norm( th ) ]

112

113 u = u l i t ( th )

114 h i s t u = [ u ]

115 h i s t u t ime = [ time ]

116 h i s t u h1 = [ vt . h1norm(u) ]

117 h i s t u l 2 = [ vt . l2norm (u) ]

118 i f p l o t :

119 p l t . f i g u r e ( )

120 s t . p l o t ( th )

121 p l t . t i t l e ( ’ time = %2.3 f ’ % time )

122 p l t . show ( )

123

124 u0 = copy . copy (u)

125 a s s e r t t o t a l s t e p s == M

126

127 f o r i in range (1 , t o t a l s t e p s + 1) :

128 k1 = f l i t ( th )

129 k2 = f l i t ( th + 0 .5 ∗ dt ∗ k1 )

130 k3 = f l i t ( th + 0 .5 ∗ dt ∗ k2 )

131 k4 = f l i t ( th + dt ∗ k3 )

132 th = th + dt ∗ ( 1 . 0 / 6 . 0 ) ∗ ( k1 + 2 .0 ∗ k2 + 2 .0 ∗ k3 + k4 )

133 time += dt

134

135 i f np .mod( i , s ave th eve ry ) == 0 :

136
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137 h i s t t h . append ( th )

138 h i s t t h t ime . append ( time )

139 hist th hm1 . append ( s t . hm1norm( th ) )

140 h i s t t h l 2 . append ( s t . l2norm ( th ) )

141 h i s t t h h1 . append ( s t . h1norm( th ) )

142

143 i f p l o t :

144 p l t . f i g u r e ( )

145 s t . p l o t ( th )

146 p l t . t i t l e ( ’ time = %2.3 f ’ % time )

147 p l t . show ( )

148

149 vt . p l o t (u)

150 p l t . show ( )

151

152 i f np .mod( i , s ave u eve ry ) == 0 :

153 u = u l i t ( th )

154 h i s t u . append (u)

155 h i s t u t ime . append ( time )

156 h i s t u h1 . append ( vt . h1norm(u) )

157 h i s t u l 2 . append ( vt . l2norm (u) )

158

159 s o l s a v e = s o l ( )

160 s o l s a v e .M = to t a l t im e p t s

161 s o l s a v e .N = N

162 s o l s a v e .T = T

163 s o l s a v e . dt = dt

164 s o l s a v e . Pe = Pe

165 s o l s a v e .L = L

166

167 s o l s a v e . h i s t t h = h i s t t h
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168 s o l s a v e . h i s t t h t ime = h i s t t h t ime

169 s o l s a v e . h i s t th hm1 = hist th hm1

170 s o l s a v e . h i s t t h l 2 = h i s t t h l 2

171 s o l s a v e . h i s t t h h1 = h i s t t h h1

172

173 s o l s a v e . h i s t u = h i s t u

174 s o l s a v e . h i s t u t ime = h i s t u t ime

175 s o l s a v e . h i s t u h1 = h i s t u h1

176 s o l s a v e . h i s t u l 2 = h i s t u l 2

177

178 i f p i c k l e f i l e != None :

179 output = open ( p i c k l e f i l e , ’wb ’ )

180 p i c k l e . dump( so l s av e , output )

181

182 re turn s o l s a v e

183

184

185 de f movie ( time , s c a l a r h i s t , N, L , output path=’ output / ’ ) :

186 os . system ( ’mkdir ’ + output path )

187 os . system ( ’mkdir ’ + output path + ’ images / ’ )

188 s t = t o o l s . Sca larToo l (N, L)

189 # st . p l o t ( s c a l a r h i s t [ i ] )

190 # pl t . s a v e f i g ( outputPath + ”image%.4d . png” % i , format=’png ’ )

191 f o r i in range ( l en ( time ) ) :

192 f i g = p l t . f i g u r e ( )

193 s t . p l o t (np . r e a l ( s c a l a r h i s t [ i ] ) )

194 p l t . t i t l e ( ’Time = %.3 f ’ % time [ i ] )

195 p l t . s a v e f i g ( output path + ’ images / ’ + ” image%.4d . png” %

196 i , format=’ png ’ )

197 # pl t . s a v e f i g (” image . png ” , format=’png ’ )

198 p l t . c l o s e ( f i g )
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199

200 os . system ( ” ffmpeg −y −f ramerate 20 − i ” + output path + ’ images / ’

201 ” image%04d . png −c : v l i bx264 −pix fmt yuv420p ” +

↪→ output path +

202 ”movies .mp4” )

203

204 # os . system ( ’ rm −r ’ + output path + ’ images / ’ )

205

206

207 de f compute norms ( s c a l a r h i s t , N, L) :

208 s t = t o o l s . Sca larToo l (N, L)

209 t ime length , , = np . shape ( s c a l a r h i s t )

210

211 hm1norm hist = np . z e r o s ( t ime l ength )

212 l 2norm hi s t = np . z e ro s ( t ime l ength )

213 h1norm hist = np . z e ro s ( t ime l ength )

214

215 f o r i , s c a l a r in enumerate ( s c a l a r h i s t ) :

216 hm1norm hist [ i ] = s t . hm1norm( s c a l a r )

217 l 2norm hi s t [ i ] = s t . l2norm ( s c a l a r )

218 h1norm hist [ i ] = s t . h1norm( s c a l a r )

219

220 re turn [ hm1norm hist , l2norm hist , h1norm hist ]

221

222

223 de f plot norms ( time , s c a l a r h i s t , N, L , h i gh qua l i t y=False , graph=’

↪→ l og ’ ) :

224 i f h i gh qua l i t y :

225 p l t . rc ( ’ t ex t ’ , usetex=True )

226 p l t . rc ( ’ f ont ’ , f ami ly=’ s e r i f ’ , s i z e =12)

227 e l s e :
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228 p l t . rc ( ’ t ex t ’ , usetex=False )

229 p l t . rc ( ’ f ont ’ , f ami ly=’ sans−s e r i f ’ , s i z e =12)

230 hm1norm hist , l2norm hist , h1norm hist = compute norms (

↪→ s c a l a r h i s t , N, L)

231

232 i f graph == ’ log ’ :

233 p l t . semi logy ( time , hm1norm hist ,

234 l a b e l=r ’$Hˆ{−1}$ ’ , l i n e s t y l e=’− ’ , c o l o r=’k ’ )

235 p l t . semi logy ( time , l2norm hist , l a b e l=r ’$Lˆ2$ ’ ,

236 l i n e s t y l e=’−− ’ , c o l o r=’k ’ )

237 p l t . semi logy ( time , h1norm hist ,

238 l a b e l=r ’$Hˆ{1}$ ’ , l i n e s t y l e=’ : ’ , c o l o r=’k ’ )

239 e l i f graph == ’ l i n e a r ’ :

240 p l t . p l o t ( time , hm1norm hist ,

241 l a b e l=r ’$Hˆ{−1}$ ’ , l i n e s t y l e=’− ’ , c o l o r=’k ’ )

242 p l t . p l o t ( time , l2norm hist , l a b e l=r ’$Lˆ2$ ’ ,

243 l i n e s t y l e=’−− ’ , c o l o r=’k ’ )

244 p l t . p l o t ( time , h1norm hist ,

245 l a b e l=r ’$Hˆ{1}$ ’ , l i n e s t y l e=’ : ’ , c o l o r=’k ’ )

246

247 p l t . l egend ( )

248 p l t . x l ab e l ( ’Time ’ )

249 p l t . g r i d ( alpha =0.5)

250

251

252 i f name == ” main ” :

253

254 # PLEASE READ BEFORE RUNNING ON FLUX SERVER!

255 #

256 # Trans fer t h i s s c r i p t l i t . py , t o o l s . py , and f l ux pbs en s t r ophy .

↪→ sh ( or f l ux pb s ene r gy . sh )
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257 # to f l ux .

258 #

259 # This i s s p e c i f i c a l l y b u i l t to i n t e r f a c e with the pbs s c r p t s to

↪→ work on

260 # un i v e r i s t y o f Michigan ’ s f l u x s e r v e r . Make sure to use the

↪→ f o l l ow i n g command

261 # ‘ qsub −t 1−27 f l ux pbs en s t r ophy . sh ’ where 27 i s chosen s i n c e

↪→ i t i s the ( Length

262 # of P e l i s t [=9 ] ) t imes (number o f t r i a l s per Pec l e t [=3 ] ) .

↪→ S im i l a r l y

263 # fo r the energy c on s t r a i n t run ‘ qsub −t 1−33 f l ux pb s ene rgy . sh ’

264

265 sim num = in t ( sys . argv [ 1 ] )

266 c on s t r a i n t = s t r ( sys . argv [ 2 ] )

267 T = f l o a t ( sys . argv [ 3 ] )

268

269 pr in t ( sim num)

270

271 i f c on s t r a i n t == ” enstrophy ” :

272 P e l i s t = [ 1 2 8 . 0 , 256 .0 , 512 .0 , 1024 .0 ,

273 2048 .0 , 4096 .0 , 8192 .0 , 16384 .0 , np . i n f ]

274 e l i f c on s t r a i n t == ”energy ” :

275 P e l i s t = [ 1 . 0 , 2 . 0 , 4 . 0 , 8 . 0 , 16 . 0 , 32 . 0 ,

276 64 . 0 , 128 .0 , 256 .0 , 512 .0 , np . i n f ]

277

278 Pe = P e l i s t [ ( sim num − 1) // 3 ]

279 kappa = 1 .0 / Pe

280

281 # THESE PARAMETERS SHOULD NOT BE CHANGE!

282 L = 1.0

283 U = 1.0

101



284 gamma = 1.0

285

286 # Determine N and d t c f l

287 i f c on s t r a i n t == ” enstrophy ” :

288 i f Pe == np . i n f :

289 N = 512

290 d t c f l = 0 .25 ∗ (L / N) / (gamma ∗ L)

291 e l s e :

292 lb = ( kappa / gamma) ∗∗0 .5

293 l sm a l l e s t = 0 .25 ∗ lb # a quarte r o f ba t che l o r s c a l e

294 pr in t ( ’ lb = ’ , lb )

295 num wavelengths = L / l sm a l l e s t

296 pr in t ( ’N boyd = ’ , t o o l s . N boyd ( num wavelengths ) )

297 N = min( t o o l s . N boyd ( num wavelengths ) , 512)

298 d t c f l = 0 .25 ∗ min ( (L / N) ∗∗2 . / kappa , (L / N) / (gamma

↪→ ∗ L) )

299

300 e l i f c on s t r a i n t == ”energy ” :

301

302 i f Pe == np . i n f :

303 N = 512

304 d t c f l = 0 .25 ∗ (L / N) / (U)

305 e l s e :

306 lb = ( kappa / U)

307 l sm a l l e s t = 0 .25 ∗ lb # a quarte r o f ba t che l o r s c a l e

308 pr in t ( ’ lb = ’ , lb )

309 num wavelengths = L / l sm a l l e s t

310 pr in t ( ’N boyd = ’ , t o o l s . N boyd ( num wavelengths ) )

311 N = min( t o o l s . N boyd ( num wavelengths ) , 512)

312 d t c f l = 0 .25 ∗ min ( (L / N) ∗∗2 . / kappa , (L / N) / U)

313
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314 pr in t ( ’N = ’ , N)

315 pr in t ( ’ dt CFL = ’ , d t c f l )

316

317 # Determine M l i s t g iven d t c f l

318 # Run 3 d i f f e r e n t s imu la t i on s with 2 and 4 t imes as many time

↪→ num steps

319 # This w i l l be used to c a l c u l a t e convergence metr i c s .

320 M0 = round (T / d t c f l ) # approx number o f time s t ep s accord ing

↪→ to CFL

321 M0 = in t (2∗∗np . c e i l (np . log2 (M0) ) ) # make power o f two

322 M l i s t = [M0, i n t (2 ∗ M0) , i n t (4 ∗ M0) ]

323

324 # Se l e c t M based o f f o f sim num

325 M index = ( sim num − 1) % 3

326 M = M l i s t [ M index ]

327

328 ou tpu t f o l d e r = ”output−pe=” + s t r (Pe) + ”−M=” + s t r (M) + ”/”

329 os . system ( ’mkdir ’ + ou tpu t f o l d e r )

330 p i c k l e f i l e = ou tpu t f o l d e r + ”pe=” + s t r (Pe) + ”−M=” + s t r (M) +

↪→ ” . pkl ”

331

332 s ave th eve ry = max( i n t ( round (M / 128) ) , 1)

333 save u eve ry = max( i n t ( round (M / 8) ) , 1)

334

335 s o l u t i o n = sim (N=N, M=M, T=T, L=L , U=U, gamma=gamma, Pe=Pe ,

↪→ c on s t r a i n t=cons t ra in t ,

336 s ave th eve ry=save th every , save u eve ry=

↪→ save u every ,

337 p i c k l e f i l e=p i c k l e f i l e , p l o t=False )

338

339 movie ( s o l u t i o n . h i s t th t ime , s o l u t i o n . h i s t t h ,
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340 N, L , output path=ou tpu t f o l d e r )

341

342 p l t . f i g u r e ( )

343

344 s t = t o o l s . Sca larToo l (N, L)

345 s t . p l o t ( s o l u t i o n . h i s t t h [−1])

346 p l t . s a v e f i g ( ou tpu t f o l d e r + ’ p l o t f i n a l f r ame−pe=’ + s t r (Pe) + ’ .

↪→ png ’ )

347

348 p l t . f i g u r e ( )

349 plot norms ( s o l u t i o n . h i s t th t ime , s o l u t i o n . h i s t t h , N, L)

350 p l t . s a v e f i g ( ou tpu t f o l d e r + ’ plot norms−pe=’ + s t r (Pe) + ’ . png ’ )

B.2 Local-in-time optimization code: tools.py

1 import numpy as np

2 import pyf f tw . i n t e r f a c e s . numpy fft as f f t

3 # from numpy import f f t

4 from pyf f tw . i n t e r f a c e s import cache

5 import matp lo t l i b

6 matp lo t l i b . use ( ’Agg ’ )

7 import matp lo t l i b . pyplot as p l t

8 cache . enable ( )

9

10

11 de f N boyd (M) :

12 ””” Boyd ’ s r u l e o f thumb . M i s the number o f wave l eng th s

13 given by M = L/ l where L i s the box s i z e and l i s the sma l l e s t

14 s c a l e to be r e s o l v ed ”””

15 re turn i n t (2∗∗np . c e i l (np . log2 (4 ∗ (M − 1) + 6) ) )

16
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17

18 c l a s s Sca larToo l ( ob j e c t ) :

19 ”””

20 Desc r ip t i on :

21 Sca larToo l conta in s a c o l l e c t i o n o f f unc t i on s nece s sa ry to

↪→ compute ba s i c

22 ope ra t i on s such as g rad i en t s and norms on s c a l a r s de f ined on a 2D

↪→ pe r i o d i c

23 square domain o f l ength L and d i s c r e t i z e d in each dimension in to

↪→ N

24 i n t e r v a l s .

25

26 Inputs :

27 N − number o f d i s c r e t i z e d po in t s in each dimension

28 L − l ength o f s i d e

29 ”””

30

31 de f i n i t ( s e l f , N, L) :

32 s e l f .N = N

33 s e l f . L = L

34 s e l f . h = s e l f . L / s e l f .N

35 s e l f .X = np . mgrid [ : s e l f .N, : s e l f .N ] . astype ( f l o a t ) ∗ s e l f . h

36

37 s e l f . Nf = s e l f .N // 2 + 1

38 s e l f . kx = np . f f t . f f t f r e q ( s e l f .N, 1 . / s e l f .N) . astype ( i n t )

39 s e l f . ky = s e l f . kx [ : s e l f . Nf ] . copy ( )

40 s e l f . ky [−1] ∗= −1

41 s e l f .K = np . array (np . meshgrid (

42 s e l f . kx , s e l f . ky , index ing=’ i j ’ ) , dtype=in t )

43 s e l f .K2 = np . sum( s e l f .K ∗ s e l f .K, 0 , dtype=in t )

44 s e l f . KoverK2 = s e l f .K. astype (
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45 f l o a t ) / np . where ( s e l f .K2 == 0 , 1 , s e l f .K2) . astype ( f l o a t )

46 s e l f . oneoverK2 = 1 .0 / \

47 np . where ( s e l f .K2 == 0 .0 , 1 . 0 , s e l f .K2) . astype ( f l o a t )

48 s e l f . mean zero array = s e l f .K2 != 0 .0

49 s e l f . kmax deal ias = 2 . / 3 . ∗ ( s e l f .N / 2 + 1)

50 s e l f . d e a l i a s a r r a y = np . array ( ( abs ( s e l f .K[ 0 ] ) < s e l f .

↪→ kmax deal ias ) ∗ (

51 abs ( s e l f .K[ 1 ] ) < s e l f . kmax deal ias ) , dtype=bool )

52 s e l f . num threads = 1

53

54 de f l2norm ( s e l f , s c a l a r ) :

55 s e l f . s c a l a r i n p u t t e s t ( s c a l a r )

56 re turn np . sum(np . r av e l ( s c a l a r ) ∗∗2 .0 ∗ s e l f . h ∗∗2 . 0 ) ∗∗0 .5

57

58 de f grad ( s e l f , s c a l a r ) :

59 s e l f . s c a l a r i n p u t t e s t ( s c a l a r )

60

61 s c a l a r h a t = s e l f . f f t ( s c a l a r )

62 re turn f f t . i r f f t n ( 1 . 0 j ∗ s e l f .K ∗ (2 ∗ np . p i / s e l f . L) ∗

↪→ s c a l a r ha t , axes =(1 , 2) , threads=s e l f . num threads )

63

64 de f h1norm( s e l f , s c a l a r ) :

65 s e l f . s c a l a r i n p u t t e s t ( s c a l a r )

66 g r ad s c a l a r = s e l f . grad ( s c a l a r )

67 g r ad s c a l a r s q = np . sum( g r ad s c a l a r ∗ g rad s ca l a r , 0)

68 in tegrand = np . r av e l ( g r a d s c a l a r s q )

69 re turn np . sum( integrand ∗ s e l f . h ∗∗2 . 0 ) ∗∗0 .5

70

71 de f lap ( s e l f , s c a l a r ) :

72 s e l f . s c a l a r i n p u t t e s t ( s c a l a r )

73 s c a l a r h a t = s e l f . f f t ( s c a l a r )
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74 re turn s e l f . i f f t ((−1.0) ∗ s e l f .K2 ∗ (2 ∗ np . p i / s e l f . L) ∗∗2 .0

↪→ ∗ s c a l a r h a t )

75

76 de f inv lap ( s e l f , s c a l a r ) :

77 s e l f . s c a l a r i n p u t t e s t ( s c a l a r )

78 s c a l a r h a t = s e l f . f f t ( s c a l a r )

79 re turn np . r e a l ( s e l f . i f f t (−1.0 ∗ ( 2 . 0 ∗ np . p i / s e l f . L)

↪→ ∗∗(−2.0) ∗

80 s e l f . oneoverK2 ∗ s e l f .

↪→ mean zero array ∗ s c a l a r h a t ) )

81

82 de f g rad inv lap ( s e l f , s c a l a r ) :

83 s e l f . s c a l a r i n p u t t e s t ( s c a l a r )

84 s c a l a r h a t = s e l f . f f t ( s c a l a r )

85 re turn f f t . i r f f t n (−1.0 j ∗ s e l f . KoverK2 ∗ (2 ∗ np . p i / s e l f . L)

↪→ ∗∗(−1.0) ∗ s c a l a r ha t , axes =(1 , 2) , threads=s e l f . num threads )

86

87 de f hm1norm( s e l f , s c a l a r ) :

88 s e l f . s c a l a r i n p u t t e s t ( s c a l a r )

89 g r a d i n v l a p s c a l a r = s e l f . g rad inv lap ( s c a l a r )

90 g r a d i n v l a p s c a l a r s q = np . sum( g r ad i n v l a p s c a l a r ∗

91 g r ad i nv l ap s c a l a r , 0) # dot

↪→ product

92 in tegrand = np . r av e l ( g r a d i n v l a p s c a l a r s q )

93 re turn np . sum( integrand ∗ s e l f . h ∗∗2 . 0 ) ∗∗0 .5

94

95 de f p l o t ( s e l f , s c a l a r , h i gh qua l i t y=False , f i x e d v e r t i c a l a x i s=

↪→ False ) :

96

97 i f h i gh qua l i t y :

98 p l t . rc ( ’ t ex t ’ , usetex=True )
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99 p l t . rc ( ’ f ont ’ , f ami ly=’ s e r i f ’ , s i z e =12)

100 e l s e :

101 p l t . rc ( ’ t ex t ’ , usetex=False )

102 p l t . rc ( ’ f ont ’ , f ami ly=’ sans−s e r i f ’ , s i z e =12)

103

104 i f f i x e d v e r t i c a l a x i s :

105 vmin = −1

106 vmax = 1

107 e l s e :

108 vmin = np . amin ( s c a l a r )

109 vmax = np . amax( s c a l a r )

110 s e l f . s c a l a r i n p u t t e s t ( s c a l a r )

111 im = p l t . imshow (np . t ranspose ( s c a l a r ) ,

112 cmap=p l t . cm . gray ,

113 extent =(0 , s e l f . L , 0 , s e l f . L) ,

114 o r i g i n=” lower ” ,

115 vmin=vmin ,

116 vmax=vmax)

117 p l t . x l ab e l ( r ’ $x$ ’ )

118 p l t . y l ab e l ( r ’ $y$ ’ )

119 p l t . c o l o rba r ( im)

120

121 de f s c a l a r i n p u t t e s t ( s e l f , s c a l a r ) :

122 i f np . shape ( s c a l a r ) != ( s e l f .N, s e l f .N) :

123 pr in t (np . shape ( s c a l a r ) )

124 r a i s e InputError ( ” Sca l a r f i e l d array does not have

↪→ c o r r e c t shape . ” )

125 i f not np . a l l (np . i s r e a l o b j ( s c a l a r ) ) :

126 r a i s e InputError ( ” Sca l a r f i e l d array should be r e a l . ” )

127

128 de f s c a l a r h a t i n p u t t e s t ( s e l f , s c a l a r h a t ) :
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129 i f np . shape ( s c a l a r h a t ) != ( s e l f .N, s e l f . Nf ) :

130 pr in t (np . shape ( s c a l a r h a t ) )

131 r a i s e InputError ( ” Sca l a r f i e l d array does not have

↪→ c o r r e c t shape . ” )

132

133 de f s i n t ( s e l f , s c a l a r ) :

134 ””” Performs s p a t i a l i n t e g r a t i o n ”””

135 s e l f . s c a l a r i n p u t t e s t ( s c a l a r )

136 re turn np . sum(np . r av e l ( s c a l a r ) ∗ s e l f . h ∗∗2 . 0 )

137

138 de f d e a l i a s ( s e l f , s c a l a r ) :

139 ””” Perform 1/3 d e a l i a s on s c a l a r ”””

140 s e l f . s c a l a r i n p u t t e s t ( s c a l a r )

141 temp hat = s e l f . f f t ( s c a l a r ) ∗ s e l f . d e a l i a s a r r a y

142 re turn s e l f . i f f t ( temp hat )

143

144 de f f f t ( s e l f , s c a l a r ) :

145 ””” Performs f f t o f s c a l a r f i e l d ”””

146 s e l f . s c a l a r i n p u t t e s t ( s c a l a r )

147 re turn f f t . r f f t n ( s ca l a r , threads=s e l f . num threads )

148

149 de f i f f t ( s e l f , s c a l a r h a t ) :

150 ””” Performs i nv e r s e f f t o f s c a l a r f i e l d ”””

151 s e l f . s c a l a r h a t i n p u t t e s t ( s c a l a r h a t )

152 re turn f f t . i r f f t n ( s c a l a r ha t , threads=s e l f . num threads )

153

154 de f subtract mean ( s e l f , s c a l a r ) :

155 ””” subt rac t o f f mean ”””

156 s e l f . s c a l a r i n p u t t e s t ( s c a l a r )

157 s c a l a r h a t = s e l f . f f t ( s c a l a r )

158 re turn np . r e a l ( s e l f . i f f t ( s c a l a r h a t ∗ s e l f . mean zero array ) )
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159

160 de f get spectrum ( s e l f , s c a l a r ) :

161 ””” ge t s spectrum ”””

162 s e l f . s c a l a r i n p u t t e s t ( s c a l a r )

163 s c a l a r h a t = s e l f . f f t ( s c a l a r )

164 amp = 2.0 ∗ np . abso lu t e ( s c a l a r h a t ) / \

165 s e l f .N∗∗2 .0 # co r r e c t s norma l i za t i on

166 k l i s t = np . arange (0 , s e l f .N // 2 + 1 , 1) # beginning o f bin

↪→ i n t e r v a l s

167 K inf = np .maximum( abs ( s e l f .K[ 0 ] ) , abs ( s e l f .K[ 1 ] ) ) #

↪→ i n f i n i t y norm

168 amp l i s t = [ ]

169

170 f o r k in k l i s t :

171 K she l l b o o l = k == K inf

172 max amp in she l l = np . amax(amp ∗ K she l l b o o l )

173 amp l i s t . append ( max amp in she l l )

174

175 re turn [ k l i s t , amp l i s t ]

176

177 de f i s b l o ck ed ( s e l f , s c a l a r , k f r a c =0.85 , amp thres=10.∗∗(−10) ) :

178 ””” determines i f s p e c t r a l b lock ing i s pre sent ”””

179 s e l f . s c a l a r i n p u t t e s t ( s c a l a r )

180 k th r e s = in t ( k f r a c ∗ ( s e l f .N / 2) )

181 [ k l i s t , amp l i s t ] = s e l f . get spectrum ( s c a l a r )

182 amp beyond k thres = [ amp l i s t [ i ]

183 f o r i in range ( l en ( k l i s t ) ) i f k l i s t [ i

↪→ ] > k th r e s ]

184 re turn max( amp beyond k thres ) > amp thres

185

186
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187 c l a s s VectorTool ( ob j e c t ) :

188 ”””

189 Desc r ip t i on :

190 VectorTool conta in s a c o l l e c t i o n o f f unc t i on s nece s sa ry to

↪→ compute ba s i c

191 ope ra t i on s such as norms on s c a l a r s de f i ned on a 2D pe r i o d i c

192 square domain o f l ength L and d i s c r e t i z e d in each dimension in to

↪→ N

193 i n t e r v a l s .

194

195 Inputs :

196 N − number o f d i s c r e t i z e d po in t s in each dimension

197 L − l ength o f s i d e

198 ”””

199

200 de f i n i t ( s e l f , N, L) :

201 s e l f .N = N

202 s e l f . L = L

203 s e l f . h = s e l f . L / s e l f .N

204 s e l f .X = np . mgrid [ : s e l f .N, : s e l f .N ] . astype ( f l o a t ) ∗ s e l f . h

205 s e l f . Nf = s e l f .N // 2 + 1

206 s e l f . kx = np . f f t . f f t f r e q ( s e l f .N, 1 . / s e l f .N) . astype ( i n t )

207 s e l f . ky = s e l f . kx [ : s e l f . Nf ] . copy ( )

208 s e l f . ky [−1] ∗= −1

209 s e l f .K = np . array (np . meshgrid (

210 s e l f . kx , s e l f . ky , index ing=’ i j ’ ) , dtype=in t )

211 s e l f .K2 = np . sum( s e l f .K ∗ s e l f .K, 0 , dtype=in t )

212 s e l f . KoverK2 = s e l f .K. astype (

213 f l o a t ) / np . where ( s e l f .K2 == 0 , 1 , s e l f .K2) . astype ( f l o a t )

214 s e l f . oneoverK2 = 1 .0 / \

215 np . where ( s e l f .K2 == 0 .0 , 1 . 0 , s e l f .K2) . astype ( f l o a t )
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216 s e l f . mean zero array = s e l f .K2 != 0 .0

217 s e l f . kmax deal ias = 2 . / 3 . ∗ ( s e l f .N / 2 + 1)

218 s e l f . d e a l i a s a r r a y = np . array ( ( abs ( s e l f .K[ 0 ] ) < s e l f .

↪→ kmax deal ias ) ∗ (

219 abs ( s e l f .K[ 1 ] ) < s e l f . kmax deal ias ) , dtype=bool )

220 s e l f . num threads = 1

221

222 de f div ( s e l f , v ec to r ) :

223 ””” Take d ive rgence o f vec to r ”””

224 s e l f . v e c t o r i n pu t t e s t ( vec to r )

225 vec to r ha t = s e l f . f f t ( vec to r )

226 re turn f f t . i r f f t n (np . sum(1 j ∗ s e l f .K ∗ (2 ∗ np . p i / s e l f . L) ∗

↪→ vector hat , 0) , threads=s e l f . num threads )

227

228 de f f f t ( s e l f , v ec to r ) :

229 ””” Performs f f t o f vec to r f i e l d ”””

230 s e l f . v e c t o r i n pu t t e s t ( vec to r )

231 re turn f f t . r f f t n ( vector , axes =(1 , 2) , threads=s e l f .

↪→ num threads )

232

233 de f i f f t ( s e l f , v e c to r ha t ) :

234 ””” Performs i nv e r s e f f t o f vec to r hat f i e l d ”””

235 s e l f . v e c t o r h a t i n pu t t e s t ( v e c to r ha t )

236 re turn f f t . i r f f t n ( vector hat , axes =(1 , 2) , threads=s e l f .

↪→ num threads )

237

238 de f p l o t ( s e l f , vector , h i gh qua l i t y=False ) :

239 ””” Plot s a qu iver p l o t o f the vec to r f i e l d ”””

240 s e l f . v e c t o r i n pu t t e s t ( vec to r )

241 i f h i gh qua l i t y :

242 p l t . rc ( ’ t ex t ’ , usetex=True )
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243 p l t . rc ( ’ f ont ’ , f ami ly=’ s e r i f ’ , s i z e =12)

244 e l s e :

245 p l t . rc ( ’ t ex t ’ , usetex=False )

246 p l t . rc ( ’ f ont ’ , f ami ly=’ sans−s e r i f ’ , s i z e =12)

247

248 m = max( round ( s e l f .N / 25) , 1)

249 Q = p l t . qu iver ( s e l f .X[ 0 ] [ 1 : − 1 :m, 1:−1:m] ,

250 s e l f .X[ 1 ] [ 1 : − 1 :m, 1:−1:m] ,

251 vec to r [ 0 ] [ 1 : − 1 :m, 1:−1:m] ,

252 vec to r [ 1 ] [ 1 : − 1 :m, 1:−1:m] , l i n ew id th s =2.0)

253 p l t . qu iverkey (

254 Q, 0 . 8 , 1 . 03 , 2 , r ’%.2 f $\ f r a c {m}{ s }$ ’ % np . amax( vec to r ) ,

↪→ l a b e l po s=’E ’ , )

255 p l t . x l ab e l ( r ’ $x$ ’ )

256 p l t . y l ab e l ( r ’ $y$ ’ )

257 p l t . t i t l e ( ’ ’ )

258 p l t . xl im ( 0 . 0 , s e l f . L)

259 p l t . yl im ( 0 . 0 , s e l f . L)

260 p l t . ax i s ( ’ s c a l ed ’ )

261

262 de f d e a l i a s ( s e l f , v ec to r ) :

263 ””” Dea l i a s vec to r ”””

264 s e l f . v e c t o r i n pu t t e s t ( vec to r )

265 vec to r ha t = s e l f . f f t ( vec to r )

266 vec to r ha t = vec to r ha t ∗ s e l f . d e a l i a s a r r a y

267 re turn np . r e a l ( s e l f . i f f t ( v e c to r ha t ) )

268

269 de f l2norm ( s e l f , vec to r ) :

270 ””” L2 norm o f a vec to r f i e l d ”””

271 s e l f . v e c t o r i n pu t t e s t ( vec to r )

272 in tegrand = np . sum( vec to r ∗ vector , 0)
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273

274 re turn np . sum(np . r av e l ( integrand ) ∗ s e l f . h∗∗2) ∗∗0 .5

275

276 de f h1norm( s e l f , vec to r ) :

277 ””” L2 norm o f a vec to r f i e l d ”””

278 s e l f . v e c t o r i n pu t t e s t ( vec to r )

279 vec to r ha t = s e l f . f f t ( vec to r )

280 grad vx = f f t . i r f f t n ( 1 . 0 j ∗ s e l f .K ∗ (2 ∗ np . p i / s e l f . L)

281 ∗ vec to r ha t [ 0 ] , axes =(1 , 2) , threads=

↪→ s e l f . num threads )

282 grad vy = f f t . i r f f t n ( 1 . 0 j ∗ s e l f .K ∗ (2 ∗ np . p i / s e l f . L)

283 ∗ vec to r ha t [ 1 ] , axes =(1 , 2) , threads=

↪→ s e l f . num threads )

284

285 in tegrand = ( grad vx [ 0 ] ∗ ∗ 2 . 0 + grad vx [ 1 ] ∗ ∗ 2 . 0

286 + grad vy [ 0 ] ∗ ∗ 2 . 0 + grad vy [ 1 ] ∗ ∗ 2 . 0 )

287

288 re turn np . sum(np . r av e l ( integrand ) ∗ s e l f . h∗∗2) ∗∗0 .5

289

290 de f v e c t o r i n pu t t e s t ( s e l f , v ec to r ) :

291 ””” Determines i f vec to r i s c o r r e c t s i z e ”””

292 i f np . shape ( vec to r ) != (2 , s e l f .N, s e l f .N) :

293 pr in t (np . shape ( vec to r ) )

294 r a i s e InputError ( ”Vector f i e l d array does not have

↪→ c o r r e c t shape” )

295

296 i f not np . a l l (np . i s r e a l o b j ( vec to r ) ) :

297 r a i s e InputError ( ” Sca l a r f i e l d array should be r e a l . ” )

298

299 de f v e c t o r h a t i n pu t t e s t ( s e l f , v e c to r ha t ) :

300 ””” Determines i f vec to r i s c o r r e c t s i z e ”””
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301 i f np . shape ( vec to r ha t ) != (2 , s e l f .N, s e l f . Nf ) :

302 pr in t (np . shape ( vec to r ha t ) )

303 r a i s e InputError ( ”Vector f i e l d array does not have

↪→ c o r r e c t shape” )

304

305 de f i s i n c omp r e s s i b l e ( s e l f , v ec to r ) :

306 s e l f . v e c t o r i n pu t t e s t ( vec to r )

307 re turn np . a l l c l o s e ( s e l f . d iv ( vec to r ) , 0)

308

309 de f d i v f r e e p r o j ( s e l f , v ec to r ) :

310 ””” performs l e r ay divergence−f r e e p r o j e c t i o n ”””

311 s e l f . v e c t o r i n pu t t e s t ( vec to r )

312 vec to r ha t = s e l f . f f t ( vec to r )

313 re turn s e l f . i f f t ( v e c to r ha t − s e l f . KoverK2 ∗ np . sum( s e l f .K ∗

↪→ vector hat , 0) )

314

315 de f cu r l ( s e l f , v ec to r ) :

316 ””” Perform cu r l o f vec to r ”””

317 s e l f . v e c t o r i n pu t t e s t ( vec to r )

318 vec to r ha t = s e l f . f f t ( vec to r )

319 w = f f t . i r f f t n (

320 1 j ∗ s e l f .K[ 0 ] ∗ ( 2 . 0 ∗ np . p i / s e l f . L) ∗ vec to r ha t [ 1 ]

321 − 1 j ∗ s e l f .K[ 1 ] ∗ ( 2 . 0 ∗ np . p i / s e l f . L) ∗ vec to r ha t

↪→ [ 0 ] , threads=s e l f . num threads )

322 re turn w

323

324 de f inv lap ( s e l f , vec to r ) :

325 ””” Inve r s e l a p l a c i a n o f vec to r ”””

326 s e l f . v e c t o r i n pu t t e s t ( vec to r )

327 vec to r ha t = s e l f . f f t ( vec to r )
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328 re turn np . r e a l ( s e l f . i f f t (−1.0 ∗ ( 2 . 0 ∗ np . p i / s e l f . L)

↪→ ∗∗(−2.0) ∗

329 s e l f . oneoverK2 ∗ s e l f .

↪→ mean zero array ∗ vec to r ha t ) )

330

331 de f lap ( s e l f , vec to r ) :

332 ””” Laplac ian o f vec to r ”””

333 s e l f . v e c t o r i n pu t t e s t ( vec to r )

334 vec to r ha t = s e l f . f f t ( vec to r )

335 re turn np . r e a l ( s e l f . i f f t (−1.0 ∗ ( 2 . 0 ∗ np . p i / s e l f . L) ∗∗ ( 2 . 0 )

↪→ ∗ ( s e l f .K2) ∗ vec to r ha t ) )

336

337 de f subtract mean ( s e l f , vec to r ) :

338 ””” subt rac t o f f mean ”””

339 s e l f . v e c t o r i n pu t t e s t ( vec to r )

340 vec to r ha t = s e l f . f f t ( vec to r )

341 re turn np . r e a l ( s e l f . i f f t ( v e c to r ha t ∗ s e l f . mean zero array ) )

342

343

344 c l a s s InputError ( Exception ) :

345 ””” Input Error ”””

346

347 de f i n i t ( s e l f , message ) :

348 s e l f . message = message
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APPENDIX C

Global-in-time optimization

C.1 Total variation calculation

Let θ(x, t) and u(x, t) be arbitrary functions on D × [0, T ] and define a cost

functional be

C{θ} = ‖θ(x, T )‖2
H−1 =

∫
D

dx|∇−1θ(x, T )|2.

Define the quantities:

g1{θ,u} = ∂tθ + u · ∇θ − κ∆θ

g2{u} = ∇ · u

g3{u} =

T∫
0

∫
D

dxdt|∇u|2 − TLdΩ2.

Let φ(x, t), and q(x, t) be arbitrary functions on D × [0, T ] and let µ be a scalar.

Define the functional G as
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G{θ,u, φ, q, µ} =

∫∫
[φ(x, t)g1{θ,u}+ q(x, t)g2{u}]dxdt

+µg3{u}

Let the pair {θ0,u0} be an extrema of C and {θ1,u1} be an admissible pair.

Note that since {θ0,u0} and {θ1,u1} are admissible, G{θ0,u0, φ, q, µ} = 0 and

G{θ1,u1, φ, q, µ} = 0. Hence, the total variation of G is also zero,

∆G = G{θ1,u1, φ, q, µ} −G{θ0,u0, φ, q, µ} = 0.

Let δθ = θ1 − θ0 and δu = u1 − u0.

∆G =

∫∫
[φ(x, t)g1{θ1,u1}+ q(x, t)g2{u1}]dxdt+ µg3{u1}

−
∫∫

[φ(x, t)g1{θ0,u0}+ q(x, t)g2{u0}]dxdt− µg3{u0}

=

∫∫
[φ (∂t(θ0 + δθ) + (u0 + δu) · ∇(θ0 + δθ)− ∂tθ0 − u0 · ∇θ0)

+ q (∇ · (u0 + δu)−∇ · u0)

+ µ
(
|∇(u0 + δu)|2 − |∇u0|2

)
]dxdt
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=⇒ ∆G =

∫∫
{(−∂tφ− u0 · ∇φ)δθ + (φ∇θ0 −∇q − µ∆u0) · δu

+ ∇φ · δuδθ + µ|∇δu|2t}dxdt

+

∫
D

φ(x, T )δθ(x, T )dx = 0

Consider the total variation of C

∆C = C{θ1} − C{θ0}

=

∫
D

{
|∇−1θ1(x, T )|2 − |∇−1θ0(x, T )|2

}
dx

=

∫
D

{
|∇−1 [θ0(x, T ) + δθ(x, T )] |2 − |∇−1θ0(x, T )|2

}
dx

=

∫
D

{
∇−1θ0(x, T ) · ∇−1δθ(x, T ) + |∇−1δθ(x, T )|2

}
dx

=

∫
D

{
−∆−1θ0(x, T )δθ(x, T ) + |∇−1δθ(x, T )|2

}
dx

Since ∆G = 0, we can add ∆G to ∆C without any consequence. Let the index

“T” be shorthand for the arguments (x, T ). (e.g. φT = φ(x, T ))
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∆C = ∆C + ∆G

=

∫∫
{(−∂tφ− u0 · ∇φ− κ∆φ)δθ

+ (φ∇θ0 −∇q − µ∆u0) · δu +∇φ · δuδθ + µ|∇δu|2}dxdt

+

∫
D

{
(φT −∆−1θ0,T )δθT + |∇−1δθT |2

}
dx

Since {θ0,u0} is an extrema, the first variation vanishes. The total variation

about the extrema {θ0,u0} becomes

∆C =

∫∫ {
∇φ · δuδθ + µ|∇δu|2

}
dxdt+

∫
D

|∇−1δθT |2dx. (C.1)

C.2 Global-in-time optimization code: git.py

1 import t o o l s

2 import numpy as np

3 import matp lo t l i b . pyplot as p l t

4 import copy

5 import time

6 import os

7 import p i c k l e

8 import ppr int

9 import l i t

10

11

12 de f i n c r e a s e r e s ( s ca l a r , N grid ) :

13 s t g r i d = t o o l s . Sca larToo l ( N grid , L)

14 th hat = np . f f t . r f f t ( s ca l a r , ax i s=1)
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15

16 th hat1 = np . z e r o s ( (N, N grid // 2 + 1) , dtype=ctype )

17 th hat1 [ : , 0 : (N // 2 + 1) ] = N grid / N ∗ th hat

18

19 th hat2 = np . f f t . f f t ( th hat1 , ax i s=0)

20

21 th hat3 = np . z e r o s ( ( N grid , N grid // 2 + 1) , dtype=ctype )

22 th hat3 [ 0 :N // 2 , : ] = N grid / N ∗ th hat2 [ 0 :N // 2 , : ]

23 th hat3 [ ( N grid − N // 2) : , : ] = N grid / N ∗ th hat2 [N // 2 : , : ]

24 th new = s t g r i d . i f f t ( th hat3 )

25 re turn th new

26

27

28 de f f ( th , u ) :

29 th d = s t . d e a l i a s ( th )

30 re turn s t . d e a l i a s (−1.0 ∗ np . sum( vt . d e a l i a s (u) ∗ s t . grad ( th d ) , 0)

31 + kappa ∗ s t . lap ( th d ) )

32

33

34 de f g ( phi , u ) :

35 phi d = s t . d e a l i a s ( phi )

36 re turn s t . d e a l i a s (−1.0 ∗ np . sum( vt . d e a l i a s (u) ∗ s t . grad ( phi d ) ,

↪→ 0)

37 − kappa ∗ s t . lap ( phi d ) )

38

39

40 de f l i n e s e a r c h (u , d , e t a a r r ay ) :

41 J ar ray = np . z e r o s (np . shape ( e t a a r r ay ) )

42 f o r i , e ta in enumerate ( e t a a r r ay ) :

43 J ar ray [ i ] = ge t ob j ( normal ize ( d i v f r e e p r o j ( d e a l i a s (u + eta

↪→ ∗ d) ) ) )
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44 p l t . f i g u r e ( )

45 p l t . l o g l o g ( e ta ar ray , J ar ray )

46 p l t . show ( )

47 re turn e ta a r r ay [ np . argmin ( J ar ray ) ]

48

49

50 de f g e t ob j (u) :

51 # Forward i n t e g r a t i o n

52 th = in t e g r a t e f o rwa rd (u , th0 )

53 re turn 0 .5 ∗ s t . hm1norm( th [M − 1 ] ) ∗∗2

54

55

56 de f i n t e g r a t e f o rwa rd (u , th0 ) :

57 th = np . z e r o s ( (M, N, N) )

58 th [ 0 ] = th0

59 f o r i in range (M − 1) :

60 # Heun ’ s method

61 k1 = f ( th [ i ] , u [ i ] )

62 t h e u l e r = th [ i ] + dt ∗ k1

63 th [ i + 1 ] = th [ i ] + 0 .5 ∗ dt ∗ ( k1 + f ( th eu l e r , u [ i + 1 ] ) )

64 re turn th

65

66

67 de f integrate backward (u , phiT ) :

68 phi = np . z e r o s ( (M, N, N) )

69 phi [M − 1 ] = phiT

70 f o r i in r eve r s ed ( range (M − 1) ) :

71 # Heun ’ s method

72 k1 = g ( phi [ i + 1 ] , u [ i + 1 ] )

73 ph i e u l e r = phi [ i + 1 ] − dt ∗ k1

74 phi [ i ] = phi [ i + 1 ] − 0 .5 ∗ dt ∗ ( k1 + g ( ph i eu l e r , u [ i ] ) )
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75 re turn phi

76

77

78 de f compute gradJ and J (u) :

79 # Forward i n t e g r a t i o n

80 th = in t e g r a t e f o rwa rd (u , th0 )

81

82 # Compute ob j e c t i v e

83 obj = 0 .5 ∗ s t . hm1norm( th [M − 1 ] ) ∗∗2

84

85 # Backward i n t e g r a t i o n

86 phiT = s t . inv lap ( th [M − 1 ] )

87 phi = integrate backward (u , phiT )

88

89 # Compute g rad i en t

90 grad = np . z e ro s ( (M, 2 , N, N) )

91 f o r i in range (M) :

92 grad [ i ] = s t . d e a l i a s ( phi [ i ] ) ∗ vt . d e a l i a s ( s t . grad ( th [ i ] ) )

93 grad [ i ] = vt . d i v f r e e p r o j ( vt . d e a l i a s ( grad [ i ] ) )

94 lapu = lap (u)

95 mu = dot ( lapu , grad ) / dot ( lapu , lapu )

96 grad = grad − mu ∗ lapu

97

98 re turn grad , obj

99

100

101 de f compute d (u) :

102 # Forward i n t e g r a t i o n

103 th = in t e g r a t e f o rwa rd (u , th0 )

104

105 # Compute ob j e c t i v e
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106 obj = 0 .5 ∗ s t . hm1norm( th [M − 1 ] ) ∗∗2

107

108 # Backward i n t e g r a t i o n

109 phiT = s t . inv lap ( th [M − 1 ] )

110 phi = integrate backward (u , phiT )

111

112 # Compute d

113 d = np . z e r o s ( (M, 2 , N, N) )

114 f o r i in range (M) :

115 d [ i ] = s t . d e a l i a s ( phi [ i ] ) ∗ vt . d e a l i a s ( s t . grad ( th [ i ] ) )

116 d [ i ] = vt . inv lap ( vt . d i v f r e e p r o j ( vt . d e a l i a s (d [ i ] ) ) )

117 d = normal ize (d) − u

118

119 re turn d

120

121

122 de f lap (v ) :

123 lapv = np . z e ro s ( (M, 2 , N, N) )

124 f o r i in range (M) :

125 lapv [ i ] = vt . lap (v [ i ] )

126 re turn lapv

127

128

129 de f inv lap (v ) :

130 inv lapv = np . z e r o s ( (M, 2 , N, N) )

131 f o r i in range (M) :

132 inv lapv [ i ] = vt . inv lap (v [ i ] )

133 re turn inv lapv

134

135

136 de f normal ize ( v ) :
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137 re turn v ∗ (gamma ∗ L) / mean enstrophy (v ) ∗∗0 .5

138

139

140 de f mean enstrophy (v ) :

141 i n t e g = 0

142 f o r i in range (M) :

143 i n t e g += vt . h1norm(v [ i ] ) ∗∗2 . ∗ dt

144 i n t e g = ( 1 . / T) ∗ i n t e g

145 re turn in t eg

146

147

148 de f i s i n c omp r e s s i b l e ( v ) :

149 cond = True

150 f o r i in range (M) :

151 cond = cond ∗ vt . i s i n c omp r e s s i b l e ( v [ i ] )

152 re turn cond == 1

153

154

155 de f d i v f r e e p r o j ( v ) :

156 f o r i in range (M) :

157 v [ i ] = vt . d i v f r e e p r o j ( vt . d e a l i a s ( v [ i ] ) )

158 re turn v

159

160

161 de f d e a l i a s ( v ) :

162 f o r i in range (M) :

163 v [ i ] = vt . d e a l i a s ( v [ i ] )

164 re turn v

165

166

167 de f dot (v , u) :
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168 dot = 0

169 f o r i in range (M) :

170 dot += st . s i n t (sum(v [ i ] ∗ u [ i ] , 0) ) ∗ dt

171

172 re turn dot

173

174

175 i f name == ” main ” :

176 N = 64

177 M = 1000

178 L = 1.0

179 h = L / N

180 T = 3.0

181 dt = T / M

182 kappa = 0 .0

183 gamma = 1.0

184 f type = np . f l o a t 6 4

185 ctype = np . complex128

186

187 s t = t o o l s . Sca larToo l (N, L)

188 vt = t o o l s . VectorTool (N, L)

189

190 s o l l i t = l i t . sim (N=N, M=M − 1 , Pe=np . in f , p l o t=False ,

191 T=T, save th eve ry=M − 1 , save u eve ry=1)

192 u = np . array ( s o l l i t . h i s t u )

193 th0 = s o l l i t . h i s t t h [ 0 ]

194 pr in t ( mean enstrophy (u) )

195 t ime array = s o l l i t . h i s t u t ime

196

197 e t a a r r ay = np . array ( [ 0 . 1 , . 0 1 , 0 . 0 0 1 ] )

198 num i te ra t i ons = 100
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199 f o r i in range ( num i te ra t i ons ) :

200 gradJ , J = compute gradJ and J (u)

201 d = compute d (u)

202 eta = l i n e s e a r c h (u , d , e t a a r r ay )

203 u = normal ize ( d i v f r e e p r o j ( d e a l i a s (u + eta ∗ d) ) )

204 pr in t ( ’ eta=’ , eta ,

205 ’mag o f gradJ = ’ , dot ( gradJ , gradJ ) ∗∗0 .5 ,

206 ’mag d = ’ , dot (d , d) ∗∗0 .5 ,

207 ’ J=’ , J ,

208 ’ i n compre s s i b l e ? ’ , i s i n c omp r e s s i b l e (u) ,

209 ’mean enstrophy ’ , mean enstrophy (u) )
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